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Abstract—Software defects are generally used to indicate
software quality. However, due to the nature of software, we are
often only able to know about the defects found and reported;
either following the testing process or after being deployed. In
software research studies, it is assumed that a higher amount
of defect reports represents a higher amount of defects in the
software system. In this paper, we argue that widely deployed
programs have more reported defects, regardless of their actual
number of defects. To address this question, we perform a case
study on the Debian GNU/Linux distribution, a well-known free /
open source software collection. We compare the defects reported
for all the software packages in Debian with their popularity. We
find that the number of reported defects for a Debian package
is limited by its popularity. This finding has implications on
defect prediction studies, showing that they need to consider the
impact of popularity on perceived quality, otherwise they might
be risking bias.

Index Terms—defects; quality; popularity; Debian

I. INTRODUCTION

Software defect prediction is an emerging area of research,

where studies attempt to establish a relationship between a set

of factors (e.g., size) and software defects. The main motiva-

tion behind software defect prediction is assisting practitioners

identify the defect-prone locations of a software system. The

nature of the factors that are believed to predict defects is

diverse. For example, prior work investigated the impact of

static metrics [6], [9], [20], process metrics [10] and people-

related metrics (e.g., developer experience) [8] on software

quality. Due to the availability of data in free / open source

software, many of these studies are based on defects data

extracted from free / open source projects [6], [10], [20].

However, what most of the previous work actually predicts

are reported defects. In fact, in most large software systems

it is extremely difficult to know all of the defects in the

system without extensive (and practically infeasible amounts

of) testing. Therefore, research studies are based on found

defects, i.e., on perceived quality.

We hypothesize that widely deployed systems will have

more reported defects, regardless of their actual quality. To

investigate our hypothesis, we use the Debian GNU/Linux

distribution, a collection of software packages. For every

package in Debian, it is possible to know the defect reports

associated to that package, and the number of people who

installed it (and voluntarily reported it). We evaluate how

defect reports and installation counts are related, and what how

other factors such as package age, importance and profile of

the reporter (user or developer) affect the relationship between

defect reports and installation counts.

Our findings indicate the following:

• The number of defects reported for a Debian package is

limited by its installation counts.

• The age of a package, type of package and its instal-

lation priority do not influence the relationship between

installation counts and number of reported defects.

• The reporter of a defect report (whether Debian developer

or not) does not influence the relationship between the

installation counts and defect reports.

The rest of the paper is organized as follows. Section II

highlights the background and related work. Section III ex-

plains the data source used in this paper, and the software

quality process in Debian. Section IV details our methodology.

Section V presents our results. Section VI lists the threats to

validity and Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Debian has been a case study for empirical software engi-

neering research in previous occasions. Its evolution has been

studied as a particular example [17], because it is a large

software compilation driven by processes different to those

found in software development projects. The data sources that

are available in Debian have been structured into a database

for research purposes: the Ultimate Debian Database [14].

This database has already been used for software defect

research by Davies et al. [4], again focusing on the differences

between Debian as a large software compilation, compared to

a software development project. The main difference in what

regards to defects is that Debian defects are not associated to

commits in a version control system, but to packages that are

uploaded to a repository when a new defect has been fixed.

Davies et al. are the first ones to suggest a relationship between

popularity and defects, but they could not find evidence in their

data to support that claim.

Because of the availability of data, other free / open source

software projects have been used as case studies for software

defects research. Mockus et al. [11] found that the (reported)

defects density of Mozilla and Apache was lower than other

non-open source software projects, concluding that it was

an evidence of the high quality of open source software

development. Paulson et al. [15] also studied a set of open and



closed source projects, concluding that open source software

contained less (reported) defects because they were found and

fixed rapidly. Most studies (included the two aforementioned)

assume that a higher number of reports necessarily mean a

higher number of actual defects (or the other way around, that

a lower number of reported defects means a lower number of

actual defects).

Other studies based on free / open source software in-

vestigate the impact of different factors on software defects.

Gyimothy et al. [6] use several product metrics to predict fault-

proneness using different statistical methods. Using metrics as

defect predictors is of course not a new idea; as an example of

this prolific line of research, we can cite this paper by Fenton

and Ohlsson [5], and another by Zimmermann et al. [20],

where the authors created a dataset for research purposes

containing defects counts and code complexity metrics for all

the modules of Eclipse. In another example, Menzies et al. [9]

presented defect prediction models based on static attributes

such as size and complexity.

Some approaches are based on the dependencies between

modules in the system [19], and the relationships between

developers [8]. This line of works is based on the idea that

defects tend to be related to violated dependencies in the sys-

tem; Cataldo et al. [3] found that dependencies networks have

more influence in fault proneness than developers networks,

and that developers networks than syntactic networks.

However, none of the studies mentioned here consider the

impact of usage patterns and deployment issues on quality

as perceived by users. To our knowledge, the only paper to

address the impact of usage patterns is Mockus et al. [12],

where they investigated the impact of usage patterns and

deployment issues on customer perceived quality for a set of

industrial (non-open source) projects. They found that factors

such as amount of usage, hardware configurations, software

platform and deployment time could affect the probability of

observing a defect. However, they do not consider the number

of installations (or the number of users) as one of those factors.

In any case, they also remark the influence of usage patterns

and deployment issues on software defects, and the risk of

bias on defects prediction if these factors are ignored.

Bias in software quality data has also been discussed in

recent studies. Recent studies [1], [2], [13] have shown that

linkage and tagging bias might affect the results of software

quality studies.

III. SOFTWARE QUALITY IN DEBIAN

In this section, we provide an overview of the software

quality in Debian. First, we provide an overview of the Debian

software distribution. Then, we describe the Debian Popularity

Contest (Popcon) and its defect tracking system. Finally, we

outline the differences between Source and Binary packages

in Debian.

A. The Debian GNU/Linux distribution

Distributions are collections of software, where all the

different programs are integrated, solving the problem of

installing the necessary dependencies to install a particular

software package. Distributions also make it easier to install

the system from scratch, without having to get every part of the

system (kernel, shell, utilities, desktop, etc) from their original

(and dispersed) locations. These distributions retrieve the code

from third party sites, adapt and integrate it with the rest of

the distribution, and make them available to users in the form

of packages.

In the case of Debian, every package is maintained by

volunteer developers and maintainers who are in charge of

retrieving the source code from the third party sites, and main-

taining the packages, which usually contain defects reported

both by users and developers.

Packages are individually installed by users of the dis-

tribution. Users can voluntarily opt-in to the Debian Popu-

larity Contest (Popcon), which tracks the installation of all

the packages, and make some metrics available about those

installations (more details are given in the next subsection).

The advantage of Debian as a case study over other options

is the availability of users’ information through the Popcon.

Other case studies leave traces about the development and

maintenance process, but the users’ side is virtually invisible

because there are no repositories that record software installa-

tions. To the best of our knowledge, Debian is one of the few

cases tracking this information (Ubuntu is another example)

and makes it publicly available.

Regarding defects, Debian relies on the feedback provided

by users and developers to improve the quality of the system.

This feedback is done in the form of defect reports, with

reports referring to one (or more) software package, with some

minor exceptions (some reports are for internal maintenance

activities, but those are discarded in this study). Besides that,

the Debian defect tracking system is similar to other cases.

B. The Debian Popularity Contest

Debian has a user installations tracking system, that counts

software downloads, installations and removal, called the

Debian Popularity Contest (Popcon). Users can opt-in to send

a report to the Popcon server every time they install or

remove a package. Popcon statistics are used by Debian to

prioritize decisions about software packages. Packages that are

more important to its users get higher priority. For instance,

packages in the Debian DVDs are sorted in the different disks

by popularity. FTP mirrors also decide which packages to store

depending on their popularity.

In Popcon, users can report in an automatic and non-

intrusive fashion what packages they install (or remove). The

reports are sent periodically to a server through email or HTTP.

Then, the report aggregates the statistics for every package in

the distribution. The available statistics are the following:

• Installation: The number of users who installed the

software package. This is the sum of Vote and Old.

• Vote: The number of users who use the software package

regularly (in the last 30 days).

• Old: The number of users who installed but did not use

the software package regularly.



• Recent: The number of users who recently upgraded the

software package (in the last 30 days).

• No files: The number of people whose entry did not

contain enough information, e.g., because of an error in

the data transmission.

C. The Debian Bug Tracking System

In Debian, defects are reported using a specific tool, known

as reportbug, that fills the necessary fields and tags of

each defect report. Then reportbug send each report to the

Debian Bug Tracking System, where it is archived. The term

used in the project to denominate a defect is bug, which is

very usual between software developers.

Reports can be assigned to packages, or to other activities

(e.g., a request for a new package to be added to the distri-

bution). In this study, we only consider defects attached to

packages. Because of the way reportbug works, it is not

possible to have a defect report referring to a package that is

not accordingly marked with the package name in the defect

tracking system. Also a bug report can be attached to several

packages.

The name and email address of the user reporting the defect

is also recorded. Users can select the severity of the defect; this

decision is assisted by the tool, which asks questions about the

impact of the defect. Defects are automatically notified to the

maintainer of the referred package, who can take ownership

of the defect report and inquire for more information from the

user, if needed.

The packaging process consists of two main stages, which

are potential sources of defects in the packages:

• Source code retrieval from upstream.

• Source code modification to adapt it to the rest of the

distribution.

In the Debian argot, upstream means the open source project

from where the source code is taken. This open source project

is usually a third party that is not related to Debian. In this

packaging process, maintainers can unintentionally introduce

defects, because they change the source code, move files to

different locations, and in general adapt the source code to the

packaging and installation standards of the distribution. When

a defect is reported, the maintainer checks whether the defect

is specific to Debian or not. If she thinks it is not related to

Debian, she forwards the defect to upstream.

Thus, the result of a defect report can be:

• Accepted: This is a defect that has been confirmed by

the maintainer of the package. The defect is specific to

Debian, otherwise it would be forwarded. If the defect is

fixed, it will be marked accordingly when closed.

• Forwarded: The defect has been confirmed by the main-

tainer of the package, but it is not specific to Debian.

The defect is then forwarded to upstream. The defect

is not followed in the Debian defect tracking system. If

upstream releases a new version of the source code, it

will be imported when the Debian package is updated.

• Rejected: The maintainer cannot confirm the defect,

either in their own package or in the original pristine

upstream source code. The report is rejected, and the user

can decide to submit it again providing more details to

reproduce the defect.

D. Source and Binary Packages

There are two kinds of packages in Debian: binary and

source. A source package will generate one or more binary

packages. Thus, the number of binary packages is always

greater than or equal to the number of source code packages.

Since users install binary packages, Popcon statistics are

collected at the binary level. However, defects are associated

to source packages, because it is source packages where the

source code is found, and it’s a modification in the source

package that will fix the defect. Thus, we need to reconcile

binary and source packages to cross correlate data from the

defect tracking system with the popularity of packages.

With regards to Popcon statistics, the Ultimate Debian

Database [14] deals with this issue using two approaches:

Maximum popularity, the popularity of a source package

is the maximum popularity of the generated binary packages;

and Average popularity, the popularity of a source package

is the average popularity calculated using all the generated

binary packages.

Both values will be the same only if the source package

generates one binary package (or if all the binary packages

have the same popularity). We use the first approach, which

assumes that if a user has installed at least one of the binary

packages corresponding to a source package, she is also a user

of the source package. This is a fair assumption, because if

she has installed only one binary package of a source package,

and she reports a defect in that binary package, the report will

be filled against the corresponding source package.

Source packages contain some meta-information that is

useful to classify them. Among the different meta-data, are the

section, which allows us to classify the package as a library

or as a standalone application; the priority, which marks the

package as essential or optional. Packages that are essential

will irremediably have a high value of popularity, because all

users reporting to the Popcon will have installed them.

IV. METHODOLOGY

In this section, we define the metrics used in this study,

and explain how the data was retrieved and prepared for the

statistical analysis.

A. Definitions and Metrics

For our study, we analyze the relationships between

popularity (i.e., number of installations) and defects, splitting

the analysis using different criteria such as the age of the

packages, and the type of application. Here, we define the

different metrics and parameters used for the study.



1) Popularity and Defects: Let s be a source package.

This package can be installed in the system through a set of

different binary packages:

s = {bi} (1)

Popularity is defined for a binary package. We assume that

the popularity of a source package is the maximum popularity

of the corresponding binary packages. Let p be the popularity

ps = max({pbi}) (2)

Popularity can be defined through different metrics, as

detailed in the previous section

pbi = {insts|vote|old|recent} (3)

Defects are attached to binary packages, and thus indirectly

attached to source packages. Let d be a defect

d = {dj}; dj ∈ bi ∀bi ∈ s (4)

This set can be constrained to include only defects subject

to some restrictions, such as considering only fixed defects,

defects reported in the last month, etc.

The number of defects of a package is the cardinality of the

above set

nd = |d| s.t. restrictions (5)

2) Packages Age: The popularity of a package may be

affected by the age of the package since older packages

have more opportunity to attract new users. To evaluate the

influence of the age of packages, we have also calculated their

age, using the upload history data.

In contrast to what it is common in free / open source

software, when a defect is fixed, or a new version of a package

is added to the distribution, changes are not committed to a

version control system. The source package is uploaded to

the Debian servers, and the binary packages are automatically

created for the different architectures in which Debian is

available.

We use this upload history to calculate the age of a package.

Every upload record is marked with the date of the upload tu.

So the age of a package a can be defined as the difference

between the oldest date and the current date tc

a(s) = tc −min(tu) ∀tu ∈ s (6)

B. Data retrieval

The Ultimate Debian Database (UDD) [14] was used to

obtain the popularity and defects of every package in Debian

(plus some meta-information about the packages). For our

analysis, we used the dump of the UDD that was available

at its website in the first week of August 2010.

We aggregated the metrics as explained in the previous

section, and added that information to the UDD. Our unit of

analysis is the source package, i.e., we aggregated the data for

popularity, defects, etc, for every source package. This allowed

for an easy cross correlation of all the metrics and parameters

of source packages.

When measuring the defect counts (both fixed and non-

fixed), we run into the risk of double counting duplicate reports

if users have submitted different reports referring to the same

problem. We examined the data for the counts of fixed defects

and made sure they do not include duplicate reports and that

they refer to unique software issues fixed either by Debian or

upstream developers.

With the brief formalization of the analysis shown in

the previous subsection, it is easy to extract the neces-

sary data from the UDD. However, we also provide a

replication package containing all the necessary queries

to obtain the data used for this study, and the GNU

R [16] code for the plots and statistical tests shown in

this paper. The package is available at the permanent URL

http://purl.org/net/who/iht/wcre2011.

We only considered packages in the stable distribution

of Debian, that at the time of writing was the 5.0 release,

codename “Lenny”.

V. RESULTS

A. Overall analysis

Figure 1 shows a plot of the popularity and number of

defect reports for all the source packages in Lenny. Each dot

corresponds to a package; for more clarity, the overall trend

is shown as a lowess line across the dots. The plot is shown

in logarithmic scale so very popular and/or defective packages

can be compared to the rest of packages. From the figure, it

is clear that packages with a high level of popularity have a

high number of reported defects. Also, unpopular packages do

not have a high number of reported defects.

In the next subsection, we further explore the relationship

between popularity and the number of reported defect in more

detail, using diverse statistical techniques. Unless otherwise

stated, all of our reported results are significant at p ≤ 0.001.

Correlation Between Defect Reports and Popularity: The

Spearman’s rank correlation coefficient between defect reports

and popularity of a package is 0.45 (significant correlation).

We believe that the reason that the correlation is not very

strong is due to the high dispersion of the data, making it

difficult to extract a clear relationship between the popularity

and reported defects.

Comparison of Median Values: Next, we divide the sample

into groups, and test whether or not there exists a statistically

significant difference between the medians of reported defects.

We chose to test the median instead of the mean, because the

data is highly skewed.

We divided the sample in five groups, providing an even

separation based on the popularity of a package. This way,

each quantile (i.e., group) contained the same amount of

packages (one fifth of all the packages), which is a required

property to be able to apply a statistical tests for difference of

the medians. The quantiles are shown in Figure 1, where the

vertical dashed line show the values of the different quantiles.

Figure 2 shows a boxplot for each one of the groups. The

y-axis represents the number of reported defects in logarithm-

scale. Packages in group 5 are the most popular, and packages



in the group 1 are the least popular. The plot shows that the

maximum and median value of reported defects is limited by

the popularity of the packages. In other words, packages with

higher values of popularity have a higher number of reported

defects.

Table I shows the values of the mean, median and standard

deviation (of the number of reported defects) for each of the

groups. We observe that groups with higher popularity have

a higher dispersion in the data compared to packages with

lower popularity. An in depth investigation of this phenomena

showed that the cause of this dispersion is due to the fact

that packages with high popularity can have both, a low and

high number of reported defects. Packages with low popularity

always had a low number of reported defects.

The question that lingers now is whether the difference

in reported defects for the different groups is statistically

significant or not. To answer this question we performed

a Mann-Whitney-Wilcoxon test, comparing the correlative

groups. We chose to use the Mann-Whitney-Wilcoxon since

it is not sensitive to skewed data, and it does not make any

assumption about the shape of the distribution of the data. The

results are shown in Table II. The results show that all the

differences between the medians of the groups are statistically

significant.

TABLE I
DESCRIPTIVE STATISTICS OF THE FIVE GROUPS OF PACKAGES. THE

GROUPS ARE PARTITIONED AS IN FIGURE 1.

Group Mean Median St. dev.

1 7 3 14
2 11 6 21
3 17 8 33
4 32 12 60
5 126 31 300

TABLE II
COMPARISON OF THE MEDIANS FOR ALL THE GROUPS USING THE

MANN-WHITNEY-WILCOXON TEST.

Groups W p-value Different?

1 – 2 2673386 < 0.001 Yes
2 – 3 4065064 < 0.001 Yes
3 – 4 2889499 < 0.001 Yes
4 – 5 4612536 < 0.001 Yes

Based on our analysis, we conclude that packages with

very low popularity will only have a low number of reported

defects, and only packages that are very popular will have high

number of reported defects.

The number of defects reported for a Debian package

is limited by its popularity.

B. Recent Activity

In our previous analysis, we considered the total number of

installations (as a measure of popularity) and the number of
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Fig. 1. Popularity of a package against number of defects reported
(logarithmic scale). The overall trend line shows that the number of defects
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groups used in the boxplots.
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Fig. 2. Popularity of a package against number of defects reported (boxplots).
The groups are partitioned as in Figure 1.

defects reported during the whole history of Debian. Using all

of the reports might be biased. For example, older packages

might have had more opportunity to get installed and hence,

more reported defects as well. Therefore, in this section we

control for age of a package and report our findings.

In particular we focus on recent popularity data and only

defects that have been fixed (and therefore confirmed) recently.

The data in the UDD shows that the most recent defect was

fixed in August 2010. Also, if we use the “votes” field in

the popularity data, we are only considering installations in

the last thirty days. Figure 3 shows a plot of the number of

defects fixed in 2010, and the number of recent installations

(within the last 30 days). The overall trend is shown as a

line across the dots. The trend is null for the lower values

of popularity, and grows for highly popular packages. Again,

the values of the quantiles are shown as vertical dashed lines.

These lines divide the sample into five groups that contain the

same number of packages1.

Correlation Between Recent Defect Reports and Recent

Popularity: The Spearman’s rank correlation is 0.34 (sta-

tistically significant), which shows low correlation between

the two variables. However, we would like to point out here

that there is a drawback to focusing on recent activity. For

example, in our data we are counting packages that were not

1The number of dots in the plot is not the same though, because a dot can
contain several packages with the same pair of values.



1 100 10000

1
5

5
0

5
0

0

Popularity (30 days)

#
 f

ix
e

d
 d

e
fe

c
ts

Fig. 3. Popularity of packages (last 30 days) against defects fixed in 2010
(logarithmic scale).

installed at all and that did not get any defect report, which

accounts for 1, 375 packages in our sample. Ignoring those

packages the coefficient increases to 0.39. There are also some

other extreme cases (like packages with no defects and very

few installations). Removing those cases would increase the

correlation coefficient even more. However, it is difficult to set

the threshold to remove data from the sample. Therefore, we

decided to repeat the statistical analysis using boxplots and

median tests for the recent activity data.

Comparison of Median Values: Figure 4 shows the corre-

sponding boxplots for the five groups. The y-axis shows the

number of defect reports fixed during 2010 in logarithm-scale.

Although the differences between the quantiles are not as clear

as in the previous case, the plot shows that the level of defects

for popular packages is much higher than for the least popular

packages.

TABLE III
DESCRIPTIVE STATISTICS OF THE FIVE GROUPS OF PACKAGES (RECENT

ACTIVITY).

Group Mean Median St. dev.

1 2 1 3
2 2 1 2
3 3 2 4
4 5 2 14
5 13 4 51

Table III shows the values of the descriptive statistics in

each group. The first two groups have very similar descriptive

statistics. The third group is slightly different, and the fourth

and fifth groups are highly dispersed. To see if we can consider

these groups to have a different median value from a statistical

point of view, we repeat the Mann-Whitney-Wilcoxon test, and

present the results in Table IV. The results show that the first

two groups are statistically similar, and the rest of groups are

different. Only those two last groups have a higher median

number of defect reports (fixed during 2010).

In summary, our results show that once again popularity is

a limiter for the number of defects that a package will have.

This limit is not influenced by age, because in this case all the

packages had the same opportunity (in terms of elapsed time)

to be installed and to have defects reported against them.
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Fig. 4. Popularity of packages (last 30 days) against defects fixed in 2010
(boxplot).

TABLE IV
COMPARISON OF THE SAMPLES USING THE MANN-WHITENY-WILCOXON

TEST (RECENT POPULARITY AND FIXED DEFECTS).

Samples W p-value Different?

1 – 2 152267 > 0.001 No
2 – 3 130246.5 < 0.001 Yes
3 – 4 129192.5 < 0.001 Yes
4 – 5 124430 < 0.001 Yes

Even when packages have the same installation time,

the number of defect reports for a Debian package is

limited by its popularity.

C. Influence of Age on Popularity and Number of Defect

Reports

The age of a package can be a cause for bias in the results of

our analysis. Figure 5 shows the plot of the age of packages (in

number of days) against the popularity of packages (number of

installations in the last 30 days). There is a surprising pattern

in the data. The number of packages older than 1, 000 days

is much higher than younger packages. This phenomena may

be explained by the fact that the package integration process

in the stable distribution of Debian. When a package is added

to Debian, it enters the so-called unstable distribution. After

some time, it migrates to the testing distribution, and if the

package is stable enough, after some time it enters the stable

distribution. We suspect that this delay to enter the stable

distribution is the cause for the observed pattern, but this is

something that should be explored.

This issue does not influence our results, since our main

hypothesis is that popularity makes packages get more defect

reports. If we consider very young packages, which did not

have time to develop a mature community of users, the

possible lack of popularity and/or defects would not be related

to the quality of the package, but to its age.

In any case, besides that surprising pattern (i.e., packages

older than 1000 days), there is no relationship between the

recent popularity of a package and its age. In fact, the

Spearman’s rank correlation coefficient for the data shown in

Figure 5 is 0.16, which shows a very weak correlation.
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Figure 6 shows the plot of age against the number of defects

fixed during 2010. At first glance, contrarily to the previous

plot, it seems that there is some relationship between the

age and number of fixed defects. However, in this case, the

Spearman’s rank correlation coefficient is −0.01 and the p

value is higher than our threshold. This shows that there is

no statistically significant relationship between age and the

number of defects fixed during 2010.
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Fig. 6. Age of packages against number of defects fixed during 2010
(logarithmic scale).

The relationship between recent popularity and number

of recently fixed defects is not influenced by age.

D. Discrimination by Priority and Type of Package

1) Influence of packages priority: The importance of a

package can be a cause for bias in the results of our analysis.

All important packages may have high popularity because

they are part of the most typical installations of Debian. For

instance, all the packages related to the X11 server might

appear as highly popular. For source packages, there are

different levels of priority in the Debian packaging system:

required, standard, important, optional and extra.

To analyze the potential impact of this bias, we divided

our sample in two groups: Important packages (required,

standard or important priorities); and Non-important (remain-

ing packages). Figure 7 shows the plot of popularity against

defects for the important packages. It is clear that most of
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Fig. 7. Popularity of packages against number of defects. Only important
packages (logarithmic scale).
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Fig. 8. Popularity of packages against number of defects. Only packages
that are voluntarily installed (boxplot).

the important packages are very popular because they are

installed by default in the most typical systems. In this case, we

cannot really argue about defects and popularity, since users

are not voluntarily installing the packages. They do not have

the option to uninstall such packages (unless they decide to

stop using the whole system).

For the case of packages that are installed optionally, i.e.,

packages that users voluntarily decide to install, Figure 8

shows the boxplots for overall popularity and number of defect

reports. Once again, we observe that more popular packages

get a higher number of defect reports. Therefore, the presence

of important packages in the sample does not change the

observed pattern. The Mann-Whitney-Wilcoxon test shows

that the difference between all the groups are statistically

significant.

Focusing only on recent and fixed defects, and on recent

installations, yields similar results. Figure 9 shows the box-

plots of popularity (measured as number of installations in

the last 30 days) against number of fixed defects during 2010.

Again, we rarely find unpopular packages with a high number

of defects.

The Mann-Whitney-Wilcoxon test shows that the first three

groups are similar (with the same value of the median), and the

fourth and fifth group have a higher median with a difference

that is statistically significant.

2) Influence of the Type of Package: One may argue

that different types of applications may have different types

of users; users’ profile may affect the relationship between
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Fig. 9. Popularity of packages (last 30 days installations) against number
of fixed defects during 2010. Only packages that are voluntarily installed
(boxplot).

TABLE V
SECTIONS OF PACKAGES

Category Sections #

Software development devel, contrib/devel 1046

Libraries libs, contrib/libs 1273

Utilities utils, contrib/utils 820

Editors editors, contrib/editors 117

Games games, contrib/games 621

Miscellaneous misc, contrib/misc 378

popularity and number of defect reports. One kind of users

can be more prone to submit defect reports than others.

Therefore, we explore how the type of package influences

the relationship between popularity and defects. Debian pack-

ages contain a field called section which can be used to

classify packages. There are tens of different sections. We will

focus only on some selected categories: software development,

libraries, utilities, games, editors and miscellaneous. Table V

summarizes the sections included in each category, and the

amount of packages per category (non-important packages).

We only consider non-important packages, number of recent

installations, and defects fixed during 2010.

Figure 10 shows the boxplots of recent installations against

defects fixed during 2010, for each one of the considered

categories. In each category, we include five boxplots, for

each one of the five subsamples obtained by dividing the

overall sample using the quantiles, as in the previous cases.

In all the cases, the median for the fifth group is statistically

different compared to the medians of the rest of the groups

(again, using the Mann-Whitney-Wilcoxon test). The rest of

the groups have similar or different medians, depending on

each case. Therefore, the relationship between popularity and

defect reports is verified regardless of the kind of software we

are considering.

The type of application and the priority of the package

do not influence the relationship between popularity and

defects.
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Fig. 11. Popularity (last 30 days) against defects fixed during 2010, for all
the defects submitted by Debian developers (boxplots).

E. Defect Report Quality

Defect reports may not all be of the same quality. Some

defect reports may be better and more useful for developers

than others. Although there are proposals to measure the

quality of defect reports [7], [18], here we use a simple

approach: we consider defects reported by Debian developers

as having a high level of quality.

Defects are reported through email, and all Debian devel-

opers have a debian.org email account. So if a defect

is reported from a Debian email account, we consider it as

being reported by a Debian developer. We do not examine

other cases, such as Debian developers using a different email

account, or upstream developers reporting defects to Debian.

Figure 11 shows the boxplots of popularity (installations in

the last 30 days) against the number of defects fixed during

2010, reported by Debian developers. Although the difference

in the medians is very small in this case, again using the Mann-

Whitney-Wilcoxon test, shows that the median of the fifth and

fourth groups (i.e., highly popular packages) are higher than

the rest of medians (although the lower popularity groups are

more dispersed than in previous cases). The conclusion for

defects submitted by users (not using a debian.org email

address) are similar (not shown here due to space limitations).

Therefore, if we discriminate the defects by reporter, the

data still shows that the number of defect reports reported

against a package is limited by its popularity. This relationship

between popularity and defects is not affected by who reports

the defect, i.e., by the quality of the defect report. The behavior

is the same for the overall sample and for the sample of defects

submitted by Debian developers.

The reporter of a defect report (Debian developer or

user) does not influence the relationship between popu-

larity and defect counts.

VI. THREATS TO VALIDITY

Conclusion validity. All the results shown here were extracted

with statistical analysis that were significant at the p ≤ 0.001
level. To compare the medians, we have used the Mann-

Whitney-Wilcoxon test, which is robust in what regards to
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Fig. 10. Popularity (30 days) against fixed defects during 2010, for the different sections of packages. Only packages that are voluntarily installed (boxplots).

the statistical distribution of the data. Also, all the tests were

performed using samples of the same size.

On the other hand, the conclusion validity of this study

depends on the validity of the Ultimate Debian Database [14],

as we did not collect any data ourselves for this study, or

applied any measurement or instrumentation directly.

External validity. Our analysis is based only on data ex-

tracted from Debian, through the Ultimate Debian Database.

It is unclear whether the relationship between popularity and

defects can be extracted for other open source software. This

influences the kind of defects and users that are considering

for our analysis. Defects that are fixed outside Debian can

be of a different nature. We are only considering a subclass

of all kinds of defects that can be found in an free / open

source software development. To overcome this threat, the

study should be extended to other cases.

Internal validity. We are also considering that every appli-

cation is independent with regards to the measured variables

(defects, popularity). It could happen that the most frequently

installed applications are also the most complex, and that

this complexity is the cause for a higher number of defect

reports. To address this threat, we should extend our study

with additional packages metrics, to control for other variables,

such as software complexity or packages dependencies.

Construct validity. The popularity of packages is another

source of threats to the validity of this analysis. Only users that

have voluntarily opted-in can submit data to the Popcon server.

If there is any relationship between the users’ profile and the

reasons to opt-in (or opt-out), then we are only counting a

particular kind of users. However, if such relationship does

not exist, we can assume that users that submit information



to the Popcon servers are a representative subsample of the

overall population of Debian users.

This threat to the validity of our analysis can be solved

by gathering more information about the popularity of open

source systems using surveys. This approach would provide

even richer information about popularity, which is very limited

in the case of Debian (only number of installations, discrimi-

nating between old and recent events).

VII. CONCLUSIONS

In software defects research, it is often assumed that a higher

number of defect reports corresponds to a higher number of

actual defects. In this paper, we conduct a case study on

the Debian GNU/Linux distribution to study the relationship

between defects and popularity, measuring the popularity and

number of defects for a sample of more than 13, 000 packages

included in the Lenny release of Debian.

Our analysis shows that it is very difficult to find highly

defective packages if their user base is low. In other words,

only very popular packages contain a high level of reported

defects. The lack of defect reports can be related to a low

adoption of a program.

We believe that our finding have significant implications on

software defect studies based on free / open source software

data. We cannot assume that a high level of reported defects is

related to the quality of a system. More popular software will

have more defect reports, as there are more users to discover

defects. Future software quality studies should consider the

type of bias we found in this study, which we call popularity

bias.

As further work, we plan to extend this analysis with more

variables, such as package size and complexity, to determine if

the defects variable can be better explained by other variables

instead of complexity. Furthermore, we will assess how defects

predictor models are affected by this popularity bias. The

performance of the models can be affected when taking into

account the influence of popularity or installation counts; we

think that models which only predict the presence or absence

of defects (boolean models) will be less sensitive than models

predicting defects counts. Finally, we also plan to explore how

to obtain data about popularity for other cases in practice.
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