
Information and Software Technology 88 (2017) 148–158

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

On code reuse from StackOverflow: An exploratory study on Android

apps

Rabe Abdalkareem

a , ∗, Emad Shihab

a , Juergen Rilling

b

a Data-driven Analysis of Software (DAS) Lab, Concordia University, Montreal, Canada
b Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

a r t i c l e i n f o

Article history:

Received 12 May 2016

Revised 16 March 2017

Accepted 16 April 2017

Available online 17 April 2017

Keywords:

StackOverflow

Mobile app

Code reuse

a b s t r a c t

Context: Source code reuse has been widely accepted as a fundamental activity in software development.

Recent studies showed that StackOverflow has emerged as one of the most popular resources for code

reuse. Therefore, a plethora of work proposed ways to optimally ask questions, search for answers and

find relevant code on StackOverflow. However, little work studies the impact of code reuse from Stack-

Overflow.

Objective: To better understand the impact of code reuse from StackOverflow, we perform an exploratory

study focusing on code reuse from StackOverflow in the context of mobile apps. Specifically, we investi-

gate how much, why, when, and who reuses code. Moreover, to understand the potential implications of

code reuse, we examine the percentage of bugs in files that reuse StackOverflow code.

Method: We perform our study on 22 open source Android apps. For each project, we mine their source

code and use clone detection techniques to identify code that is reused from StackOverflow. We then

apply different quantitative and qualitative methods to answer our research questions.

Results: Our findings indicate that 1) the amount of reused StackOverflow code varies for different mobile

apps, 2) feature additions and enhancements in apps are the main reasons for code reuse from StackOver-

flow, 3) mid-age and older apps reuse StackOverflow code mostly later on in their project lifetime and 4)

that in smaller teams/apps, more experienced developers reuse code, whereas in larger teams/apps, the

less experienced developers reuse code the most. Additionally, we found that the percentage of bugs is

higher in files after reusing code from StackOverflow.

Conclusion: Our results provide insights on the potential impact of code reuse from StackOverflow on mo-

bile apps. Furthermore, these results can benefit the research community in developing new techniques

and tools to facilitate and improve code reuse from StackOverflow.

© 2017 Elsevier B.V. All rights reserved.

l

l

o

fl

l

s

p

i

a

(

[

t
1. Introduction

A key premise of software development is to deliver high-

quality software in a timely and cost-efficient manner. Code reuse

has been widely accepted to be an essential approach to achieve

this premise [1] . The reused code can come from many different

sources and in different forms, e.g., third-party libraries [1] , source

code of open source software [2] , and Question and Answer (Q&A)

websites such as StackOverflow [3,4] .

In recent years, the development of mobile apps has emerged

to be one of the fastest growing areas of software development [5] .

Some of the most common characteristics of mobile apps are: (1)

they are developed by small teams [6] , (2) they are developed by
∗ Corresponding author.

E-mail addresses: rab_abdu@encs.concordia.ca (R. Abdalkareem), eshihab@

encs.concordia.ca (E. Shihab), juergen.rilling@encs.concordia.ca (J. Rilling).

O

1

m

o

n

http://dx.doi.org/10.1016/j.infsof.2017.04.005

0950-5849/© 2017 Elsevier B.V. All rights reserved.
ess experienced programmers [7] and (3) they are constrained by

imited resources [7] . As a result of these constraints, mobile devel-

pers tend to resort frequently to Q&A websites such as StackOver-

ow for solutions to their coding problems [3,8] . A primary chal-

enge with this type of code reuse is that programmers often re-

ort to these code snippets in an ad-hoc manner, by copying-and-

asting these fragments in their own source code. However, the

mpact of this ad-hoc reuse on software processes, product quality,

nd mobile app development at large remains an open question.

There has been a plethora of work focusing on StackOverflow

e.g., [9,10]), code reuse (e.g., [1,11]) and mobile development (e.g.,

12,13]), which studied all of these topics in isolation. However, vi-

al questions about how mobile developers reuse code from Stack-

verflow remain unanswered. This is particularly important since

) prior work showed that StackOverflow is very popular among

obile developers [3,8] and 2) as we report later in the paper,

nce code is reused from StackOverflow, it can potentially have a

egative impact on the target mobile app.

http://dx.doi.org/10.1016/j.infsof.2017.04.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.04.005&domain=pdf
mailto:rab_abdu@encs.concordia.ca
mailto:eshihab@encs.concordia.ca
mailto:juergen.rilling@encs.concordia.ca
http://dx.doi.org/10.1016/j.infsof.2017.04.005

R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158 149

S

p

o

m

(

p

u

o

i

S

i

w

h

K

i

r

a

S

f

M

O

t

t

t

t

r

c

fi

m

i

m

t

o

h

p

r

s

S

2

b

m

t

r

n

d

f

o

F

p

g

d

n

m

1

g

p

p

m

e

t

p

t

O

b

c

p

i

i

f

u

t

3

r

w

t

e

fl

t

q

3

i

fl

d

t

a

a

t

a

c

s

(

t

w

o

i

c

s

n

p

c

h

a

5

5

3

s

b

f

l
Therefore, in an effort to better understand code reuse from

tackOverflow amongst mobile developers, we perform an ex-

loratory study using quantitative and qualitative methods on 22

pen source mobile apps. In particular, we answer three funda-

ental questions about code reuse from StackOverflow which are:

RQ1) Why is StackOverflow code reused in mobile apps? It is im-

ortant to study why StackOverflow code is reused since it helps

s understand the key reasons and tasks where mobile app devel-

pers resort to StackOverflow. (RQ2) At what point of time dur-

ng the development process of mobile apps does code reuse from

tackOverflow occur? Knowing when in the project’s lifetime code

s mostly reused from StackOverflow helps us better understand in

hat stage of the development mobile developers need the most

elp and resources. RQ3) Who reuses code from StackOverflow?

nowing who reuses code from StackOverflow can provide us with

nsights on the type of reuse (e.g., is it reused due to lack of expe-

ience or is it well thought-out reuse by experienced developers).

We find that the amount of reused StackOverflow code varies

mong mobile apps. Also, the main reasons for code reuse from

tackOverflow are to implement new features, enhance existing

unctionality, refactor code, use APIs, and test source code (RQ1).

oreover, we observe that mid-age and older apps reuse Stack-

verflow code later on in their lifetime (RQ2). With regards to

he experience of the developers who reuse code depends on the

eam/app size; more experienced developers reuse code in smaller

eams/apps, while less experienced developers reuse code in larger

eams/apps (RQ3). Finally, to shed light on the potential impact of

eused StackOverflow code on mobile apps, we examine bug fixing

ommits of files that contain code reused from StackOverflow. We

nd that these files have a higher percentage of bug fixing com-

its after the introduction of reused StackOverflow code, indicat-

ng that reusing such code may negatively impact the quality of

obile apps.

The rest of this paper is organized as follows: Section 2 in-

roduces a motivated example of our research. Section 3 sets up

ur case study. Section 4 discusses our preliminary analysis on

ow much reuse occurs in mobile apps. In Section 5 , we re-

ort our case-study results. We discuss the implications of code

euse on mobile app quality in Section 6 . Related work is pre-

ented in Section 7 . Section 8 presents the threats to validity and

ection 9 concludes our study.

. Motivating example

Existing research (e.g., [3,8]) has shown that developers of mo-

ile apps resort to StackOverflow for help (e.g., to resolve imple-

entation problems or examine best coding practices). In contrast

o this existing work, the objective of our research is to study code

euse from StackOverflow during the implementation or mainte-

ance of mobile apps.

In what follows, we show the motivation for our research, by

escribing a real world example, where code has been reused

rom StackOverflow in the WordPress 1 Android app (we also elab-

rate more on how much reuse is done later on in the paper).

ig. 1 a shows an answer post with a code snippet which has been

osted on StackOverflow

2 to provide a solution for the use of the

etCheckedItemCount() method in the ListView class of the An-

roid API, with the getCheckedItemCount() method returning the

umber of items currently selected in the list.

The post describes a compatibility issue that arises when the

ethod is used in older Android API versions (prior to version

1). In the WordPress example, a developer encountered the same
1 https://github.com/wordpress-mobile/WordPress-Android .
2 http://stackoverflow.com/questions/12330660/whats- the- equivilent- of-

etcheckeditemcount- for- api- level- 11 .

S

s

c

c
roblem using the ListView class and resorted to the code solution

osted on StackOverflow. Fig. 1 b shows details of the actual com-

it that reuses the code from StackOverflow, which in this case

ven includes the link to the original StackOverflow post. In addi-

ion, using the timestamps of the commit and the StackOverflow

ost, we are able to determine that the code was committed in

he WordPress for Android project after it was posted on Stack-

verflow.

Being able to identify that StackOverflow code exists in a mo-

ile app is important for several reasons: first, the reused code

an be considered third-party code that may negatively impact the

roject. In particular, given that the origin of these code snippets

s unknown, the reused code needs to be carefully reviewed since

t may be incomplete and/or may have been developed for a dif-

erent context. Second, although we do not address it in this paper,

sing StackOverflow code can lead to potential license violations in

he mobile app reusing the code snippet.

. Case study setup

The goal of our paper is to perform an exploratory study on the

euse of StackOverflow code in mobile apps. To perform our study,

e extract code snippets from StackOverflow in order to examine

he code reuse. We then select 22 open source mobile apps and

xamine their source code for potential code reuse from StackOver-

ow. Fig. 2 provides an overview of our approach. Once we identify

he reused code, we analyze our dataset and answer our research

uestions.

.1. Building StackOverflow code snippets corpus

To perform our study, we started by downloading and extract-

ng code snippets from StackOverflow. We obtained the StackOver-

ow data dump (published March 16, 2015) in XML format. The

ata dump contained 24,120,523 posts, including 8,978,719 ques-

ions and 15,141,804 answers. Each discussion includes a question

nd zero or more answer posts and their meta data (e.g., body, cre-

tion date and number of votes) . Questions are typically tagged with

erms describing the categories under which these Q&A discussions

re grouped.

During the next processing step, we extract the relevant dis-

ussions for a study context. Since we focus on Android open

ource apps, we extracted all discussions related to the “Java” tag

810,071 discussions). We then further filtered these discussions

o ensure that they also contain the “Android” tag, which left us

ith 106,861 discussions related to Java and Android. Since we are

nly interested in code reuse from StackOverflow, we further lim-

ted our dataset to only consider discussions that contain source

ode. For our analysis, we focused on the source code in the an-

wers of the StackOverflow discussions, since code in questions is

ot likely to be reused. This further reduced the set of discussion

osts to 53,683. Since prior work suggested the use of highly voted

ode snippets, we only focused on code snippets in answers that

ave a high number of votes [10] . We therefore examined the aver-

ge votes for posts with their code snippets size (P size) within our

3,683 selected StackOverflow posts where, P size ≤ 5 lines, P size >

 ∩ P size < 30 lines and P size ≥ 30 lines . We found that snippets with

0 or more lines had the highest average votes with 2.02 while

nippets with ≤ 5 lines , > 5 ∩ < 30 lines have lower average num-

ers of votes (1.85 and 1.69, respectively). Therefore we decided to

ocus only on the posts which contained snippets with at least 30

ines of code because 1) they have the highest average votes, i.e.,

tackOverflow users find them the most helpful, 2) smaller code

nippets would result in too many false positives (e.g., it may flag

ommon and simply code such as if and for loop statements), 3)

hoosing 30 lines of code will decrease the size of the corpus and

https://github.com/wordpress-mobile/WordPress-Android
http://stackoverflow.com/questions/12330660/whats-the-equivilent-of-getcheckeditemcount-for-api-level-11

150 R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158

(a) Code snippet from Stack Overflow (b) A Commit that reuse the code snippet

Fig. 1. (a) Source code snippet posted on StackOverflow, (b) Description of a commit that reuses the code snippet in WordPress Android.

Open source Android
apps from F-Droid

Stack Overflow
dataset

Select studied
Android apps

Extract source
code snippets

Reused Code Detec�on

Measure code
similarity

(CCFinder Tool)

Iden�fy
reused code
(Timestamp)

Analyzing the
selected

Android Apps

1 2

Fig. 2. Approach overview of our study.

Table 1

Selection process of StackOverflow posts.

Step # Posts

All posts in the StackOverflow dataset 24,120,523

Posts tagged with Java 810,071

Posts tagged with Java and Android 106,861

Answer posts contain source code snippets 53,683

Code snippets with > = 30 lines 7458

Table 2

Selection process of the studied mobile apps.

Step # Apps

Downloaded from F-Droid 1591

The ones we were able to run CCFinder on 1496

That have at least one clone from StackOverflow 377

That reused at least one case of code from StackOverflow 22

3

r

F

t

o

a

w

t

a

e

l

s

a

N

f

t

m

w

fl

S

r

increase the scalability of the clone detection tool. In the end, our

dataset contains 7458 posts. Table 1 summarizes how we arrived

at this final number of posts.

Extracting Code Snippets from StackOverflow

Once we identified all of the StackOverflow posts that contained

source code, we needed to extract the code snippet from the rest

of the post. We applied a lightweight heuristic to identify the code

in the StackOverflow posts. In StackOverflow, the body of a post is

provided in HTML. Code elements in these posts are surrounded

by the < code > tag. Therefore, we identify the code elements by

searching for the < code > tags. Once we extracted the code el-

ements, we manually checked the contents of the text between

these < code > tags. We found that many posts do not only con-

tain Java code. For example they may contain stack traces, XML

code, plain text or URLs. To eliminate this non-Java code, we read

the < code > tag contents and removed such code by applying reg-

ular expressions to filter out lines that start with special charac-

ters such as < , #,?,$,.,-, or a blank line. Moreover, even for the

posts with Java code we eliminated all lines that begin with import

statements. Performing the aforementioned preprocessing steps are

necessary to further improve the matching between the StackOver-

flow code snippets and code from the mobile app.
.2. Selecting mobile apps

In addition to obtaining the StackOverflow code snippets, we

equire the source code from mobile apps to study the code reuse.

or our study, we resorted to the well-known F-Droid reposi-

ory [14] . At the time of writing this paper, F-Droid included 1591

pen source mobile apps. In addition to providing the APKs of each

pp, F-Droid provides a link to the source code of each app, which

e used to extract the source code of the mobile apps.

Table 2 presents a summary of the steps, which we performed

o arrive at our dataset of 22 mobile apps. For each of the 1591

pps, we examined the amount of reuse in the app exploiting an

xisting clone detection tool (step 1 © in Fig. 2 , which is described

ater in this section). We were able to run the clone detection tool

uccessfully on 1496 of the 1591 downloaded apps. Of the 1496

pps only 377 had one or more clones from StackOverflow code.

ext, we filtered apps that had at least one instance of code reuse

rom StackOverflow. We make this check by comparing the date

hat the code segment was inserted in the project, using the com-

it date of the code with the date that the StackOverflow code

as posted. If the commit date is after the date of the StackOver-

ow post, then we can conclude that the code is reused from

tackOverflow (step 2 © in Fig. 2). This additional filter step further

educed our original dataset to 22 mobile apps.

R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158 151

Table 3

Descriptive statistics of the 22 mobile apps and the percentage of reused code from StackOverflow.

ID App’s Name Category #Commits #Contributors #LOC % Reused

1 OsmAnd Travel & Local 23,124 419 151,264 0.20

2 Open Explorer Productivity 1669 10 130,565 0.07

3 WordPress Social 11,467 54 69,760 0.19

4 AnkiDroid Education 7463 110 45,088 0.08

5 Barcode Scanner Tools 3152 77 42,514 0.38

6 ForPDA Social 170 2 42,254 1.30

7 APG Encrypt Communication 4366 68 41,564 0.70

8 Xabber Classic Communication 1005 15 37,091 0.30

9 Smart Receipts Pro- Finance 301 2 28,136 0.80

10 F-Droid Tools 2550 55 21,039 0.48

11 FrostWire Media & Video 3763 28 19,713 0.10

12 Andlytics Track Shopping 1388 24 16,694 0.29

13 Open Training Health & Fitness 501 6 10,264 1.36

14 BeTrains NMBS/SNCB Transportation 209 7 9421 3.52

15 YASFA Social 21 2 9128 1.57

16 Secrecy Secure file storage Tools 155 1 6549 1.95

17 Tram Hunter Travel & Local 260 5 5516 0.42

18 OpenLaw Book & Reference 333 1 4037 0.37

19 OCR Test Productivity 101 1 3910 5.70

20 OpenDocument Reader Business 233 1 2996 0.87

21 blippex Tools 18 3 2050 1.61

22 AnagramSolver Word 46 2 745 0.94

Average 1.06

Median 0.59

v

b

b

s

3

c

t

r

t

c

[

w

T

h

e

w

w

R

n

p

s

u

m

i

S

b

s

fl

5

p

r

e

a

d

c

o

m

O

f

(

c

m

s

r

d

s

O

a

4

p

S

e

q

b

t

t

a

fl

t

fl

r

m

i

c

t

7

fl

e

t
To illustrate the diversity of our mobile app dataset, we present

arious app statistics in Table 3 . As presented in Table 3 , the apps

elong to a number of different categories, that vary by the num-

er of commits and contributors. Finally, the studied apps range in

ize from 745 to 151,264 lines of code (LOC).

.3. Detection of reused code from StackOverflow in the mobile apps

ase-study

Once we created our StackOverflow code snippets corpus and

he code from the mobile apps, our next step is to detect the

eused code from StackOverflow within the mobile apps. We use

he CCFinder [15] clone detection tool. CCfinder is a token based

lone detection tool developed to detect Type-1 and Type-2 clones

15] . Three types of clones can be distinguished: Type-1 clones,

hich means that the two detected code snippets are identical.

ype-2 clones, which means that the two source code snippets

ave the same structure except for variation in identifiers and lit-

rals, while Type-3 consider two code snippets to be similar even

ith further modification than Type-2 clones [16,17] . In our study,

e detect similar code snippets utilizing Type-1 and Type-2 clones.

estricting our analysis to type-1 and type-2 clones a) reduces the

umber of potential false positives compared to type-3 clones, es-

ecially given that StackOverflow contains a large amount of code

nippets, while b) providing an acceptable recall (compared to just

sing type-1 clones).

We execute CCFinder using its default configuration, i.e, the

inimum length of the detected code clones is 50 tokens. It is

mportant to note that although the code snippets extracted from

tackOverflow needed to be a minimum of 30 lines, the overlap

etween any code from a mobile app and a StackOverflow code

nippet has to be only 50 tokens, for the code fragment to be

agged as a clone. For example, we may have a case where only

 lines (which have more than 50 tokens) from a mobile app ap-

ear in a StackOverflow snippet that is 30 lines long.

We selected CCFinder as our clone detection tool for several

easons. First, it detects type-1 and type-2 clones. Second, it is very

fficient with respect to CPU and memory usage. Finally, it is freely

vailable for research purposes. CCfinder returns clone groups with

ifferent sizes based on the number of matched tokens. In some

ases, CCFinder may indicate multiple clones (of different sizes) in
ne code segment. In such cases, we take the largest clone as the

atch, since we need to detect the most similar code to the Stack-

verflow code snippet.

It is important to note that developers who reuse source code

rom StackOverflow occasionally preform obfuscation operations

e.g., renaming variable, adding and removing code) on the copied

ode. These modifications are sometimes done unintentionally to

eet the system’s new context and quality (e.g., programming

tyle). On the other hand, some developers deliberately hide the

eused code so that it becomes difficult to detect such reuse. Such

eliberate hiding is done to reduce code licensing or ownership is-

ues.

Once we obtain the code snippets that are reused from Stack-

verflow, we analyze the amount of reuse in the studied mobile

pps, which we discuss next.

. Preliminary analysis

Prior to delving into our research questions, we performed a

reliminary analysis to quantify how much code reuse occurs from

tackOverflow. Since recent work has shown that mobile develop-

rs often resort to StackOverflow [3,8] , this investigation helps in

uantifying how much (in terms of code reuse) StackOverflow is

eing used as a resource by mobile app developers.

To perform our analysis, we measure reuse in two complemen-

ary ways. First, we measure the percentage of StackOverflow posts

hat are reused in mobile apps. Second, we measure the percent-

ge of code within mobile apps, which is reused from StackOver-

ow. We chose to use percentages instead of raw numbers since

hey allow us to easily compare the values.

Our analysis shows that from the 7458 posts in our StackOver-

ow code snippet corpus, 99 posts contain code snippets that were

eused in the 22 studied mobile apps. This shows that approxi-

ately 1.33% of the StackOverflow posts are reused in the 22 stud-

ed mobile apps. It is important to note however, that in some

ases, some posts in our corpus are reused more than once. As for

he amount of a mobile app’s code that is reused, Table 3 (column

) shows the percentage of the app that is reused from StackOver-

ow. Table 3 shows that the OCR Test app (5.70%) has the high-

st amount of source code originating from StackOverflow, while

he Open Explorer app (0.07%) has the smallest amount of reused

152 R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158

Table 4

Reuse categories based on coding of commit

messages.

Category % of Commits

Enhancing existing code 33.33%

Adding new features 23.70%

Refactoring 12.59%

API usage 11.11%

Fixing bugs 10.37%

Test 0.74%

Other 8.14%

s

s

d

w

t

h

m

b

m

t

i

b

O

t

i

d

p

a

a

d

u

w

f

r

w

S

s

t

(

S

c

t

m

s

r

p

l

t

i

T
code. The average amount of code reused from StackOverflow for

an app is 1.06% and the median is 0.59%.

Approximately 1.33% of the StackOverflow posts in our

dataset are reused in the examined mobile apps. Moreover, on

average 1.06% (0.59% median) of the examined mobile apps’

source code is reused from StackOverflow.

5. Case study results

Thissection presents and discusses the results related to our re-

search questions. For each research question, we present the mo-

tivation behind the question, the approach, our findings and their

implications.

(RQ1) Why do mobile developers reuse code from StackOverflow?

Motivation: We saw earlier that code reuse does occur from

StackOverflow. One of the first questions that comes to mind is

why do mobile developers reuse code from StackOverflow? An-

swering this question will help us and the research community to

better understand the types of activities and tasks which mobile

app developers resort to StackOverflow for. In addition, our analy-

sis will provide some insights into the type of reuse benefits mo-

bile app developers received from StackOverflow. It is important to

note here that our analysis is in the context of code reuse from

StackOverflow for mobile apps and not the general use of Stack-

Overflow as studied in prior work [3] .

Approach: To answer this research question, we performed a

qualitative analysis, where we manually examined the commit

messages of the commits that introduced the StackOverflow code

in each of the 22 mobile apps. We observed that the reused code

was related to 140 different commits. We printed the message

associated with each commit and examined all of them in turn.

Five of the commits had commit messages that were unreadable

(the message was corrupted), hence, we discarded them from our

dataset. Our final dataset contained a total of 135 commit mes-

sages that introduced the StackOverflow code in the 22 selected

mobile apps.

To determine the reasons why mobile developers reuse code

from StackOverflow, we applied a manual analysis to discover and

categorize the commits. Two graduate students (1 PhD student

and 1 master student) separately open coded each commit mes-

sage. Each student came up with their own categories by reading

and analyzing the commit messages. After the participants com-

pleted their classifications, they met and discussed the commit

messages that were not consistently classified (i.e., each member

grouped these messages in different categories) to reach an agree-

ment. The 135 commits were grouped into seven different groups,

which were derived from the examined commit messages. Finally,

we used Cohen’s Kappa coefficient [18] to evaluate the level of

agreement between the two coders. The Cohen’s Kappa coefficient

is a well-known statistical method that is used to evaluate the

inter-rater agreement level for categorical scales. The resulting co-

efficient is scaled to range between -1.0 and +1.0, where a nega-

tive value means poorer than chance agreement, zero indicates ex-

actly chance agreement, and a positive value indicates better than

chance agreement.

Findings: As a result of our manual classification process, we

ended up with seven different categories that the commit mes-

sages were grouped into. We observe that mobile developers tend

to reuse code from StackOverflow for different reasons such as: us-

ing API, fixing bugs, testing, refactoring, adding new features and

enhancing existing code. In some cases, there were commit mes-
ages that were not descriptive enough to allow for a clear clas-

ification, e.g., the message would simply contain a sequence of

igits or only contain one word such as “initial”, however, this

as a small percentage of the examined commits. Table 4 presents

he percentage of commits for each category. We observe that en-

ancing existing features and adding new features are the two

ost common reasons for code reuse from StackOverflow in mo-

ile apps, accounting for approximately 57% of the examined com-

its. Additionally, we found that Cohen’s Kappa coefficient shows

he level of agreement between the two coders to be +0.82, which

s considered to be an excellent agreement [19] .

Potential Implications: Based on our findings, there are a num-

er of implications for our RQ1. First, we believe that the Stack-

verflow community will know what mobile developers are using

heir posts for, so they can provide better support for such activ-

ties (e.g., in addition to sharing code, one can point to possible

ocumentation since developers are mostly using the code to im-

lement new features). Other more drastic measures can involve

sking users or contributors of the code to provide quality assur-

nce mechanisms (e.g., tests or code reviews) for snippets that are

eemed to have a higher probability of reuse. Our findings are also

seful for the mobile developer community since they will know

hat tasks other developers are reusing code from StackOverflow

or, e.g., they will know that StackOverflow may contain relevant

esources to help with refactoring. Finally, the research community

ill know in what context mobile app developers reuse code from

tackOverflow, so they can develop techniques and tools to as-

ist with such tasks, e.g., use StackOverflow to help with testing,

hough such cases are rare in our dataset.

Mobile app developers reuse code from StackOverflow to use

APIs, fix bugs, conduct testing, refactor existing code, add new

features and enhance existing code. The most common rea-

son for reuse from StackOverflow is the enhancement of ex-

isting code.

RQ2) When in a mobile app’s lifetime do developers reuse code from

tackOverflow?

Motivation: After examining the various reasons for source

ode reuse from StackOverflow, we would like to know when in

he project’s lifetime mobile app developers tend to reuse code the

ost. Answering this question helps us better understand at what

tage of development mobile developers need the most help and

esources. It also tells whether the impact of reuse can only be ex-

ected late in the mobile app (in case we find most reuse happens

ater on) or throughout the project’s lifetime.

Approach: To address this research question, we first compute

he age of each app in number of days. We then classify the apps

n terms of their maturity in terms of days since their first commit.

his classification enables us to perform a fair comparison since

R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158 153

Fig. 3. Distribution of the app’s age of the 22 examined mobile apps.

d

b

a

g

t

d

a

(

6

a

c

m

t

g

f

f

b

(

v

o

o

t

d

k

f

s

s

d

f

o

m

t

c

o

t

O

a

s

i

v

t

a

o

s

c

b

m

t

O

c

e

t

o

t

s

l

d

h

o

n

r

(

a

e

w

i

i

s

t

w

n

t

W

p

m

r

c

e

m

e

3

2

e

n

a

d

e

m

e

v
ifferent projects will have different ages (i.e., lifetime). The distri-

ution of ages of the 22 apps is shown in Fig. 3 . We use the first

nd third quantiles to divide the apps into three different maturity

roups. As shown in Fig. 3 , the first quantile is at 600 days and

he third quantile is at 1767 days. Based on this distribution, we

ivide the apps into 1) young apps (app ′ s age < 600 days), 2) mid-

ge apps (600 days = < app ′ s age = < 1, 767 days), and 3) older apps

 app ′ s age > 1, 767 days). Based on this division, we end up having

 young apps, 10 mid-age apps and 6 older apps.

After classifying the apps into three groups, i.e., young, mid-age

nd older apps, we counted the percentage of commits that reuse

ode in each app. To gain a finer grained view of the reuse, we

easured the percentage of reused commits for each app per quar-

ile (i.e., in the first, second, third or fourth quartile). Such a fine

rained view can tell us, for example, whether most of the reuse

or mid-age apps occurs early (e.g., first quartile) or later on (e.g.,

ourth quartile) in their lifetime.

We measure the reuse as the percentage (rather than raw num-

er) of commits since the raw number of commits in each app

and each quartile) can vary. To ensure that we only count rele-

ant commits, we remove all merge commits from our calculation

f the total commits.

Findings: Fig. 4 shows bean plots (with superimposed boxplots)

f the percentage of the code reuse from StackOverflow for the

hree mobile app groups. Bean plots are useful in presenting the

istribution of data, whereas the superimposed box plots highlight

ey statistics. Fig. 4 a shows that for younger apps, most code reuse

rom StackOverflow occurs in the middle of the apps’ lifetime, i.e.,

econd and third quartiles, yet this difference is not statistically

ignificant. To determine whether there are statistically significant

ifferences between the values in the different quartiles, we per-

orm a one-way analysis of variance (ANOVA), and we could not

bserve a statistically significant difference. Fig. 4 b shows that for

id-age apps, most reuse occurred late in the mobile apps’ life-

ime (i.e., fourth quartile). ANOVA showed that there is a statisti-

ally significant difference (p-value is < 0.05) between the median

f the fourth quartile and the medians of the other quartiles. For

he older apps, we observe that, once again, most reuse from Stack-

verflow happened late in the mobile app lifetime, i.e., the third

nd fourth quartiles. Also, the use of ANOVA shows that the ob-

ervations for the third and fourth quartiles are statistically signif-
cant, with p-value < 0.05. Our findings indicate that although de-

elopers tend to reuse code for feature addition and enhancement,

his reuse (feature addition and enhancement) varies based on the

ge of the app.

Potential Implications: There are a number of implications of

ur findings in RQ2. For the StackOverflow community , our findings

how that it is not just young or immature mobile apps that reuse

ode from StackOverflow, rather even more mature or older mo-

ile apps tend to reuse code from StackOverflow. Hence, proper

echanisms can be developed to tailor results that are returned

o users based on the age of their mobile app. Alternatively, Stack-

verflow could add a mechanism for explicitly rating the source

ode snippets that have been reused in actual mobile apps. For

xample, developers of younger apps are looking more for ques-

ions/code related to initial development tasks, whereas developers

f older apps are more concerned with fixing, refactoring, or main-

enance issues. For the mobile developer community , our findings

how that indeed, other developers resort to StackOverflow even at

ater stages in the development of their projects. We believe that

evelopers should link to StackOverflow posts that they used to

elp reach their final coded solutions. For the research community ,

ur findings can be used to motivate the development of tech-

iques that support maintenance or late-stage development with

esources from StackOverflow.

Mobile app developers tend to reuse code from StackOver-

flow at later stages of the project for mid-age and older mobile

apps.

RQ3) Who reuses code from StackOverflow?

Motivation: Prior work has indicated that reusing code is neg-

tively perceived by developers and associated with less experi-

nced developers [20] . Hence, we wanted to empirically examine

ho reuses StackOverflow code amongst mobile developers, e.g., is

t more common among less experienced developers that are look-

ng for quick solutions or is it the experienced developers who re-

ort to code reuse from StackOverflow?

Approach: To answer this research question, we first measure

he developer experience within the mobile app. Similar to prior

ork [21,22] , we use the developer activity, measured using the

umber of previous commits from the start of the project to the

ime of code reuse, to determine a developer’s experience level.

e use this method “previous number of changes” because 1) the

revious number of changes done by the developer represents a

eaningful proxy of a developer’s experience that can be accu-

ately measured and 2) previous work uses the prior number of

ommits as a measure of a developer’s experience [21–23] .

We observed that some of the developers commit from differ-

nt emails and with a variety of different names. Therefore, we

anually examined the names and email addresses of all develop-

rs in our dataset and merged similar identities. In total, we found

7 unique developers who reused code from StackOverflow in the

2 examined mobile apps. Once again, we normalized the experi-

nce of the developers and present it as a percentage of the total

umber of commits in the project (i.e., a developer’s experience in

 project is measured as # commits by the de v eloper
total commits

× 100).

Findings: At first, we compare the experience of all mobile app

evelopers who reuse code from StackOverflow against develop-

rs who do not reuse code from StackOverflow for the 22 studied

obile apps. Fig. 5 compares the percentage of developers’ experi-

nces for both developers who reuse StackOverflow code and de-

elopers who do not reuse StackOverflow code. Our study shows

154 R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158

Fig. 4. Percentage of reused StackOverflow code per quartile in apps divided based on the age.

Fig. 5. Distribution of the developers’ experience for developers who reuse code from StackOverflow against the rest of developers in the 22 studied mobile apps.

b

t

d

s

t

l

w

W

c

w

t

a

a

t

t

o

W

W

f

that StackOverflow code reuse is mainly performed by more expe-

rienced developers (median equal to 29.56%) than the rest of the

developers (median 0.04%) in our 22 studied mobile apps. We also

find that the difference between the percentage of developers’ ex-

periences in the two groups is statistically significant, with a p-

value < 0.05.

Subsequently, we examined in more detail the experience of

all mobile app developers (in terms of their commit activity) who

reuse code from StackOverflow. Fig. 6 a shows the results of our

analysis when all apps are grouped together. The figure shows that

on median, developers who commit 29.56% of the total commits

are the ones who reuse code from StackOverflow. The box in the

box plot also shows wide variation, which in essence makes it dif-

ficult to observe any type of trend.

Thus, we decided to perform the in depth analysis based on

both team size and LOC of the apps since they are two factors

that can impact the app, i.e., apps developed by smaller teams may

follow different development processes compared to apps that are

developed by larger teams and larger apps may do more than apps

that are smaller in size, hence this was a clear and intuitive way

to divide the apps.
We then repeated the same analysis for apps that are developed

y small teams (< = 5 developers) and apps developed by larger

eams (> 5 developers). Fig. 6 b shows a clear difference when we

o this division. From Fig. 6 b we observe that in apps developed by

maller teams, more experienced developers (median 92.05%) tend

o reuse code from StackOverflow, whereas in apps developed by

arger teams, it is the less experienced developers (median 12.83%)

ho reuse code from StackOverflow. We also perform the Mann-

hitney test to identify if the observation is statistically signifi-

ant, which confirms that the difference is statistically significant

ith the p-value being < 0.05.

We next considered the size of the apps for our analysis in

erms of lines of code. We divided the apps into the top 10 largest

nd the remaining 12 apps. Fig. 6 c shows that for the 10 largest

pps, the less experienced (median 12.73%) mobile app developers

end to reuse code from StackOverflow. For the smallest 12 apps,

he results shows that more experienced (median 81.78%) devel-

pers reuse code from StackOverflow. Finally, we utilize the Mann-

hitney test to identify if this difference is statistically significant.

e found that the p-value is < 0.05, which confirms that the dif-

erence is statistically significant.

R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158 155

Fig. 6. Distribution of the developers’ experience for developers that reuse code from StackOverflow.

p

v

m

t

F

6

t

d

d

d

W

w

m

d

i

t

m

w

l

T

s

i

t

f

fi

a

v

o

o

c

b

r

b

r

g

t

w

p

c

Fig. 7. The approach to compute the percentage of bug fixing commits Before and

After reuse per file.

6

m

w

b

O

d

t

t

t

t

r

w

S

y

S

e

i

O

o

o

b

w

i

o

r

t

e

n

p

t
We also experimented with other thresholds. We first com-

uted the number of developers of each app as a threshold to di-

ide the mobile apps in our dataset into two groups. We use the

edian instead of mean because the test for normality shows that

he data is not normally distributed (Shapiroâ;;Wilk test < 0.05).

urther, we divided the apps based on the median (median =
.5, around 7). We found that again in apps developed by smaller

eams (i.e., = < 7 developers), more experienced developers (me-

ian 91.45%) tend to reuse code from StackOverflow, while in apps

eveloped by larger teams, it is less experience developers (me-

ian 12.63%) who reuse code from StackOverflow. Also, the Mann-

hitney test shows that the difference is statistically significant

ith the p -value being < 0.05.

We also divided the mobile apps in our dataset based on the

edian of apps size (LOC) into small and large apps. We use me-

ian (median = 18200) because, once again, the test for normal-

ty shows that the data is not normally distributed (Shapiroâ;;Wilk

est < 0.05). The results show that in small apps developers with

ore experience tend to reuse source code from StackOverflow

ith median equal to 84.79%, while in large apps developers with

ess experience reuse code form Stack Overflow (median = 12.83%).

he Mann-Whitney test shows that the difference is statistically

ignificant with the p -value being < 0.05. Based on these exper-

ments, we found the same result as dividing the apps based on

he median size of the apps.

Potential Implications: There are a number of implications

rom our findings in RQ3. For the StackOverflow community , our

ndings can motivate the need to develop techniques that analyze

nd attach a “safety index” to code snippets since our results pro-

ide evidence that for larger teams/apps, less experienced devel-

pers tend to reuse code from StackOverflow. For the mobile devel-

per community , our findings show that in larger teams and apps,

ode developed by junior or less experienced developers needs to

e more closely reviewed since it may be code that is reused. Such

euse can also have licensing implications, although this topic is

eyond the scope of this paper. For the research community , our

esults can serve as motivation for the need to perform more fine

rained studies on reuse by different types of developers. Addi-

ionally, our findings can help shed light on code ownership (since

e see who reuses code is also related to the size of the team or

roject the developer works with), a topic that has received in-

reasing attention lately.

More experienced mobile app developers reuse StackOver-

flow code in smaller teams/apps, whereas less experienced

developers reuse StackOverflow code in larger teams/apps in

our dataset.
s
. Does code reuse from StackOverflow impact the quality of

obile apps?

Thus far, we have investigated the how much, why, when and

ho questions related to reusing code from StackOverflow in mo-

ile apps. Our findings showed that the amount of reused Stack-

verflow code varies for different mobile apps, that feature ad-

itions and enhancements are the main reasons for code reuse,

hat mid-age and older apps reuse StackOverflow later in their life-

ime, and that more experienced developers reuse code in smaller

eams/apps, while less experienced developers reuse code in larger

eams/apps.

Additionally, we wanted to examine the implications of code

euse from StackOverflow on the quality of mobile apps. Hence,

e examine the bug fixing commits of files that reuse code from

tackOverflow before and after the reuse occurred. For this anal-

sis as shown in Fig. 7 , we marked all files that contain reused

tackOverflow code in all of the 22 studied mobile apps. Then, for

ach file we retrieve all the commits that ever touched the file. We

dentified the commit that introduces the reused code from Stack-

verflow and divided the commits into two groups: commits that

ccurred before and commits that occurred after the introduction

f the reused code. We used heuristics to classify each commit as a

ug fixing or non-bug fixing commit. Similar to prior work [24,25] ,

e use a set of keywords to identify bug fixing commits. A commit

s identified as a bug fixing commit if its commit message contains

ne of the following keywords “fix”, “bug”, “defect”, “patch”, “er-

or”. We then compute the ratio of bug fixing commits by dividing

he number of fixing commits by the total number of commits for

ach file before and after the introduction of the reused code. Fi-

ally, we compare the percentage of bug fixing commits in the two

eriods, before and after reusing StackOverflow code. We compare

he percentage of bug fixing commits instead of the raw numbers

ince StackOverflow code could be introduced at different times,

156 R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158

Fig. 8. The Percentage of bug fixing commits Before and After reuse per file.

F

r

s

d

t

m

f

i

t

r

i

t

d

F

S

w

d

c

fl

o

m

7

g

f

i

m

q

t

u

p

v

c

h

fl

t

o

c

e

d

O

s

fl

p

O

t

s

e

l

f

S

p

o

p

O

e

t

f

t

e

l

t
i.e., we may not have the same total number of changes before and

after the introducing StackOverflow code. Doing this will show if a

higher percentage of bugs exists after code is reused from Stack-

Overflow.

Fig. 8 shows the distribution of percentage of bug fixing for all

files. We observed that the median percentage of bug fixing be-

fore reusing the StackOverflow code is 5.96% and the max is 50%.

On the other hand, the right box plot represents the percentage

of bug fixing after reusing Stack Overflow code. We see that the

percentage of bug fixing commits is higher after the code reuse

from StackOverflow (median equal to 19.09%). To determine if this

difference is statistically significant, we perform a Mann-Whitney

test, which confirmed that the difference is statistically significant

with p-value < 0.05.

In addition, we computed the effect size of the difference using

Cliff’s Delta (d), which is a non-parametric effect size measure for

ordinal data. Cliff’s d ranges in the interval [-1, 1] and is considered

small for d < 0.33 (positive as well as negative values), medium

for 0.33 ≤ d < 0.474, and large for d ≥ 0.474. The result shows

that the difference has a small effect size (Cliff’s d = 0.225) when

comparing the percentage of bug fixing commit before reusing the

StackOverflow code and the percentage of bug fixing commit after

the reuse of source code from StackOverflow.

Although this is not a comprehensive study on the impacts of

code reuse in mobile apps, we see our aforementioned finding as

preliminary evidence that reuse from StackOverflow may have a

negative impact on the quality of mobile apps.

7. Related work

Work related to our research can be divided into three cate-

gories: research on the origin of source code and code reuse, work

related to the use of StackOverflow, and work related to code reuse

in mobile apps.

7.1. Origin of source code and code reuse

Inoue et al. [2] developed a prototype called Ichi Tracker to ex-

plore the evolution of a code fragment utilizing online code search

engines and code clone detection techniques. The tool accepts a

code fragment as input and returns related files containing query

code. Using the Ichi Tracker, developers can identify the origin of a

source code fragment or a modified version of the code fragment,

including potential license violations. German et al. [11] exam-

ined source code migration across three different systems (Linux,
reeBSD and OpenBSD) and its legal implications. They tracked

eused code fragment using clone detection methods. Their result

howed that code migration did occur between these systems. Ad-

itionally, the copying tended to be performed without violating

he license terms. Davies et al. [26] proposed a signature-based

atching technique to determine the origin of code entities. They

ound that their technique can be utilized to identify security bugs

n the reused libraries. Kawamitsu et al. [27] proposed a technique

o automatically detect source code reuse between two software

epositories at the file level. It is based on measuring the similar-

ty between two source files and using the commit time to identify

he original source file revision. They found that in some instances

evelopers did not record the version of the reused file.

Our work differs from this existing research in several aspects.

irst, the main focus of our work is on reuse of source code from

tackOverflow in the context of mobile apps. Secondly, while our

ork is similar to some existing work (e.g., [11]), in that we also

etect source code reuse using a clone detection technique, our fo-

us is analyzing why, when and who reuses code from StackOver-

ow. This is in contrast to existing work, where the focus had been

n detecting the origin of source code, license violations and code

igration.

.2. Work related to the use of StackOverflow

Barua et al. [8] proposed a semi-automatic approach to study

eneral topics discussed on StackOverflow by developers. They

ound that web and mobile development are the most popular top-

cs. Rosen and Shihab [3] used StackOverflow to determine what

obile developers on StackOverflow ask about. They found that

uestions posted on StackOverflow cover almost all issues related

o the development of mobile apps, and that app distribution and

ser interface questions are the most viewed. We consider the

rior results of these studies as evidence that StackOverflow is a

ery popular source of programming-related knowledge and source

ode, which served as a motivation for our work. In our study

owever, we focus on the reuse of source code from StackOver-

ow in mobile apps. More specifically we propose an approach

o identify reused code from StackOverflow and answer a number

f research questions such as, why mobile app developers reuse

ode from StackOverflow, when in a mobile apps lifetime develop-

rs reuse code from StackOverflow, what is the experience of these

evelopers, and the potential impact of reusing code from Stack-

verflow on software quality. To the best of our knowledge, our

tudy is the first to empirically study code reuse from StackOver-

ow in mobile apps.

Several other work has attempted to recommend code snip-

ets from StackOverflow. Cordeiro et al. [28] indexed the Stack-

verflow data dump to retrieve associated discussion. They ex-

ract keywords from exception traces in Eclipse to automatically

uggest Q&A threads from StackOverflow to developers. Ponzanelli

t al. [9] developed a tool called Prompter that recommends re-

ated code from StackOverflow. Prompter generates a search query

rom the developers’ programming context in the IDE and searches

tackOverflow to recommend code snippets. Rahman et al. [29] ,

roposed SurfClipse that provides immediate assistance to devel-

pers when they encounter runtime errors or exceptions. It ex-

loits the code terms to search in three search engines and Stack-

verflow, and shows the collected results in the Eclipse IDE. Wang

t al. [30] , devised an approach to build a bidirectional link be-

ween the Android issue tracker and StackOverflow discussions to

acilitate the knowledge sharing between two separated communi-

ies. They exploit the semantic similarity with temporal-locality to

ffectively establish the link. Once such a link is established, it al-

ows contributors (developers and users) in the two communities

o gain the benefit of knowledge sharing. Our prior work exam-

R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158 157

i

fi

m

o

t

7

p

c

c

B

w

t

r

t

i

s

a

[

b

t

C

a

d

S

8

c

r

t

i

m

a

o

f

c

d

t

c

i

l

w

o

w

c

a

m

W

m

K

t

c

c

c

h

S

c

v

o

u

d

d

t

d

s

O

m

t

h

a

r

m

9

O

i

O

t

S

c

r

e

t

t

o

m

s

b

r

m

o

t

o

e

c

i

a

i

m

t

l

d

r

p

m

f

G

t

e

r

e

s

b

a

t

c

u

q
ned why developers use StackOverflow and found, amongst other

ndings, that developers do reuse code from StackOverflow [31] .

In contrast to existing research that mainly focused on recom-

ending code snippets form StackOverflow to assist developers,

ur work’s main goal is to perform an exploratory study on code

hat is reused from StackOverflow in mobile apps.

.3. Work related to mobile apps

Several studies on mobile software development have been

ublished in recent years. Syer et al. [32] compared the source

ode of BlackBerry and Android apps along three aspects, source

ode, code dependencies and code churn. They found that Black-

erry apps are larger and rely more on third party libraries,

hereas Android apps have less number of files and rely mostly on

he Android platform. Ruiz et al. [33] compared the extent of code

euse in the different categories of Android apps. They observed

hat around 23% of the classes inherit from one of the base classes

n the Android API and 27% of the classes inherit from a domain

pecific base class. Furthermore, they found that 217 mobile apps

re completely reused by another mobile app. Minelli and Lanza

34] proposed a software analytics platform called SAMOA that has

een utilized to analyze 20 Android apps. Their analysis showed

hat mobile apps intensely depend on the usage of external APIs.

hen et al. [35] developed an approach, based on geometry char-

cteristics, that can detect clones between mobile apps. Our work

iffers from this related work in that we focus on code reuse from

tackOverflow and not across mobile apps or from APIs.

. Threats to validity

Threats to internal validity concern confounding factors that

ould have influenced our study results. First, to identify the

eused code from StackOverflow, we use the CCFinder clone de-

ection tool. Hence, we are limited by the accuracy of CCFinder

n finding Type-1 and Type-2 clones. In some cases, we may have

issed instances of code reuse if CCFinder did not flag the code as

 clone. To help alleviate this issue, we manually investigated some

f the clones and in all cases the flagged clones were reused code

rom StackOverflow. In addition, we use CCfinder with the default

onfiguration parameters. Changing these parameters may lead to

ifferent results. When we identify reused code, we ensure that

he date of the StackOverflow post is prior to the commit date. In

ertain cases, the code in the project may not have actually orig-

nated from StackOverflow, if for example the developer takes a

ong time to commit. Furthermore, we found there are some cases

here StackOverflow posts are reused more than once that devel-

pers may copy the source code snippets between mobile apps.

To determine why developers reuse code form StackOverflow,

e manually analyzed the commits. Like any human activity, the

ategorization may be prone to human error or bias. To allevi-

te this threat, we had two students separately code the com-

its messages and come to an agreement on any discrepancies.

e also computed Cohen’s Kappa to evaluate the inter-rater agree-

ents, which showed excellent inter-rater agreement (Cohen’s

appa value of + 0.82). In addition, we use the commit message

hat introduced the code as an indicator of the reuse. However, a

ommit may contain the StackOverflow code combined with other

ode. In this analysis, we consider a commit as a single unit of

hange with the reused code being part of the complete unit,

ence, the reason should be the same for all the modified code.

imilar to prior work, e.g., [21,23] , we use the number of previous

ommits to measure experience. In some cases, the number of pre-

ious commits may not be representative of the actual experience

f a developer. Furthermore, given that we manually identified the

nique developers by comparing names and email addresses of all
evelopers, it is possible that we potentially wrongly identified a

eveloper as unique. The analysis in RQ2 is based on the size of

he apps and number of developers, which may not present all the

evelopment features of apps.

Threats to external validity concern the possibility that our re-

ults may not be generalizable. In this study, we focus on Stack-

verflow, which is one of many Q&A websites, hence, our results

ay not generalize to reuse from other Q&A websites. In addi-

ion, we examined 22 Android Apps in which code reuse occurred,

ence, our findings may not generalize to other apps, especially

pps that are not open source. Finally, we studied source code

euse from StackOverflow in the context of mobile apps, which

ay not be generalizable to other application domains.

. Conclusion and future work

In this paper, we investigated the reuse of code from Stack-

verflow in mobile apps. We conducted an exploratory study us-

ng 22 Android apps. We found that the amount of reused Stack-

verflow code varies for different mobile apps, that feature addi-

ions and enhancements are the main reasons for code reuse from

tackOverflow, that mid-age and older apps reuse StackOverflow

ode later in the lifetime and that more experienced developers

euse code in smaller teams/apps, while less experienced develop-

rs reuse code in larger teams/apps. We also examined the poten-

ial implications of code reuse and found that code reuse is related

o higher potential of bug fixing. In the future, we plan to expand

ur study to include other types of Q&A websites, as well as more

obile apps.

The results from our studies not only provide some valuable in-

ights into the potential reuse of code from StackOverflow in mo-

ile apps, but also provide insights into challenges for making code

euse from Q&A websites such as StackOverflow part of current

obile app development processes and best practices.

In addition to our main findings, we believe that the technique

f detecting code reuse from StackOverflow developed as part of

his work can have an impact and enables the investigation of

ther phenomena in mobile apps and software engineering in gen-

ral. For example, our approach can help enable:

Bi-directional traceability: Currently, knowledge, including

ode snippets, from Q&A websites and mobile project code repos-

tories remains in information silos, preventing feedback loops

cross these knowledge resources. As a result, no mechanism is

n place to allow for notifications or monitoring changes, which

ight have an effect on either source. For example, in response

o the original question posted on StackOverflow, an improved so-

ution is posted or a problem (e.g., vulnerability) might have been

iscovered. However, establishing and maintaining such links will

equire an adequate tool support. Thus, our approach may help im-

rove traceability of StackOverflow code reused in mobile apps.

Detection of licensing violations: An important aspect that

obile app developers should pay attention to when reusing code

rom StackOverflow is the issue of potential copyright violations.

iven that the origin of the code posted on Q&A websites is of-

en unknown and different Q&A websites take advantage of a vari-

ty of open source licenses, avoid potential license violations when

eusing code snippets. For example, the StackOverflow website op-

rates under a general CC-BY-SA open source license, allowing code

nippets posted on StackOverflow to be reused and adapted. Mo-

ile app developers reusing code are therefore required to provide

ppropriate credit to the source and distribute their code under

he same license to avoid license violations.

Improved content and quality rating: Information of actual

ode reuse from the StackOverflow website source code can be

sed to improve the rating mechanism on StackOverflow. The fre-

uency and context of code reuse from code snippets originat-

158 R. Abdalkareem et al. / Information and Software Technology 88 (2017) 148–158

[

[

[

[

[

ing from StackOverflow can be used to improve and establish

more meaningful rating and tagging mechanisms for StackOverflow

posts, depending on actual real world usage scenarios.

In the future we plan to apply our approach to investigate its

applicability in the aforementioned topics. We also plan to extend

our work to consider reuse in other contexts.

References

[1] W. Lim , Effects of reuse on quality, productivity, and economics, IEEE Software
11 (5) (1994) 23–30 .

[2] K. Inoue , Y. Sasaki , P. Xia , Y. Manabe , Where does this code come from and

where does it go? - integrated code history tracker for open source systems -,
in: Proceedings of the 34th International Conference on Software Engineering

(ICSE), 2012, pp. 331–341 .
[3] C. Rosen , E. Shihab , What are mobile developers asking about? a large scale

study using stack overflow, Empirical Software Engineering (EMSE) 21 (3)
(2016) 1192–1223 .

[4] C. Sadowski , K.T. Stolee , S. Elbaum , How developers search for code: a case
study, in: Proceedings of the 10th Joint Meeting on Foundations of Software

Engineering (FSE), 2015, pp. 191–201 .

[5] J. Gui , S. Mcilroy , M. Nagappan , W.G.J. Halfond , Truth in advertising: The hid-
den cost of mobile ads for software developers, in: Proceedings of the 37th

International Conference on Software Engineering (ICSE), 2015, pp. 100–110 .
[6] M.D. Syer , M. Nagappan , A.E. Hassan , B. Adams , Revisiting prior empirical find-

ings for mobile apps: An empirical case study on the 15 most popular open–
source android apps, in: Proceedings of the 13th Conference of the Center for

Advanced Studies on Collaborative Research (CASCON), 2013, pp. 283–297 .

[7] I.J. Mojica , B. Adams , M. Nagappan , S. Dienst , T. Berger , A.E. Hassan , A large-S-
cale empirical study on software reuse in mobile apps, IEEE Software 31 (2)

(2014) 78–86 .
[8] A. Barua , S.W. Thomas , A.E. Hassan , What are developers talking about? an

analysis of topics and trends in stack overflow, Empirical Software Engineering
(EMSE) 19 (3) (2012) 619–654 .

[9] L. Ponzanelli , G. Bavota , M. Di Penta , R. Oliveto , M. Lanza , Mining StackOver-

flow to turn the IDE into a self-confident programming prompter, in: Proceed-
ings of the 11th Working Conference on Mining Software Repositories (MSR),

2014, pp. 102–111 .
[10] S.M. Nasehi , J. Sillito , F. Maurer , C. Burns , What makes a good code exam-

ple?: A study of programming Q&A in StackOverflow, in: Proceedings of the
28th IEEE International Conference on Software Maintenance (ICSM), 2012,

pp. 25–34 .

[11] D.M. German , M. Di Penta , Y.-G. Gueheneuc , G. Antoniol , Code siblings: Techni-
cal and legal implications of copying code between applications, in: Proceed-

ings of the 6th IEEE International Working Conference on Mining Software
Repositories (MSR), 2009, pp. 81–90 .

[12] M. Linares-Vásquez , G. Bavota , C. Bernal-Cárdenas , M. Di Penta , R. Oliveto ,
D. Poshyvanyk , Api change and fault proneness: a threat to the success of an-

droid apps, in: Proceedings of the 9th joint meeting on foundations of software

engineering (ESEC/FSE), 2013, pp. 477–487 .
[13] F. Sarro , A .A . Al-Subaihin , M. Harman , Y. Jia , W. Martin , Y. Zhang , Feature life-

cycles as they spread, migrate, remain, and die in app stores, in: Proceedings
of IEEE 23rd International Requirements Engineering Conference (RE), 2015,

pp. 76–85 .
[14] F-Droid, Free and open source android app repository, 2015, [Online; accessed

2015-08-04].

[15] T. Kamiya , S. Kusumoto , K. Inoue , CCFinder: A multilinguistic token-based code
clone detection system for large scale source code, IEEE Transactions on Soft-

ware Engineering (TSE) 28 (7) (2002) 654–670 .
[16] R. Koschke , Survey of Research on Software Clones, in: R. Koschke, E. Merlo,
A. Walenstein (Eds.), Duplication, Redundancy, and Similarity in Software,

number 06301 in Dagstuhl Seminar Proceedings, 2007 .
[17] C.K. Roy , J.R. Cordy , A survey on software clone detection research, Technical

Report, Technical Report 541, Queen’s University at Kingston, 2007 .
[18] J. Cohen , A coefficient of agreement for nominal scale, Educ Psychol Meas 20

(1960) 37–46 .
[19] J. Fleiss , The measurement of interrater agreement, Statistics methods for rates

and proportions (1981) 212–236 .

[20] O. Barzilay , C. Urquhart , Understanding reuse of software examples: a case
study of prejudice in a community of practice, Information and Software Tech-

nology (IST) 56 (12) (2014) 1613–1628 .
[21] E. Shihab , A.E. Hassan , B. Adams , Z.M. Jiang , An industrial study on the

risk of software changes, in: Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering (FSE), 2012,

pp. 62:1–62:11 .

22] A. Mockus, D.M. Weiss, Predicting risk of software changes, Bell Labs Tech J 5
(2) (20 0 0) 169–180, doi: 10.1002/bltj.2229 .

23] C. Bird , N. Nagappan , B. Murphy , H. Gall , P. Devanbu , Don’t touch my code!:
examining the effects of ownership on software quality, in: Proceedings of the

19th ACM SIGSOFT symposium and the 13th European conference on Founda-
tions of software engineering (ESEC/FSE), 2011, pp. 4–14 .

[24] A. Mockus , L.G. Votta , Identifying reasons for software changes using historic

databases, in: Proceedings of the 16th International Conference on Software
Maintenance (ICSM), 20 0 0, pp. 120–130 .

25] J. Eyolfson , L. Tan , P. Lam , Do time of day and developer experience affect com-
mit bugginess? in: Proceedings of the 8th Working Conference on Mining Soft-

ware Repositories (MSR), 2011, pp. 153–162 .
26] J. Davies , D.M. German , M.W. Godfrey , A. Hindle , Software bertillonage: finding

the provenance of an entity, in: Proceedings of the 8th working Conference on

Mining Software Repositories (MSR), 2011, pp. 183–192 .
[27] N. Kawamitsu , T. Ishio , T. Kanda , R.G. Kula , C. De Roover , K. Inoue , Identifying

Source Code Reuse across Repositories Using LCS-Based Source Code Similarity,
in: Proceedings of the 14th International Working Conference on Source Code

Analysis and Manipulation (SCAM), 2014, pp. 305–314 .
[28] J. Cordeiro , B. Antunes , P. Gomes , Context-based recommendation to support

problem solving in software development, in: Proceedings of the Third In-

ternational Workshop on Recommendation Systems for Software Engineering
(RSSE), 2012, pp. 85–89 .

[29] M.M. Rahman , S. Yeasmin , C.K. Roy , Towards a context-aware ide-based meta
search engine for recommendation about programming errors and exceptions,

in: Proceedings of 21th IEEE Conference on Software Maintenance, Reengineer-
ing, and Reverse Engineering (CSMR-WCRE), 2014, pp. 194–203 .

[30] T. Wang , G. Yin , H. Wang , C. Yang , P. Zou , Proceeding of the automatic knowl-

edge sharing across communities: A case study on android issue tracker and
stack overflow, in: Proceedings of the 9th IEEE Symposium on Service-Oriented

System Engineering (SOSE), 2015, pp. 107–116 .
[31] R. Abdalkareem , E. Shihab , J. Rilling , What do developers use the crowd for? a

study using stack overflow, IEEE Software 34 (2) (2017) 53–60 .
32] M.D. Syer , B. Adams , Y. Zou , A.E. Hassan , Exploring the development of mi-

cro-apps: A case study on the blackberry and android platforms, in: Proceed-
ings of 11th IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM), 2011, pp. 55–64 .

[33] I.J.M. Ruiz , M. Nagappan , B. Adams , A.E. Hassan , Understanding reuse in the
android market, in: Proceedings of IEEE 20th International Conference on Pro-

gram Comprehension (ICPC), 2012, pp. 113–122 .
[34] R. Minelli , M. Lanza , Software analytics for mobile applications–insights &

lessons learned, in: Proceedings of 17th European Conference on Software
Maintenance and Reengineering (CSMR), 2013, pp. 144–153 .

[35] K. Chen , P. Liu , Y. Zhang , Achieving accuracy and scalability simultaneously in

detecting application clones on android markets, in: Proceedings of the 36th
International Conference on Software Engineering (ICSE), 2014, pp. 175–186 .

http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0020
http://dx.doi.org/10.1002/bltj.2229
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031a
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031a
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031a
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031a
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30361-0/sbref0034

	On code reuse from StackOverflow: An exploratory study on Android apps
	1 Introduction
	2 Motivating example
	3 Case study setup
	3.1 Building StackOverflow code snippets corpus
	 Extracting Code Snippets from StackOverflow

	3.2 Selecting mobile apps
	3.3 Detection of reused code from StackOverflow in the mobile apps case-study

	4 Preliminary analysis
	5 Case study results
	 (RQ1) Why do mobile developers reuse code from StackOverflow?
	 (RQ2) When in a mobile app’s lifetime do developers reuse code from StackOverflow?
	 (RQ3) Who reuses code from StackOverflow?

	6 Does code reuse from StackOverflow impact the quality of mobile apps?
	7 Related work
	7.1 Origin of source code and code reuse
	7.2 Work related to the use of StackOverflow
	7.3 Work related to mobile apps

	8 Threats to validity
	9 Conclusion and future work
	 References

