
An Empirical Study on the Risks of Using Off-the-Shelf Techniques for Processing
Mailing List Data

Nicolas Bettenburg Emad Shihab Ahmed E. Hassan
Software Analysis and Intelligence Lab

Queen’s University
Kingston, Canada

{nicbet, emads, ahmed}@cs.queensu.ca

Abstract

Mailing list repositories contain valuable information about
the history of a project. Research is starting to mine this
information to support developers and maintainers of long-
lived software projects. However, such information exists as
unstructured data that needs special processing before it
can be studied. In this paper, we identify several challenges
that arise when using off-the-shelf techniques for processing
mailing list data. Our study highlights the importance of
proper processing of mailing list data to ensure accurate
research results.

1. Introduction
Electronic mail is an established form of communication in
networked computing environments. Mailing list software
distributes messages to a predefined list of recipients and is
widely used in software development. There it aids day-
to-day development and enables communication between
project stakeholders, e.g., developers and users. Messages
sent over these mailing lists contain a multitude of informa-
tion on the project, such as important development decisions,
discussions of the source code, and support requests. Soft-
ware maintainers can use this information to study corrective
activities [17], developer communication [12], or knowledge
recovery [16].

Although mailing list data is often readily available online,
transforming the data into a structured format that is suitable
for subsequent analysis is a challenging task. Messages are
often stored in email archives and need to be extracted before
they can be used. However, mailing list archives contain
duplicate and invalid data, stored in raw formats, which need
further processing. Additionally, up to 98.4% of electronic
messages contain noise that threatens the applicability of
text mining approaches [15]. Researchers need to be aware
of potential pitfalls and take special care before using the
information mined from mailing list archives.

In this paper we identify difficulties that arise when
processing mailing list data. These difficulties are present
in most stages of the mining process, such as data collec-
tion, data extraction and information processing. Previous

research has noted the presence of several challenges, but
documented them only loosely, as they are a by-product of
the research work conducted, rather than the main scope.
Mining raw mailing list data yields potential risks to the
accuracy of research results and should be avoided.

The rest of the paper is organized as follows. In Section
2 we highlight the risks of using unclean mailing data by an
example mailing list analysis task. In Section 3 we present
challenges that arise when using off-the-shelf techniques for
mining of mailing list data. We present the work related to
our study in Section 4 and conclude our work in Section 5.

2. Motivating Example
Summaries of recent discussions on the mailing list can
be useful for decision makers to monitor the development
progress and to identify topics of high interest, to recover
knowledge about design decisions, an to aid the maintenance
of legacy systems.

Although mailing list data is stored in a textual way, which
humans can easily read and understand, using this data as-is
in content-based analyses yields hidden, yet severe risks for
the validity of the obtained results.

In this example we use tag clouds, a concept from in-
formation retrieval, to visualize the contents of a discussion
thread. Tag clouds display the most frequent terms weighted
by font size and color. The larger and more visible a term
is presented in a tag cloud, the higher its semantic value for
the text.

Figure 1 shows two tag clouds summarizing the contents
of the same discussion thread on the PostgreSQL mailing
list with the topic “Explicit config patch 7.2B4”, starting
at December 16th, 2001. This discussion centers around
the possibility of passing command line arguments to the
PostgreSQL server executable, which allow the user to
specify the locations of the server’s configuration files,
because many Linux distributions, besides Debian, scatter
configuration files around in the file system.

The first cloud, presented in Figure 1a, is generated
using the contents of the email messages that form the
discussion thread as-is, i.e., without prior processing of the

message bodies. The second cloud, presented in Figure 1b,
is generated from the same email messages, however the
messages were cleaned up significantly by removing attach-
ments, signatures and quotations, as well as transforming all
remaining parts into English language text.

Comparing both tag clouds, we can see that the tag
cloud generated from uncleaned mailing list data contains
a large amount of noise, which renders the interpretation
of the discussion’s contents a challenge. On the opposite,
the summary produced from the cleaned discussion thread
is much more helpful in giving a good idea of the contents
of the discussion.

3. Processing Mailing List Data with Off-the-
Shelf Techniques

Name of Level of Impact on
Challenge Automation Quality
Message Extraction Automated low
Duplicate Removal Automated high
Language Support Automated medium
MIME/Attachments Automated high
Quotes/Signatures Semi-Automated high
Thread Reconstruction Semi-Automated high
Resolving Identities Semi-Automated high

Table 1. Overview of challenges presented.

In this section we discuss challenges with using off-the-
shelf techniques for mining mailing list data. An overview is
presented in Table 1. For each challenge we assign a notion
of automation and impact on data quality. Some challenges
presented cannot be addressed in a completely automated
manner and need manual tuning before reliable results can
be obtained. We denote these as semi-automatable chal-
lenges. From a combination of automatability and the impact
on the data quality we gain an intuition of the overall severity
associated to each challenge.

3.1. Extracting Messages
Many open-source software projects store the messages
of their mailing lists in mbox files [14], which represent
textual databases that contain linear sequences of electronic
messages. These messages need to be extracted before they
can be analyzed. However, the extraction process requires
knowledge about the structure of the archive. Additionally,
competing MBOX specifications disagree on the format of
the mail archive. Both the performance of extraction tools
and the deficiencies of erroneous mailing list archives have
an immediate impact on the quality and quantity of the
extracted data.

3.2. Removing Duplicates
One essential part of any cleaning process in data min-
ing involves the identification and removal of duplicate

scatter !! things !! info !! mlw !! bool !! palloc(bufsize); !! symlinks !! configuration !! - !! looks !! -C !! } !! getopt(argc, !! specifies

!! Nov !! --- !! && !! NULL, !! reasonable. !! -r !! argv, !! Added !! reasons !! A1 !! http://www.gnupg.org !! postmaster !! * !! == !! live !! wrote

!! > !! break; !! get !! SIGNATURE !! -----END !! != !! symlinks. !! command !! + while !! wrote: !! different !! EOF) !! ___ !! allows

!! char !! 1F !! file !! postgres !! Dec !! 43 !! DataDir, !! pg_hba.conf !! 69 !! + SetDataDir(potential_DataDir); !! convenient !! + } !! put !! GnuPG

!! -- !! 093E !! stuff !! -D !! switch !! NULL !! +extern !! recursion !! admin !! setting !! 5B !! Version: !! @@ !! system !! issues !! -u !! /

path/default.conf !! see !! overides !! http://xyzzy.dhs.org/~drew/ !! + /* !! (char !! -p !! sizeof(char); !! 19 !! if !! /etc/postgresql !! directory !! note !!

\"datadir\" !! running !! PGP !! (GNU/Linux) !! \"hbaconfig\" !! file. !! ((opt !! 2001 !! 72 !! Apache !! way !! NULL; !! options !! CONF_FILE);

!! bits !! simple !! databases !! */ !! servers !! multiple !! /* !! share !! \"A:a:B:b:c:D:d:Fh:ik:lm:MN:no:p:Ss-:\")) !! blow !! + !! DataDir); !! \"To !! method !!

#include !! *) !! vendors !! E3 !! people !! + { !! 08:27:06 !! 3B !! 16 !! +# !! explicit !! debian !! data !! = !! +char !!

malloc(strlen(DataDir) !! +++ !! !! v1.0.6 !! having !! 56 !! /etc. !! 613-389-5481 !! extern !! case !! error !! strlen(CONFIG_FILENAME) !! Comment: !! line !!

diff !! easier !! certs !! given !! { !!

(a) Tag cloud generated from unprocessed email data.

Funny, !! fiat !! configuration !! PGDATA !! impose !! them. !! opinion !! keys !! long !! environment !! agrees ! resides. !! start!! variable. !! normal !!

organize !! single !! creating !! exactly !! postgresql !! original !! stuff !! described !! (My !! say !! \"pg\" !! BSD !! fruity !! me, !! real !! little !! want

!! $PGDATA/; !! sort !! specifies !! certs !! data !! Tux !! looks !! policy, !! '/etc/pgsql/pg_hba.conf' !! servers !! maintain !! (This

!! = !! week !! scattered !! patch !! layout !! linux, !! '/u01/postgres' !! give !! path !! all. !! file. !! live !! belongs, !! stuff, !! result !! way !! -p

!! sux. !! Apache !! specified, !! hey, !! reasonable. !! reasons !! it. !! damn !! options: !! utterly !! line, !! files !! consistency !! datadir !!

debian. !! method !! considering !! always. !! options !! symlinks. !! different !! 5434 !! /etc/pgsql/mydb.conf !! delivers !! me. !! /etc/

apache. !! /etc/postgresql !! overides !! things !! using, !! symlinking !! convenient !! able !! hbaconfig !! /path/
default.conf !! command !! controllable !! modssl !! undesired !! /path/name3" !! ","I !! Similarly, !! ObFlame: !! And, !!

postmaster !! Config !! directory !! discussion !! packager !! ass. !! really !! machine !! subdirectory !! distros !! bet !!

package. !! devil !! sense !! hbaconfig !! /etc/nessusd. !! logical. !! behavior !! crypto !! Debian !! set, !! 5432 !! as: !! share !! line

!! Ross !! having !! kinda !! see !! forced !! people !! pg_hba.conf ! !! pgdatadir !! /path/name2 !! guess !! get !! own. !! nice !! /path/name1 !! simple
!! setting !! rational !!

(b) Tag cloud generated from processed email data.

Figure 1. Summarizing the contents of the same dis-
cussion thread using tag clouds generated from unclean
and cleaned mailing list data.

data [10]. This step is of utmost importance when the mined
data is used in aggregation functions or frequency analyses.
Duplicate entries will result in false or potentially misleading
results. The 3 main sources of duplicate messages on mailing
lists are:

1) Network problems, i.e., timeouts, can cause a message
to be sent multiple times.

2) Software errors in the mailing list software can cause
messages to be recorded multiple times.

3) Accidental resubmission (e.g., a user clicked a “send”
button multiple times) can also result in duplicate
messages to be transferred to the mailing list.

Solutions to this challenge, e.g., similarity measures like
hashing or near-miss identification, can easily be automated.

3.3. Handling Multiple Languages
Since geographically distributed software development is
increasing in both open-source [8] and industry [7], mailing
lists are used for communication of a multitude of developers
with different cultural backgrounds and languages. Character
encodings specify how text in the writing systems of differ-
ent languages is represented in a binary form [18]. Problems
arise when the encoding of a message is ignored during
the data mining process. For instance, the name “Réné”
encoded in a French character set would be transformed to
“Rn” when treated as English text. In order to safeguard
the mined information from data loss, it is important to

determine the appropriate encoding and safely translate text
to an encoding like Unicode, which can handle multiple
languages simultaneously.

Existing internationalization solutions like the MOZILLA
character encoding detection algorithm can be used to ro-
bustly unify multi-language archives automatically.

3.4. Handling MIME Messages and Attachments

While plain text emails have the advantage of maximizing
compatibility, MIME messages offer the ability to stylize the
text and store extra information. Additionally to formatting,
the MIME standard also specifies attachments. With attach-
ments, users can transmit additional non-text data together
with their messages, e.g., documents like spreadsheets, or
electronic fingerprints.

While the MIME extension allows for specialized and
custom styled messages that can contain binary data, it
comes at the cost of making the data mining approach
more challenging, as extra mechanisms are needed to handle
these contents. A number of different composite MIME-
types exist, that have implicit semantics for the message
contents [4].

Stylized messages need to be translated from html or
rich text to a plain text format, attachments need to be
separated from the messages’ contents and stored separately,
and composite type messages need to be handled according
to their implicit semantics.

3.5. Removing Quotes and Signatures

In mailing list discussions, users usually refer to text from a
previous participant by quoting parts of the original message
to give more context and meaning to their contributions,
as S. Hambridge from Intel states in his network etiquette
guidelines [6]:
“If you are sending a reply to a message or a posting be sure you

summarize the original at the top of the message, or include just
enough text of the original to give a context.”

However, the additional text might not be desirable for
text- and data mining approaches, as it is redundant informa-
tion that has already been encountered before. Quoted text
typically begins with one or more “>” signs at the beginning
of a line - one for each level of quotation - and is easily
removed automatically.

Signatures are typically used as a “soft” proof of identity
and to indicate that no more text is following in a mes-
sage [6]. Signatures contain a variety of artifacts, such as
contact information, text graphics, famous quotes and trivia.
For instance, Google Mail [5] can be set up to include a
random quote as a signature when sending email. Many
free email services also add advertisements as a signature
when a message is sent. As a result, the information in
a signature block is often repetitive and unrelated to the

. . _ ._ . . .__ . . ._. .____ | Neighbourhood Coder

|\/| |_| |_| |/ |_ |\/| | |_ | |/ |_ |

| | | | | \ | \ |__ . | | .|. |__ |__ | \ |__ | Ottawa, Ontario, Canada

One ring to rule them all, one ring to find them, one ring to bring them all

and in the darkness bind them...

Figure 2. Sample signature extracted from a message
on the PostgreSQL mailing list.

message. Figure 2 illustrates a sample signature from a
participant on the PostgreSQL developer’s mailing list.

Current solutions to this challenge exist only as semi-
automated tools or processes that need to resort to manual
inspection and fine-tuning of parameters to yield good
results.

3.6. Reconstructing Discussion Threads
An email discussion thread is a set of messages that are
logically related, e.g., multiple answers to a question. The
messages in the set form a tree-shaped hierarchy. Whenever
a user participates in the discussion, his message becomes a
child of the message he is replying to. The initial message
starting a new topic is the root node.

However, mailing list archives commonly store messages
based on their temporal order rather than their logical
grouping. As such, the hierarchical order has to be re-
constructed after the messages have been extracted.

As an additional challenge, a user’s email client is re-
sponsible for storing unique identification information on
messages in a special header field. This header is optional,
so in practice one cannot rely on threading information to be
present. For instance, the MICROSOFT Outlook [11] email
client did not implement a message-id header until its latest
version (Outlook 2007).

Current solutions to this challenge exist only as semi-
automated processes that need to resort to manual inspection.

3.7. Resolving Multiple Identities
Some participants use multiple email addresses when taking
part in discussions on a mailing list [1]. These addresses are
aliases for individual personalities and should be resolved
before using the data. Ignoring this problem can lead to
problems when doing quantitative and social analyses.

We know of no fully-automated solution to this problem
that can reliably detect and remove signatures from email
messages.

4. Related Work
The challenges presented in this work have many implica-
tions for applications of mailing list data mining in research.
In the past, many of these challenges have been described
only anecdotical or as side-notes.

Bird et al. mine mailing lists to study social networks [1],
[2]. They identify the multiple alias problem and propose
the use of a clustering algorithm to merge identities.

Herraiz et al. identify that mining repositories of open-
source projects is a challenging task and propose general
approaches to mining these repositories [8], [13]. The ml-
stats tool used for their studies on GNOME mailing lists,
mines information from email headers.

Kolcz et al. use text-mining approaches to detect near-
duplicate email messages for spam identification [9].

Carvalho et al. use machine learners to identify signatures
and quotations in email messages [3]. While this method can
achieve good results, it needs a manual training step and
sufficiently clean training data to perform well.

Tang et al. propose methods for cleaning plain text email
messages, in order to make them accessible for text-mining
and information retrieval [15]. Their work focusses on text
transformation for natural language processing.

5. Conclusions
Mailing lists contain valuable information for maintainers of
long-lived software projects. In order to make this informa-
tion accessible for subsequent analysis steps it needs to be
processed first. Many mailing lists document multiple years
of project development. However, the email technologies
that produce this mailing list data have changed several
times over the past decade. As such, mailing lists contain
a conglomeration of messages from different revisions of
the email format. Using off-the-shelf techniques to process
this data naively yields many risks for the validity of the
resulting information.

Yet, for many of the presented issues no perfect, au-
tomated solutions exist. Email messages are substantially
different from the much cleaner text sources used in related
research areas like information retrieval. As such many
of the text cleaning techniques used in text-mining and
information retrieval cannot be readily applied to email
communication. Hence, we see an opportunity for future
work to refine mailing list data processing techniques.

References

[1] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan, “Mining email social networks,” in MSR ’06: Pro-
ceedings of the 2006 international workshop on Mining
software repositories. New York, NY, USA: ACM, 2006,
pp. 137–143.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan, “Mining email social networks in postgres,” in MSR
’06: Proceedings of the 2006 international workshop on
Mining software repositories. New York, NY, USA: ACM,
2006, pp. 185–186.

[3] V. R. de Carvalho and W. W. Cohen, “Learning to extract
signature and reply lines from email,” in CEAS, 2004.

[4] N. Freed and N. Borenstein, “Multipurpose Internet
Mail Extensions (MIME) Part Two: Media Types,” RFC
2046 (Draft Standard), Nov. 1996. [Online]. Available:
http://www.ietf.org/rfc/rfc2046.txt

[5] Google, “Gmail,” http://mail.google.com, 2009, last visited
March 2009.

[6] S. Hambridge, “Netiquette Guidelines,” RFC 1855
(Informational), 1995. [Online]. Available: http://www.ietf.
org/rfc/rfc1855.txt

[7] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter,
“An empirical study of global software development: distance
and speed,” in ICSE ’01: Proceedings of the 23rd Interna-
tional Conference on Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 81–90.

[8] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M. G.
Barahona, “The processes of joining in global distributed
software projects,” in GSD ’06: Proceedings of the 2006
international workshop on Global software development for
the practitioner. New York, NY, USA: ACM, 2006, pp.
27–33.

[9] A. Kolcz, A. Chowdhury, and J. Alspector, “Improved ro-
bustness of signature-based near-replica detection via lexicon
randomization,” in KDD ’04: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery
and data mining. New York, NY, USA: ACM, 2004, pp.
605–610.

[10] M.-L. Lee, T. W. Ling, H. Lu, and Y. T. Ko, “Cleansing data
for mining and warehousing,” in DEXA, ser. Lecture Notes
in Computer Science, T. J. M. Bench-Capon, G. Soda, and
A. M. Tjoa, Eds., vol. 1677. Springer, 1999, pp. 751–760.

[11] Microsoft, “Microsoft outlook 2007,” http://www.microsoft.
com/outlook/, 2009, last visited March 2009.

[12] P. C. Rigby and A. E. Hassan, “What Can OSS Mailing Lists
Tell Us? A Preliminary Psychometric Text Analysis of the
Apache Developer Mailing List,” in MSR ’07: Proceedings
of the Fourth International Workshop on Mining Software
Repositories. Washington, DC, USA: IEEE Computer
Society, 2007, p. 23.

[13] G. Robles and J. M. Gonzalez-Barahona, “Developer iden-
tification methods for integrated data from various sources,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, 2005.

[14] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar,
and I. Herraiz, “Tools for the study of the usual data sources
found in libre software projects,” International Journal of
Open Source Software and Processes, vol. 1, no. 1, pp. 24–45,
2009.

[15] J. Tang, H. Li, Y. Cao, and Z. Tang, “Email data cleaning,”
in KDD ’05: Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data
mining. New York, NY, USA: ACM, 2005, pp. 489–498.

[16] D. C. Čubranić and G. C. Murphy, “Hipikat: recommending
pertinent software development artifacts,” in ICSE ’03: Pro-
ceedings of the 25th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Soci-
ety, 2003, pp. 408–418.

[17] P. Weissgerber, D. Neu, and S. Diehl, “Small patches get in!”
in MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories. New York, NY,
USA: ACM, 2008, pp. 67–76.

[18] K. Whistler, M. Davis, and A. Freytag, “The unicode char-
acter encoding model,” The Unicode Consortium, Tech.
Rep. 17, November 2008.

