
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

On the Discoverability of npm Vulnerabilities in Node.js Projects

MAHMOUD ALFADEL, Concordia University, Canada
DIEGO ELIAS COSTA, Université du Québec à Montréal (UQAM), Canada
EMAD SHIHAB, Concordia University, Canada
BRAM ADAMS, Queen’s University, Canada

The reliance on vulnerable dependencies is a major threat to software systems. Dependency vulnerabilities are common and remain
undisclosed for years. However, once the vulnerability is discovered and publicly known to the community, the risk of exploitation
reaches its peak, and developers have to work fast to remediate the problem. While there has been a lot of research to characterize
vulnerabilities in software ecosystems, none have explored the problem taking the discoverability into account.

Therefore, we perform a large-scale empirical study examining 6,546 Node.js applications. We define three discoverability levels
based on vulnerabilities lifecycle (undisclosed, reported, and public). We find that although the majority of the affected applications
(99.42%) depend on undisclosed vulnerable packages, 206 (4.63%) applications were exposed to dependencies with public vulnerabilities.
The major culprit for the applications being affected by public vulnerabilities is the lack of dependency updates; in 90.8% of the cases, a
fix is available but not patched by application maintainers. Moreover, we find that applications remain affected by public vulnerabilities
for a long time (103 days). Finally, we devise DepReveal, a tool that supports our discoverability analysis approach, to help developers
better understand vulnerabilities in their application dependencies and plan their project maintenance.

CCS Concepts: • Software and its engineering → Software packages and repositories.

Additional Key Words and Phrases: Open source software, Software packages, Software ecosystems, Dependency vulnerabilities

ACM Reference Format:
Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Bram Adams. 2022. On the Discoverability of npm Vulnerabilities in Node.js
Projects. 1, 1 (November 2022), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Modern software systems are developed with increasingly more reliance on open source software packages (depen-
dencies). This dependence on open source packages is highly beneficial to software development, as it speeds up
development tasks and improves software quality [24, 49], but has implications on the security of those systems [22, 34].
Dependencies with security vulnerabilities have the potential to expose hundreds of applications to security breaches,
causing huge financial and reputation damages. One such example is the Equifax incident [38], where a vulnerability
on a single dependency of Equifax (the Apache Struts package) led to unauthorized access to hundreds of millions of
consumers’ personal information and credit card numbers.

The recent popularity of software packages has only magnified the problem. For example, npm (the main package
manager used by Node.js applications) hosts more than 1.73M npm packages available for the JavaScript community.

Authors’ addresses: Mahmoud Alfadel, Concordia University, Montreal, Canada; Diego Elias Costa, Université du Québec à Montréal (UQAM), Montreal,
Canada; Emad Shihab, Concordia University, Montreal, Canada; Bram Adams, Queen’s University, Kingston, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Alfadel, et al.

Prior studies (e.g. [70]) showed that a significant proportion (up to 40%) of all npm packages use code with at least one
publicly known vulnerability, which increases the risk of a vulnerable package in a software application.

In fact, an essential factor to evaluate the impact of vulnerable packages in an application is the discoverability of
vulnerabilities, i.e, how publicly known is the package vulnerability [55]. As an example, the vulnerability that caused
the Heartbleed incident was not discovered in the OpenSSL package for years [5], but once published, more than 4
thousand exploit attempts were registered by researchers [36]. While undisclosed (unknown) vulnerabilities can be
exploited by attackers who are aware of the breach, once vulnerabilities become public, the chances of exploitation
reach their peak and developers need to act fast to mitigate the security risks.

To our best knowledge, none of the previous studies has explored the problem of vulnerable dependencies taking
discoverability into account. Hence, to shed light on this aspect and better understand the impact of a dependency
vulnerability on an application, we examine the vulnerabilities based on their discoverability. To achieve this goal,
we classify software vulnerabilities into three discoverability levels: undisclosed, indicating that a vulnerability that
affects a dependency was not disclosed yet at a specific point in the application lifetime; reported, indicating that a
vulnerability was officially reported to project maintainers for investigation but not yet published; public, indicating
that a vulnerability has been published and/or a proof-of-concept of how to exploit it is given. Note that this is a
post-mortem classification, using information only available after the fact, for the purpose of evaluating dependency
vulnerabilities impacting the applications.

We use our discoverability levels and perform an empirical study involving 6,546 active and mature open source
Node.js applications. First, to better understand the threat of dependencies on the software applications, we exam-
ine (RQ1) how the discoverability levels of vulnerable dependencies are distributed in the studied applications. Our
findings show that although the majority (99.42%) of the affected applications (in one of their latest versions) are
classified as having undisclosed dependency vulnerabilities, 4.63% of these applications depended on a public dependency
vulnerability, where the discoverability is at its highest. This means that those applications depend on vulnerable
versions of dependencies even after the vulnerability reports have been published.

Therefore, to better understand the reason for the existence of the threat due to the public dependency vulnerability
(i.e., is it the application that did not update a dependency or is it the package that did not provide a fixing update), we
examine the responsibility for the dependence on public vulnerabilities in (RQ2). We find that the vast majority (90.8%)
of the public dependency vulnerabilities were due to lack of dependency updates from applications, i.e., vulnerable
dependencies had an available vulnerability fix (patch) but developers did not update their application to a newer (safer)
version of the vulnerable dependency.

Finally, it is critical that applications patch public dependency vulnerabilities as soon as possible to avoid potential
exploits. Hence, to understand how fast vulnerable dependencies are patched in the applications, we examine (RQ3) how
long it takes for public dependency vulnerabilities to be removed from the applications. We find that the applications
take a substantially long time (103 days) before public dependency vulnerabilities are fixed in the applications.

In summary, this paper makes the following main contributions:

• To the best of our knowledge, we conduct the first empirical study on 6,546 open-source Node.js applications to
determine the prevalence of affected applications that rely on vulnerable dependencies taking into consideration
the discoverability levels. We also examine why these applications end up depending on vulnerable versions of
the package in order to better understand how we can mitigate such issues.



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

On the Discoverability of npm Vulnerabilities in Node.js Projects 3

• We develop DepReveal, a prototype tool that generates historical analytical reports of npm packages used in a
GitHub Node.js project. The tool (DepReveal) is only a proof of concept that has the potential to help developers
when dealing with post-mortem analysis of security vulnerabilities.

• We provide a replication package comprising the scripts and the applications dataset that we used in this study
as a means to bootstrap other studies in the area.

Paper organization. The rest of the paper is organized as follows. Section 2 describes how npm manages dependencies
in Node.js applications. Section 3 introduces our vulnerability classification used in this study. Section 4 describes
our study design. Section 5 explains how we identify and classify vulnerable dependencies in Node.js applications.
Section 6 presents our results. Section 7 discusses our results further. Section 8 presents our tool. Section 9 discusses the
implications of our findings. Section 10 discusses the related work. Section 11 presents the threats to validity. Section 12
concludes our paper.

2 NPM DEPENDENCY MANAGEMENT

Since determining vulnerable dependencies in Node.js applications heavily relies on themanagement of the dependencies
and how they are resolved (i.e., the dependency constraints), in this section, we highlight how npm dependency
management works.

Node Package Manager (npm) is the de-facto package manager used by Node.js applications to handle their de-
pendencies [54]. npm has a registry where packages are published and maintained. To date, npm registry hosts more
than 2M packages [15], and has had the highest growth rate in terms of packages amongst all known programming
languages [14].

To determine the discoverability of vulnerable dependencies in Node.js applications, we need to understand two
important mechanisms of the npm ecosystem: 1) how Node.js applications specify their npm dependencies and 2)
how npm resolves a dependency version, i.e., find the dependency version to install in a Node.js application. Node.js
applications specify their dependencies in a JSON-format file, called package.json, which lists the dependencies and their
versioning constraints. The versioning constraint is a convention to specify the dependency version(s) of the package
that an application is willing to depend upon. The version constraints can be static, requiring a specific version of the
dependency (e.g., “P:1.0.0” ), or dynamic specifying a range of versions of the dependency (e.g., “P:>1.0.0”). Typically,
developers use dynamic versioning constraints if they want to install the latest version of a dependency, allowing them
to get the latest updates/security fixes of the package. When a dynamic version is used, the resolved version (i.e., the
actual version) corresponds to the latest installable version that satisfies the constraint [31].

Node.js applications can specify two sets of dependencies in their package.json file: development and production
dependencies. Development dependencies are installed only on development environments, and consequently, issues
that may arise from them (e.g., vulnerabilities and bugs) have no impact on production environments. On the other
hand, production dependencies (also called runtime dependencies) are installed on both production and development
environments. In our work, we only consider direct production dependencies since they are the ones that impact the
production environment [35].

3 ABOUT DISCOVERABILITY

In this section, we explain the stages of a vulnerability lifecycle and how that influences the levels of discoverability we
investigate in our study.



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Alfadel, et al.

3.1 Vulnerability Lifecycle

Typically, a vulnerability goes through a number of different stages [2, 12]:

• Introduction. This is when the software vulnerability is first introduced into the package code. At this stage,
no one really knows about its existence, assuming that the introduction is not malicious.

• Report. When a vulnerability is discovered, it must be reported to the npm security team. The npm team
investigates to ensure that the reported vulnerability is legitimate. At this stage, only the security team and the
reporter of the vulnerability know about its existence.

• Notification. Once the reported vulnerability is confirmed, the security team triages the vulnerability and
notifies the vulnerable package maintainers. At this stage, only the reporter, npm team, and package maintainers
know about the vulnerability.

• Publication without a known fix. Once the package maintainers are notified, they have 45 days before
npm publishes the vulnerability publicly. Alongside with publishing the vulnerability, the npm team may also
publish a proof-of-concept showing how the vulnerability can be exploited [11]. At this stage, the vulnerability
is known publicly and its potential risk is higher.

• Publication with a fix. Another (and more common) way that a vulnerability can be published is when a fix is
provided by the package maintainers. If a fix is provided (before 45 days), then npm publishes the vulnerability
along with the version of the package that fixes the vulnerability.

3.2 Discoverability Levels

The different stages of a vulnerability significantly impact its chance to be discovered by an attacker. Our study is based
on the idea that vulnerabilities should be examined while taking their discoverability into consideration to better assess
their potential for exploitation. We use the various stages to ground our argument and define three specific levels:

(1) Undisclosed: before report. Since very little is known about a vulnerability before it is reported, i.e., dependency
vulnerabilities in the application are not disclosed yet, we believe that the chances of being exploited are low. We
classify all dependency vulnerabilities in the application at this stage as undisclosed dependency vulnerabilities.

(2) Reported: after report & before publication. Once a vulnerability has been discovered and reported, the
general public is not yet aware of the vulnerability, as the process is conducted internally by the npm team. Still,
there is a chance that others may know about the vulnerability and has the capability to exploit, so we consider
the chances of exploit to be at a medium level. We classify dependency vulnerabilities in the application at this
stage as reported dependency vulnerabilities.

(3) Public: after publication. After publication the chance of exploitability is at its highest. A proof-of-concept is
often published [11] alongside the vulnerability report, explaining how the vulnerability could be exploited. The
threat of this vulnerability can only be mitigated once package maintainers release another version fixing the
vulnerability and the application developers update their dependency accordingly. Failing to perform both these
tasks in a timely fashion may put the application at higher security risk. We classify dependency vulnerabilities
in the application at this stage as public dependency vulnerabilities.

Note that our discoverability levels are not based on a heuristic, but rather on the existing typical vulnerability
disclosure process. Such a disclosure process has been discussed and mentioned in previous studies [1, 34]. For example,
Decan et al. [34] analyzed different aspects related to vulnerability lifecycle, e.g., how long it takes for packages



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

On the Discoverability of npm Vulnerabilities in Node.js Projects 5

vulnerabilities before being disclosed. Also, they analyzed how long a vulnerability report takes before being publicly
disclosed (public level). Therefore, our levels are defined based on existing practices of reporting security vulnerabilities.

4 STUDY DESIGN

In this section, we describe the research questions (RQs) that drive our investigation and our process to collect a dataset
of mature and active Node.js applications for our study.

4.1 ResearchQuestions

We leverage the collected data to answer the following research questions:

• RQ1: How often Node.js applications depend on vulnerable dependencies? How discoverable are their vulnerable
dependencies?

• RQ2: Who is responsible for the dependence on publicly known dependency vulnerabilities?
• RQ3: For how long do applications depend on publicly known dependency vulnerabilities?

4.2 Data Collection

Our study examines vulnerable dependencies in Node.js applications, particularly applications that use the Node
Packages Manager (npm) as dependency management [54]. We opt to focus on Node.js applications due to its popularity
and importance in the current development landscape. JavaScript is currently the most popular programming language
in the world [62] with a vibrant and fast growing ecosystem of reusable software packages [14].

To perform our study, we leverage two datasets: (1) Node.js applications that use npm to manage their dependencies,
and (2) Security vulnerabilities that affect npm packages. To do so, we (i) obtain the Node.js applications from GitHub,
(ii) extract their dependencies, and (iii) obtain the security vulnerabilities for npm packages from npm advisories [53].

(i) Applications Dataset. To analyse a large number of open source Node.js applications that depend on npm packages,
we mine the GHTorrent dataset [42] and extract information about all Node.js applications hosted on GitHub. The
GHTorrent dataset contains a total of 7,863,361 JavaScript projects hosted on GitHub, of which 2,289,130 use npm as
their package management platform (i.e., these projects contain a file called package.json). Moreover, since both Node.js
packages and applications can use GitHub as their development repository, and our applications dataset should only
contain Node.js applications, we filter out the GitHub projects that are actually npm packages by checking their GitHub
URL on the npm registry. The main reason that we focused on applications and not packages is that packages become
exploitable when used and deployed in an application. This filtering excludes 328,343 projects from our list of GitHub
projects as they are identified as packages and not Node.js applications.

Inspired by previous studies [43, 46, 50], projects in GitHub are not always representative of mature software projects
we aim to investigate. Hence, we refined the dataset to focus on projects that are active and more likely to be mature
software projects, by including applications that satisfy the following criteria:

• Non-forked applications, as we do not want to have duplicated project history to bias our analysis.
• Applications that depend on more than two dependencies.
• Applications that have at least 100 commits by more than two contributors, which indicates a minimal level of

commit activity.



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Alfadel, et al.

Table 1. Statistics of the 6,546 studied Node.js applications.

Metric Min. Median(𝑥) Mean(𝜇) Max.

Commits 100 326 1035.47 77,271
Dependencies 3 23 27.93 134
Developers 3 5 6.33 62
Age (in years) 5 7.24 7.53 12.81
Stars 1 11 405.73 56,661
Forks 1 7 123.34 16,841

• Applications that have had their creation date (first commit) before January 1st 2017. Since vulnerabilities take
on median 3 years to be discovered [34], applications in our dataset need to have a development history long
enough to have had a chance for their vulnerabilities to be discovered.

• Applications that have at least one commit after January 1st 2020, as we want to analyze applications that had
some level of development activity recently.

After applying these refinement criteria, we end up with 6,546 Node.js applications that make use of npm packages.
Table 1 shows the descriptive statistics on the selected Node.js applications in our dataset. Overall, the applications
in our dataset have a rich development history (a median of 326 commits made by 5 developers and 7.24 years of
development lifespan) and make ample use of external dependencies (a median of 23 dependencies). Inspired by prior
work (e.g., [3]), we purposely did not want to restrict our project dataset to only the most active projects because many
projects are updated infrequently, but are actively used by project users. For example, Strider-CD/strider project is an
open-source continuous deployment platform. Although the project is infrequently updated, it seems to be commonly
used by users (more than 445 forks and 4.6K stars).

To further understand the characteristics of the projects in our dataset, we collected more statistical information.
Inspired by prior work (e.g., [30, 50],), we calculated two main metrics: number of Stars & number of Forks. We found
that the projects in our dataset have a community interest in them (the median number of stars = 11), and the projects
are attracting several users and contributors (the median number of forks = 7). We have incorporated such analysis in
Table 1.

Moreover, to shed light on the domain of the examined projects, we manually classified a sample of projects in our
dataset. We randomly selected a statistically significant sample (95% confidence level) of the projects (i.e., 354 projects).
Then, for each project, the first author of the paper inspected the description of the projects (utilizing the Github page
and the project page of the repository) to provide a brief description of the application. After that, the author assigns a
domain label for each project. The labels were also discussed by the first and second author to reach a consensus all of
them. The projects are classified into the following four domains:

• Software tools (173, 48.87%): repositories that support software development tasks, like IDEs, package
managers, deployment frameworks, and compilers (e.g., twitter/hogan.js).

• Web applications (125, 35.31%): repositories that provide functionalities to end-users, like browsers and text
editors (e.g., atom/atom).

• Educational projects (47, 13.28%): repositories with documentation, tutorials, source code examples, etc. (e.g.,
angular/angular-phonecat).

• System software (9, 2.54%): repositories that provide services and infrastructure to other systems, like
operating systems, middleware, servers, and databases (e.g., Strider-CD/strider).



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

On the Discoverability of npm Vulnerabilities in Node.js Projects 7

Table 2. Descriptive statistics on the npm advisories dataset.

Vulnerability reports 1,144
Vulnerable packages 925
Versions of vulnerable packages 38,562
Affected versions by vulnerability 20,206

Our classification shows that the majority of the manually analyzed projects are of interest to both software developers
and project users.

(ii) Application Dependencies. After obtaining the applications dataset, we extract the history of dependency changes
of all applications. This is necessary to identify the exact dependency versions that would be installed by the Node.js
application at any specific point-in-time. Node.js applications specify their dependencies in a JSON-format file, called
package.json, which contains the dependency list, a list of the depended upon packages and their respective version
constraints. A version constraint is a configuration that specifies the dependency version(s) of the package that an
application is willing to depend upon [7]. Hence, we extract all changes that touched the package.json file and associate
each commit hash and commit date to their respective package.json dependency list, creating a history of dependency
changes for all applications. Note that these dependencies are not yet resolved, that is, we only have the version
constraints (not the versions) for the dependencies of each application.

(iii) npm Advisories Dataset. To identify the Node.js applications that depend on vulnerable packages, we need
to collect information on npm vulnerable packages. We resort to the npm advisories registry to obtain the required
information about all npm vulnerable packages [53]. The npm advisories dataset is the official registry for all vulnerability
reports related to Node.js packages. This dataset provides some key information on vulnerable packages, such as the
affected package, the affected package versions, and the first version in which the vulnerability has been fixed (safe
version), if available. This dataset also contains the vulnerability discovery (report) time and publication time, which
we use in our approach for identifying and classifying vulnerabilities (Section 5).

Our initial dataset contains 1,456 security reports that cover 1,234 vulnerable packages. Following the criteria filtration
process applied by Decan et al. [34], we removed 312 vulnerable packages of the type “Malicious Package", because they
do not actually introduce vulnerable code. These vulnerabilities are packages with names close to popular packages
(a.k.a. typo-squatting) in an attempt to deceive users at installing harmful packages. The 312 vulnerable packages
account for 312 vulnerability reports. At the end of this filtering process, we are left with 1,144 security vulnerabilities
reports affecting 925 distinct vulnerable packages. These packages have combined 38,562 distinct package versions
of which 20,206 are affected by vulnerabilities from our report. The collected advisories dataset covers vulnerability
reports created between October 2015 and May 2020. Table 2 shows the summary statistics for vulnerability reports on
npm packages.

5 IDENTIFYING AND CLASSIFYING VULNERABLE DEPENDENCIES IN NODE.JS APPLICATIONS

In this section, we explain how we classify the discoverability levels of vulnerable dependencies and how we use these
levels to classify Node.js applications.

We illustrate our methodology in Figure 1, on an example of an application with a single vulnerable dependency.
As we can observe, the timelines of the discoverability levels of both the vulnerable package and the application are
different. In the example of Figure 1, the application is only affected by a vulnerable dependency once it starts depending



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Alfadel, et al.

Application
Timeline

Package A
Timeline

Undisclosed Reported Public

Vulnerability 
Introduced 

Vulnerability 
Reported 

Vulnerability 
Published 

v 1.1.1 v 1.1.2

Vulnerability 
Fixed 

Dependency 
update

Dependency 
update

Application 
Dependencies

npm Advisories 
Dataset

Fig. 1. Illustration of the methodology for classifying the discoverability level of a single vulnerable dependency (Package A) for an

application.

Applications 
Dataset

Extract 
dependencies and 
resolve versions

Identify vulnerable 
dependency 

versions

Identify 
discoverability 

levels

Fig. 2. Approach for identifying and classifying Node.js applications affected by vulnerable dependencies.

on the first vulnerable version (v 1.1.1). Similarly, even if the package latest release contains a fix to the vulnerability,
the application can only benefit from it once it updates to the fixed version (v 1.1.2). This is different for the changes of
discoverability levels once the vulnerability is made public. Due to the open nature of open source software, as soon
as a vulnerability is published, any attacker in potential can identify that the application depends on the vulnerable
version of Package A.

The goal of our study is to investigate how often Node.js applications depend on vulnerabilities that are hidden,
reported and public. To make our analysis feasible, we focus on classifying applications at one specific point in time of
the application development history, which we call the analyzed snapshot time. We accomplish this by leveraging a
3-step approach. Figure 2 provides an overview of our approach, which we detail below:

Step 1. Extract dependencies and resolve versions. The goal of this step is to extract the application dependencies
and find the dependency version that would be installed at the analyzed snapshot time. For each application, we extract
the dependency list (with the versioning constraints) at that snapshot time from the history of dependency changes.
After that, to find the actual version of each dependency at the analyzed snapshot, we utilize the semver tool [61].
This tool is used by npm to resolve versioning constraint in Node.js applications, and it provides several modules and
methods that support versioning schemes [16]. For example, we use the module maxSatisfying(versions, range) which
returns the highest version in the list that satisfies the range.

We included one additional restriction to semver, that the satisfying version should have been released (in the npm
registry) before the analyzed snapshot time. For example, an application can specify a versioning constraint (“P:>1.0.0”)
at the snapshot May 1st 2016. Hence, the actual installed version is the latest version that is greater than 1.0.0 and
also has been released in the npm registry before May 1st 2016. This step allows us to find the installed version of the
dependency at the analyzed snapshot time.

Step 2. Identify vulnerable dependency versions. After determining the resolved (and presumably installed) version
at the analyzed snapshot time, we check whether the resolved version is vulnerably or not. To do so, we cross-reference
the resolved versions with the advisories dataset. If the resolved version is covered by the advisories dataset, we label it



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

On the Discoverability of npm Vulnerabilities in Node.js Projects 9

as a vulnerable dependency version. We skip the whole next step if the dependency version has not been mentioned in
any advisory, i.e., the dependency version is not known to be vulnerable.

Step 3. Identify discoverability levels of vulnerable versions.Once we identify the vulnerable dependency versions
at the analyzed snapshot time, we classify each vulnerable dependency version using one of the discoverability levels
we defined in Section 3.2. To that aim, for each vulnerable version, we compare its vulnerability discovery (report) and
publication time to the analyzed snapshot time. As we stated previously (in Section 3.2), if the vulnerability was made
public before the snapshot time, we mark the dependency version as having a public vulnerability. If the vulnerability of
the dependency was not published but only discovered (reported) before the application’s snapshot time, the vulnerable
dependency version is considered to have a reported vulnerability. And finally, if the vulnerability was neither published
nor discovered (reported) before the analyzed snapshot time, then we classify the dependency version as a hidden
vulnerability. In cases where more than one vulnerability affects the vulnerable dependency version, we label the
vulnerable dependency version with the highest level. For example, if we find that the vulnerable version of the
dependency is affected by two vulnerabilities, one classified as hidden and the other classified as public, we label the
dependency version as having a public vulnerability, at that snapshot time.

Replication Package.While the proposed approach may seem simplistic in its principle, it comprises several technical
challenges of processing data from npm registry API, GitHub API, and vulnerability advisories reports, especially when
considering the entire application development history. To facilitate the reproduction and foment further research in
the field, we make a well-documented replication package publicly available [18].

6 STUDY RESULTS

In this section, we present the motivation, the approach and the findings that answers our 3 research questions (RQs).

RQ1: How often Node.js applications depend on vulnerable dependencies? How discoverable are their
vulnerable dependencies?

Motivation: Previous studies have shown that security vulnerabilities are very common in the npm ecosystem, with
nearly 40% of all npm packages relying on code with known vulnerabilities [70]. However, vulnerable dependencies
can only be exploited once deployed in applications: how many of our studied applications depend on vulnerable
dependencies? Moreover, given that the discoverability is essential in assessing the threat of a security vulnerability [55],
we want to quantify how many studied Node.js applications depend on undisclosed (low risk), reported (medium risk),
and public vulnerabilities (high risk), at the analyzed time. Answering these questions will give us a better assessment
on the exposure of Node.js applications to dependency vulnerabilities.

Approach: To reduce the biases in our analysis, we need to account for the time it takes to discover a vulnerability. Prior
work showed that vulnerabilities in npm packages take on median 3 years to be discovered and publicly announced [34].
Consequently, selecting snapshots of our applications in 2021 will paint an incomplete picture, as most vulnerabilities
recently introduced in the package’s code could remain undisclosed for a median of 3 years. Since our collected
applications contain their latest commits between Jan 2020 and May 2020, we chose to evaluate our applications as of
May 1st 2016 (more than 3 years prior), which ensures that at least half the dependency vulnerabilities introduced in
the applications are reported in the current npm advisories dataset.



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Alfadel, et al.

4,445 (67.9%) depend on vulnerable 
dependencies

From 6,546 Node.js applications

4,419 (99.42%) applications depend on 1+ undisclosed vulnerable dependency

45 (1.02%) applications depend on 1+ reported vulnerable dependency

206 (4.63%) applications depend on 1+ public vulnerable dependency

From the 4,445 applications with vulnerable dependencies

Fig. 3. Bar-plots showing the share of the examined applications with one or more (1+) vulnerable dependency, overall and per

discoverability levels.

0 1 2 5 10 20 50 100

Hidden

Reported

Public

Percentage of Vulnerable Dependencies

Undisclosed

Public

Reported

Fig. 4. Box-plots showing the distributions of the percentages of vulnerable dependencies in the applications, per discoverability level.

Then, we answer our RQ in two steps. In the first step, we examine if the selected snapshot of the application had
at least one dependency that contains a vulnerability (irrespective of its discoverability level). In the second step, we
analyze only the applications containing at least one vulnerable dependency and use the methodology described in
Section 5 to classify the discoverability levels of all vulnerable dependencies. In addition, since some applications
have more than one vulnerable dependency, we further analyze the distribution of vulnerable dependencies in the
applications under each discoverability level.

Results: As shown in Figure 3, we found that of the 6,546 studied applications 4,445 (67.90%) applications depend
on at least one vulnerable dependency. From the 4,445 affected applications, we break down the dependency
vulnerabilities by the discoverability levels and evaluate how many applications contain one or more undisclosed,
reported and public dependency vulnerabilities. We show this break down also in Figure 3. Note that the total percentage
of undisclosed, reported and public surpasses 100%, as one application might contain dependency vulnerabilities on
different discoverability levels. We observe that the majority of the affected applications, 4,419 (99.42%), depend on one
or more dependency vulnerabilities that were undisclosed at the analyzed snapshot time.

In fact, on 94.26% of the cases (4,190 applications), the applications were affected only by undisclosed vulnerabilities.
Still, 206 (4.63%) applications depended on at least one package with a public vulnerability and 45 (1.02%)
applications depended on packages with a vulnerability reported to package maintainers.

Given that applications may have multiple vulnerable dependencies, we analyze proportion of vulnerable dependen-
cies in each application. Figure 4 shows the distribution of the percentage of vulnerable dependencies per application
in each discoverability level (public, reported, undisclosed). For instance, if an application has 10 dependencies, of



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

On the Discoverability of npm Vulnerabilities in Node.js Projects 11

which only 2 contained public vulnerabilities, this application would have 20% of its dependencies affected by public
vulnerabilities.

In terms of public vulnerabilities, the 206 applications with at least one public dependency vulnerability had, on
median, 6.25% of their dependencies affected by a public vulnerability, or, 1 out of 16 dependencies. The majority (80.1%)
of the 206 applications depend on a single vulnerable dependency with a public vulnerability. For example, one of the
applications affected by a public dependency vulnerability is the project Atom, a popular text editor, which has more
than 40 dependencies but it was affected by a public vulnerability on a package called marked [9].

Upon closer inspection we found that, while the 206 applications depended on a total of 2,438 different packages,
the public dependency vulnerabilities were found in only 17 packages. That is, the public dependency vulnerabilities
occurred in less than 1% of total dependencies, but could, nevertheless represent the highest threat of exploitation on
those applications. Table 3 shows a list of the 17 packages along with some meta-data to help us better understand the
packages’ use case, e.g., their domain/functionality, frequency, and popularity. From the Table, we can observe that
the 17 packages are popular packages (have millions of weekly downloads) and quite common in most of the affected
applications. For example, the vulnerable packages lodash and morgan are used in 80% of the affected projects. Such
packages are common because they provide basic but essential functionalities that support projects from different
domains. For instance, the lodash package provides methods for iterating arrays, objects, strings. The morgan package
simplifies the process of logging API requests in the application.

Such results may indicate that most projects (regardless of the project type/domain) are subject to being
affected by some popular vulnerable dependencies. In other words, the packages with the most vulnerabilities
affecting the applications are utility packages, which are used by many different types of applications. Therefore,
application developers need to pay higher attention to specific packages to track their updates and security issues.
Also, maintainers of those packages need to be responsive and seriously consider finding and fixing security issues
as fast as possible to prevent dependent applications from being impacted. Interestingly, we notice that some of the
17 packages (e.g., node-uuid, request) have been deprecated, but are still used in some applications with a vulnerable
version. Application developers need to be careful about using such packages as they may be unmaintained and will no
longer be updated by package maintainers.

Our previous results show that a set of popular dependencies are the main cause of affecting the projects with public
discoverability vulnerabilities. However, it is still unclear the risk types associated with such vulnerabilities in the
dependencies. Therefore, in this analysis, we investigate the types of dependency vulnerabilities that affect the projects.
Such analysis is important to answer the following question: What are the most common types of vulnerabilities that
affect the project dependencies? Each vulnerability report (in the npm advisories dataset) is associated with a Common
Weakness Enumeration (CWE), aiming at categorizing vulnerabilities based on the explored software weaknesses (e.g.
XSS, Buffer Overflow). We examine the frequency of vulnerability types to establish a profile of the vulnerabilities in
the affected project. Doing so is important to understand the distribution of threat types in the projects.

To perform our analysis, we identify the vulnerability type associated with each vulnerable dependency that affects
each project (at the latest snapshot). Then, we count the total number of affected projects by each type.

While we found that the projects are affected by 149 distinct CWEs, 5 vulnerability types (CWEs) are affecting
the majority (77.98%) of the projects. Table 4 lists the top five vulnerability types that affect most of the projects in
our dataset. As we can see, 3 types of them (i.e., SQL Injection, Remote Memory Exposure, XSS) are among the top
10 security vulnerabilities as ranked by NVD [3]. However, 2 other types (i.e., Prototype Pollution and ReDoS) are
not among the top-ranked type by NVD, yet they frequently affect the projects in our dataset, which can expose the



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Alfadel, et al.

Table 3. List of 17 packages with public dependency vulnerabilities, stating their domain, frequency, and popularity (# weekly

downloads).

Vulnerable Package Domain % Affected Applications # Downloads

lodash Modular utilities. 82 40M
morgan Request logger middleware. 79 2M
moment Parse and manipulate dates. 60 15M
request Simplified HTTP client. 54 16M
method-override Override HTTP verbs such as PUT or DELETE. 50 472,927
mongoose MongoDB object modeling tool. 45 1M
debug Debugging utility. 34 148M
sequelize ORM tool for databases, e.g., Postgres, MySQL. 28 1M
pg PostgreSQL client for Node.js applications. 28 2M
mysql Node.js driver for mysql. 24 689,626
jsonwebtoken An implementation of JSON web tokens. 23 8M
superagent Client-side HTTP request library. 17 5M
node-uuid Used for the creation of RFC4122 UUIDs for

distributed computing environment.
17 849,855

mime A library for MIME type mapping. 16 41M
jquery A library for DOM operations. 16 3M
jwt-simple JWT (JSON Web Token) encode and decode

module.
8 192,007

handlebars A templating languages that keep the view and
the code separated.

8 8M

Table 4. Ranking of the 5 most commonly found vulnerability types.

Vulnerability Type # Affected Applications

Prototype Pollution 1,482
SQL Injection 974
Regular Expression Denial of Service (ReDoS) 771
Remote Memory Exposure 473
Cross-Site-Scripting (XSS) 466

projects to a large threat in practice. For example, Prototype Pollution is the most common type, with 1,482 projects
affected by the vulnerability. Also, ReDoS affects more than 771 projects in the dataset.

Upon a close investigation, we find that such common vulnerability types come from specific packages. For example,
the package lodash is the reason for the projects being affected by the Prototype Pollution vulnerabilities. Similarly,
only four packages are the source of ReDoS vulnerabilities (i.e., moment, method-override, debug, mime).

Interestingly, some recent research work has proposed techniques to effectively detect such vulnerability types
(Prototype Pollution and ReDoS). For example, Li et al. [48] proposed a static taint analysis tool to detect prototype
pollution vulnerabilities in Node.js packages. They found 61 previously-unknown vulnerabilities. Also, Davis et al. [32]
studied the impact of ReDoS vulnerabilities in npm and PyPi and found that thousands of regexes are affecting over
10,000 modules across diverse application domains. Therefore, our results suggest that researchers should direct their
efforts to improve practices and tools that tackle such vulnerability types, which would bring significant benefits to a
wide range of software projects. Moreover, package maintainers are encouraged to widely adopt such research tools to
constantly detect their vulnerabilities and fix them as soon as possible.



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

On the Discoverability of npm Vulnerabilities in Node.js Projects 13

In terms of reported vulnerabilities, we can observe from Figure 4 that reported vulnerabilities are present in only
45 applications (1% of the affected applications). The median rate of dependencies with reported vulnerabilities in these
45 applications is 5.5% (1 out of 18 dependencies). It is notable that we find such a small share of applications that
depend on reported dependency vulnerabilities. This is attributed to the npm policy for managing vulnerabilities: the
policy states that the reported period of a vulnerability lasts at most 45 days, i.e., the vulnerability is published after 45
days of being reported to maintainers [13]. This limits how long a vulnerability can remain reported, thus, explaining
the small occurrence of vulnerabilities at this stage.

Finally, Figure 4 shows that half of the 4,419 applications had at least 13.63% of their dependencies affected by undis-
closed vulnerabilities. That is, on median, 3 out of 22 dependencies are affected by undisclosed vulnerabilities that
would be reported and published after May 2016.

Our findings show that 67.9% of the studied applications depend on vulnerable packages. The majority
(94.26%) depended only on undisclosed dependency vulnerabilities. Still, 206 applications (4.63%)
depended on packages with public vulnerabilities.

RQ2: Who is responsible for the dependence on publicly known dependency vulnerabilities?

Motivation: In RQ1, we observe that a sizeable number of the affected applications (206 applications = 4.63%) depend
on packages with public vulnerabilities. In such cases, the developers of the applications could know about the presence
of the vulnerability in the affected dependency, and, hence, should avoid using that vulnerable version, if a fix is
available. Much prior work (e.g., [46, 57])) focuses on studying whether application developers update their vulnerable
dependencies or not. That said, they do not consider studying why the applications end up depending on package
versions with public vulnerabilities. Given that public discoverability vulnerabilities are critical and have a high chance
to be exploited from the point of adoption on, RQ2 aims to investigate who is mostly responsible for the discoverability
problem in order to understand how we can mitigate such issues. For example, if package maintainers are not providing
a fix before the vulnerability publication time, this means that there is a need for designing a better disclosure process
that gives maintainers more time to fix the vulnerability and release it to package users. Inspired by the git-blame
command which is used to examine who is responsible for the modifications, we want to know who is responsible (to
"blame") for not fixing vulnerable packages - the package maintainers for not providing a version that fixes a public
vulnerability - or the application maintainers for not keeping their applications up-to-date.

Approach: To perform our investigation and answer who is responsible for the public vulnerabilities in applications, we
check - for each vulnerable package - the availability of a safe (non-vulnerable) version of the package at the analyzed
snapshot time. Note that we analyze this RQ at the same snapshot that we analyzed in RQ1 (i.e., May 2016). Depending
on such availability, our analysis has one of two outcomes:

• Package-to-blame: if at the analyzed snapshot, no safe version has been provided by the package maintainers
for the public vulnerability. As the publication of a vulnerability comes after a period of 45 days, we consider
the package maintainers the responsible for the dependency public vulnerability in applications.

• Application-to-blame: if there is already a released safe version of the vulnerable package but the application
continues to rely on an (old) version with a public vulnerability. Application developers should monitor



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Alfadel, et al.

Table 5. The percentage of vulnerabilities caused by the lack of available fix patch (Package-to-blame) vs. caused by the lack of

dependencies update (Application-to-blame).

Snapshot Package-to-blame Application-to-blame

1st May 2016 9.24% 90.76%

their dependencies and update to releases without public vulnerabilities, hence, we consider the application
maintainers responsible for depending on a vulnerable package version.

Note that we check (for each dependency vulnerability) whether there was a fixed version of the vulnerable package
at the time of analysis. Therefore, we had to do the checks at the vulnerability level, given that some projects were
affected by more than one vulnerability.

Results: Table 5 shows the percentage of public vulnerabilities based on our responsibility analysis. We observe that
for public dependency vulnerabilities, the application is to blame in 90.76% of the cases. That means that in 9
out of 10 cases the public vulnerability had an available fix, but developers did not update their application dependencies
accordingly to receive the latest fix patch.

Therefore, and perhaps counter-intuitively, applications are not exposed to public vulnerabilities because packages
have unfixed vulnerabilities. Instead, the real cause is the fact that application developers fail to keep up or at least
to inform themselves well enough about a given dependency version. Hence, a major implication of our study is that
application developers struggle with keeping their dependencies up-to-date, which may have serious effects in the
security of their systems. In fact, there are some factors that play a role in deciding about the package update. For
example, gaps in continuous integration (e.g., breaking changes and compatibility issues) can lead to ignoring the
package update. Mirhosseini and Parnin studied the impact of using automated tools to update packages and found
that such tools can lead to a higher rate of notification fatigue, issues in continuous integration, and tool design issues
that can interfere with a developer’s productivity [50]. Such factors indicate that software projects might not address a
vulnerability-related update, though developers could be aware of the update.

To have a better understanding of our results, we investigate how much effort would developers need to migrate to a
safe version of their packages. npm adopts a semantic version scheme [61] where package maintainers are encouraged
to specify the extent of their updates in three different levels: 1) patch release, which indicates backward compatible bug
fixes, 2) minor release, which indicates backward compatible updates and 3) major release, which informs developers
of backwards incompatible changes in the package release. Hence, patch and minor updates are deemed backwards
compatible and may be performed at a lower migration cost, while major release updates incur on a high migration
cost, as developers have to adapt their code to the new package API.

Once we take the update levels into consideration, we found that, in 43.07% of the public vulnerabilities, the fix
is only available in another major release of the package. For instance, an application depends on P:1.0.0, and
the fix patch was only released for a major version 2.0.0. Hence, to benefit from a fix patch in such a case, developers
are required to adapt their code, imposing significant migration costs, especially for large projects that depend on
dozens of packages. Furthermore, this shows that relying on automatic updates at the level of patch and minor re-
leases (as recommended by npm [6]) does not completely prevent public vulnerabilities for affecting Node.js applications.



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

On the Discoverability of npm Vulnerabilities in Node.js Projects 15

In 9 out of 10 cases, the main cause of dependence on packages with public vulnerabilities is the lack
of dependency updates. However, in 43% of the cases, the fix is only available on another major version
of the package, incurring in significant migration costs for application developers.

RQ3: For how long do applications depend on publicly known dependency vulnerabilities?

Motivation: Previous RQs show that a small but significant number of applications are exposed to public discoverability
vulnerabilities, mostly due to a lack of dependency updates. In particular, the result of RQ2 shows that mostly the
applications are to blame for being affected by a vulnerable package (since they do not update to a safer version at
analysis time). Still, the picture might not be as bad as it seems because some applications could adopt the fixed version
rapidly after adoption of a vulnerable dependency (within a few days). Hence, to better understand how bad the lagging
situation is, RQ3 examines how long it takes for the application to fix dependency vulnerabilities with the public
discoverability level. Once again, we focus on public discoverability vulnerabilities as they pose a higher chance of
being exploited. Public discoverability vulnerabilities that affect the dependent application for a long time can leave
an open channel for successful attacks, as shown in cases such as the Heartbleed incident [36]. Prior studies have
examined the time to discover or fix vulnerabilities, e.g., the study by Decan et al. [34] examines the vulnerabilities at
the package level in npm, investigating how long it takes to discover and publish new npm vulnerabilities. Our RQ3

complements these studies by analyzing the risks of vulnerable dependencies in the Node.js applications, aggregating
the vulnerability lifecycle through the discoverability level metric. Hence, we investigate how long applications remain
dependent on a package version affected by a public vulnerability. Answering this question will give us insights into
the prioritization of patching public dependency vulnerabilities that affect an application.

Approach: We continue to focus our analysis on the 206 applications that depend on public dependency vulnerabilities.
Then, for each application, we measure the time period (in days) of which the application remained affected by a public
dependency vulnerability. We constrain our analysis to one year, from Jan 1st, 2016 to the December 31st, 2016, to
have an easy to interpret and comparable time-frame. Note that an application could have been affected by different
public vulnerabilities in different segments, e.g., from 1st May 2016 to 1st June 2016 and then from 1st Sept. 2016 to 1st
December 2016. In such cases, we sum all such periods (i.e., add up the number of days).

To present this analysis, we conduct a survival analysis method (a.k.a. event history analysis) [20]. The survival
analysis is a non-parametric statistic method used to measure the survival function from lifetime data where the
outcome variable is the “time until the occurrence of an event of interest”. In the context of our study, we are interested
in the time period that an application remains (survives) depending on a public dependency vulnerability. We use the
non-parametric Kaplan-Meier estimator [44] to conduct the survival analysis, as used in previous studies [22, 33, 34].

Results: Figure 5 presents the survival probability for the applications depending on a public dependency vulnerability
in the year of 2016. As we can observe, half the applications remain exposed to a public dependency vulnerability
for at least 103 days. Such a long exposure of applications is concerning, as it gives a considerable time window for
attackers’ exploitation.

One possible reason that such applications had not fixed the public vulnerability for a long time is that those
applications are not actively being developed during the year of 2016. To investigate this possibility, we examine the



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Alfadel, et al.

0%

25%

50%

75%

100%

0 100 200 300 400
Time (in days)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Fig. 5. Kaplan-Meier survival probability for affected applications with a publicly known vulnerability.

0

100

200

300

0 100 200 300
Commits

D
ay

s

Fig. 6. Scatter plot showing the correlation analysis of number of commits vs. number of days.

development activity of applications during the period that they remained affected by public vulnerabilities. To do
so, we measure the application activity by counting the number of commits an application had during the time being
affected by a public vulnerability. For example, if an application was affected by a public dependency vulnerability
between May 1st 2016 and August 15th 2016, then we calculate the total number of commits within that period. Then,
we plot both the number of commits and the number of days during which an application had been affected by a public
vulnerability.

Figure 6 shows the scatter plot of both variables number of commits vs. number of days (affected by a public
vulnerability). We draw a trendline in Figure 6 in order to study the relationship between the variables. We can observe
that there is no clear pattern of the dots; indicating no correlation between the application activity and the duration of
which an application had been affected by a public dependency vulnerability (Pearson corr = -0.066).

In a period of a year, half of the applications with public dependency vulnerabilities remain exposed
for a long time (103 days) before vulnerabilities are removed from the applications.

7 DISCUSSION

In this section, we discuss our results further by reflecting two aspects: the severity of public dependency vulnerabilities
and the evolution of discoverability levels in the studied applications.

7.1 Severity vs. Discoverability

As we observed in all our RQs, around 5% of the affected applications depend on public dependency vulnerabilities at a
specific point in time, however, what is the severity of these vulnerabilities? Our study is centered on the discoverability
of vulnerabilities in software dependencies, that is, their potential for being exploited. However, a public vulnerability
can have a high chance of exploitation according to our classification but cause a low impact if exploited (low severity



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

On the Discoverability of npm Vulnerabilities in Node.js Projects 17

Table 6. The share of applications with one or more (1+) public dependency vulnerabilities per severity levels.

Severity Levels Affected Applications

Low 172 (83.49%)
Medium 167 (81.06%)
High 140 (67.96%)
Critical 59 (28.64%)

Table 7. The percentage of vulnerable applications at different historical snapshots, per discoverability level.

Application
Snapshot

Affected
Applications

Applications
Undisclosed Reported Public

20% 4,215 (64.39%) 4,202 16 101
40% 4,277 (65.34%) 4,261 27 122
60% 4,372 (66.79%) 4,352 32 142
80% 4,421 (67.54%) 4,398 41 171
100% 4,445 (67.90%) 4,419 45 206

level). Hence, we discuss the severity of the public vulnerabilities to better understand the potential impact of these
cases.

The npm advisories associates each package vulnerability report with its severity level [52]. Severity level has four
possible levels, Low, Medium, High, and Critical, which are assigned manually by the npm team. Vulnerabilities clasified
as High or Critical are considered of high impact and need to be addressed immediately by software maintainers [52].
By cross-referencing our dataset with the severity reports, we report in Table 6 the distribution of the severity levels of
the 206 application with public dependency vulnerabilities. Once again, the total percentage of Low, Moderate, High and
Critical surpasses 100%, as some applications contain multiple dependency vulnerabilities on different severity levels. As
shown in Table 6, of the 206 applications that are affected by public dependency vulnerabilities, 172 (83.49%) applications
are affected by at least one vulnerable dependency of low severity. Still, a majority of 140 (67.96%) applications are
affected by public vulnerabilities classified as high severity. In 59 (28.64%) applications, the public vulnerability was
classified as critical, given their potential for exploitation. These results dismiss the idea that applications only depend
on public dependency vulnerability with low impact of exploitability. More than 140 applications had dependencies
with public vulnerabilities where analysts classified them as of high and critical impact, a dangerous combination for
the health of those software projects.

7.2 Project evolution vs. Discoverability

Our study thus far has been conducted on one snapshot of the examined applications (RQ1). However, our results might
change if the study would be performed at different stages of a project’s development cycle. We would like to determine
whether our results generalize to different historical snapshots of the application development. Hence, we investigate
the evolution of discoverability levels across different snapshots of applications’ development.

Since each application has different lifespans, we want to find a measure that makes comparing them feasible. To
do so, we normalize the applications by segmenting the lifetime of each application into five equal intervals (each
containing 20% of an application’s lifetime by time in days). Then, we perform the same anlaysis conducted in RQ1 on
the last snapshot of these five intervals. For this analysis, we only consider the 4,445 applications with at least one
vulnerable dependency, as identified in RQ1.



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Alfadel, et al.

Table 7 shows the percentage of applications that have at least one vulnerable dependency for the 5 analyzed
snapshots across their lifetime, along with the distribution of their discoverability levels. We recall that the snapshot
of 100% represents applications analyzed on May 2016, the same snapshot analyzed in RQ1. Overall, we found that
the proportion of applications with one vulnerable package remain steady between 64 to 67% of the analyzed appli-
cations. The major findings in RQ1 holds for all snapshots, there is a predominance of applications with undisclosed
vulnerabilities, followed by a small share with public and even smaller share with reported dependency vulnerabilities.
While the number of affected applications have increased as the applications evolve, it is noteworthy that the number of
applications exposed to public vulnerabilities more than doubled since the snapshot 20% (from 101 to 206 applications).
To conclude, our complementary analysis shows that the trends observed in RQ1 hold at different stages of the projects.

8 TOOL SUPPORT: DEP-REVEAL

Amajor problem of vulnerabilities in software dependencies is the lack of developers awareness to security vulnerabilities
in their dependencies [46]. Developers need better tools to help them identify the occurrence of vulnerabilities and how
timely package maintainers respond to reported vulnerabilities, which affects the discoverability we studied in this
paper. To address this problem, we build a tool called DepReveal, which uses the approach described in Section 5 to
generate analytical reports of dependency discoverability levels for a GitHub Node.js project. DepReveal is open-source,
publicly available, and can be easily integrated in any GitHub npm project.

The tool (DepReveal) works as a prototype or proof of concept that generates analytical reports of npm packages
used in a GitHub Node.js project, which could have the potential to help developers in many ways, as follows:

• Modern applications rely on many dependencies and the number of dependencies is growing over time.
Therefore, application developers struggle to track all these dependencies. In fact, developers should give more
priority to dependencies that are frequently affected by vulnerabilities during the development lifetime. To help
with this, our tool prototype can provide developers with the frequency in which certain dependencies have
become vulnerable in the past, in order to grab the risks of depending on such packages and better plan their
project maintenance in the future.

• Moreover, the tool can provide developers with the history of all vulnerable dependencies of the application
in order to understand the duration in which the application became at the risk of a public discoverability
vulnerability in the past. Packages that do not update their code to address reported vulnerabilities incur
a high risk for applications that use them and should be avoided by critical applications. We believe that
such information is important for developers to build a more fine-grained picture of the risk of application
dependencies, not only using automated tools (e.g., Dependabot) to update each and every package in the
application.

Our tool generates 4 different reports to help developers understand: 1) the discoverability level of dependency
vulnerabilities, 2) the frequency of dependency vulnerabilities per discoverability level, 3) the period of package
exposition to discoverability levels, and 4) what package versions account for those dependency vulnerabilities. Figure 7
shows a screen-shot of the DepReveal’s interface.

Next, we explain 2 of the most insightful reports generated by our tool. Inspired by the Github’s Contributions
Activity Graph, DepReveal generates a Dependency Discoverability Graph, which shows the historical exposure of
the application to dependency vulnerabilities. We show in Figure 8 a screenshot of this report generated for the atom
application [10]. Each cell represents a day in the history of the application during a year and the colors represent the



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

On the Discoverability of npm Vulnerabilities in Node.js Projects 19

Fig. 7. Screenshot of the DepReveal website showing its interface and the recently analysed repositories.

Fig. 8. Screenshot of the generated Dependency Discoverability Graph for the atom application using DepReveal.

Undisclosed

Reported

Public

Fig. 9. Screenshot of the generated report Period of Discoverability for the atom application using DepReveal.

discoverability level, with dark red indicating exposure to public vulnerabilities. In the example, it is easy to see that
atom was exposed for 14 weeks to public dependency vulnerabilities in 2016, by seeing how many columns show the
darker red color. Users can get more information about the date by hovering the mouse over the cell.

Period of Package Discoverability is another report generated by DepReveal to show the time period (in days)
in which a vulnerable package affected the application, per discoverability level. Figure 9 shows a screenshot of this
report, generated also for the atom application. From the Figure, we can observe, for example, that the package jquery
was affected by a public, reported and undisclosed vulnerabilities through the project lifetime. Hovering the mouse
over the tip of the red bar for the jquery package, it is possible to notice that the application remained depending on a
public vulnerability in the jquery for 145 days through the entire application lifetime. Users can also enable/disable one
of the discoverability levels by clicking on the legends at the right-side of the report plot.



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Alfadel, et al.

Furthermore, the tool generates a CSV file that contains the analysis details for the entire application lifetime to help
a further investigation. Finally, note that we provide a command-line version of the DepReveal, which is available
from our open-source GitHub repository [8]. We also provide a web user-interface for the tool to facilitate using and
interacting with it [19].

Comparison to Dependabot. Several dependency management tools have been proposed to help developers
better track and update their outdated and vulnerable dependencies. For example, Dependabot is a bot the issues
pull-requests (PRs) to help developers automatically update their vulnerable dependencies through PRs [23]. While
related to dependency management, DepReveal and Dependabot have different goals:

• Dependabot’s goal is to help developers update their dependencies. It submits pull requests to projects once
their dependencies have new versions available, either to keep the dependencies up-to-date or to respond to a
publicly known vulnerability.

• DepReveal, on the other hand, helps developers at analyzing the past exposure of their dependencies to
public vulnerabilities, i.e., how often their dependencies have exposed their project to public discoverability
vulnerabilities. Hence, our tool performs a post-mortem analysis and informs developers about how often their
projects have been exposed to vulnerable dependencies in the past considering our discoverability levels.

9 IMPLICATIONS

In this section, we discuss some implications of our findings to researchers and practitioners.

9.1 Implications to researchers

Researchers should account for discoverability to better understand practices of security and dependency
management. Discoverability is key to distinguish when vulnerabilities require immediate action from package and
application maintainers. Undisclosed vulnerabilities are prevalent, present in the majority of studied applications (RQ1),
and they tend to remain undisclosed for many years [22]. However, the presence of undisclosed vulnerabilities does not
denote lack of dependency maintenance from application maintainers or the lack of security maintenance from package
maintainers. The way public vulnerabilities are handled by the community, on the other hand, shows a more accurate
picture of the good and bad practices related to security and dependency management, as both package and application
maintainers have to coordinate to reduce the risks of exploits. Researchers should include discoverability to better
understand the practices related to dealing with dependency vulnerabilities, and can rely on the approach we propose
in the study to implement this analysis. Our approach can also be applied in studies that aim to contrast our findings
on different ecosystems (Python, Go, Java) to provide a more complete picture of the problem of vulnerable dependencies.

The lack of dependency updates remains is the main responsible for public exposure to vulnerabilities.
Our results (RQ2) show that in 9 out of 10 cases, the lack of dependency maintenance is the main reason applications
are affected by public vulnerabilities. Furthermore, we found that it takes a long time to resolve to a fixed version
(RQ3). Such persistence to vulnerable dependencies indicates that developers do not perform a timely update to their
dependencies. One reason for that is related to the potential risks of dependency updates (e.g., breaking changes)
and the effort required to resolve them [46]. Thus, there is a need for approaches that provide developers with more
confidence about the suggested dependency update. One line of work that needs to be explored further is to investigate
techniques that automatically allow client code in the dependent application to catch up with the latest dependency



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

On the Discoverability of npm Vulnerabilities in Node.js Projects 21

updates. Unfortunately, the accuracy of existing works (e.g., [47, 64]]) tends to be limited to a particular set of APIs (e.g.,
Android APIs). Also, researchers are encouraged to propose techniques that detect breaking changes in package updates,
particularly those that are generalizable. Current works (e.g., [51]) are limited to specific ecosystems (e.g., Java, NodeJS)
but still can be improved to work at scale and help developers detect breakages in practice. Such automated tools can
motivate developers to perform a timely update of dependencies and catch security patches of their dependencies.

Certain vulnerability types are more frequently found in packages and can impact the ecosystem at large.
Our results (RQ1) show that certain types of dependency vulnerabilities that affect packages are prevalent across the
affected projects. For example, we found that Prototype Pollution is the most common type, with 1,482 projects affected
by the vulnerability. Also, ReDoS affects more than 770 projects in the dataset. This suggests a potential widespread
benefit from research into the resolution or mitigation of such vulnerability types. Researchers should direct their effort
to find effective techniques that discover such types. It will also be beneficial to conduct future research into common
root causes of such vulnerability types to prevent or detect such issues in package code.

9.2 Implications to practitioners

Developers can use DepReveal to keep track of their vulnerability exposure in the past and better tailor
management practices. The tool prototype we propose operationalize the Discoverability analysis and showcases to
practitioners how often their dependencies have exposed their project with vulnerabilities. As discussed in Section 8, this
information may help developers in two major ways. First, practitioners can prioritize maintenance tasks before release
on dependencies that are more frequently flagged as been affected by vulnerabilities. That means, developers can actively
monitor the project repository and its related security advisory database to identify when a vulnerability is published as
soon as possible. Second, practitioners should reassess dependencies that expose them to public vulnerabilities without
an immediate fix patch. While our results show that this is rare, publishing a vulnerability without a fix patch is a sign
of inefficient security policies as it puts dependent projects at risk. Whenever possible, practitioners should select better
alternative packages that prioritize submitting a fix patch before a vulnerability is made public.

Relying on SemVer does not guarantee that application projects receive all security updates in dependencies.
Our results show that using semantic versioning for automatic updates at the level of patch and minor releases is
not sufficient to prevent public vulnerabilities of dependencies in Node.js applications. Our manual inspection (RQ2)
revealed that in many cases the vulnerability fix is only available in a major release of the package, which comes at the
cost of breaking changes. Tools such as Dependabot [40] help overcome this issue by helping developers migrate even
when the fix is on another major version. Dependabot also includes a method to estimate the migration cost of security
updates for dependencies, which is calculated based on the outcome of similar updates that were already done by other
projects. Hence, developers that rely on SemVer (as recommended) should make use of other more robust mechanism,
i.e., Dependabot, to verify if they are receiving the latest security fix patches as part of their automated dependency
update policy.

10 RELATEDWORK

The work most related to our study falls into security vulnerabilities in software ecosystems. In the following, we
discuss the related work and reflect on how the work compares with ours.



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Alfadel, et al.

10.1 Software Ecosystems

A plethora of recent work focused on software ecosystems. Several works compare different ecosystems. For example,
Decan et al. [35] empirically compared the evolution of 7 popular package ecosystem using different aspects, e.g.,
growth, changeability, resuability, and fragility. They observed that the number of packages in those ecosystems is
growing over time, showing their increasing importance.

Other work focused specifically on npm [39, 45, 66]. For example, Fard et al. [39] examined the evolution of
dependencies within an npm project, and showed that there is a heavily interdependence, with the average number
of dependencies being 6 and growing over time. Wittern et al. [66] investigated the evolution of npm using metrics
such as dependencies between packages, download count, and usage count in JavaScript applications. They found that
packages in the npm ecosystem are steadily growing. Such amounts of packages make the discovery of vulnerabilities
much difficult, given the heavy dependence on such packages and the potential security problems in those packages.

Other studies pointed out the fragility of software ecosystems and provided insights on the challenges application
developers face. For example, Bogart et al. [25, 26] examined the Eclipse, CRAN, and npm ecosystems, focusing on what
practices cause API breakages. They found that a main reason for breaking changes are the updates of a dependency. This
finding may explain why application developers are hesitant to update and explain why we see public vulnerabilities
impacting applications that do not update in time. The authors extended the study by including a big survey on 18
ecosystems and repository mining methods [27]. They conducted a survey with more than 950 participants and report
that Node.js is the ecosystem with higher frequency of breaking changes while Lua, Go are one of the least frequent.

Our study differs from the prior work since we focus on the discoverability levels of dependency vulnerabilities in
Node.js applications. Moreover, we examine the reason that public dependency vulnerabilities exist. We also examine the
time that an application stays depending on a public dependency vulnerabilities. That said, much of the aforementioned
work motivated us to study npm and focus on examining vulnerabilities in application dependencies.

10.2 Package Vulnerabilities

Vulnerabilities in ecosystems have been studied broadly [21, 22, 46, 57]. For example, Kula et al. [46] explored how
developers respond to security awareness mechanisms such as library migration, and found that developers were
unaware of most vulnerabilities in dependencies. Pashchenko et al. [57] indicated (based on interviews with developers)
a high demand for high-level metrics to assess the maintainability and security of software packages. Our proposed tool
DepReveal partially fulfils such a demand since it generates analytical reports to inform developers how vulnerable
their dependences are, considering the discoverability levels. Enck and Williams [37] proposed the top five challenges
in software supply chain security. For example, one of the study participants mentioned the challenge of being the first
or last to update a dependency. Participants in the study mentioned that there is a need to develop a policy that strikes
this balance.

More specifically, several studies focused on analyzing the impact of security vulnerabilities in the npm ecosystem [28,
34, 70]. Decan et al. [34] found that npm vulnerabilities take more than 2 years to be discovered. Zimmermann et
al. [70] analysed the maintainers role for npm vulnerable packages, and found that a small number of maintainers’
accounts could be used to inject malicious code into thousands of npm dependent packages, a problem that has been
increasing over time. Zerouali et al. [69] studied npm vulnerable packages in Docker containers, and found that they
are common in the containers, suggesting that Docker containers should keep their npm dependencies updated. Bodin
et al. [29] analysed npm packages to study lags of vulnerable release and its fixing release, and found that the fixing
release is rarely released on its own; 85.72% of the bundled commits in the fixing release are unrelated to a fix. Zahan



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

On the Discoverability of npm Vulnerabilities in Node.js Projects 23

et al. [67] defined some signals that could indicate malicious npm package, such as the presence of install scripts.
Their study shows that 2,818 maintainer accounts associated with an expired domain, allowing an attacker to hijack
8,494 packages by taking over the npm accounts. Similar to npm packages, Wang et al. [65] found that Java packages
contained dependencies which lag for a long time and never been updated. Our study complements previous studies
by analysing npm vulnerable dependencies throughout the Node.js application lifetime, aggregating the vulnerability
lifecycle through the discoverability level metric.

Other studies perform a code-based analysis to assess the danger of dependency vulnerabilities [56, 58, 60, 68]. A
study by Zapata et al. [68] manually analysed 60 projects that depend on vulnerable npm packages, and found that
73.3% of them were actually safe because they did not make use of the vulnerable functionality, showing that there is
an overestimation on previous reports. Our study includes another aspect that impacts vulnerable dependencies in
applications, by including the discoverability levels.

There were several efforts to assess the impact of vulnerable dependencies in dependent applications [58, 60]. Plate
et al. [58, 60] proposed a code-centric tool that determines whether or not a Java application executes the fragment
of the dependency where the vulnerable code is located. Their proposed approach is implemented in a tool called,
Eclipse Steady (aka VULAS), which is an official software used by SAP to scan its Java code. Furthermore, Ponta et
al. [59, 60] built upon their previous approach in [58] to generalize their vulnerability detection approach by using static
and dynamic analysis to determine whether the vulnerable code in the library is reachable through the application
call paths. Bodin et al. [28] implemented an extension of the Eclipse-Steady tool to support JavaScript. They analysed
analysed 42 applications to find their vulnerable constructs, showing that a code-centric approach is viable, although
there are challenges given the dynamic nature of the JavaScript and the complexity of the npm dependencies [28]. Our
tool (DepReveal) complements these tools by looking at vulnerable dependencies through the history of a Node.js
application. DepReveal aims to increase developers awareness on how often their application project is exposed to
vulnerable dependencies.

Our tool could be extended to include a code-centric analysis and report the vulnerable constructs per discoverability
analysis. However, the analysis at this level is indeed problematic due to execution costs needed to analyse the code.
Other automated code analysis tools work on vetting the changes in the releases of packages to analyse their lines of
code. Recently, there were several efforts for auditing npm security vulnerabilities, both from academia [41, 63] and
from industry practitioners [4, 17].

11 THREATS TO VALIDITY

Internal Validity considers the relationship between theory and observation. Our dataset contains 925 vulnerability
report available in the npm advisories dataset. There might be other vulnerable packages that have been discovered but
not yet reported. However, we leveraged up-to-date dataset from npm advisories, which we believe contains the most
accurate information about the vulnerable packages reported to them.

The paper only considered direct dependencies. Direct dependencies are managed (directly) by the software project,
while indirect dependencies are usually out of the control of the application developer, as they are dependencies of a
dependency, which makes it more challenging for updating them. Moreover, vulnerabilities of direct dependencies
are more likely to impact the software project, as they are directly used in the project codebase. Our technique can be
extended to analyse indirect dependencies considering the discoverability levels.

We did not consider whether the vulnerable functionality in the package actually affects the application, i.e., whether
the applications use the vulnerable code of the package. Considering this would be challenging, since our dataset



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Alfadel, et al.

is composed of thousands of applications. That said, our analysis is in line with prior work in the area of software
ecosystems, which also examine dependencies in the package.json file to associate packages to applications.

Also, our paper did not consider the stage at which a fix was released by package maintainers or adopted by the
studied application. In fact, this has been studied in prior work [22] at the package level, e.g., the paper [22] examines
the stage at which a fixed version was released. Still, a similar analysis at the application level could be considered in
future work, however, we found only nine vulnerabilities (affecting nine applications) that were published with a fix
available from day 1. That is, the vast majority of vulnerabilities are made public without any fix. Unfortunately, the
amount of vulnerabilities that had a fix available from day 1 is too low to derive any meaningful comparison or insights
to the community.

Finally, note that our study relies heavily on the coverage of vulnerability advisories in npm, as well as on the
consistent application of semantic versioning, which may lead to an under-approximation that supports the argument
of our paper. However, our main argument is that similar studies that use similar datasets to tackle the same aspect
paint a less accurate picture of the studied aspect.
External Validity is related to the generalizability of our findings. Our study is based on Node.js applications that use
npm. Hence our results may not generalize to applications written in other languages. However, the key concepts and
design of our study can be applied to other package dependency networks to expand the investigation on vulnerable
dependencies. Our dataset contains 6,546 JavaScript applications that use npm packages. Our dataset might be considered
small when it is compared to the whole population of JavaScript applications. However, our dataset is of high quality,
since we filtered out applications that are immature and have less development history, by using the filtering criteria
used by Kalliamvakou et al. [43]. Also, to our knowledge, our dataset is considered to be among the largest number of
Node.js applications analyzed.

12 CONCLUSION

Our study examines vulnerable dependencies in Node.js applications based on their discoverability lifecycle. First, we
define three discoverability levels for dependency vulnerabilities in Node.js applications. Then, we perform an empirical
study on 6,546 Node.js applications to assess how discoverable vulnerable dependencies are. Our findings show that
67.9% of the examined applications depend on at least one vulnerable package. 99.42% of the affected applications depend
on undisclosed dependency vulnerabilities. Still, 206 (4.63%) applications were still affected by a public discoverability
vulnerability, and they often remain affected for a substantially long time (103 days) during the application lifetime.
Moreover, we examined why these applications end up depending on public dependency vulnerabilities. We observed
that the application developers are mostly to blame, i.e., a fix for the vulnerable dependency is available but not
patched in the application. Furthermore, we examine the relationship between the occurrence of public discoverability
vulnerabilities and the underlying project factors. We find that such metrics do not strongly indicate better handling of
the vulnerable dependencies.

Our findings imply that accounting for discoverability analysis can help researchers better understand practices of
security and dependency management. Also, researchers are encouraged to explore approaches that consider confidence
measures of dependency updates to help developers catch up with their critical vulnerable dependencies. We developed
a tool prototype that supports our analysis approach for npm projects, which have the potential to help developers better
understand and characterize package vulnerabilities that affect their applications. Finally, our result of the relationship
between project dependencies and the number of dependency vulnerabilities shows that managing specific packages in
the project will be more effective than reducing the number of project dependencies. Project maintainers can try to



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

On the Discoverability of npm Vulnerabilities in Node.js Projects 25

reduce relying on some specific popular packages by prioritizing updates of those packages or replacing them with a
single package that covers their functionalities and has an active security track record.

Our paper outlines directions for future work. For example, our discoverability analysis can be extended to consider
other data sources to enhance vulnerability risk assessment, e.g., severity, exploitability, etc. Such enhancement can also
be integrated into our prototype tool to help developers better analyze the risk of security vulnerabilities that affect
their dependencies. In the future, we plan to evaluate the usefulness of our prototype tool (i.e., DepReveal). Finally, we
plan to examine if our findings hold for applications written in different programming languages (e.g., Python and Java).

REFERENCES
[1] About coordinated disclosure of security vulnerabilities - github docs. https://docs.github.com/en/code-security/repository-security-advisories/

about-coordinated-disclosure-of-security-vulnerabilities, . (Accessed on 04/09/2022).
[2] About coordinated disclosure of security vulnerabilities - github docs. https://docs.github.com/en/code-security/security-advisories/about-

coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry, . (Accessed on 07/17/2021).
[3] Cwe - 2022 cwe top 25 most dangerous software weaknesses. https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html. (Accessed on

07/18/2022).
[4] How to ensure javascript code quality | deepscan. https://deepscan.io/. (Accessed on 07/17/2021).
[5] Heartbleed bug. https://heartbleed.com/#:~:text=The%20Heartbleed%20Bug%20is%20a,used%20to%20secure%20the%20Internet. (Accessed on

07/17/2021).
[6] Semantic versioning 2.0.0 | semantic versioning. https://semver.org/, . (Accessed on07/17/2021).
[7] Semantic versioning 2.0.0 | semantic versioning. https://semver.org/, . (Accessed on 07/17/2021).
[8] mahmoud-alfadel/depreveal: A lightweight tool to analyze npm vulnerabilities in the history of github repositories. https://github.com/mahmoud-

alfadel/DepReveal. (Accessed on 07/17/2021).
[9] Add package marked@0.3.4. https://github.com/atom/atom/commit/41b799aebc7f40201219d8ec435d1520cf057285. (Accessed on 07/17/2021).
[10] atom/atom: The hackable text editor. https://github.com/atom/atom. (Accessed on 07/17/2021).
[11] npm. https://www.npmjs.com/advisories/33, . (Accessed on 07/17/2021).
[12] npm blog archive: A day in the life of npm security. https://blog.npmjs.org/post/190665497245/a-day-in-the-life-of-npm-security.html, . (Accessed

on 07/17/2021).
[13] npm blog archive: Appsec pov on dependency management. https://blog.npmjs.org/post/187496869845/appsec-pov-on-dependency-management, .

(Accessed on 07/17/2021).
[14] npm - libraries.io. https://libraries.io/NPM, . (Accessed on 07/17/2021).
[15] npm - libraries.io. https://libraries.io/NPM, . (Accessed on 01/24/2022).
[16] npm/node-semver: The semver parser for node (the one npm uses). https://github.com/npm/node-semver, . (Accessed on 04/02/2022).
[17] Fast static analysis for the devsecops workflow — by r2c. https://r2c.dev/. (Accessed on 07/17/2021).
[18] On the discoverability of npm vulnerabilities in node.js projects | zenodo. https://zenodo.org/record/5153319#.YQfhBFP0nUI. (Accessed on

08/02/2021).
[19] Depreveal. https://bit.ly/3emg5w3, July 2021. (Accessed on 07/17/2021).
[20] O. Aalen, O. Borgan, and H. Gjessing. Survival and event history analysis: a process point of view. Springer Science Business Media, 2008.
[21] M. Alfadel, D. E. Costa, M. Mokhallalati, E. Shihab, and B. Adams. On the threat of npm vulnerable dependencies in node. js applications. arXiv

preprint arXiv:2009.09019, 2020.
[22] M. Alfadel, D. E. Costa, and E. Shihab. Empirical analysis of security vulnerabilities in python packages. In Proceedings of the 2021 IEEE International

Conference on Software Analysis, Evolution and Reengineering (SANER), pages 446–457, 2021.
[23] M. Alfadel, D. E. Costa, E. Shihab, and M. Mkhallalati. On the use of dependabot security pull requests. Proceedings of the 2021 International

Conference on Mining Software Repositories (MSR ’21), 2021.
[24] V. R. Basili, L. C. Briand, and W. L. Melo. How reuse influences productivity in object-oriented systems. Communications of the ACM, 39(10):104–116,

1996.
[25] C. Bogart, C. Kästner, and J. Herbsleb. When it breaks, it breaks: How ecosystem developers reason about the stability of dependencies. In 30th

IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW), 2015, pages 86–89. IEEE, 2015.
[26] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung. How to break an api: cost negotiation and community values in three software ecosystems. In

Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 109–120. ACM, 2016.
[27] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung. When and how to make breaking changes: Policies and practices in 18 open source software

ecosystems. ACM Transactions on Software Engineering and Methodology (TOSEM), 30(4):1–56, 2021.
[28] B. Chinthanet, S. E. Ponta, H. Plate, A. Sabetta, R. G. Kula, T. Ishio, and K. Matsumoto. Code-based vulnerability detection in node. js applications:

How far are we? In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 1199–1203. IEEE, 2020.

https://docs.github.com/en/code-security/repository-security-advisories/about-coordinated-disclosure-of-security-vulnerabilities
https://docs.github.com/en/code-security/repository-security-advisories/about-coordinated-disclosure-of-security-vulnerabilities
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://deepscan.io/
https://heartbleed.com/#:~:text=The%20Heartbleed%20Bug%20is%20a,used%20to%20secure%20the%20Internet.
https://semver.org/
https://semver.org/
https://github.com/mahmoud-alfadel/DepReveal
https://github.com/mahmoud-alfadel/DepReveal
https://github.com/atom/atom/commit/41b799aebc7f40201219d8ec435d1520cf057285
https://github.com/atom/atom
https://www.npmjs.com/advisories/33
https://blog.npmjs.org/post/190665497245/a-day-in-the-life-of-npm-security.html
https://blog.npmjs.org/post/187496869845/appsec-pov-on-dependency-management
https://libraries.io/NPM
https://libraries.io/NPM
https://github.com/npm/node-semver
https://r2c.dev/
https://zenodo.org/record/5153319#.YQfhBFP0nUI
https://bit.ly/3emg5w3


1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Alfadel, et al.

[29] B. Chinthanet, R. G. Kula, S. McIntosh, T. Ishio, A. Ihara, and K. Matsumoto. Lags in the release, adoption, and propagation of npm vulnerability
fixes. Empirical Software Engineering, 26(3):1–28, 2021.

[30] M. A. R. Chowdhury, R. Abdalkareem, E. Shihab, and B. Adams. On the untriviality of trivial packages: An empirical study of npm javascript
packages. IEEE Transactions on Software Engineering, 2021.

[31] F. R. Cogo, G. A. Oliva, and A. E. Hassan. An empirical study of dependency downgrades in the npm ecosystem. IEEE Transactions on Software
Engineering, 2019.

[32] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee. The impact of regular expression denial of service (redos) in practice: an empirical study at the
ecosystem scale. In Proceedings of the 2018 26th ACM joint meeting on european software engineering conference and symposium on the foundations of
software engineering, pages 246–256, 2018.

[33] A. Decan and T. Mens. What do package dependencies tell us about semantic versioning? IEEE Transactions on Software Engineering, 2019.
[34] A. Decan, T. Mens, and E. Constantinou. On the impact of security vulnerabilities in the npm package dependency network. In International

Conference on Mining Software Repositories, 2018.
[35] A. Decan, T. Mens, and P. Grosjean. An empirical comparison of dependency network evolution in seven software packaging ecosystems. Empirical

Software Engineering, pages 1–36, 2018.
[36] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey, et al. The matter of heartbleed. In

Proceedings of the 2014 conference on internet measurement conference, pages 475–488, 2014.
[37] W. Enck and L. Williams. Top five challenges in software supply chain security: Observations from 30 industry and government organizations. IEEE

Security & Privacy, 20(2):96–100, 2022.
[38] Equifax. Equifax releases details on cybersecurity incident, announces personnel changes, 2017. URL https://investor.equifax.com/news-and-

events/news/2017/09-15-2017-224018832. Accessed on 07/17/2021.
[39] A. M. Fard and A. Mesbah. Javascript: The (un) covered parts. In IEEE International Conference on Software Testing, Verification and Validation (ICST),

2017, pages 230–240. IEEE, 2017.
[40] Github. Dependabot. https://dependabot.com/. (Accessed on 07/17/2021).
[41] L. Gong. Dynamic Analysis for JavaScript Code. PhD thesis, UC Berkeley, 2018.
[42] G. Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13, pages

233–236, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-2936-1.
[43] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian. The promises and perils of mining github. In Proceedings of the

11th working conference on mining software repositories, pages 92–101. ACM, 2014.
[44] E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal of the American statistical association, 53(282):457–481,

1958.
[45] R. G. Kula, A. Ouni, D. M. German, and K. Inoue. On the impact of micro-packages: An empirical study of the npm javascript ecosystem. arXiv

preprint arXiv:1709.04638, 2017.
[46] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. Do developers update their library dependencies? Empirical Software Engineering, 23(1):

384–417, 2018.
[47] M. Lamothe, W. Shang, and T.-H. P. Chen. A3: Assisting android api migrations using code examples. IEEE Transactions on Software Engineering,

2020.
[48] S. Li, M. Kang, J. Hou, and Y. Cao. Detecting node. js prototype pollution vulnerabilities via object lookup analysis. In Proceedings of the 29th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages 268–279, 2021.
[49] W. C. Lim. Effects of reuse on quality, productivity, and economics. IEEE software, (5):23–30, 1994.
[50] S. Mirhosseini and C. Parnin. Can automated pull requests encourage software developers to upgrade out-of-date dependencies? In 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 84–94. IEEE, 2017.
[51] A. Møller and M. T. Torp. Model-based testing of breaking changes in node. js libraries. In Proceedings of the 2019 27th ACM joint meeting on

european software engineering conference and symposium on the foundations of software engineering, pages 409–419, 2019.
[52] npm. About audit reports | npm docs. https://bit.ly/3uqn0uv, . (Accessed on 07/17/2021).
[53] npm. npm advisories. https://www.npmjs.com/advisories, . (Accessed on 07/17/2021).
[54] npm. npm registry. https://docs.npmjs.com/misc/registry, . (Accessed on 07/17/2021).
[55] OWASP. Owasp risk assessment framework. https://owasp.org/www-project-risk-assessment-framework/. (Accessed on 07/17/2021).
[56] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci. Vulnerable open source dependencies: Counting those that matter. In Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, pages 1–10, 2018.
[57] I. Pashchenko, D.-L. Vu, and F. Massacci. A qualitative study of dependency management and its security implications. In Proceedings of the 2020

ACM SIGSAC Conference on Computer and Communications Security, pages 1513–1531, 2020.
[58] H. Plate, S. E. Ponta, and A. Sabetta. Impact assessment for vulnerabilities in open-source software libraries. In 2015 IEEE International Conference

on Software Maintenance and Evolution (ICSME), pages 411–420. IEEE, 2015.
[59] S. E. Ponta, H. Plate, and A. Sabetta. Beyond metadata: Code-centric and usage-based analysis of known vulnerabilities in open-source software. In

2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 449–460. IEEE, 2018.

https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://dependabot.com/
https://bit.ly/3uqn0uv
https://www.npmjs.com/advisories
https://docs.npmjs.com/misc/registry
https://owasp.org/www-project-risk-assessment-framework/


1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

On the Discoverability of npm Vulnerabilities in Node.js Projects 27

[60] S. E. Ponta, H. Plate, and A. Sabetta. Detection, assessment and mitigation of vulnerabilities in open source dependencies. Empirical Software
Engineering, 25(5):3175–3215, 2020.

[61] semver. semver - npm. https://www.npmjs.com/package/semver. (Accessed on 07/17/2021).
[62] SOF. Stack overflow developer survey 2019. https://insights.stackoverflow.com/survey/2019. (Accessed on 07/17/2021).
[63] C.-A. Staicu, M. Pradel, and B. Livshits. Synode: Understanding and automatically preventing injection attacks on node. js. In NDSS, 2018.
[64] F. Thung, S. A. Haryono, L. Serrano, G. Muller, J. Lawall, D. Lo, and L. Jiang. Automated deprecated-api usage update for android apps: How far are

we? In 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 602–611. IEEE, 2020.
[65] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and Y. Liu. An empirical study of usages, updates and risks of third-party libraries in java

projects. In 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), pages 35–45. IEEE, 2020.
[66] E. Wittern, P. Suter, and S. Rajagopalan. A look at the dynamics of the javascript package ecosystem. In IEEE/ACM 13th Working Conference on

Mining Software Repositories (MSR), 2016, pages 351–361. IEEE, 2016.
[67] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and L. Williams. What are weak links in the npm supply chain? In Proceedings of

the 44th International Conference on Software Engineering: Software Engineering in Practice, pages 331–340, 2022.
[68] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and A. Ihara. Towards smoother library migrations: A look at vulnerable dependency

migrations at function level for npm javascript packages. In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 559–563. IEEE, 2018.

[69] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-Barahona. On the impact of outdated and vulnerable javascript packages in docker
images. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 619–623. IEEE, 2019.

[70] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel. Small world with high risks: A study of security threats in the npm ecosystem. In 28th
{USENIX} Security Symposium ({USENIX} Security 19), pages 995–1010, 2019.

https://www.npmjs.com/package/semver
https://insights.stackoverflow.com/survey/2019

	Abstract
	1 Introduction
	2 NPM Dependency Management
	3 About Discoverability
	3.1 Vulnerability Lifecycle
	3.2 Discoverability Levels

	4 Study Design
	4.1 Research Questions 
	4.2 Data Collection

	5 Identifying and Classifying Vulnerable Dependencies in Node.js Applications
	6 Study Results
	7 Discussion
	7.1 Severity vs. Discoverability
	7.2 Project evolution vs. Discoverability

	8 TOOL SUPPORT: Dep-Reveal
	9 Implications
	9.1 Implications to researchers
	9.2 Implications to practitioners

	10 Related Work
	10.1 Software Ecosystems
	10.2 Package Vulnerabilities

	11 Threats to Validity
	12 Conclusion
	References

