
Prioritizing The Devices To Test Your App On:
A Case Study Of Android Game Apps

Hammad Khalid,
Meiyappan Nagappan

Software Analysis and
Intelligence Lab (SAIL)

Queen’s University
Kingston, Canada

{hammad,
mei}@cs.queensu.ca

Emad Shihab
Department of Computer

Science and Software
Engineering

Concordia University
Montreal, QC, Canada

eshihab@cse.concordia.ca

Ahmed E. Hassan
Software Analysis and
Intelligence Lab (SAIL)

Queen’s University
Kingston, Canada

ahmed@cs.queensu.ca

ABSTRACT
Star ratings that are given by the users of mobile apps directly im-
pact the revenue of its developers. At the same time, for popular
platforms like Android, these apps must run on hundreds on de-
vices increasing the chance for device-specific problems. Device-
specific problems could impact the rating assigned to an app, given
the varying capabilities of devices (e.g., hardware and software).
To fix device-specific problems developers must test their apps on
a large number of Android devices, which is costly and inefficient.

Therefore, to help developers pick which devices to test their
apps on, we propose using the devices that are mentioned in user re-
views. We mine the user reviews of 99 free game apps and find that,
apps receive user reviews from a large number of devices: between
38 to 132 unique devices. However, most of the reviews (80%)
originate from a small subset of devices (on average, 33%). Fur-
thermore, we find that developers of new game apps with no re-
views can use the review data of similar game apps to select the
devices that they should focus on first. Finally, among the set of de-
vices that generate the most reviews for an app, we find that some
devices tend to generate worse ratings than others. Our findings
indicate that focusing on the devices with the most reviews (in par-
ticular the ones with negative ratings), developers can effectively
prioritize their limited Quality Assurance (QA) efforts, since these
devices have the greatest impact on ratings.

1. INTRODUCTION
Usage of Android devices has grown at a tremendous rate over

the past few years [1]. To capitalize on this growth, both small
and large companies are developing an enormous amount of appli-
cations (called mobile apps), designed to run on Android devices.
However, the top-rated or the featured apps in the app markets,
are the apps with the most downloads, and hence the most rev-
enue [2, 3]. Also the app market is very competitive, especially for
game app developers who have to compete with almost 120,000
game apps already in the Google Play store – more than any other
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category of apps. To compete in this environment, developers need
to get (and maintain) good ratings for their apps [2]. This can be
difficult since users are easily annoyed by buggy apps, and that an-
noyance could lead to bad ratings [4, 5]. Hence, app developers
need to test their apps thoroughly on different devices to avoid a
poor rating.

To make matters worse, there exists a large number of Android
devices, each with its own nuances. In fact, dealing with device
specific issues of (the many) Android devices is considered one of
the biggest challenges developers face when creating an Android
app [6]. A 2013 survey from Appcelerator, which has aggregated
results from similar such surveys in the past three years, shows that
developer interest in Android has fallen to 79% in 2013 from a
high of 87% in 2011 [7]. A staggering 94% of the developers that
avoid working on Android apps cited Android fragmentation as the
main reason [8]. Android fragmentation refers to the concern, that
since there are many devices with different screen sizes, different
OS versions, and other hardware specifications, an app that func-
tions correctly on one device might not work on a different one [9].
Joorabchi et al. [6] examined the challenges in mobile application
development by interviewing 12 mobile developers. One of main
the findings of their study is that dealing with device specific is-
sues (e.g., testing these devices) remains a major challenge for mo-
bile app developers. Even Google suggests that developers should
test their apps on actual devices before they release the app [10].
There are now even business solutions based on providing devices
remotely for testing [11]. However, with costs ranging in approxi-
mately a dollar for every 15 minutes of device time [12], the total
expense incurred to developers can get very high. These concerns
are especially worrisome for game app developers since they have
to manually test their apps on-device instead of just relying on au-
tomated tests; due to the graphical and non-deterministic nature of
video games [13].

Therefore, Android developers (and game developers in partic-
ular) need to carefully prioritize their testing and Quality Assur-
ance (QA) efforts on the most important devices. While there has
been some previous research in automated testing for Android apps
[14, 15, 16, 17], to the best of our knowledge, there has not been
any work on prioritizing testing and QA efforts on the devices that
have the most impact on the rating of an app.

We coin the term ‘review share’, which measures the percentage
of reviews for an app from a specific device. For example, a review
share of 10% means that a specific device gave 10% of all ratings
for an app. We use ‘review share’ to demonstrate the importance
of focusing QA efforts on a smaller subset of devices. Through a
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study of 89,239 user reviews for 99 free game apps from various
Android devices, we explore the following research questions:

RQ1. What percentage of devices account for the majority of
user reviews?

We find that on average 33% of the devices account for 80%
of all reviews given to a free game app. With this information,
app developers can prioritize their testing and QA efforts by
focusing on a small set of devices that have the highest po-
tential review share.

RQ2. How can new developers identify the devices that they
should focus their testing efforts on?

We find that developers can use the list of devices with the
most review share in all other gaming apps as a good indica-
tor of which devices they should focus their testing and QA
efforts on.

RQ3. Do the star ratings from different Android devices vary
significantly?

By examining the reviews from different devices for the same
app, we find that some devices give significantly lower rat-
ings. Developers can take corrective actions for such devices
or remove support for them if they see fit.

Takeaway: Developers can better prioritize their QA efforts by
picking the devices that have the most impact on the ratings of
apps. Some of these devices may give worse ratings than others
– developers can either allocate additional QA resources for these
devices, or remove support for them.

The remainder of this paper is organized as follows: Section 2
surveys the related work. Section 3 discusses in detail the data that
we analyze for our study. Section 4 presents the results of our study.
Section 5 performs further analysis on paid apps, and apps in other
categories, to see if our findings generalize. Section 6 discusses the
implications of our findings for developers. Section 7 discusses the
potential threats to the validity for our study. Section 8 concludes
the paper.

2. RELATED WORK
In this section, we present work related to Android fragmenta-

tion, work related to mobile app reviews and work related to the
testing of Android apps.

2.1 Work related to Android Fragmentation
A recent study by Han et al. manually labeled bugs reported for

specific vendors of Android devices [9]. They highlighted evidence
for Android fragmentation by showing that HTC and Motorola de-
vices have their own vendor specific bugs. They considered this
as evidence for Android fragmentation. Ham et al. came up with
their own compatibility test to prevent Android fragmentation prob-
lems [18]. They focus on doing code analysis and API pre-testing
to identify possible issues. Our study differs from their work since
we seek to help app developers determine which devices they need
to test their apps on. We determine this set of Android devices from
the user reviews of an app.

2.2 Work Related to App Reviews and App
Quality

Recent studies have examined the importance of app reviews.
Harman et al.’s pioneering work on mining the BlackBerry store,

found that there is a strong correlation between app rating and num-
ber of downloads [2]. Kim et al. also found ratings to be one of
the key determinants in a user’s purchase decision of an app [19].
Linares-Vasquez et al. show that the quality (in terms of change
and fault-proneness) of the APIs used by Android apps negatively
impacts their success, in terms of user ratings [20].

More recently there have also been studies on using the reviews
for generating feature requests from the user comments. Pagano
and Maalej [21] carried out an exploratory study on reviews from
iOS apps to determine their potential for requirements engineering
processes. There have also been studies on automatically extracting
feature requests from the user reviews [22, 23]. Our work comple-
ments the aforementioned work since our goal is to use mobile app
reviews like them, but to assist developers in determining whether
they can use a small subset of devices to test their game apps.

In a previous study, we manually analyzed and tagged reviews of
iOS apps to identify the different issues that users of iOS apps com-
plain about [4, 5]. We hope to help developers prioritize the issues
that they should be testing for. This study differs from our previous
work as we are focusing on identifying the different devices that
Android app developers should be focusing their QA efforts on.

2.3 Work Related to Testing Android Apps
Several recent studies have attempted to reduce the testing bur-

den of Android developers. One of these studies is by Kim et
al. [24] who look at testing strategies to improve the quality of
mobile apps. Agarwal et al. study how to better diagnose unex-
pected app behavior [25]. Hu et al. suggested methods for auto-
mated test generation and analysis for Android apps [14]. Machiry
et al. presented a dynamic input generation system which can be
used by developers for black-box testing [17]. There has also been
previous work which has aimed to automate testing in a virtual en-
vironment. Amalfitano et al. presented a tool which automatically
generates tests for Android Apps based on their graphical user in-
terface [15]. DroidMate is another such tool which uses genetic
algorithms to generate input sequences (i.e., user interaction, or
simulated events) [16].

While testing in a virtual environment is useful for identifying
general issues, developers also test their apps on actual Android
devices to identify device specific issues. Our work focuses on
helping developers identify the devices that have the most impact
on their rating and hence developer should focus their testing efforts
on these devices.

Previous research has confirmed the effect of Android hard-
ware and software fragmentation. In addition, recent stud-
ies have identified the importance of mobile app user re-
views. In this paper, we seek to help developers understand
how they can prioritize their QA efforts towards the devices
that have the most impact on their ratings.

3. STUDY DESIGN
In this section we discuss the data used in our study, the main

sources of this data, and the collection process for this data. The
main data used in our study are the user reviews of the top 99
Android game apps. We collect these reviews from Google Play,
which is the main market for Android apps. After collecting these
reviews, we identify the devices that these reviews were produced
from, as well as, the ratings associated with each review. Figure 1
provides an overview of the process used in our study. The fol-
lowing sections describe the data used in our study and our data
collection method in further detail.
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Figure 1: Overview of our process

3.1 Data Selection
For our study, we selected the top 99 free game apps as ranked by

Google Play. Our proposed method is general (i.e., other apps can
be examined – See Section 5 for a discussion about our analysis
across the different categories of the market). Nevertheless, we
picked these top game apps for two reasons (a) since game apps are
the most popular apps in the Android market, and thus our results
could have the greatest impact, and (b) top game app developers
like Red Robot Labs, Pocket Gems, Storm8, and Animoca (More
than 400 millions app download across their app portfolio), in an
article on TechCrunch discussed the issues they are having with
testing their apps on many devices [26]. Currently they rely on their
experience (and app analytics data when available) for choosing
30-50 devices to test on.

3.2 Data Collection
To collect the user reviews, we build a web crawler using a web

automation and testing tool called Selenium [27]. Our crawler ex-
tracts data such as the app name, the review title, the review de-
scription, the device used to review the app, and the numerical star
rating of the review. This crawler opens a new instance of the
Firefox browser, visits the URL of one of the selected apps, and
then clicks through the review pages of this app. The required in-
formation is located on each page using Xpath then stored into a
database [28]. We used a similar crawler to collect the URLs of
the top apps. This crawler is much more limited and slower than
typical web-crawling since Google Play puts heavy restrictions on
crawlers. We found this crawling approach to be the only reliable
method for extracting the reviews. All of the crawling is done using
an anonymous user.

Also, Google Play limits the total number of reviews that a user
can view to a maximum of 480 for each of the star ratings (i.e.,
a user is restricted to viewing a maximum of 2,400 reviews for
each app as there are 5 levels of ratings (5*480)). Recent work by
Pagano and Maalej shows that there exists a large amount of noise
in reviews, for example one word reviews [21]. Hence even Apps
Markets have moved to using more complex methods to calculate
a global rating or ranking of an app instead of simply summing
up all the reviews [29]. We use ‘the most helpful reviews’ as they
are considered by App stores and users, as one of the most reliable
sources of user feedback. The helpfulness is determined by other
users voting for reviews. Such crowd-based filtering helps weed
out spam reviews.
Summary of Collected Data In total we collect 144,689 reviews
(across the 5 levels of star rating) from the studied apps. From
this set of reviews, we only consider the ones that have a device
associated with them. This reduces the set of reviews to 89,239,
each submitted by a unique user. The implications of our review
selection is discussed in more detail in Section 7.2. We limit our
reviews to those given only after October 2012 to January 2013, a
3-month window since the rate of churn in devices is very high.

3.3 Preliminary Analysis
Prior to delving into our research questions, we perform some

preliminary analysis on our dataset as a whole, i.e. using data from
all 99 game apps taken together. We perform this analysis to deter-
mine whether our review dataset contains reviews from many dif-
ferent devices or a small set of devices. In other words, we would
like to determine if Android fragmentation does exist in our data or
not. For this, we look at how the reviews are distributed across the
devices, for the apps taken as a whole. Using all of the reviews, we
identify the number of reviews that each device gave.

In total, our dataset contains 89,239 reviews from 187 unique
Android devices. Out of these 187 devices, 114 of these devices
have provided more than 100 user reviews. These facts highlight
the magnitude of the Android fragmentation problem and the im-
portance of identifying the devices that give the most reviews to
apps, for prioritizing QA efforts.

4. RESULTS
Now that we have determined that our dataset contains reviews

from many different Android devices, in this section we answer our
research questions.

RQ1) What percentage of devices account for the majority of user
reviews?
Motivation: As mentioned earlier, Android fragmentation is a ma-
jor concern of developers who are seeking to develop high quality
Android apps [6, 8, 18]. There may be hundreds of devices that
developers may need to test their apps on. Testing on such a large
number of devices is not feasible for developers with limited time
and budget. Therefore, our goal is to determine what percentage of
devices account for the majority of reviews.
Approach: To answer this question, we use the reviews that we
collected for the 99 free game apps. For each review, we determine
the device that the review was posted from. Then we calculate the
‘review share’ for each device. We define ‘review share’ as the per-
centage of reviews from one device compared to the total number
of reviews from all devices. For example, a review share of 10%
means that a device gave 10% of all reviews. Initially we consider
the reviews from all apps taken together. We then determine what
percentage of devices is required to cover X% of the user reviews.
In our case, X varies from 0 to 80%.

We also examine the results by breaking down the reviews by
star ratings. Instead of looking at individual star ratings, we com-
bine 1 and 2 star reviews into a group which we call ‘bad reviews’,
and combine 4 and 5 star reviews into another group which we call
‘good reviews’. We label 3 star reviews as ‘medium reviews’. We
then calculate the review share for each device, when we exclu-
sively consider only bad, medium or good reviews.

To ensure that our grouping makes sense, we run a sentiment
analysis tool over the text of the reviews in these groups to validate
that these groupings are appropriate (i.e., ‘good reviews’ actually
have the most positive reviews and vice versa) [30]. This tool as-
signs an integer to the sentiment expressed in the reviews (where a
negative integer represents a negative review). In our case, the ‘neg-
ative reviews’ group was assigned a score of -0.32, the ‘medium
reviews’ group was assigned a score of 0.44, while the ‘good re-
views’ group was assigned a score of 1.25. These scores support
our grouping scheme.
Findings: Figure 2 shows the percentage of devices (x-axis) vs.
the cumulative percentage of reviews (y-axis) in the different rating
groups (different coloured curves). From this figure, we find that
20% of the devices account for approximately 80% of the posted
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Figure 3: Number of Android devices that account for 80% of the
reviews for each game app, compared with the total unique devices
that review the app

user reviews. This finding suggests that developers working on free
game apps, only need to focus their testing efforts on 20% of the
devices to cover the majority (i.e., approximately 80%) of the re-
views.

Observing Figure 2, we note that the bad, medium and good rat-
ings curves are very similar. After comparing how different devices
gave bad, medium and good reviews, we find that while the devices
that gave the bad ratings were fairly identical to the devices that
gave good ratings, there were a few discrepancies. The set of de-
vices that had a cumulative sum of 80% of the bad ratings, had four
devices that were not in the set of devices that gave most of the good
reviews. This finding suggests that there is additional variation in
how specific devices rate these game apps.
Discussion: From RQ1, we know that a few devices account for
most of the reviews in an app. We wanted to dig deeper and find
if a similar trend exists at the app level as well, i.e., for each app,
if most of the reviews came from a small subset of devices. The
line chart in Figure 3 compares the number of total unique devices
that rate an app, with the number of devices that account for 80%
of the reviews for that app. The top line in this chart shows the
number of unique devices. The minimum number of devices is 38,
the median is 87 devices, and while 132 is the maximum number of
unique devices that rate an app. This finding clearly indicates that
fragmentation exists even at the app level.

The bottom line in Figure 3 shows the number of devices that
account for 80% of the reviews. As this figure shows, this number
is much lower than the total number of unique devices. We find
a minimum of 13, a median of 30, and a maximum of 45 devices

accounted for 80% of the reviews, per app. While these numbers
may seem large, one would have to keep in context that Android
developers often have to think about testing their apps on hundreds
of devices, otherwise.

To get a better idea of the comparison above, we calculate the
percentage of devices that account for 80% of the reviews in each
of the 99 free game apps. We do this on a per app basis. We ob-
serve that, 80% of the reviews can be addressed by considering a
minimum of 22% of the devices, and at most 53% of the unique
devices. The average percentage of devices required to cover 80%
of the review share is 33% (and the median is 32%). This finding
indicates that app developers can cover the majority (i.e., 80%) of
the reviews by focusing their QA efforts on 33% of the devices on
average.

A small set of devices are needed to cover 80% of the re-
views. On average, 33% of all devices account for 80% of
reviews given to free game apps.

RQ2) How can new developers identify the devices that they should
focus their testing efforts on?
Motivation: Thus far, we have shown that a small percentage of
devices make up the majority of user reviews. An implication of
this finding is that, if developers carefully pick their set of focus
devices, then they can maximize the effectiveness of their QA ef-
forts. To illustrate, consider a scenario, where a team of developers
is working on a new free game app but they can only afford to
buy 10 devices to test their app on. Identifying the optimal set of
devices is even more important for such developers with limited
resources who can only afford a few devices.

One method of picking these devices is to aggregate the review
data of every top rated app in a category, and select the devices
which would lead to the most review share. This method can pro-
vide developers a working set of devices to start from, which they
can later augment with other devices. In this RQ we examine the
effectiveness of this method.

Using our app review data, we generate Figure 4 which contains
a stacked area chart that shows the percentage of reviews that 10
devices with highest review share would cover. This figure shows
that even a small number of devices, if carefully chosen (i.e., by
looking at which devices frequently post reviews for apps), can ac-
count for a considerable number of reviews – more than half of the
reviews in most cases.

This leads to the question - how can developers without any re-
views for their app pick the best set of devices that they should
focus their QA efforts on? For example, can a developer use the re-
view share data from all the top rated apps that are currently present
in the game app category? Should they just pick the most popular
devices? We explore this issue in RQ2.
Approach: To answer this RQ (working with our dataset of 99
free game apps), we identify a set of 10 devices with the most re-
view share for each app, and compare this set with the set of 10
devices with the most review share in the remaining 98 apps com-
bined. Doing so allows us to simulate an app developer who picks
the 10 devices that provide the most reviews for other apps, and
using these devices to test his or her own app. Since we have the
reviews for that appas well in our dataset, we use these reviews to
measure the review share that would be covered for an app based
on the selected 10 devices. In other words, this analysis allows us
to identify the devices that were in the set of devices that gave the
most reviews for an app, but not in the set of devices that gave the
most reviews for the rest of the group (essentially a set difference).
If such devices are identified, we sum the review share of these de-
vices to highlight the review share that the developer would have
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Figure 5: Number of devices and percent of review share missed if 10 devices with the most reviews for all the remaining apps are chosen

lost/missed if he or she had picked the 10 devices with highest re-
view share among all the other 98 apps in that category. These
results are shown in Figure 5.
Findings: Using our proposed method to prioritize the devices
works well overall. In the majority of the cases the developer will
identify the 7 most review-producing devices. Figure 5a (right box
plot) shows the distribution of these missed devices for the 99 free
game apps. We observe that the median number of missed devices
is 3 devices, with a max of 5 devices and a min of 0.

Now, we want to know what percentage of the review share
would be impacted due to these missed devices. Figure 5b (right
box plot) contains a box plot that shows the percentage of review
share impacted due to the missed devices. The median of missed
review share is 7.1%. This is not a large loss in review share, espe-
cially given that, using this method (i.e., using devices that have a
large review share in the app’s category), developers will have the
benefit of picking an adequate set of devices even before releasing
their app to the market.
Discussion: While identifying the devices with the most review
share within an app’s category is useful, some developers may opt
to pick the devices with the most overall market share (which is
posted on many mobile analytics websites, e.g., App Brain [31]) to
prioritize their QA effort. Market share is generally determined by
the number of active Android devices.

To compare this method of simply using market share to our pro-
posed method, which uses the reviews, we compare the devices

with the most market share to the devices that have the most review
share for each of the game apps. We obtain the list of devices with
the most market share from App Brain, which gives us a list of the
10 devices (shown in Table 1) for our studied time period (October
2012 to January 2013).

Figure 5a (left box plot) shows the distribution of missed de-
vices for each the 99 free game apps, when market share devices
are compared with the 10 devices that have the highest review share
for the corresponding app. We find that the median number of de-
vices missed if we consider the market share devices is 4, which is
higher than if we use review share in the app’s category. Moreover,
Figure 5b (left box plot) shows the distribution of the percentage
of review share impacted due to the missed devices. Once again,
we see that the median value is 9.8%. This rate is higher than the
median if our method was used (which has a median of 7.1%). The
difference in the number of missed devices and missed review share
between choosing our review-share method and the market-share
method is statistically significant (p-value « 0.01 for a paired Mann
Whitney U test). Our findings suggest that simply using the market
share is not sufficient, and using our method, which uses reviews
from apps in the same category can identify devices that have a
greater chance to review the app. Thus by using our method, a de-
veloper can improve the effectiveness of their device prioritization
efforts, since they will be able to identify devices that have a greater
impact on the ratings of an app.

While examining the 10 devices with the most review share in the
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Table 1: The market share of the most popular Android devices for
our studied time period (October 2012 to January 2013)

Top market share device Market share (%)

Samsung Galaxy S3 9.4
Samsung Galaxy S2 7.8
Samsung Galaxy S 2.6
Samsung Galaxy Ace 2
Samsung Galaxy Note 1.9
Samsung Galaxy Y 1.9
HTC Desire HD 1.5
Asus Nexus 7 1.1
Samsung Galaxy Tab 10.1 1.1
Motorola Droid RAZR 1.1

game category, we notice not all of the devices rate apps the same
way. This makes us wonder if some specific devices give worse
ratings than others, and thus need special attention from developers.
We explore this question next in RQ3.

Devices with the most review share across all existing top
rated game apps are a good indicator of which devices are
likely to have a large review share for each game app. Us-
ing this list of devices, a developer can focus their QA ef-
forts even before they release the first version of their app.

RQ3) Do the star ratings from different Android devices vary sig-
nificantly?
Motivation: Since different devices have varying specifications, it
could be the case that users of the different Android devices per-
ceive and rate the same app differently. Understanding how dif-
ferent devices rate apps will allow developers to understand why
their apps were given the ratings that they receive (i.e., is a device
issue or an app issue). If different devices give varying ratings,
this would imply that not all reviews of apps should be treated the
same way. With this kind of information, the app developer can
do one of two things: 1) they can either allocate even more QA ef-
forts (e.g., testing or focus group) to devices that give a poor rating,
when the revenue from that device is critical or 2) if there are not
enough users of the app on the particular device, then developers
can manually exclude these devices [32], from the list of supported
devices on Google Play. In either case knowing if certain devices
give worse ratings than others will help developers prioritize their
QA efforts even further.
Approach: We separately compare the bad (1 and 2 star reviews),
medium (3 star reviews) and good (4 and 5 star reviews) reviews
from the 20 devices with the most review share of the 99 free game
apps. For example, to compare the ratings of the devices that rated
game apps poorly, we create a table where the columns are the 99
game apps and the rows are a percentage of ratings from the top
20 devices. Each cell in the table has a bad-ratings:all-ratings per-
centage (which is the number of 1 and 2 star reviews over the total
number of reviews) given to an app, by a specific device. Table 2
is an example of such a table. For instance, the ratio 21:100 in
the cell that corresponds to the row ‘Samsung Galaxy S3’ and the
column ‘Angry Birds’, means that 21 out of every 100 ratings that
S3 devices gave to Angry Birds game were bad (i.e., 1 and 2 star
reviews). Similarly, 33 out of every 100 ratings from the ‘Samsung
Galaxy S2’ device for the ‘Temple Run’ game were bad.

To compare how the top review share devices give bad, medium
and good ratings, we use the Scott-Knott test [33]. The Scott-Knott
test is a statistical multi-comparison procedure based on cluster
analysis. The Scott-Knott test sorts the percentage of bad reviews
for the different devices. Then, it groups the devices into two dif-
ferent groups that are separated based on their mean values (i.e.,

Table 2: An example of the table used to compare bad ratings given
by devices

Device Angry Birds Temple Run

Samsung Galaxy S3 21:100 19:100
Samsung Galaxy S2 29:100 33:100

Table 3: Scott-Knott test results when comparing the mean per-
centage of bad ratings given from each device to free game apps,
divided into distinct groups that have a statistically significant dif-
ference in the mean

Group Device Mean % of bad ratings
for the device per app

G1 Motorola Droid X2 45.79

G2 Droid Bionic 39.25
Motorola Droid X 39.20
HTC Sensation 4G 39.10
HTC Evo 4G 39.03
HTC Desire HD 36.81
Samsung Galaxy Nexus 35.72
HTC EVO 3D 35.53
HTC One S 35.31

G3 Motorola Droid RAZR 33.51
Samsung Galaxy S 33.26
LG Optimus One 31.11
HTC One X 32.76

G4 Samsung Galaxy Ace 30.02
Samsung Galaxy Note 29.68
Samsung Galaxy S3 28.19
LG Cayman 28.17
Samsung Galaxy S2 27.83
Asus Nexus 7 26.90
Samsung Galaxy Y 26.78

the mean value of the percentage of bad reviews to all reviews for
each device). If the two groups are statistically significantly differ-
ent, then the Scott-Knott test runs recursively to further find new
groups; otherwise, the devices are put in the same group. In the
end of this procedure, the Scott-Knott test comes up with groups of
devices that are statistically significantly different in terms of their
percentage of bad reviews to all reviews.
Findings: The 20 devices (which we examine in this RQ) are
divided into 4 statistically significantly different groups. Table 3
shows the significantly different groups of devices as indicated by
the Scott-Knott test. Table 3 also lists the devices that are in the
group and the mean percentage of bad reviews for each of the de-
vices.

Our findings show that indeed, the users of some devices such as
the ‘Motorola Droid X2’ give more bad ratings to apps than others.
We find that this device has a significantly higher ratio of bad rat-
ings than the devices that give the least ratio of bad ratings to all
ratings (i.e., Samsung Galaxy Y). The Scott-Knott test also shows
that this device has the lowest ratio for good ratings. A reason be-
hind these poor ratings could be manufacturer specific problems.
A recent study by Han et al. provided evidence of vendor specific
problems when they compared bug reports of HTC devices with
Motorola devices [9]. A report of this device from Android Po-
lice (an Android dedicated web blog) describes its sluggish perfor-
mance and poor screen resolution [34]. The poor screen resolution
may be the main issue with this device since most game apps re-
quire a good screen resolution and performance.

On the other hand, we notice that the users of some devices such
as the ‘Samsung Galaxy Y’, ‘Asus Nexus 7’ and ‘Samsung Galaxy
S2’ give less bad ratings than other devices. To better understand
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the results, we further investigated the data to see whether the bad
reviews were given to the same app or whether the bad reviews
were given from different apps. We discover that the bad reviews
are different for all devices (i.e., it is not the same apps which are
receiving the bad ratings across the different devices). For example,
92% of all ratings given from the ‘HTC Sensation 4G’ device to the
‘Tap Tap Revenge 4’ game app are bad ratings while the median
percentage of bad ratings given by the same device is 37.5%. We
also find that none of the other top devices gave this app such poor
ratings. Thus we see that this particular app just does not work
well on the ‘HTC Sensation 4G’ device. On further examination,
we find many complaints by users of this device on the forum of the
developer of ‘Tap Tap Revenge 4’. Examining the reviews from this
device, we see that this app crashes after most major events (i.e., a
song ending in the app) [35].
Discussion: Our findings imply that developers should be aware
that a few devices may give significantly worse reviews than others.
These bad ratings may be given because the device itself provides
a poor user experience (i.e., ‘Motorola Droid X2’), or that the app
itself does not work well on a device (as in the case of ‘HTC Sen-
sation 4G’ device and the ‘Tap Tap Revenge 4’ app). In either case,
developers aware of this finding can specifically address the con-
cerns expressed in the reviews from such devices (e.g., do detailed
testing) or remove the support for such devices. We are not sug-
gesting that developers only need to test on devices that give sta-
tistically different star ratings than others; developers just need to
devote specific attention towards problematic devices. Monitoring
how different devices rate apps can reveal devices that are bring-
ing down the overall rating of an app. Additionally, our findings
suggest that the user’s perception of the quality of an app depends
on the device on which it runs. Hence research on testing Android
apps, should factor in the effect of the device.

Another possible reason why some devices give worse ratings
than others could be that those devices are simply older. Older
devices also tend to have worse hardware specifications than new
devices so the performance difference may be the main reason for
these bad ratings. To test this theory, we identify the release dates
of the 20 devices with the most review share. Then we do a corre-
lation test of their release dates and the median of the percentage of
bad ratings to all ratings for the 20 devices. Using the ‘Spearman’
correlation test we find a correlation of -0.61. Since the correlation
is negative, it means that newer devices have a lower percentage
of bad ratings. Therefore, this result implies that when it comes to
the top 20 devices, the age of the device may be a factor for bad
ratings. It is important to note here that what we are observing is a
correlation, not causation.

For the devices that give the most reviews for game apps,
we find statistical evidence suggesting that some of these
devices give worse ratings than others. Developers can
take corrective actions for such devices by allocating more
QA effort, or removing support for these devices if they see
fit.

5. GENERALIZING THE RESULTS
We focus on free game apps since this lets us examine a very

focused context, thus avoiding other confounding factors such as
cost, functionality, and end user profile. We now wish to examine
whether our findings generalize. First we compare our results of
free game apps with paid ones. Then, we compare our results for
different categories.
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Figure 6: Percent of Android devices which contribute X% (X
ranges from 0 - 80) of the reviews for all paid game apps

5.1 Comparison with Paid Game Apps
Although it is likely that many devices review the paid game apps

as well, we believe that there will be a more even distribution of
reviews among the devices. The move even distribution is because
users of paid apps may be more inclined to give reviews, since they
paid for the apps [21]. To conduct our comparison, we collected all
the reviews for the paid game apps. In total, we collected 61,996
reviews, of which 42,110 were associated with one of 159 devices.

Similar to RQ1, we identify the percentage of devices that are
needed to account for the majority of the reviews given to the paid
game apps. We use the same methods that we used in RQ2, to de-
termine an ideal method to choose the top 10 devices for focussed
QA efforts - based on the reviews from other apps, or based on mar-
ket share. We use the same method that we used in RQ3 to identify
if ratings from different devices vary, for paid game apps.
What percentage of devices account for the majority of user
reviews? For paid game apps, we find that the median number of
unique devices that review each paid game app is 50. Compared to
free game apps, which have a median of 87 devices, we find that
paid game apps have much fewer unique devices that rate an app.
In terms of percentage of devices needed to account for 80% of the
reviews on a per app basis, we find that while the median is the
same as free game apps, the range of these percentages is more for
paid game apps in comparison to free game apps. The minimum
percentage is 16.7% whereas the maximum percentage is 69.2%.

Figure 6 shows the percentage of devices vs. the cumulative
percentage of reviews in the different rating groups for all the paid
game apps taken together. Again, compared to free game apps,
we find that much less devices are needed to account for 80% of
the reviews. We find that only 12.6% of the devices are needed to
cover 80% of the reviews (compared to the 20% for the free game
apps). Our finding suggests that developers working on paid apps
should be even more attentive of their analytics since in some cases
a select few devices have a huge impact on their ratings, and hence
their future revenue.
How can new developers identify the devices that they should
focus their testing efforts on? From Figure 7a and Figure 7b, we
can see that it is indeed more beneficial to target devices based on
the review share of the other paid game apps instead of using the
market share, since we will be targeting devices that are used to re-
view the apps more. The difference in both the cases is statistically
significant (p-value « 0.01 for Mann Whitney U test). This result
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Table 4: Scott-Knott test results when comparing the mean per-
centage of bad ratings given from each device to free game apps,
divided into distinct groups that have a statistically significant dif-
ference in the mean

Group Device Mean % of bad ratings
for the device per app

G1 EeePad Transformer TF101 42.83
Motorola XOOM 41.20
HTC Evo 4G 40.32
Samsung Nexus S 39.16
Galaxy Tab 10.1 38.79
HTC Desire HD 36.55
Droid Bionic 36.26
EeePad Transformer TF300 35.69

G2 Samsung Galaxy Note 33.55
HTC Sensation 4G 33.25
HTC EVO 3D 32.33
Samsung Galaxy S 32.84
SEMC Xperia Play 31.53
HTC One S 31.29
Motorola Droid RAZR 30.29
HTC One X 29.29
Samsung Galaxy S2 29.11
Samsung Galaxy Nexus 29.04

G3 Samsung Galaxy S3 26.72
Asus Nexus 7 22.63

is similar to the result for the free game apps. However one notice-
able difference is that the number of devices missed (median of 5
devices) and the review share missed (median of 15.9%) for paid
apps when using the market share data is slightly higher than in the
case of free game apps (where the median values are 4 devices and
9.8%). Thus we can see that in the case of paid game apps, the
market share data is much less accurate in helping the developer
identify the devices to test their app on first.
Do the star ratings from different Android devices vary signifi-
cantly? For the paid game apps, we illustrate the differences in the
percentage of bad ratings from each device in Table 4. Our find-
ings show that indeed, even for paid game apps, different devices
provide different levels of bad ratings to apps. The Scott-Knott test
groups the devices into 3 statistically significantly different groups.
For example, the ‘Asus Nexus 7’ and the ‘Samsung Galaxy S3’ de-
vices give significantly better ratings to paid game apps than many
of the other devices (i.e. Motorola Xoom, EeePad TF101, HTC
Evo 4G). We also find that the set of devices that give a higher
percentage of bad ratings in paid apps is different from the set of
devices that give a higher percentage of bad ratings in free game
apps. For example, the Motorola Xoom and EeePad TF101 are not
even in the top 20 devices that review free game apps. Thus devel-
opers need to be careful about using free games apps to prioritize
their QA efforts for paid game apps, as the devices that the users
use for paid game apps do vary. Next, we examine the devices that
review apps in other categories (not just games).

Trends and results in paid game apps are similar to free
game apps as well. However, the argument for prioritiza-
tion is more pronounced in the case of paid game apps.
Therefore paid game app developers can make optimal use
of their QA budget by prioritizing their efforts based on the
share of reviews from a device.

5.2 Analysis of Apps in Other Categories
While the findings of the study so far are most relevant for de-

velopers of game apps, we want to see if our findings hold for apps

Table 5: Reviews collected and number of devices for the other 4
categories of free apps

Category # of Re-
views

# Reviews Linked
to a Device

# of devices

Business 21,365 13,901 153
Education 14,097 9,000 168

Sports 16,790 12,102 157
Entertainment 64,690 40,399 180
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Figure 8: Percent of Android devices used to give X% (X ranges
from 0 - 80) of the reviews of free apps in 5 categories

in other categories as well. More specifically, we want to examine
if the reviews of apps in the Business, Education, Sports and Enter-
tainment categories have similar patterns to those we found in our
study – this can help other developers deal with Android fragmen-
tation as well. Statistics about the data used to perform this analysis
is summarized in Table 5.
What percentage of devices account for the majority of user
reviews? Figure 8 shows the percentage of devices vs. the cumu-
lative percentage of reviews in the different rating groups for each
of the 5 categories. We find that when considered together, 21.1%,
22.2% and 22.6% of the devices account for 80% of the reviews
given to apps in the Entertainment, Business and Education cate-
gories respectively. For apps in the Sports category, only 17.1%
of the devices account for 80% of the reviews. These numbers are
similar to the 20% in the free game apps category. Similar to game
apps, these findings imply that developers working on these cate-
gories only need to focus on a small subset of devices to cover the
majority of the reviews given to their apps. Our finding suggests
that developers working on apps in categories other than games
can also greatly improve their efficiency by focusing on the few
important devices since these devices make up the majority of the
reviews given to an app.
How can new developers identify the devices that they should
focus their testing efforts on? Similar to our results for free game
apps, we find that developers get more coverage of the reviews, if
they focus on the devices with the most review share instead of the
devices with the most market share. We find that by focusing on
the devices with the most review share, instead of the devices with
the most market share, developers can gain an extra 7.69%, 8.51%,
6.48%, 7.91% review coverage on apps in the Business, Education,
Entertainment and Sports categories respectively.
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Figure 7: Number of devices and percent of review share missed if 10 devices with the most reviews for all the remaining paid game apps
are chosen

Do the star ratings from different Android devices vary signifi-
cantly? We now compare how different devices review free apps in
Entertainment, Business, Sports, Game and Education categories.
Using the Scott-Knott test, we observe that the variation of ratings
from different devices is also present for the apps in these cate-
gories of apps. In each category, the Scott-Knott test divided the
set of devices into four statistically significantly different groups
based on the percentage of bad reviews to all reviews in an app.
We note that many of the devices that give the most ratings to apps
in these categories vary in terms of their bad and good rating. We
also note that the Asus Nexus 7 gave more bad ratings, and less
good ratings for the apps in the Entertainment category than it did
in the game category. The fact that the Asus Nexus 7 gave more bad
ratings in the Entertainment category may be because it is a tablet
and not all apps scale well to larger screens, indicating that some
devices may rate apps in different categories with varying criteria.
Our findings further suggest that developers working on Android
must be attentive of their analytics as it could help them identify
problematic devices.

After comparing the results of our RQs for the free game apps,
with paid game apps and apps in four other categories, we find
evidence that our results do generalize. Our finding suggests that
developers working on apps in other categories can also use our
methods to better prioritize their QA efforts.

When working on apps in the Entertainment, Business,
Sports, and Education categories, developers only need to
focus their testing efforts on a small set of devices to cover
the majority of the reviews for their apps. Moreover, we
find that many of the devices give different ratings to apps
in these categories.

6. IMPLICATIONS FOR DEVELOPERS
While we think that the results from this study will be useful

for developers, device usage may have changed by the time most
developers view this study. The change is because of the rapid
growth and evolution of the mobile industry where newer devices
are constantly being released [1]. Thus, developers should focus
on our general findings and method rather than the device specific
results.

For example, developers can take away the idea of prioritizing
their QA efforts on a subset of impactful devices rather than all de-
vices. Moreover, they can use our method of analyzing reviews per
device to potentially identify devices that consistently give poor rat-
ings. Once developers identify these problematic devices, they can
remove support for them to avoid additional QA and their bad re-
views all-together. If developers feel that the additional downloads
(which can generate high ad revenue) from these devices are worth
potentially lower average ratings, they can allocate additional QA
resources for these devices.

While it is ultimately up to the developers to decide how they
are going to prioritize their QA efforts, we think that focusing on
the devices that have the most impact on the app’s ratings is an
effective method (especially because ratings are directly correlated
to the number of downloads [2], and thus the revenue generated by
apps).

7. THREATS TO VALIDITY
In this section we discuss the perceived threats to our work and

how we address them.

7.1 Construct Validity
We compared the bad, medium and good reviews given from

different devices to identify if certain devices give different (and
worse) ratings than other devices. Note that we are not raising a
causal link here in the paper. We are not claiming that an app gets
a poor rating because of a device. We are just saying that apps get
rated frequently and sometimes poorly from a small set of devices.
This is similar to the vast literature on using software metrics for
QA prioritization. Such literature do not claim a causal link be-
tween software metrics and software defects, but just suggest that
software metrics like churn can be used to prioritize QA efforts.
The underlying reason for poorer or more frequent reviews from a
particular device could be the hardware specification of the devices,
the OS running on the devices, or just that the people using a par-
ticular device may have a specific profile. More research has to be
conducted to identify the underlying causes. Note that data on user
profile or which OS version is running on a device is currently not
available openly to be mined by researchers. Hence, a major data
collection effort has to be launched to examine these underlying
factors.
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7.2 Internal Validity
Since we limited our reviews to only the reviews from a few

months (i.e., October, 1st, 2012 till January, 15, 2013), our data
may not accurately represent ratings for the entire year or the entire
life of devices. However, to mitigate this threat, we made sure to
apply statistical tests, where applicable, to ensure that our findings
are statistically significant. Also note that we extract the device in-
formation from user reviews. This information, as far as we can
tell is very accurate, and cannot be faked, since a user cannot man-
ually change this information when posting a review. The device
information is automatically taken from the device from which the
review is posted.

Since we require reviews to contain the device information, we
had to ignore reviews that were not linked to a device. To determine
the impact of this issue on our findings, we measured the average
rating from reviews that were linked to a device and reviews that
were not linked to a device. We found that for free game apps,
the average rating for reviews that were linked to a device is 3.22,
while it is 3.43 for reviews that were not linked to a device. For
paid game apps, the average rating for reviews linked to a device
is 3.53, while it is 3.52 for reviews that are not linked to a device.
If we consider all of the apps, not just game apps, we found that
the average rating for reviews that are linked to a device is 3.37 and
for reviews that are not linked to a device is 3.51 (and we found
similar results when we took each category of apps separately). We
performed the Wilcoxon statistical significance test and found that
there is a statistically significant difference for free game apps and
all apps, however, there is no statistically significant difference for
paid game apps. In all statistically significant cases, we find the
rating tend to be lower for reviews that are linked to a device. This
finding indicates that reviews that are linked to a device are more
critical, and hence, are more important to developers who are trying
to avoid negative reviews.

User reviews can contain some spam reviews that serve as noise
in our dataset [21]. To mitigate this issue and ensure the quality
of the reviews used in our study, we selected the ‘most helpful re-
views’, since they provide us with the most reliable information.

All of our findings are derived from user reviews. In certain
cases, user reviews may not directly correlate with other measures
of quality such as defects, for example. However, prior research
showed that user reviews are directly correlated with app revenues
(even for free apps, which make their money through ads). There-
fore, we believe that using user reviews is a good proxy of success
of an app.

7.3 External Validity
Since our study was performed on 99 mobile apps, our results

may not generalize to all game apps. To address this threat, we pick
apps which are labeled as ‘Top apps’ by Google Play. We feel that
these apps are an appropriate representation of the apps in the game
category, and a better choice than hand picking apps. In addition we
extended our study to paid game apps, and free apps from four other
app categories in Google Play. We found that, our results were
often consistent, and sometimes even more pronounced in these
apps, when compared to our results for free game apps.

Given that the Android OS and app ecosystems are quickly evolv-
ing, the device specific analysis in this paper may not be applicable
in a few years (or even months). However, we would like to empha-
size that the main takeaways from this study are not about specific
devices, but are about our generalizable method for prioritizing QA
efforts.

7.4 Conclusion Validity
We assume that testing apps or conducting focus groups for cer-

tain devices will find problems (e.g., bugs) which can be fixed by
the developer of an app, thereby improving the quality and hence
the revenues of the app. Even though it may seem logical, it still
is an assumption. For example, we did not verify whether the test
effort prioritization does actually improve quality or increase rev-
enues. However, this assumption (testing finds bugs that can be
fixed to improve quality) is the basis for most testing efforts. Nev-
ertheless more indepth studies are needed to study such assump-
tions.

8. CONCLUSION
This study seeks to help game app developers deal with Android

fragmentation by picking the devices that have the most impact on
their app ratings, thus aiding developers in prioritizing their QA ef-
forts. By studying the reviews of game apps, we find that a small
percentage of devices account for most of the reviews given to
apps. Thus, developers can focus their QA efforts on a small set
of devices. New developers can use data from other apps in the
same app category to prioritize their testing and other QA efforts
if they do not already have reviews for their app. We also find that
some devices give statistically significantly worse ratings than oth-
ers. Therefore, developers should identify particularly problematic
devices, and prioritize their QA efforts even further towards such
devices. Finally we find that the results from the free game cate-
gory to generalized to paid game apps, and free apps in the four
other categories that were examined.

In conclusion, developers can adopt our method of analyzing An-
droid app reviews in order to effectively alleviate the QA challenges
brought forth by Android fragmentation. In future work, we would
like to investigate the problems reported from each device, and why
certain Android devices have certain kinds of problems.
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