
An Empirical Study of Bug Report Field
Reassignment

Xin Xia∗[, David Lo†, Ming Wen∗, Emad Shihab‡, and Bo Zhou∗§
∗College of Computer Science and Technology, Zhejiang University, China
†School of Information Systems, Singapore Management University, Singapore
‡Department of Software Engineering, Rochester Institute of Technology, USA

xxkidd@zju.edu.cn, davidlo@smu.edu.sg, justinwm@zju.edu.cn, emad.shihab@rit.edu, bzhou@zju.edu.cn

Abstract—Bug fixing is one of the most important activities
in software development and maintenance. Bugs are reported,
recorded, and managed in bug tracking systems such as Bugzilla.
In general, a bug report contains many fields, such as product,
component, severity, priority, fixer, operating system (OS), plat-
form, etc. Those fields provide important information for the
bug triaging and fixing process. It is important to make sure
that bug information is correct since previous studies showed
that the wrong assignment of bug report fields could increase the
bug fixing time, and even delay the delivery of the software.

In this paper, we perform an empirical study on bug report
field reassignments in open-source software projects. To better
understand why bug report fields are reassigned, we manually
collect 99 recent bug reports that had their fields reassigned
and emailed their reporters and developers asking why these
fields got reassigned. Then, we perform a large-scale empirical
study on 8 types of bug report field reassignments (i.e., product,
component, severity, priority, OS, version, fixer, and status field
reassignments) in 4 open-source software projects (i.e., OpenOf-
fice, Netbeans, Eclipse, and Mozilla) containing a total of 190,558
bug reports. In particular, we investigate 1) the number of bug
reports whose fields get reassigned, 2) the difference in bug fixing
time between bug reports whose fields get reassigned and those
whose fields are not reassigned, 3) the duration a field in a bug
report gets reassigned, 4) the number of fields in a bug report that
get reassigned, 5) the number of times a field in a bug report gets
reassigned, and 6) whether the experience of bug reporters affect
the reassignment of bug report fields. We find that a large number
(approximately 80%) of bug reports have their fields reassigned,
and the bug reports whose fields get reassigned require more time
to be fixed than those without field reassignments.

Keywords—Bug Report Field Reassignment, Empirical Study,
Bug Fix

I. INTRODUCTION

Software maintenance consumes a large proportion of the
cost of a software product. In fact, previous studies show
that software maintenance consumes over 70% of the software
development cost [8]. Bug fixing is one of the main activities in
the software development and maintenance process, and is con-
sidered a time-consuming and costly activity. Most software
projects use bug tracking systems such as Bugzilla to report,
record, and manage bug reports. When reporting a bug report,
a reporter needs to provide different types of information about
the bug, such as the summary and description text of the

[The work was done while the author was visiting Singapore Management
University.

§Corresponding author.

observed bug, the status which shows the current status (e.g.,
closed or resolved), the product and component fields where
the bug is detected, the priority and severity fields which mark
the importance of the bug, the version, operating system (OS),
and platform fields which indicate the environment affected by
the bug, and the reporter and fixer fields. This information is
vital for developers to triage and fix the bug [33], [34].

However, in some cases, the fields in the bug report get
reassigned. Our analysis shows that approximately 80% of
bug reports have their fields reassigned (see Section IV-B) and
these reassignments cause delays in the bug fixing process
(see Section IV). Figure 1 shows a bug report from Netbeans
with BugID 227547.1 We notice that the fixer, the priority,
the product and the component fields in this bug report have
been reassigned. The priority is reassigned from P2 to P1,
and then reassigned back to P2. The fixer is reassigned from
theofanis to jtulach, vv159170, issues, jtulach,
and finally it is reassigned to alexvsimon. The product
is reassigned from platform to cnd. The component is
reassigned from Options&Settings to code, and finally
it is reassigned to --Other--.

Since various bug fields could be reassigned, we refer to
this phenomenon as the bug report field reassignment problem.
Previous studies investigated various types of bug report field
reassignments. For example, Shihab el al. [19], [20] study
reopened bugs (i.e., the reassignment of the bug status field),
Jeong el al. [12] studied fixer reassignments, Sureka [23] and
Lamkanfi et al. [14] studied the component reassignment in
bug reports. All of the aforementioned work considered only
one type of reassignment.

To further advance the state-of-the-art in this area, in this
paper, we perform an empirical study on bug report field
reassignments in open-source software projects. To understand
the root cause of bug report field reassignments, we first collect
99 recent submitted bug reports from various open-source
software projects. Then, we send emails to the bug reporters
and developers of these bug reports, to ask why the fields
are reassigned. A total of 21 developers replied to our email,
providing useful information about why certain bug report
fields get reassigned.

Next, we further investigate the problem of bug report field
reassignments in 4 open-source projects (i.e., OpenOffice [4],
Netbeans [3], Eclipse [1], and Mozilla [2] containing a total of

1https://netbeans.org/bugzilla/show bug.cgi?id=227547



190,558 bug reports, and perform an empirical study on 8 types
of bug report field reassignments (i.e., product, component,
severity, priority, OS, version, fixer, and status). Our study
aims to answer a number of research questions: How many
bug reports have their fields reassigned? When does a field
in a bug report get reassigned? How many fields in a bug
report get reassigned? How many times does a field in a bug
report get reassigned? Whether the bug reports whose fields
get reassigned need more fixing time? Whether the experience
of bug reporters would affect the reassignment of bug report
fields?

The main contributions of this paper are:

1) We propose the problem of bug report field reassign-
ment, which generalizes all of the different bug report
field reassignment studies, and perform a large-scale,
semi-automated empirical study on this problem.

2) We manually collect the recently submitted bug re-
ports in various open-source software projects, and
ask developers why these fields got reassigned, to
understand the root cause of bug report field reas-
signment.

3) We perform an empirical study on bug report field
reassignments on 4 large-scale open-source software
projects containing a total of 190,558 bug reports,
which could help developers comprehensively under-
stand bug report field reassignment.

The remainder of the paper is organized as follows. We de-
scribe the background and a motivating example in Section II.
We elaborate the root cause of bug report field reassignments
in Section III. We present the empirical study in Section IV.
We describe related work in Section V. We present the threats
to validity in Section VI. We conclude and mention future
work in Section VII.

II. BACKGROUND AND MOTIVATING EXAMPLE

In this section, we first provide background on the different
bug report fields. Then, we present a motivating example for
the bug report field reassignment problem in order to better
understand the bug report field reassignment process.

A. Background

A typical bug report contains many useful fields, such
as status, summary, description, reporter, product, component,
fixer, severity, priority, operating system (OS), version, creation
time and modification time. The details of these bug report
fields, illustrated based on the bug report shown in Figure 1,
is presented Table I. Since the bug reports in Netbeans do not
have the severity field, we set the severity fields in the example
to be null in the table. For bug reports in other open-source
projects, the severity field is available.

Notice that various fields of a bug report may get reas-
signed, e.g., product, component, fixer, severity, priority, OS,
version. For example, in Figure 1, its fixer, priority, product,
and component fields get reassigned. The reassignment of
these fields can cause a delay in the bug fixing time.2

2For more details, please refer to Section IV.

Fig. 1. Reassigned Bug Report of Netbeans Project with BugID 227547.

TABLE I. BUG REPORT FIELDS

Field Details Example

Status Current status of a bug report, it could
be “new”, “resolved”, “fixed”, “closed”, “in-
valid”, “duplicate”, etc

“Resolved”,“Fixed”

Summary Brief description of a bug ... failed

Description Detail description of a bug Test filed since
change set: ...

Reporter The developer who submits the bug report Alexander Simon

Product Product affected by the bug cnd

Component Component affected by the bug –other–

Fixer Developer who would fix the bug Alexander Simon

Severity After the bug report is submitted, reporter
would consider its severity to the system

null

Priority After the bug report is submited and assigned,
the developers would consider the priority to
fix this bug

P2

OS The operating system affected by the bug All

Version Version of the source code where the bug
appears

7.4

Creation
Time

The time the bug is created 2013-03-16 07:31

Modification
Time

The time the bug is modified 2013-04-02 09:31



B. Motivating Example

Consider bug ID 227547 in Netbeans, shown in Figure 1.
To gain deeper insight into what happened with this bug report,
we sent an email to the developers involved in this bug report,
and discuss our findings below.

The bug was detected when “two of the C/C++ unit tests
failed. However, the C/C++ product (cnd) did not change. The
test failed because unexpected messages were printed in the
output”. To decide on the product and component of the bug,
Alexander Simon investigated “change sets of other product
teams and found the change set that resulted in the failed
tests.” Thus, he added a keyword “REGRESSION ” to denote
that the bug is a regression test bug, and assigned the bug to
the platform product, Options&Settings component,
and also the default fixer vv159170 under the product and
component. Moreover, he assigned a of priority P2 according
to the priority guideline in Netbeans.3

Then, “the platform team evaluated the bug and reassigned
the bug to the C/C++ (cnd) product team”. Moreover, since
this bug is a regression bug, vv159170 also reassigned the
priority from P2 to P1, since in the bug priority guidelines of
Netbeans, regressions which affect the functionality or perfor-
mance should be P1. Later, however, vv159170 noticed that
the bug only produces some warning messages, therefore, the
priority is reassigned back to P2.

Next, Alexander Simon “slightly disagreed and proposed
to downgrade logging from warning to a finer level in the
platform and reassigned the issue back to platform product
team”, because:

1) Foreign changes should be fixed in foreign modules
(he had been testing this module for several years).
It is an exception when changes in platform (or other
clusters) broke C/C++ functionality.

2) If a message is not important, why should it be
printed as a warning? 4

Finally, the “platform team persuaded Alexander Simon
that the message is important. And reassigned this bug to the
cnd product, and asked for it to be fixed on the C/C++ side”.

The above process is common in open-source software
projects, and there are many bug report fields that get reas-
signed. Moreover, some fields could be reassigned multiple
times. Understanding the root cause of bug report field re-
assignments could help us better understand the bug fixing
process, which could help to increase software quality and
productivity.

III. ROOT CAUSE OF BUG REPORT FIELD REASSIGNMENT

To understand the root cause of the bug report field
reassignments, we selected 99 recently published bug reports
from various open-source software communities and emailed
the developers of these bug reports asking why these fields
were reassigned. In total, we received 21 replies. Then, we

3http://wiki.netbeans.org/BugPriorityGuidelines
4By default messages that are severe, warning and information levels are

printed in the console. Messages with fine, finer, finest levels can be printed
by special IDE option. If messages are so important for the platform team,
they can start the IDE with a special option to be sure that all is OK.

analyzed their replies to determine the root cause of the
field reassignments. Note that the 99 bug reports are selected
with status “Resolved”, “Closed”, and “Fixed”, and there
must be one or more fields in these bug reports that gets
reassigned. Table II presents the number of emails we sent
to the developers and the number of replies we receive from
the developers in Freedesktop, Openoffice, Netbeans, Eclipse,
and Mozilla. In the following paragraphs, we first present
the general cause of bug report field reassignment, and then
we analyze the root cause of each type of field reassignment
separately.

A. General Root Causes for Bug Field Reassignments

A typical process of bug fixing is: 1) a reporter submits a
bug report; 2) the bug is assigned to a fixer; 3) the fixer tries to
fix the bug; 4) the modification of the code is confirmed and
verified, and the bug is marked as resolved [29]. The bug report
field reassignment could happen in all the different stages of
the bug fixing process, and even if the bug is fixed, some of
the fields are still reassigned by administrators. In general, we
divide the root cause for the bug report field reassignments
into 3 categories: new bug report correction, progressing in
the process, and admin batch operations.

1) New Bug Report Correction: When a bug report is
submitted, some fields could be wrongly assigned. Thus, these
fields need to be reassigned, we refer to this kind of bug
report field reassignment as new bug report correction. When
a reporter is new to the open-source project, he/she might
submit a bug report where some of the fields are wrongly
assigned, e.g., the product and component are not correct.
More specifically, one of the replies from Rob Weir, who is
an expert in Openoffice project, points out:

“In Openoffice, the new bug reports come from two main
sources: (1) bug reports submitted by members of the
Apache OpenOffice project; (2) bug reports submitted
by OpenOffice users. Reports that come from project
members tend to be “high quality” reports, with most
of the fields entered correctly. Reports that come from
end users, are more “raw”. They are often incompletely
or incorrectly categorized. You might be able to make a
distinction here if you look at how many bug reports
were entered by a user. Users who enter more bug
reports are more likely to be familiar with our process.
Those who enter only a single report are probably
users.”
2) Progressing in the Process: Bug triaging is a time-

consuming and tedious task in software maintenance [5].
During bug triaging, some bug fields get reassigned. In open-
source projects, to find the suitable bug fixer, a bug is first
assigned to the right product and component [21]. Then, a
developer under this product and component would be assigned
to fix the bug. Since different developers might have different
opinions on the same bug report, the bug report fields might
get reassigned. Finally, after some discussion, the suitable
values of the fields are determined. For example, in Figure 1,
the product, component, and fixer of this bug report are
reassigned multiple times. Notice that this kind of bug report
field reassignment is different from that of new bug report
correction, the fields are not wrongly assigned. After a bug
report is assigned to a suitable fixer, the fixer still needs to



Fig. 2. Example of Bug Report in OpenOffice Project with BugID 34887.

TABLE II. NUMBER OF EMAILS (# EMAILS) WE SEND AND NUMBER
OF REPLIES (# REPLIES) WE RECEIVE IN THE 5 OPEN-SOURCE PROJECTS.

Project # Emails # Replies

Freedesktop 18 3

Openoffice 20 2

Netbeans 29 9

Eclipse 18 4

Mozilla 14 3

Total 99 21

consider when to fix the bug report. He would set a priority
to the bug to denote the importance of it. However, some
other developers (i.e., bug resolvers) also argue about the
suitable priority of the bug report, which causes this field to
get reassigned. We refer to the kind of bug field reassignment,
which happens in the process of bug fixing as progressing in
the process.

3) Admin Batch Operations: To help avoid the above two
kinds of bug report field reassignments, administrators also
reassign some fields in the bug reports to better organize the
project. We refer to this kind of bug report field reassignment
as admin batch operations. As Rob Weir states:

“We occasionally remove, move or combine components,
causing us to re-categorize many defects in one large
operation. Or we may unassign old issues that no
one is currently working on. These “house cleaning”
operations should not be confused with progressing in
the process above. Maybe you can detect and ignore
transactions from me (“robweir”) when the operations
are clearly batch operations, e.g., a high transaction rate
for the same kind of change.”

For example, Figure 2 presents an example of bug
report which has the reassignment type of admin batch
operations. Notice this bug fixed in “2005-01-26” by
stephan.wunderlich, but in “2013-02-24”, Rob Weir
reassigned the product and component.

B. Root Causes for the Reassignment of Specific Bug Report
Fields

Besides the above 3 general root causes, each field of a
bug report has its own reasons to be reassigned. In this paper,
we mainly focus on 8 types of bug report field reassignments,
i.e., product, component, severity, priority, OS, version, fixer,
and status, which are common fields in bug reports of open-
source projects. In the following paragraphs, we analyze the
root cause for each of these 8 fields in detail.

1) Product, Component, and Fixer Field Reassignment:
The root cause of product field reassignment can be due to
any of the 3 above root causes, i.e., new bug report correction,
progressing in the process, or admin batch operations. Also,
the reassignment of some fields can cause other fields to be
reassigned. For example, the component field gets reassigned
due to a reassignment in the product field, and the fixer
gets reassigned due to the fact that the component field got
reassigned. In many open-source projects, there are default
values for the component and default fixer for a specific
product. If some developers reassign the product field, the
component also gets reassigned to the default component and
fixer. For example, in Figure 1, vv159170 just reassigned
product from platform to cnd. However, the component
field is reassigned to a default component Code under cnd,
and the fixer field is also reassigned to a default fixer issues
under the component Code.

2) Severity and Priority Field Reassignment: The root
cause for the severity and priority field reassignments be-
longs to 2 of the aforementioned root causes, i.e., new bug
report correction, and progressing in the process. Severity and
priority are both assigned according to some guidelines, and
if the assignment disobeys the guideline, these fields would
get reassigned. For example, for the bug report 68956 in
Freedesktop,5 the developer reassigns the severity and priority
because “normal and medium didn’t fit the bug problem. If
something gets destroyed by the application this has high
severity and high priority”. In practice, the correct assignment
of these 2 fields are difficult, as one of the developer in Eclipse
states:

“Severity is subjective, so it gets twiddled for no good
reason. Priority is used in different ways by different
people.”

Thus, most of the time, the severity and priority fields
get reassigned in the bug fixing process (i.e., progressing in
the process). Moreover, there are some differences between
severity and priority: severity is assigned by bug reporters, and
priority is assigned by developers; the assignment of severity
would affect the developers when they assign a priority to
a bug report [27]. The difference means that sometimes, the
priority field is reassigned due to the fact that the severity field
got reassigned.

3) OS and Version Field Reassignment: The root cause for
the OS and version fields to be reassigned could belong to any
3 of the above root causes, i.e., new bug report correction, pro-
gressing in the process, and admin batch operations. During
the bug fixing process, the OS field could be reassigned to
“All” if “a user reports a defect on a specific platform/os (e.g.
PC/Windows) and during evaluation we (the developers) figure
out that bug is platform independent”. For the version field, it
is the same, i.e., the version fields would be reassigned, if a
user reports a defect on a specific version, and later developers
figure out that the bug belongs to another version. Thus, most
of the time, the root cause of the OS and version fields to be
reassigned belong to progressing in the process.

4) Status Reassignment: In this paper, we only consider
one type of status reassignment: resolved or closed to reopen.
The root cause of the status field reassignment could be due

5https://bugs.freedesktop.org/show bug.cgi?id=68956



TABLE III. STATISTICS OF COLLECTED BUG REPORTS.

Project Time # Reports # Reporter # Fixer # Product # Component # Version # OS # Platform

OpenOffice 2002-05-17 – 2013-04-07 42,169 5,451 701 140 106 546 45 12

Netbeans 2008-01-01 – 2013-03-13 46,345 5,709 323 112 684 43 26 7

Eclipse 2008-01-01 – 2011-07-19 50,639 5,824 1,021 143 702 220 31 6

Mozilla 2009-06-23 – 2012-02-23 51,405 3,536 696 51 620 107 36 10

TABLE IV. NUMBERS AND FRACTIONS OF BUG REPORTS BELONGING TO THE 8 TYPES OF FIELD REASSIGNMENTS, I.E., PRODUCT, COMPONENT,
SEVERITY, PRIORITY, OS, VERSION, FIXER, AND STATUS REASSIGNMENTS.

Project Re-Product Re-Component Re-Severity Re-Priority Re-OS Re-Version Re-Fixer Re-Status

OpenOffice 5,956 (14.12%) 5,960 (14.13%) 392 (0.93%) 4,428 (10.50%) 2,439 (5.78%) 4,688 (11.11%) 31,511 (74.73%) 11,192 (26.54%)

Netbeans 14,554 (31.40%) 29,681 (64.04%) 0 (0%) 7,576 (16.35%) 2,219 (4.79%) 2,797 (6.04%) 23,653 (51.04%) 4,926 (10.63%)

Eclipse 4,940 (9.76%) 9,338 (18.44%) 4,652 (9.19%) 5,495 (10.85%) 2,305 (4.55%) 6,251 (12.34%) 32,826 (64.82%) 4,124 (8.14%)

Mozilla 9,905 (19.27%) 12,686 (24.68%) 3,716 (7.23%) 5,857 (11.39%) 6,342 (12.34%) 4,833 (9.40%) 34,195 (66.52%) 4,787 (9.31%)

to any 2 of the aforementioned root causes, i.e., new bug
report correction, and progressing in the process. Zimmermann
et al. conclude that there are 6 different root causes for the
reassignment of the bug status field, i.e., difficult to reproduce
the bug, the misunderstanding of the root cause, insufficient
information, priority increased, regression bugs, and process-
related bug [32]. We also find one more root cause for
the status field reassignment: the misunderstanding between
developers, i.e., there is insufficient communication between
developers which causes the bug get reopened. For example,
for the bug report 63211 in Freedesktop,6, a developer states
the root cause of this bug is:

“In the case of this particular bug I think the developer
originally believed that the bug was invalid and closed.
I have been fortunate that another developer has picked
up on this and committed a patch. I think the bug
was fixed, so I close the bug without discussion of the
developers. However, later a developer told me the bug
still existed. In this case I have reopened it because I
believe it was closed because of a misunderstanding.”

IV. EMPIRICAL STUDY

Previous sections mainly focus on the investigation of the
developers in open-source projects, to understand the problem
of bug report field reassignment, and the root cause of it.
There has been anecdotal evidence that bug report fields get
reassigned, however, we would like to empirically examine the
bug report field reassignment phenomenon. In this section, we
first describe the data we collect in Section IV-A, and then
we elaborate on the 6 research questions we would like to
investigate in Section IV-B. Finally, we present the answers
for the 6 research questions.

A. Data Collection

Table III shows the statistics of the 4 projects we use to
conduct our empirical study. All of the bug reports and data
are downloaded from their corresponding bug tracking sys-
tems. We collected all bug reports with the status “resolved”,
“closed”, and “fixed” following previous studies [12], [14],
[20], [23], [24]. In Table III, columns Time and # Report
correspond to the time periods the collected bug reports are

6https://bugs.freedesktop.org/show bug.cgi?id=63211

reported and the number of collected reports, respectively. In
total, we analyze 190,558 bug reports.

For the other columns, we list the number of unique values
of the different fields: reporter, fixer, product, component,
version, OS, and platform. Notice that we record the values
of these fields at the time the bug is reported, i.e., the values
of all of these fields are recorded before the bug report is
reassigned. For example, in Figure 1, since the fixer, product,
and component of the bug report are reassigned, we record
its fixer, product, and component before the reassignment,
i.e., theofanis, platform, and Options&Settings,
respectively. In OpenOffice, the number of products is more
than that of components, we double checked the dataset, and
we find that indeed that is the case.

B. Research Questions

In this paper, we are interested in answering these research
questions:

RQ1: How many bug reports have their fields reassigned?

In our study, we focus on 8 types of bug report field reas-
signments. Since different bug reports could have a different
number of their fields reassigned, in this research question,
we would like to determine the number of bug reports that
have some of their fields reassigned. To answer this research
question, we count the number of bug reports that have any of
the 8 types of bug report field reassignments.

Table IV shows results of the number and fraction of
bug reports of the 8 reassignments. We observe that the
fraction of bug reports whose fixers have been reassigned are
high. On average across the 4 projects, 64.28% of the bug
reports have their fixers reassigned. For other bug report field
reassignment types, the class imbalance phenomenon exists,
i.e., the number of reassigned bug reports is much smaller than
the non-reassigned ones. For example, in Eclipse and Mozilla,
only 8.14% and 9.31% of the bug reports have their status
reassigned to reopen, and 9.19% and 7.23% bug reports have
their severity reassigned. Notice that for each type of field
reassignment (except for the fixer reassignment), the number of
bug reports whose fields have been reassigned is much smaller
than the number of bug reports without reassignment, i.e., class
imbalance phenomenon is observed [10].



TABLE V. NUMBERS AND PERCENTAGES OF FIELDS IN BUG REPORTS THAT GET REASSIGNED.

Projects 0 1 2 3 ≥4

OpenOffice 7,921 (18.78%) 15,036 (35.66%) 11,509 (27.29%) 3,836 (9.10%) 3,867 (9.17%)

NetBeans 9,091 (19.62%) 9,833 (21.22%) 12,775 (27.57%) 9,947 (21.46%) 4,699 (10.14%)

Eclipse 11,402 (22.52%) 21,299 (42.06%) 9,873 (19.50%) 4,580 (9.04%) 3,485 (6.88%)

Mozilla 10,124 (19.69%) 185,68 (36.12%) 11,485 (22.34%) 6,378 (12.41%) 4,850 (9.43%)

In Netbeans, the fraction of product and component reas-
signments are higher than the other 3 projects: 31.40% and
64.04% bug reports have their product and component fields
reassigned. Moreover, we notice that no bug report had its
severity changed in Netbeans, however, the fraction of bug
reports which have their priority reassigned is higher than the
other 3 projects.

The fractions of bug reports whose product, compo-
nent, severity, priority, OS, version, fixer and status
fields get reassigned vary from 9.76%-31.40%, 14.13%-
64.04%, 0%-9.19%, 10.50%-16.35%, 4.55%-12.34%,
6.04%-12.34%, 51.04%-74.73%, and 8.14%-26.54%,
respectively. Except for the fixer reassignment, we notice
that for most types of bug report field reassignment only
a minority of bug reports have their fields reassigned.

RQ2: How many fields in a bug report get reassigned?

Since each bug report could have multiple types of bug
report field reassignment, in this research question, we would
like to compare the number of bug reports that do not have
any field reassigned to those that have some of their fields
reassigned. To answer this research question, we count the
number of fields in a bug report that get reassigned.

Table V presents the numbers and percentages of fields
in bug reports that get reassigned in OpenOffice, Netbeans,
Eclipse, and Mozilla. The number of bug reports which do
not have any type of field reassignments is low. There are
only 18.78%, 19.62%, 22.52%, and 19.69% bug reports in
OpenOffice, Netbeans, Eclipse, and Mozilla respectively where
none of their fields are reassigned.

We notice that most of the bug reports have at least 1 or
2 types of field reassignment, i.e., 62.95%, 48.79%, 61.56%,
and 58.46% bug reports in OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. We also notice that the percentage of bug
reports which have more than 4 types of field reassignment
is around 10%. From Table V, we could conclude that bug
report field reassignments is a common activity in open-source
software development.

Most of the bug reports have 1 or 2 types of field
reassignments, and on average, across the 4 projects,
these bug reports are around 58% of the total number
of bug reports. The number of bug reports with no field
reassignment is low, which is around 20% of the total
number of bug reports in the 4 projects.

RQ3: How many times does a field in a bug report get
reassigned?

We observe that a field in a bug report may be reassigned
multiple times. Therefore, in this research question, we would
like to investigate whether some fields get reassigned more
times than others. To answer this research question, for each

TABLE VII. MEAN, MEDIAN, MAX, AND MIN VALUES (HOURS) FOR
THE TIME DURATION BETWEEN BUG REPORT CREATION AND THE FIRST

REASSIGNMENT IN OPENOFFICE.

Reassignment Mean Median Max Min

Re-Product 32,942 31,144 94,281 0

Re-Component 34,398 34,334 94,281 0

Re-Severity 9,428 10,456 73,999 0

Re-Priority 1 1 1 0

Re-OS 2,116 82 54,042 0

Re-Version 34,758 37,719 94,281 0

Re-Fixer 1,235 105 89,783 0

Re-Status 2,599 823 68,640 0

field, we record the number of bug reports for which the field
is reassigned a given number of times (i.e., 1, 2, 3, and ≥ 4).

Table VI presents the number of bug reports for which
various fields are reassigned a given number of times. For
most bug reports, most fields are only reassigned once. For
example, in Eclipse, there are 4,940 and 9,338 bug reports
whose product and component are reassigned respectively, but
only 386 and 1,333 bug reports reassign their product and
component more than once, respectively.

For fixer reassignment, the number of bug reports which
have been reassigned more than 4 times is high, i.e., 3,735,
1,079, 636, and 719 for OpenOffice, Netbeans, Eclipse, and
Mozilla, respectively. These numbers indicate that bug triaging
work is not an easy job. Thus, automated methods are needed
to better recommend fixers [5], [12], [24]. However, for the
other types of field reassignment, the number of bug reports
whose fields are reassigned is low. For example, there are only
1, 7, 1, and 14 bug reports whose OS field is reassigned more
than 4 times in OpenOffice, NetBeans, Eclipse, and Mozilla,
respectively.

Among bug reports requiring field reassignments, to
decide the right value for each bug report field, most of
the bug reports just need to have their fields reassigned
once. For fixer reassignment, the number of bug reports
whose fixers are reassigned more than once is high
compared to other types of field reassignment.

RQ4: When does a field in a bug report get reassigned?

We conjuncture that different bug report fields get reas-
signed at different times. Therefore, in this research question,
we would like to investigate whether some fields get reassigned
later/earlier than other fields. To answer this research question,
for each type of field reassignment, we extract bug reports
whose fields are reassigned. Next, we extract their creation
timestamps, and the timestamps when one of their fields are
reassigned for the first time. The difference between these two
timestamps is the time duration that has passed till the field
got reassigned.



TABLE VI. NUMBER OF TIMES THE FIXER, PRODUCT, COMPONENT, SEVERITY, PRIORITY, OS, AND VERSION FIELDS GET REASSIGNED.

OpenOffice Netbeans Eclipse Mozilla
Reassignment 1 2 3 ≥4 1 2 3 ≥4 1 2 3 ≥4 1 2 3 ≥4

Re-Product 5,504 420 26 6 13,433 843 191 87 45,54 333 39 14 6,945 2,776 151 33

Re-Component 5,567 367 25 1 23,986 4,311 979 405 8,005 1,085 181 67 8,783 3,469 321 116

Re-Severity 387 4 1 0 0 0 0 0 4,220 361 56 15 3,166 435 79 36

Re-Priority 3,825 517 66 20 6,048 1,146 260 122 4,893 473 79 50 5,095 563 145 54

Re-OS 2,353 80 5 1 2,139 55 18 7 2,274 24 6 1 5,984 265 79 14

Re-Version 4,449 208 29 2 2,563 202 27 5 5,472 673 73 33 4,294 417 98 24

Re-Fixer 15,415 8,041 4,320 3,735 15,868 5,038 1,668 1,079 25,450 5,273 1,467 636 28,198 3,865 1,413 719

TABLE VIII. MEAN, MEDIAN, MAX, AND MIN VALUES (HOURS) FOR
THE TIME DURATION BETWEEN BUG REPORT CREATION AND THE FIRST

REASSIGNMENT IN IN NETBEANS.

Reassignment Mean Median Max Min

Re-Product 6,155 5,191 39,019 0

Re-Component 5,766 4,688 27,815 0

Re-Severity 0 0 0 0

Re-Priority 1 1 1 0

Re-OS 1,437 65 39,019 0

Re-Version 3,175 76 39,019 0

Re-Fixer 872 23 42,943 0

Re-Status 1,625 296 38,755 0

TABLE IX. MEAN, MEDIAN, MAX, AND MIN VALUES (HOURS) FOR
THE TIME DURATION BETWEEN BUG REPORT CREATION AND THE FIRST

REASSIGNMENT IN ECLIPSE.

Reassignment Mean Median Max Min

Re-Product 12,151 6,406 44,734 0

Re-Component 7,262 319 44,734 0

Re-Severity 917 22 39,068 0

Re-Priority 1 1 1 0

Re-OS 1,894 51 42,737 0

Re-Version 5,167 271 44,734 0

Re-Fixer 846 16 40,890 0

Re-Status 1,949 378 45,283 0

Tables VII, VIII, IX and X present the time durations
of various reassignments happening in the bug reports of
the 4 projects, OpenOffice, Netbeans, Eclipse, and Mozilla,
respectively. We record the mean, median, maximum and
minimum values in hours.

The product and component reassignments happen latter
as compared to other field reassignment types. Detecting the
proper product and component is not an easy job, and previous

TABLE X. MEAN, MEDIAN, MAX, AND MIN VALUES (HOURS) FOR
THE TIME DURATION BETWEEN BUG REPORT CREATION AND THE FIRST

REASSIGNMENT IN MOZILLA.

Reassignment Mean Median Max Min

Re-Product 10,060 8,619 34,003 0

Re-Component 7,225 3,340 34,003 0

Re-Severity 712 23 28,701 0

Re-Priority 1 1 1 0

Re-OS 1,117 44 29,942 0

Re-Version 1,726 36 28,631 0

Re-Fixer 969 28 31,018 0

Re-Status 1,499 331 30,965 0

studies show that changes in the component of a bug report
is positively correlated with fixer reassignments [9], [21]. If
we could detect whether the product and component of a bug
report would be reassigned, we could potentially save a large
amount of time during the bug fixing process. In OpenOffice,
the durations are longer, i.e., the median values are 31,144 and
34,334 hours (3.55 and 3.92 years) for product and component
reassignments, respectively. We double checked the dataset,
and we notice that the product and component fields of some
bug reports in OpenOffice changed even after the bug reports
are fixed and closed by quality assurance personnel. Figure 2
shows an example, we notice this bug fixed in “2005-01-26”
by stephan.wunderlich, but in “2013-02-24”, robweir
reassigned the product and component. This reassignment is
due to admin batch operations, i.e., these fields are reassigned
to better organize the project.

Aside from the product and component reassignments,
we notice that status reassignments (i.e., to reopen) also
takes a long time to be detected. The median time to detect
the status reassignments are 823, 296, 378, and 331 hours
for OpenOffice, Netbeans, Eclipse, and Mozilla, respectively,
which is much longer than the median time of fixer, OS,
severity, version, and priority reassignments.

We also observe that the priority field is reassigned within
a short period of time. We sampled many bug reports to see
the reason, and we find that in most of the bug reports whose
priority fields are reassigned, the priority fields are first set to
the default value. Later, the developers would decide the proper
priority, i.e., reassign the priority from the default value to a
proper value.

Product and component reassignments take a very long
time to be detected. Aside from them, status reassign-
ments also take a long time to be detected. On the other
hand, priority reassignments is made within a short
period of time.

RQ5: Do bugs that have their fields reassigned need more
time to fix?

Various factors could affect the bug fixing time, e.g., bug
owners and bug types [30]. In this research question, we
investigate whether the bug report field reassignment would
increase the bug fix time. To answer this research question, we
first divide the bug reports into two disjoint sets: bug reports
whose fields get reassigned (reassigned bugs), and bug reports
where none of the fields get reassigned (non-reassigned bugs).
Next, we compute the bug fixing time in these two sets. The
bug-fixing time is measured as the time duration from the



TABLE XI. MEAN, MEDIAN, MAXIMUM, AND MINIMUM BUG FIX TIME (HOURS) FOR REASSIGNED AND NON-REASSIGNED BUGS. THE LAST
COLUMN SHOWS THE P-VALUE OF MWW TEST.

Project
Reassigned Bugs Non-reassigned Bugs

P-value
Mean Median Max Min Mean Median Max Min

Openoffice 13,888 4,672 94,281 0 7,922 3,410 90,408 0 2.2e−16

Netbeans 3,429 952 47,059 0 1,248 201 30,584 0 2.2e−16

Eclipse 5,979 1,868 46,734 0 4,009 669 46,489 0 2.2e−16

Mozilla 6,020 1,913 34,003 0 2,886 501 32,894 0 2.2e−16

creation of a bug report to the time the bug is resolved as
fixed. Then, we compute the mean, median, maximum, and
minimum bug fixing time across the two sets, and perform
a Mann-Whitney-Wilcoxon (MWW) test [17] to compare the
bug fixing time of the bug reports in the two sets.

Table XI presents the mean, median, maximum, minimum
bug fix time for the reassigned and non-reassigned bugs
across the 4 projects. The mean and median bug fix time for
reassigned bugs are much more than these of non-reassigned
bugs. For example, in Netbeans, the mean and median bug fix
time for reassigned bugs are 3,429 and 952 hours respectively,
but for the non-reassigned bugs they are 1,248 and 201
hours respectively. The bug fix time for reassigned bugs are
almost 3 times more than these of non-reassigned bugs in
Netbeans. Moreover, the median bug fix time for reassigned
bugs are 4,672, 952, 1,868, and 1,913 hours in Openoffice,
Netbeans, Eclipse, and Mozilla, respectively; and these values
of non-reassigned bugs are 3,410, 201, 669, and 501 hours,
respectively. The median bug fix time for reassigned bugs are
almost 3 times more than the values of non-reassigned bugs.

The Mann-Whitney-Wilcoxon (MWW) test [17] showed
that the differences in bug fix time of reassigned and non-
reassigned bugs are statistically significant, for all of the 4
projects, the p-values are 2.2e−16. Thus, we conclude that bugs
with reassigned fields take more time to fix than bug with no
reassigned fields.

The time required to fix a reassigned bug is almost 3
times that of a non-reassigned bug. The difference of fix
time between reassigned bugs and non-reassigned bugs
are statistically significant, the p-values are 2.2e−16 in
all of the 4 projects.

RQ6: Does the experience of bug reporters affect the field
reassignments?

As described in Section III, there are some “raw” users
who do not have enough experience to submit bug reports. In
this research question, we would like to investigate whether
the experience of reporters affects the field reassignment. To
answer this research question, we measure the experience of
reporters as the number of bug reports they submitted in
one year. For example, if we have a bug report submitted in
“2013-10-14”, and the reporter is Tom. We would compute the
number of bug reports submitted by Tom from “2012-10-14” to
“2013-10-14”. The reason we do this setting is that we want to
remove the noise due to a long time spans. For example, Tom
maybe quite active from “1998-10-14” to ”1999-10-14”, and
submit 10,000 bug reports. But after that time, he leaves the
project, and then he is back in “2013-10-14”. If we measure the
experience of Tom across the entire time spans of the project,
then Tom would be considered as an experienced developer.
However, he did not work for the project more than 10 years.

TABLE XII. SPEARMAN’S RHO AND CORRELATION LEVEL [11].

Spearman’s Rho Correlation Level

0.0 - 0.1 None

0.1 -0.3 Small

0.3 -0.5 Moderate

0.5 - 0.7 High

0.7 - 0.9 Very High

0.9 - 1.0 Perfect

Moreover, for each bug report, we also record the number of
fields that get reassigned.

To answer this question, we use Spearman’s ρ, which is
a non-parametric measure used to measure the strength of
monotonic relationship between sets of data [22], is used
to evaluate whether there would be correlation between the
experience of reporters and the number of bug report fields
get reassigned. The ρ value ranges from -1 to 1, where these
extreme values depict a perfect monotonic correlation. A value
of 0 shows that the variables are independent of each other.
Table XII describes the meaning of various Spearman’s rho
values and their corresponding correlation level [11].

Table XIII presents the p-value, Spearman’s ρ value, and
correlation level between the experience of reporters and
number of fields get reassigned in the 4 projects. Column Time
corresponds to the time period of the selected bug reports.
Notice that we set the begin date as one year later than the bug
reports we collected in Table III. For example, in Netbeans, our
collected bug reports is from “2008-01-01” in Table III, and
we set the begin date as “2009-01-01”. Thus, we can compute
the one-year experience of bug reporters.

From Table XIII, we observe that the difference between
the experience of reporters and the number of fields that get
reassigned is significant, since all of the p-values in the 4
projects are 2.2e−16. And the Spearman’s rho values int the
4 projects are negative, which mean there would be negative
correlation relationship, i.e., the more experience a reporter
has, the less bug report fields would get reassigned when he
submits a bug report. However, the correlation relationship
is very weak. According to table XII, the correlation level
for Netbeans and Eclipse are none, and these for Openoffice
and Mozilla are small. Thus, our findings do not suggest any
relationship between reporter experience and bug report field
reassignments.

In Netbeans and Eclipse, there is no correlation between
the experience of reporters and the number of bug report
fields reassignments. In Openoffice and Mozilla, the
correlation is very small.



TABLE XIII. THE P-VALUE, SPEARMAN’S RHO VALUE, AND CORRELATION LEVEL BETWEEN EXPERIENCE OF REPORTERS AND NUMBER OF FIELDS
GET REASSIGNED.

Project Time # Reports p-value Spearman’s Rho Correlation Level

Openoffice 2003-05-17–2013-04-17 38,799 2.2e−16 -0.1380 Small
Netbeans 2009-01-01–2013-03-13 31,512 2.2e−16 -0.0931 None
Eclipse 2009-01-01–2011-07-09 27,748 2.2e−16 -0.0864 None
Mozilla 2010-06-23–2012-02-23 23,649 2.2e−16 -0.1139 Small

V. RELATED WORK

A. Bug Report Field Reassignments

There have been a number of studies on bug report field
reassignments. Guo et al. perform an empirical study on fixer
reassignments, and they find five primary reasons for fixer reas-
signments, i.e., difficulty to identify the root cause, ambiguous
ownership of components, poor bug report quality, difficulty to
determine the proper fix, and workload balancing [9]. Shihab
et al. propose a machine learning based method to predict
reopened bugs; they extract 4 groups of features, related to
work habits, bug report fields, bug fix, and people, containing
a total of 24 features [19], [20]. Lamkanfi et al. propose the
usage of Naive Bayes to predict whether the component of a
bug report would be reassigned, and their method achieves
precision and recall between 0.58-0.94 and 0.54-1 for bug
reports of several products in Eclipse and Mozilla [14]. Jeong
et al. investigate fixer reassignments in Mozilla and Eclipse,
and they propose a method to use fixer reassignment graph to
improve the performance of bug triaging [12]. Bhattacharya el
at. extend Jeong et al.’s work to improve the accuracy of bug
triaging by using multi-feature fixer reassignment graph [6].
Our work generalizes the above studies; previous studies
focus on single bug report field reassignment, while our work
considers all field reassignments simultaneously.

B. Bug Report Field Prediction

There have been many studies on bug report field pre-
diction. Bug triaging predicts the fixer field in a bug report,
and there are a number of machine learning and information
retrieval approaches proposed for bug triaging [5], [6], [12],
[24]. There are also many studies that predict the severity
labels of bug reports [15], [18], [26], and priority labels of
bug reports [13], [27]. Recently, several studies predict the
components of bug reports [21], [23]. Somasundaram et al.
propose the usage of a topic model to predict the component
of bug reports [21]. Sureka proposes the usage of a TF.IDF
classifier and a dynamic language model classifier to predict
the component of a bug report [23]. Our work is orthogonal to
the above studies; in our study, we perform an empirical study
on the reassignment of the fields studied in the aforementioned
work, e.g., fixer, severity, priority, component.

C. Empirical Studies

There have been many empirical studies on bug report
management. Thung et al. [25] perform an empirical study of
bugs in machine learning systems. They investigate three open
source machine learning system: Apache Mahout, Lucene,
and OpenNLP. Lu et al. [16] investigate concurrency bugs
in MySQL, Apache Web Server, Mozilla, and OpenOffice.
Bhattacharya et al. perform an empirical study on bug reports
and bug fixing in open source Android applications [7]. Our
work is orthogonal to the above studies; in our study, we

perform an another empirical study which focuses on the bug
report field reassignment.

VI. THREATS TO VALIDITY

There are several threats that may potentially impact the
validity of our empirical study. Threats to internal validity
relates to experimenter bias and errors. Our study investigate
the bugs in 4 large-scale open-source software projects, and
all of the bug reports are collected from their corresponding
bug tracking systems. Moreover, the process of bug fixing are
under strict control. Thus, we believe the historical actions for
the bug reports are the actual actions for the bug reports. Also
we select the recent submitted bug reports, and confirm that
there are reassignment activities in these bug reports, and send
emails to the developers who are related to these reports. Thus,
our study is done under the fact of bug reports, and none of
the developers in open-source projects have any motivation to
influence our results in either way.

Threats to external validity relates to the generalizability of
our study. We have analyzed 4 open-source software projects:
Openoffice, Netbeans, Eclipse, and Mozilla. To improve the
generalizability of our study, we collect a large number of bug
reports which contains a total of 190,558 bug reports across
a long time period. Moreover, the bug reports are all in the
status of “resolved”, “fixed” and ”closed”, and the type of bug
reports is “defect”. By doing this, we remove the potential
noise caused by duplicate bug report, invalid bug reports, or
feature request and enhancement. We believe that we collected
enough bug reports to prove the findings in our study. We
plan to reduce this threat to external validity in the future by
analyzing more bug reports from more open-source software
projects, and industrial projects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we perform an empirical study on bug report
field reassignments. To understand the root cause of bug report
field reassignment, we first send emails to the developers in
open-source software projects to ask the root cause for the
bug report field reassignment, and based on their replies,
we conclude 3 general root cause: new bug report correc-
tion, progressing in the process, and admin batch operations.
Next, we analyze bug reports on 4 open-source projects, i.e,
OpenOffice, Netbeans, Eclipse, and Mozilla, which contain a
total of 190,558 bug reports. By analyzing these 4 projects,
we investigate 6 research questions such as the bug fix time
between the bug reports whose fields get reassigned and those
whose fields are not reassigned, the number of bug reports
whose fields get reassigned, the time duration a field in a bug
report gets reassigned, the number of fields in a bug report
that get reassigned, the number of times a field in a bug report
gets reassigned, and whether the experience of bug reporters
affect the reassignment of bug report fields. We find that bug



report field reassignments could cause a delay in the bug
fix, and it is a common phenomenon in open-source projects,
approximately 80% of bug reports have their fields reassigned.
Moreover, the experience of reporters could limit affect the bug
report field reassignment when they submit bug reports.

In the future, we plan to evaluate our results from more
bug reports in more software projects, both from open-source
projects, and industrial projects. We also plan to develop
an automated tool to detect which fields in a bug report
would get reassigned. Since multiple fields in a bug report
would get reassigned, we would refer to multi-label learning
algorithms [28] to solve the problem. For example, we can
leverage ML.KNN [31], which is a state-of-the-art multi-
label learning algorithm, to predict which fields would get
reassigned.

ACKNOWLEDGMENT

This research is sponsored in part by NSFC Program
(No.61103032) and National Key Technology R&D Pro-
gram of the Ministry of Science and Technology of China
(No2013BAH01B03). The authors would thank Alexander
Simon, Rob Weir, Jaroslav Havlin, Ferry Toth, Jaroslav Havlin,
Boris Zbarsky, Jesse Glick, Regina Henschel, Mark Wilmoth,
Marek Fukala, Thomas Arnhold, Milos Kleint from the de-
velopment teams of open-source software projects, to pro-
vide us valuable suggestions and comments for the root
cause of bug report field reassignment. All the replies of
the emails can be download from https://www.dropbox.com/
s/ws8xu4wdese07sc/Emails.zip.

REFERENCES

[1] Eclipse bug tracking system. https://bugs.eclipse.org/bugs/.
[2] Mozilla bug tracking system. https://bugzilla.mozilla.org/.
[3] Netbeans bug tracking system. http://netbeans.org/bugzilla/.
[4] Openoffice bug tracking system. https://issues.apache.org/ooo/.
[5] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Pro-

ceedings of the 28th international conference on Software engineering,
pages 361–370. ACM, 2006.

[6] P. Bhattacharya and I. Neamtiu. Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging. In Software
Maintenance (ICSM), 2010 IEEE International Conference on, pages
1–10. IEEE, 2010.

[7] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru. An empirical
analysis of bug reports and bug fixing in open source android apps. In
Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on, pages 133–143. IEEE, 2013.

[8] B. Boehm and V. Basili. Software defect reduction top 10 list.
Foundations of empirical software engineering: the legacy of Victor
R. Basili, 2005.

[9] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Not my bug!
and other reasons for software bug report reassignments. In Proceedings
of the ACM 2011 conference on Computer supported cooperative work,
pages 395–404. ACM, 2011.

[10] H. He and E. A. Garcia. Learning from imbalanced data. Knowledge
and Data Engineering, IEEE Transactions on, 21(9):1263–1284, 2009.

[11] W. G. Hopkins. A new view of statistics. Will G. Hopkins, 1997.
[12] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage with

bug tossing graphs. In Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 111–120.
ACM, 2009.

[13] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan. An entropy evaluation
approach for triaging field crashes: A case study of mozilla firefox.
In Reverse Engineering (WCRE), 2011 18th Working Conference on,
pages 261–270. IEEE, 2011.

[14] A. Lamkanfi and S. Demeyer. Predicting reassignments of bug reports-
an exploratory investigation. In Software Maintenance and Reengineer-
ing (CSMR), 2013 17th European Conference on, pages 327–330. IEEE,
2013.

[15] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the
severity of a reported bug. In Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on, pages 1–10. IEEE, 2010.

[16] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics. In
ACM Sigplan Notices, volume 43, pages 329–339. ACM, 2008.

[17] H. B. Mann and D. R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The annals of
mathematical statistics, 18(1):50–60, 1947.

[18] T. Menzies and A. Marcus. Automated severity assessment of software
defect reports. In Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, pages 346–355. IEEE, 2008.

[19] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto. Predicting re-opened bugs: A case
study on the eclipse project. In Reverse Engineering (WCRE), 2010
17th Working Conference on, pages 249–258. IEEE, 2010.

[20] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K.-i. Matsumoto. Studying re-opened bugs in open
source software. Empirical Software Engineering, pages 1–38, 2012.

[21] K. Somasundaram and G. C. Murphy. Automatic categorization of bug
reports using latent dirichlet allocation. In Proceedings of the 5th India
Software Engineering Conference, pages 125–130. ACM, 2012.

[22] C. Spearman. The proof and measurement of association between two
things. The American journal of psychology, 15(1):72–101, 1904.

[23] A. Sureka. Learning to classify bug reports into components. In Objects,
Models, Components, Patterns, pages 288–303. Springer, 2012.

[24] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Fuzzy
set and cache-based approach for bug triaging. In Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 365–375. ACM, 2011.

[25] F. Thung, S. Wang, D. Lo, and L. Jiang. An empirical study of bugs in
machine learning systems. In Software Reliability Engineering (ISSRE),
2012 IEEE 23rd International Symposium on, pages 271–280. IEEE,
2012.

[26] Y. Tian, D. Lo, and C. Sun. Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages
215–224. IEEE, 2012.

[27] Y. Tian, D. Lo, and C. Sun. Drone: Predicting priority of reported
bugs by multi-factor analysis. International Conference on Software
Maintenance, pages 200–209, 2013.

[28] G. Tsoumakas and I. Katakis. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining (IJDWM),
3(3):1–13, 2007.

[29] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An empirical study
on factors impacting bug fixing time. In Reverse Engineering (WCRE),
2012 19th Working Conference on, pages 225–234. IEEE, 2012.

[30] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing time: an
empirical study of commercial software projects. In Proceedings of the
2013 International Conference on Software Engineering, pages 1042–
1051. IEEE Press, 2013.

[31] M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning approach to
multi-label learning. Pattern Recognition, 40(7):2038–2048, 2007.

[32] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Characteriz-
ing and predicting which bugs get reopened. In Software Engineering
(ICSE), 2012 34th International Conference on, pages 1074–1083.
IEEE, 2012.

[33] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss. What makes a good bug report? Software Engineering, IEEE
Transactions on, 36(5):618–643, 2010.

[34] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu. Improving bug
tracking systems. In Software Engineering-Companion Volume, 2009.
ICSE-Companion 2009. 31st International Conference on, pages 247–
250. IEEE, 2009.


