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Pull-based development has enabled numerous volunteers to contribute to open-source projects with fewer
barriers. Nevertheless, a considerable amount of pull requests (PRs) with valid contributions are abandoned
by their contributors, wasting the effort and time put in by both the contributors and maintainers. To better
understand the underlying dynamics of contributor-abandoned PRs, we conduct a mixed-methods study using
both quantitative and qualitative methods. We curate a dataset consisting of 265,325 PRs including 4,450
abandoned ones from ten popular and mature GitHub projects and measure 16 features characterizing PRs,
contributors, review processes, and projects. Using statistical and machine learning techniques, we find that
complex PRs, novice contributors, and lengthy reviews have a higher probability of abandonment and the rate
of PR abandonment fluctuates alongside the projects’ maturity or workload. To identify why contributors
abandon their PRs, we also manually examine a random sample of 354 abandoned PRs. We observe that the
most frequent abandonment reasons are related to the obstacles faced by contributors, followed by the hurdles
imposed by maintainers during the review process. Finally, we survey the top core maintainers of the studied
projects to understand their perspectives on dealing with PR abandonment and on our findings.
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1 INTRODUCTION
Pull-based development has been popularized by social coding platforms such as GitHub and is
widely adopted by distributed software teams, especially within the open-source community [25].
In this development model, developers fork a project (i.e., create a personal copy of the project)
before making their changes. Whenever ready, the developers request their changes to get merged
into the project by submitting a Pull Request (PR). The maintainers then review the PR and decide
whether to merge it into their project. Compared to traditional methods, pull-based development
reduces the time taken to review and merge the contributions [25, 81].
The streamlined contribution mechanism enabled by PRs has encouraged numerous external

developers to contribute to open-source projects with fewer barriers [25, 57, 81]. However, an
industrial report [11] estimates that 8% of PRs are wasted and never merged. Such PRs are either
rejected by the maintainers or abandoned by their contributors. In contrast to rejected PRs, aban-
doned PRs are valid contributions that are not finalized because their contributors have left the
review process unfinished. Unfortunately, abandoned PRs waste a considerable amount of time
and effort that is often put in both by the contributors to prepare and submit such PRs and by the
maintainers to manage and review them.
The literature has extensively studied how various technical, social, and personal factors influ-

ence the acceptance and review process of PRs. However, PR abandonment as a challenge that
results in a great opportunity cost for the open-source community, especially for the contribu-
tors and the reviewers of abandoned PRs, has only recently received attention from Li et al. [45].
Based on a survey of open-source developers, they explained how abandoned PRs impact project
maintainers and discussed why developers abandon their PRs. While their findings shed light on
PR abandonment from the perspective of developers, the influence of the factors related to PRs,
contributors, review processes, and projects on PR abandonment is still unknown.

To gain a better andmore comprehensive understanding of the underlying dynamics of contributor-
abandoned PRs, we conduct a mixed-methods study using both quantitative and qualitative methods
[10]. For the sake of brevity, we refer to external contributors as contributors throughout the paper.
First, we curate a dataset consisting of 265,325 contributor PRs from ten popular and mature
GitHub projects (namely, Homebrew Cask, Kubernetes, Kibana, Ansible, DefinitelyTyped, Rust,
Odoo, Legacy Homebrew, Elasticsearch, and Swift). Then, we devise heuristics to identify 4,450
candidate PRs with a high chance of being truly abandoned by their contributors. Next, we measure
16 features to characterize the PRs, their contributors, their review processes, and their projects for
our quantitative analyses. We aim to answer the following three research questions in this paper:

RQ1: What are the significant features of contributor-abandoned PRs in the studied
projects? We find that contributor-abandoned PRs are usually more complex, their con-
tributors are usually less experienced, and their review process is usually lengthier than
nonabandoned PRs. Furthermore, as the projects mature, contributor-abandoned PRs have
become more frequent in three projects (i.e., Kubernetes, Swift, and DefinitelyTyped) and
less frequent in five other projects (i.e., Kibana, Ansible, Elasticsearch, Odoo, and Homebrew
Cask).

RQ2: How do different features impact the probability of PR abandonment in the studied
projects? We find that the features of the review process, contributor, and project are more
important in predicting PR abandonment than the features of PRs themselves. Specifically,
PRs with more than three responses from the participants or the contributors, and those
submitted by novice contributors are more likely to get abandoned. Also, the abandonment
probability changes as the projects evolve, with half of the projects showing a decrease in
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abandonment in their mature stages and the other half showing an increase in abandonment.

RQ3: What are the probable reasons why contributors abandon their PRs in the studied
projects?We find that the most frequent abandonment reasons are related to the obstacles
faced by contributors followed by the hurdles imposed by maintainers during the review
process. Specifically, difficulty addressing the maintainers’ comments, lack of review from
the maintainers, difficulty resolving the CI failures, and difficulty resolving the merge issues
are the most common reasons why contributors abandon their PRs.

Our Contributions. In summary, we make the following key contributions in this paper:
• We identify the features of PRs, their contributors, their review processes, and their projects
that significantly differ between abandoned and nonabandoned PRs.

• We rank the features based on their relative importance for predicting PR abandonment and
describe how different values of these features vary the predicted probability of abandonment.

• We identify the probable reasons why contributors abandon their PRs and survey the core de-
velopers of studied projects to understand their perspectives on dealing with PR abandonment
and our findings.

• To promote the reproducibility of our study and facilitate future research, we also share our
dataset at https://doi.org/10.5281/zenodo.4892277.

Paper Organization. The remainder of this paper is organized as follows. Section 2 presents our
research methodology and Section 3 to 5 present our findings for each research question. Then,
Section 6 reports the perspectives of maintainers on dealing with PR abandonment and our findings.
Next, Section 7 further discusses our findings and Section 8 reviews the related work. Finally,
Section 9 discusses the limitations of our study and Section 10 concludes the paper.

2 METHODOLOGY
In the following, we explain how we design our study (Section 2.1), select the study projects
(Section 2.2), collect the required data (Section 2.3), identify abandoned PRs (Section 2.4), and
extract features from PRs (Section 2.5).

2.1 Study Design
To gain a more comprehensive understanding of the underlying dynamics of contributor-abandoned
PRs, we conduct a mixed-methods study using both quantitative and qualitative methods [10].
First, we perform statistical analysis to identify the significant features of abandoned PRs in RQ1
(Section 3). Then, we use machine learning techniques to determine the relative importance of the
features and describe how each feature varies the predicted probability of abandonment in RQ2
(Section 4). Finally, we manually examine a random sample of 4,450 abandoned PRs to identify the
reasons why contributors abandon their PRs in RQ3 (Section 5).

2.2 Studied Projects
For our study, we need open-source projects that are popular among the community and have a
rich history of adopting pull-based development. For this purpose, we rely on GitHub as a pioneer
in supporting the pull request model and the largest open-source ecosystem [18], which have also
been the subject of many software engineering studies [36]. To focus on the most popular projects,
we use the number of stars as a proxy [4, 5] and retrieve the list of the top 1,000 most-starred
projects. Among these projects, we focus on the top ten with the most number of PRs to ensure
that each project has enough historical data for our study. As shown in Table 1, the studied projects
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Table 1. Overview of the projects selected to study contributor-abandoned PRs.

Project PRs Stars Contributors Months Domain Language(s)

Homebrew Cask 78,446 17,077 7,246 98 Package Manager Ruby
Kubernetes 56,721 66,644 3,628 71 Container Orchestration Go
Kibana 43,324 14,313 896 87 Analytics Dashboard TypeScript
Ansible 42,338 43,333 7,168 98 Automation Platform Python
DefinitelyTyped 38,645 28,316 13,866 91 Type Definitions TypeScript
Rust 38,361 45,261 3,181 116 Programming Language Rust
Odoo 38,241 17,636 1,822 72 Business Apps JavaScript, Python
Legacy Homebrew 33,577 27,786 7,904 75 Package Manager Ruby
Elasticsearch 33,411 49,134 2,350 116 Analytics Engine Java
Swift 31,984 51,831 974 54 Programming Language C++, Swift

cover multiple application domains and programming languages, with each project having at least
14 thousand stars, 31 thousand PRs, 800 external contributors, and 4 years of PR history.

2.3 Data Collection
To identify abandoned PRs, we require the timeline activity of PRs, which records all the events
during the lifecycle of a PR. For this purpose, we use the PyGithub package [34] to retrieve the
required data from GitHub. On May 30th, 2020, we collected the timeline, commits, and changed
files metadata [20, 21] for the 435,048 PRs of the studied projects.

2.4 Abandoned PRs Identification
After collecting the PRs data, we need to identify those abandoned by their contributors. Each PR in
GitHub has one of the following three states: (i) open indicates that the PR is not finalized and might
be in progress, (ii) closed indicates that the PR is either rejected by the maintainers or abandoned
by its contributor, and (iii) merged indicates that the PR is merged into the project. Abandoned PRs
are a subset of the open or closed PRs that are wasted because their contributors have left them
unfinished. The contributors of such PRs may either explicitly declare their abandonment decision
or implicitly stop addressing the maintainers’ comments. The maintainers often employ bots like
Stale [23] to close abandoned PRs after a period of inactivity [73], or they manually find and close
the abandoned PRs.
However, GitHub does not assign a specific status for abandoned PRs to explicitly distinguish

them from nonabandoned ones. Therefore, we cannot simply retrieve the list of abandoned PRs
neither directly through the GitHub API [22] nor using existing archives such as GHTorrent [24]
and GH Archive [28]. Therefore, we resort to heuristics to identify abandoned PRs based on the
collected metadata. Heuristics are not guaranteed to be optimal and are subject to an inherent
trade-off between their accuracy and completeness [37]. To determine the best balance between
the precision and recall of our dataset, we experimented with different heuristics before finalizing
the following:

Step 1: Exclude PRs from core developers. Our study focuses on contributions from external
developers, which are more prone to get abandoned. Therefore, we exclude the PRs from core
developers to focus on external contributions. GitHub defines different roles for the authors of PRs
within a project [19]. Among these roles, owner refers to the owners of the project, member refers
to the members of the organization owning the project, and collaborator refers to those invited to
collaborate on the project. Since these three roles typically have push/merge permissions within a
GitHub repository, we consider them as core developers and exclude their PRs from our dataset.
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Step 2: Exclude PRs from deleted accounts. GitHub allows its users to remove their accounts
permanently and afterward refers to the contributors of PRs from such accounts as ghost. Since
there is no straightforward way to distinguish between the contributors of such PRs [36], we
exclude them from our study.

Step 3: Exclude recently updated PRs. To minimize the chance of marking PRs that are still
in progress as abandoned, we exclude the PRs that their contributors have recently updated. To
be conservative, we exclude the PRs that their contributors have updated (i.e., new comments or
commits) within the last six months of the data collection date (i.e., May 30th, 2020).

Step 4: Exclude merged PRs. We consider merged PRs as not wasted and thus not abandoned.
However, the maintainers may not always use the merging methods provided through the GitHub
interface to merge PRs. To account for such PRs, we resort to heuristics similar to Kalliamvakou
et al. [36]. Specifically, we exclude the PRs with a merged status (i.e., merged using the GitHub
interface) and those PRs that are closed without a merged status, but have a merged commit inside
the project that references them (e.g., “Close #123”).

Step 5: Search keywords in discussion comments. As the last step for identifying abandoned
PRs, we rely on keyword searching within all the discussion comments of PRs similar to Li et al.
[45]. First, we remove code snippets and reply quotes from these comments and then search for
keywords representing the unresponsiveness of contributors. To determine such keywords, we
consider the keywords used in Li et al. [45] as our initial set. Then, we manually examine a sample
of known abandoned PRs from our studied projects and iteratively refine our keywords. Finally, we
find the following keywords are commonly used to refer to abandoned PRs:

{abandon, stale, any update, lack of update, no update, inactive, inactivity,
lack of activity, no activity, not active, lack of reply, no reply, lack of
response, no response}.

Using our heuristics, we identified 4,450 abandoned PRs among the curated 265,325 PRs. As with
any heuristic, ours may return some nonabandoned PRs (i.e., false positives), given that the review
process of PRs often involves social interactions between the contributors and the reviewers before
getting finalized. To validate the quality of our dataset, we manually analyze 100 PRs (10 PRs from
each project) to verify if they have been truly marked as abandoned. We find seven false positives
out of the 100 examined PRs as these PRs were rejected while including the keywords representing
abandonment (e.g., [48]). Still, we believe that a false-positive rate of 7% gives us enough confidence
to rely on this dataset for our study.

2.5 Feature Extraction
To identify the features that are possibly associated with PR abandonment, we consult the literature
on pull-based development [26, 78–80]. As shown in Table 2, we extract 16 features covering four
different dimensions: (i) PR features, (ii) contributor features, (iii) review process features, and (iv)
project features. In the following, we describe the extracted features for each dimension in more
detail.

PR Features:
Description Length. The description length of PRs is found to negatively impact their acceptance
probability and review time [77]. We aim to understand whether PRs with shorter descriptions
are more frequently abandoned than verbosely described PRs. To characterize a PR’s description
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Table 2. Overview of the features extracted to characterize PRs, their contributors, their review process, and
their projects.

Dimension Feature Description

Pull Request

pr_description Number of words in the title and description of the PR
pr_commits Number of commits during the lifecycle of the PR
pr_changed_lines Number of changed lines during the lifecycle of the PR
pr_changed_files Number of changed files during the lifecycle of the PR

Contributor

contributor_contribution_period Number of months since the first PR of the contributor in the project
contributor_pulls Number of prior PRs by the contributor in the project
contributor_acceptance_rate Ratio of previously merged PRs by the contributor in the project
contributor_abandonment_rate Ratio of previously abandoned PRs by the contributor in the project

Review Process

review_response_latency Number of days till the first response in the PR
review_participants Number of participants during the lifecycle of the PR
review_participants_responses Number of responses by the participants during the lifecycle of the PR
review_contributor_responses Number of responses by the contributor during the lifecycle of the PR

Project

project_age Number of months since the starting date of the project
project_pulls Number of prior PRs in the project
project_contributors Number of prior contributors in the project
project_open_pulls Number of open PRs in the project at the submission time of the PR

length, we measure the number of words that have been used in its title and description (denoted
by pr_description).

Change Complexity. The complexity of changes has been extensively shown to negatively impact
the acceptance probability and the review time of PRs [39, 64, 71, 76, 77]. We aim to understand
whether complex PRs are more prone to get abandoned. To characterize a PR’s change complexity,
we measure the number of commits that have been submitted during the PR’s lifecycle (denoted by
pr_commits); the number of lines (denoted by pr_changed_lines); and the number of files (denoted
by pr_changed_files) that have been changed (i.e., additions or deletions) as part of the submitted
commits.

Contributor Features:
Experience Level. The experience of contributors has been extensively shown to positively impact
the acceptance probability and the review time of PRs [25, 39, 64, 77]. We aim to understand whether
more experienced contributors are less likely to abandon their PRs. To characterize a contributor’s
experience within a project, we measure the number of months that have been elapsed since the
first submitted PR of the contributor to the project (denoted by pr_contribution_period); the number
of PRs that the contributor has previously submitted to the project (denoted by contributor_pulls);
and the ratio of the previously submitted PRs by the contributor that had been merged into the
project (denoted by contributor_acceptance_rate).

Abandonment History. To the best of our knowledge, the abandonment history of contributors
has not been previously studied.We aim to understandwhether contributors who have a long history
of abandonment are more likely to abandon their PRs. To characterize a contributor’s abandonment
history within a project, we measure the ratio of the previously submitted PRs by the contributor
that we have marked as abandoned in the project (denoted by contributor_abandonment_rate).

Review Process Features:
Response Latency. The response latency is found to negatively impact the acceptance probability
and the review time of PRs [76, 77]. We aim to understand whether PRs that take longer to receive a
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first response from the reviewers are more likely to get abandoned. To characterize a PR’s response
latency, we measure the number of days that have been taken to receive their first response (i.e.,
comment or review) from the participants (denoted by pr_response_latency).

Participants Activity. The activity of participants (i.e., anyone participating in the review process
except the contributor) is found to negatively impact the acceptance probability of PRs [39, 71]. We
aim to understand whether PRs with a higher activity from their participants are more likely to get
abandoned. To characterize the participants’ activity in a PR, we measure the number of participants
in its review process (denoted by review_participants); and the number of responses (i.e., comments
or reviews) that have been submitted by the participants (denoted by review_participants_responses)
during the review process.

Contributor Activity. Similar to the participants’ activity, we aim to understand whether PRs
with a higher activity from their contributors are also more likely to get abandoned. To characterize
the contributor’s activity in a PR, we measure the number of responses (i.e., comments or self-
reviews) that the contributor has submitted during the review process of the PR (denoted by
review_contributor_responses).

Project Features:
Maturity Level. The maturity of projects is found to have a mixed impact on the acceptance
probability and the review time of their PRs [71, 77]. We aim to understand whether the rate of
abandoned PRs changes as projects become more mature. To characterize a project’s maturity,
we measure the number of months that have been elapsed since the creation date of the project
until the submission date of the PR (denoted by project_age); the number of PRs that have been
previously submitted to the project (denoted by project_pulls); and the number of developers who
have previously contributed to the project (denoted by project_contributors) at the submission time
of the PR.

MaintainersWorkload. Theworkload of maintainers is found to negatively impact the acceptance
probability and the review time of PRs [76, 77]. We aim to understand whether the high workload of
maintainers increases the rate of abandoned PRs. To characterize a project’s workload, we measure
the number of submitted PRs that were still open at the submission time of the PR (denoted by
project_open_pulls).

3 RQ1: WHAT ARE THE SIGNIFICANT FEATURES OF CONTRIBUTOR-ABANDONED
PRS IN THE STUDIED PROJECTS?

PR abandonment is a challenge that results in a significant opportunity cost for the open-source
community, especially for the contributors and the reviewers of abandoned PRs. A recent study by
Li et al. [45] has surveyed open-source developers to explain why PRs become abandoned. However,
the influence of different factors on PR abandonment has not been studied yet. As our first research
question, we aim to understand which features of PRs, their contributors, their review processes,
and their projects are associated with PR abandonment. Specifically, we want to investigate how
significantly abandoned PRs differ from nonabandoned ones.

3.1 Approach
We perform statistical analyses to identify the significant features of abandoned PRs compared with
nonabandoned PRs. First, we compare the distribution of the extracted features between abandoned
and nonabandoned PRs and then test their statistical and practical significance. In the following,
we explain each step in more detail:
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Step 1: Compare distribution of features. To compare the distribution of features between aban-
doned and nonabandoned PRs, we generate violin plots [32] for each project using the ggstatsplot
package [54]. The generated plots for each feature are presented in Appendix A, specifying their
median values (denoted by 𝑀), interquartile ranges (the box inside the violin), and probability
densities (the width of the violin at each value).

Step 2: Test statistical significance of features. To test the statistical difference between the
features of abandoned and nonabandoned PRs, we apply the Mann–Whitney 𝑈 test [49] with a
95% confidence level (i.e., 𝛼 = 0.05). We use this nonparametric test because we cannot assume the
distribution of our features to be normal. To calculate this statistic, we use the stats package [59]
and add the results to the plots generated in Step 1. For easier comparison, we denote 𝑝 < 0.05
with *, 𝑝 < 0.01 with **, and 𝑝 < 0.001 with ***.

Step 3: Test practical significance of features. While statistical significance verifies whether a
difference exists between the features of abandoned and nonabandoned PRs, we also need to test
their practical difference [38]. For this purpose, we use Cliff’s delta [8] to estimate their magnitude
of difference (i.e., effect size). The value of Cliff’s delta (denoted by 𝑑) ranges from −1 to +1: a
positive 𝑑 implies that the values of the feature in abandoned PRs are often greater than those of
nonabandoned PRs, while a negative 𝑑 implies the opposite. To calculate this statistic, we use the
effectsize package [2] and add the results to the plots generated in Step 1. For easier comparison,
we convert the 𝑑 values to qualitative magnitudes based on the following thresholds as suggested
by Hess and Kromrey [31]:

Effect size =


Negligible, if |𝑑 | ≤ 0.147
Small, if 0.147 < |𝑑 | ≤ 0.33
Medium, if 0.33 < |𝑑 | ≤ 0.474
Large, if 0.474 < |𝑑 | ≤ 1

3.2 Findings
Table 3 summarizes the significance of different features across the studied projects. We consider a
feature significant if its difference between abandoned and nonabandoned PRs is both statistically
significant (i.e., 𝑝 < 0.05) and practically significant (i.e., the effect size is small, medium, or large) in
at least one project. Overall, we observe that the most significant features are related to the review
process and contributors of PRs. We also find that four features (characterizing the review process
and contributor) are significant across all the projects, and eight other features (encompassing
all the dimensions) are significant in at least half the projects. In the following, we discuss the
significance of each dimension in more detail.

Abandoned PRs are usually more complex than nonabandoned PRs. As shown in the PR
dimension of Table 3, abandoned PRs tend to have lengthier descriptions (8 projects), contain
more commits (6 projects), and involve more changed lines (3 projects). However, abandoned and
nonabandoned PRs tend to be similar in their number of changed files across all the projects. The
results suggest that abandoned PRs receive even more effort from their contributors, highlighting
the waste resulting from the abandonment.

The contributors of abandoned PRs usually have less experience than the contributors
of nonabandoned PRs. As shown in the contributor dimension of Table 3, the contributors
of abandoned PRs tend to have previously submitted fewer PRs (all the projects), have a lower
acceptance rate (all the projects), have a lower contribution period (5 projects), and have a higher
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Table 3. Significance of different features across the studied projects. ↑ shows that abandoned PRs have values
greater than nonabandoned ones, ↓ shows that abandoned PRs have values smaller than nonabandoned ones,
and ↑↓ shows a mixed relationship.

Dimension Feature Significant Small Medium Large

Pull Request

pr_description 8 7 (↑) 1 (↑) –
pr_commits 6 6 (↑) – –
pr_changed_lines 3 1 (↑) – 2 (↑)
pr_changed_files – – – –

Contributor

contributor_pulls 10 4 (↓) 3 (↓) 3 (↓)
contributor_acceptance_rate 10 5 (↓) 4 (↓) 1 (↓)
contributor_contribution_period 5 2 (↓) 1 (↓) 2 (↓)
contributor_abandonment_rate 2 2 (↑) – –

Review Process

review_participants_responses 10 1 (↑) 1 (↑) 8 (↑)
review_participants 10 2 (↑) 1 (↑) 7 (↑)
review_contributor_responses 7 3 (↑) 3 (↑) 1 (↑)
review_response_latency 4 4 (↑) – –

Project

project_age 8 6 (↑↓) – 2 (↑↓)
project_pulls 8 6 (↑↓) – 2 (↑↓)
project_contributors 8 6 (↑↓) – 2 (↑↓)
project_open_pulls 6 4 (↑↓) – 2 (↑↓)

abandonment rate (2 projects). However, the results cannot be attributed to the expected higher
familiarity and expertise of the maintainers because we only consider external contributors in our
study (Section 2.4).

The review process of abandoned PRs is usually lengthier than the review process of
nonabandoned PRs. As shown in the review process dimension of Table 3, the review process
of abandoned PRs tends to receive more responses from its participants (all the projects), involve
more participants (all the projects), receive more responses from the contributors (7 projects), and
have a higher latency to receive the first response from the participants (4 projects). The results
suggest that abandoned PRs are not just abandoned after the PR was submitted but have received
even more effort from both their contributors and reviewer, again highlighting the waste resulting
from the abandonment.

The project features play both a positive and negative role in PR abandonment. As shown in
the project dimension of Table 3, we observe contrasting patterns in how the rate of abandoned PRs
change alongside the project maturity (8 projects) or workload (6 projects). For easier comparison,
we group these projects based on their similarities (i.e., positive or negative) in Table 4. In the
first group (i.e., Kubernetes, Swift, and DefinitelyTyped), abandoned PRs tend to become more
frequent as the projects become more mature (i.e., an increase in project_age, project_pulls, or
project_contributors). In two of these projects (i.e., Kubernetes and Swift), abandoned PRs also
become more frequent as they experience a higher workload (i.e., an increase in project_open_pulls).
In contrast to the first group, the second group (i.e., Kibana, Ansible, Elasticsearch, Odoo, and
Homebrew Cask) experienced fewer abandoned PRs as the projects become more mature (i.e.,
an increase in project_age, project_pulls, or project_contributors). Surprisingly, in four of these
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Table 4. Difference of the project features between abandoned and nonabandoned PRs.

Maturity Workload
Group Project project_age project_pulls project_contributors project_open_pulls

I
Kubernetes Large (↑) Large (↑) Large (↑) Large (↑)
Swift Small (↑) Small (↑) Small (↑) Small (↑)
DefinitelyTyped Small (↑) Small (↑) Small (↑) –

II

Kibana Large (↓) Large (↓) Large (↓) Large (↓)
Ansible Small (↓) Small (↓) Small (↓) Small (↓)
Elasticsearch Small (↓) Small (↓) Small (↓) Small (↓)
Odoo Small (↓) Small (↓) Small (↓) Small (↓)
Homebrew Cask Small (↓) Small (↓) Small (↓) –

projects (i.e., Kibana, Ansible, Elasticsearch, and Odoo), abandoned PRs are more frequent when the
projects have a lower workload (i.e., a decrease in project_open_pulls). The results may be associated
with the change in the team structure, policies, or processes. For example, DefinitelyTyped has
refined its review process since 2016 by rotatively assigning a TypeScript employee each week to
focus on merging PRs [70].

Answer to RQ1. Our findings suggest that contributor-abandoned PRs are usually more
complex, their contributors are usually less experienced, and their review process is usu-
ally lengthier than nonabandoned PRs. Furthermore, as the projects mature, contributor-
abandoned PRs have become more frequent in three projects (i.e., Kubernetes, Swift, and
DefinitelyTyped) and less frequent in five other projects (i.e., Kibana, Ansible, Elasticsearch,
Odoo, and Homebrew Cask).

4 RQ2: HOW DO DIFFERENT FEATURES IMPACT THE PROBABILITY OF PR
ABANDONMENT IN THE STUDIED PROJECTS?

In RQ1, we investigated what features of PRs, their contributors, their review processes, and their
projects are associated with PR abandonment. As our second research question, we aim to better
understand which PRs have a higher probability of getting abandoned by their contributors. Specif-
ically, we want to identify which features are the most important for predicting PR abandonment
and describe how each feature can influence the abandonment probability of PRs.

4.1 Approach
We use machine learning techniques to understand how each feature varies the predicted prob-
ability of PRs getting abandoned. First, we consider the features that we found to be significant
in abandoned PRs and remove correlated and redundant features to ensure the quality of our
models. Then, we build and evaluate the classifier models that we later use to analyze the relative
importance and impact of each feature on the abandonment probability. In the following, we explain
each step in more detail:

Step 1: Remove insignificant features. In RQ1, we found that the number of changed files in
a PR (i.e., pr_changed_files) does not significantly differ between abandoned and nonabandoned
PRs in any of the studied projects. Therefore, we exclude this feature because it is not valuable
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Fig. 1. Spearman’s 𝜌 correlation among different pairs of features across the combined data of the studied
projects.

for analyzing the abandonment probability of PRs and consider the remaining 15 features for our
analysis.

Step 2: Remove correlated features. To focus on the most important features, we eliminate
highly correlated features, which negatively affect the interpretation of models [13]. To check the
monotonic relationship between each pair of features, we use Spearman’s 𝜌 [65] as a nonpara-
metric test because we cannot assume the distribution of our features to be normal. We measure
correlations on the combined data of the studied projects to ensure that any correlation exists
across all of them. Figure 1 presents a hierarchical cluster of the correlations generated using the
Hmisc package [30]. For each group of strongly correlated features (i.e., |𝜌 | ≥ 0.6 as suggested by
Evans [14]), we keep the feature that is easier to interpret for our study and remove the rest. Ac-
cordingly, we drop the following four features from our analysis: project_pulls, project_contributors,
contributor_contribution_period, and review_participants.

Step 3: Remove redundant features. While we remove highly correlated features in Step 1,
we also need to eliminate redundant features to focus on the most important ones. To identify
redundant features, we use the Hmisc package [30], which applies flexible parametric additive
models to measure how well each feature can be predicted from other features. Similar to our
correlation analysis, we measure redundancy on the combined data of the studied projects to ensure
that any redundancy exists across all of them. Accordingly, we did not find any redundant features.

Step 4: Build classifier models. To gain deeper insights on PR abandonment, we build a random
forest classifier for each project using the ranger package [74]. To model the abandonment proba-
bility, we consider the type of PR (i.e., abandoned or nonabandoned) as the dependent variable and
the selected 11 features as the independent variables. Random forests [7] are commonly used in
various domains and outperform linear models in both the predictive power and the ability to learn
complex relations. To boost the predictive power of each model, we use the tuneRanger package
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Table 5. Performance scores of our model for each studied project.

Project AUC-ROC AUC-PR Baseline AUC-PR / Baseline

Ansible 0.88 0.042 0.006 7.08x
DefinitelyTyped 0.86 0.262 0.054 4.84x
Elasticsearch 0.86 0.021 0.003 6.14x
Homebrew Cask 0.96 0.063 0.001 42.78x
Kibana 0.96 0.095 0.002 50.27x
Kubernetes 0.89 0.375 0.060 6.23x
Legacy Homebrew 0.92 0.116 0.013 8.85x
Odoo 0.77 0.029 0.002 17.25x
Rust 0.81 0.109 0.020 5.50x
Swift 0.82 0.059 0.003 19.36x

[58]. This package automatically tunes the following three hyperparameters of random forests
using sequential model-based optimization [35]: (i) the number of variables randomly drawn for
each split, (ii) the fraction of instances randomly drawn for training each tree, and (iii) the minimum
number of samples that a node must have to split.

Step 5: Evaluate performance of models. To ensure that the models are reliable for our analysis,
we evaluate their predictive power using the following two recommended metrics for binary
classifiers [29]:

• AUC-ROC: which measures the area under the Receiver Operating Characteristic (ROC)
curve [6]. The ROC curve plots the true positive rate (i.e., the ratio of correctly classified
abandoned PRs to truly abandoned PRs) against the false positive rate (i.e., the ratio of
incorrectly classified abandoned PRs to nonabandoned PRs) across different thresholds. The
value of AUC-ROC ranges from 0 to 1, with valuesmore than 0.5 indicating better performance
than a no-skill classifier (i.e., baseline). Note that the value of AUC-ROC is the same for both
positive (i.e., abandoned PRs) and negative (i.e., nonabandoned PRs) classes.

• AUC-PR: which measures the area under the Precision-Recall (PR) curve [15]. The PR
curve plots the precision (i.e., the ratio of correctly classified abandoned PRs to all classified
abandoned PRs) against recall (i.e., the ratio of correctly classified abandoned PRs to truly
abandoned PRs) across different thresholds. The value of AUC-PR also ranges from 0 to 1,
but the performance of a no-skill classifier (i.e., baseline) is determined by the distribution
of classes in a dataset (i.e., distribution of abandoned and nonabandoned PRs). Note that,
unlike AUC-ROC, the value of AUC-PR is different between positive (i.e., abandoned PRs)
and negative (i.e., nonabandoned PRs) classes.

To reduce bias in our performance evaluations, we perform a stratified 10-fold cross-validation
with ten repeats (a total of 100 iterations) for each model using the mlr package [3]. Table 5 presents
the results of our performance evaluation for each model, where the baseline column shows the ratio
of the minority class (i.e., abandoned PRs). We observe that our models have a good performance
with an average AUC-ROC of 0.87 and perform at least four times better than the baseline in terms
of AUC-PR.

Step 6: Analyze importance of features. So far, we have built classifiers that can aptly model
the abandonment probability of PRs. To compare the relative importance of different features, we
perform permutation feature importance analysis [16] for each model using the iml package [51].
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This approach permutes a feature to break the association between the feature and the outcome
(i.e., the abandonment probability in our case). The importance of the feature is then measured by
how much error the permutated data introduces compared to the original error (i.e., loss in AUC in
our case) after 100 iterations. Therefore, the most important features have the largest impact on
the performance of our models and thus are more valuable for predicting PR abandonment.

Step 7: Analyze impact of features. After measuring the relative importance of the features in
Step 6, we aim to describe how each feature varies the abandonment probability. For this purpose,
we generate Accumulated Local Effects (ALE) plots [1] using the iml package [51]. ALE shows
the effect of a feature at a certain value compared to the average prediction of the data. In other
words, a downward trend implies a reduced probability of abandonment, an upward trend implies
an increased probability of abandonment, and a stable ALE implies no changed probability of
abandonment. To focus on the most common values of features, we filter out the values over the
99th percentile for each feature in each project. The plots are then created by dividing a feature into
ten intervals selected based on its quantiles. For each interval, the PRs that fall into that interval
are considered for calculating the difference in their prediction when replacing the value of the
feature with the upper and lower limits of the interval. We model the abandonment probability as
a function of the selected features, and thus, any relationship is causal for the model and may not
hold in the real world [50].

4.2 Findings
Table 6 summarizes the importance of different features in each project. We find that the features of
the review process, contributors, and projects play a more prominent role in PR abandonment than
the features of PRs themselves. Specifically, the number of responses from the participants is the
most important feature by a large margin, indicating that the activity of reviewers is essential in
classifying abandoned PRs. The second and third most important features are the acceptance rate
and the number of previously submitted PRs of the contributor, respectively, highlighting the impact
of the contributor experience on PR abandonment. The fourth and fifth most important features
are the number of responses from the contributor and the age of the project. Other features, except
for the abandonment rate of the contributor, are also among the top five in at least one project,
showing that different features have a different impact on PR abandonment due to the inherent
differences between the projects. Unexpectedly, we also observe that the number of commits in
the PR, the abandonment rate of the contributor, and the latency to the first response from the
participants are overall the least important features, respectively. In the following, we describe how
the top five features impact the predicted abandonment probability of PRs. The ALE plots for the
rest of the features can be found in Appendix B.

PRs with long discussions are more likely to get abandoned. Figures 2 and 3 show how the
number of responses from the participants and from the contributor varies the abandonment proba-
bility of a PR across the studied projects, respectively. We find that the probability of abandonment
increases in most of the projects as the number of responses from the participants or the contributor
increase (i.e., upwards trend). We also observe that PRs that receive more than three responses
from either the participants or the contributor have an increased probability of abandonment in
most of the projects. The results provide further evidence that abandoned PRs often demand more
time and effort from both their reviewers and their contributors (see Section 3.2).

Novice contributors are more likely to abandon their PRs. Figures 4 and 5 show how the
acceptance rate and the number of previously submitted PRs by the contributor vary the abandon-
ment probability of a PR across the studied projects, respectively. We observe that contributors
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Table 6. Importance of different features across the studied projects.
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Pull Request
pr_changed_lines 7 8 7 3 6 9 2 7 6 9 6 1.55
pr_description 8 3 4 5 8 6 9 9 7 10 8 1.48
pr_commits 10 5 10 11 10 10 10 10 10 8 11 1.21

Contributor
contributor_acceptance_rate 5 4 1 6 5 5 8 3 1 3 2 1.95
contributor_pulls 3 9 3 4 3 7 6 4 4 1 3 1.81
contributor_abandonment_rate 11 11 11 8 11 8 11 11 9 6 10 1.24

Review Process
review_participants_responses 1 1 2 1 1 1 1 1 5 2 1 4.45
review_contributor_responses 9 6 6 2 2 4 3 5 2 11 4 1.74
review_response_latency 2 10 9 9 9 11 5 2 11 5 9 1.33

Project project_age 6 2 5 7 4 2 4 8 3 7 5 1.73
project_open_pulls 4 7 8 10 7 3 7 6 8 4 7 1.49

Fig. 2. ALE plots showing how review_participants_responses varies the abandonment probability of PRs
across the studied projects.

Fig. 3. ALE plots showing how review_contributor_responses varies the abandonment probability of PRs across
the studied projects.
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Fig. 4. ALE plots showing how contributor_acceptance_rate varies the abandonment probability of PRs across
the studied projects.

Fig. 5. ALE plots showing how contributor_pulls varies the abandonment probability of PRs across the studied
projects.

with zero experience have the highest probability of abandonment in almost all the projects. Sur-
prisingly, highly experienced contributors also have an increased probability of abandonment in a
few projects. The results suggest that the contributors of abandoned PRs may need more guidance
and attention from the maintainers.

PR abandonment has changed throughout the history of projects. Figure 6 shows how the
age of projects varies the abandonment probability of a PR across the studied projects. Similar to
RQ1 (Section 3.2), we observe two contrasting patterns: PR abandonment improves throughout
the time in some projects and worsens in some other projects. In the first group (i.e., Ansible,
DefinitelyTyped, Elasticsearch, Kibana, and Odoo), the abandonment probability is highest when
the project age is low (i.e., downwards trend). However, in the second group (i.e., Homebrew Cask,
Kubernetes, Legacy Homebrew, and Swift), the abandonment probability increases when the project
age increases (i.e., upwards trend). While this fluctuation may be associated with the expected
change in the workload of projects as they grow, we found that the number of open PRs is less
important to our models than the age of the project.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: May 2022.



16 Khatoonabadi et al.

Fig. 6. ALE plots showing how project_age varies the abandonment probability of PRs across the studied
projects.

Answer to RQ2. Our findings suggest that the features of the review process, contributor,
and project are more important in predicting PR abandonment than the features of PRs
themselves. Specifically, PRs with more than three responses from the participants or the
contributors, and those submitted by novice contributors are more likely to get abandoned.
Also, the abandonment probability changes as the projects evolve, with half of the projects
showing a decrease in abandonment in their mature stages and the other half showing an
increase in abandonment.

5 RQ3: WHAT ARE THE PROBABLE REASONSWHY CONTRIBUTORS ABANDON
THEIR PRS IN THE STUDIED PROJECTS?

In RQ1 and RQ2, we quantitatively analyzed contributor-abandoned PRs to understand how dif-
ferent factors influence their abandonment probability. As our last research question, we aim to
complement our previous findings and gain a deeper understanding of the underlying dynamics of
abandoned PRs. Specifically, we want to look for clues in the review discussions of abandoned PRs
to better understand why contributors abandon their PRs.

5.1 Approach
We perform amanual examination to establish a taxonomy of the abandonment reasons by following
the coding guidelines presented by Seaman [63]. First, we label a sample of abandoned PRs to
identify the probable reasons why contributors abandon their PRs and then calculate our interrater
agreement. In the following, we explain each step in more detail:

Step 1: Identify abandonment reasons. First, we randomly select 354 PRs from 4,450 abandoned
PRs of the studied projects (confidence level of 95% with a ±5% confidence interval). Then, the
first three authors are required to manually examine the discussion comments of each PR and
try to pinpoint the primary reason(s) why its contributor has abandoned the PR. In most cases,
the contributor has abandoned the PR without any explanation, and thus we look for clues in the
interactions between the contributor and the reviewers to identify the most probable reasons for
the abandonment. In cases where the contributor provided a reason for their abandonment decision,
we also investigate other major reasons that might have led to their abandonment.

We perform the labeling in two rounds. In the first round, three annotators independently label
a random sample of 60 PRs from the selected 354 PRs to establish the classification scheme. In
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Table 7. Probable reasons why contributors abandon their PRs.

Category Reason Frequency (%)

Contributor-related

Difficulty addressing the maintainers’ comments 45.8
Difficulty resolving the CI failures 20.9
Difficulty resolving the merge issues 14.1
Difficulty complying with the project requirements 1.4

Maintainer-related

Lack of review from the maintainers 22.6
Lack of answer from the maintainers 9.3
Lack of integration by the maintainers 6.5
Lack of consensus among the maintainers 4.5

PR-related. Existence of duplicated work 3.1
Dependency on upcoming changes 1.4

the second round, we divide the sample 354 abandoned PRs (including the 60 PRs from the first
round) into two sets to be labeled using the classification scheme from the previous round: the
first set was labeled independently by the first and second authors, and the second set was labeled
independently by the first and third authors. Finally, the annotators merged the labels and further
refined the labels. In each round, when the annotators had different opinions, they discussed until
they reached an agreement and then retroactively updated all the previously labeled PRs to ensure
a coherent classification.

Step 2: Calculate interrater agreement. To ensure the quality of our taxonomy, we calculate the
Cohen’s Kappa coefficient [9] using the scikit-learn package [55]. This statistic is commonly
used to evaluate the interrater agreement in different domains. The value of Cohen’s Kappa ranges
from −1.0 to +1.0, with values more than 0 indicating an agreement better than chance. We obtained
a Kappa score of 0.73, which is considered a substantial agreement as suggested by Landis and
Koch [41].

5.2 Findings
As shown in Table 7, we identified ten major reasons why contributors abandon their PRs, grouped
into three categories: (i) contributor-related reasons, (ii) maintainer-related reasons, and (iii) PR-
related reasons. Note that the total frequency of the identified reasons is greater than 100% because
we observe multiple reasons for some abandoned PRs. We find that the most frequent abandonment
reasons are related to the obstacles faced by contributors followed by the hurdles imposed by
maintainers during the review process. Particularly, difficulty addressing themaintainers’ comments,
lack of review from the maintainers, and difficulty resolving the CI failures are the most frequent
reasons (observed in more than 20% of abandoned PRs). In the following, we discuss the identified
reasons in the order of their frequency.

Difficulty addressing the maintainers’ comments (45.8%). In almost half of the abandoned
PRs, their contributors found it difficult to address the maintainers’ comments, questions, or change
requests. The contributors did not have the required technical knowledge or enough time to
continue the work (e.g., [P198] said “Nope. Had no time and will to take on this.” ). Interestingly,
contributors may ask others to continue the work (e.g., [P340] said “If you don’t mind taking it over,
that would be fantastic. Happy to provide whatever help I can!” ).
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Lack of review from the maintainers (22.6%). The second common reason why contributors
abandon their PRs is that they did not receive a timely (if any) review from the maintainers.
Sometimes, a PR gets reviewed, and the contributor addresses the maintainers’ comments, but the
maintainers do not follow it up. For example, [P7] was closed after multiple rounds of discussions,
even though the contributor addressed the maintainers’ comments (“Oh dang, I guess it doesn’t
warn you after the first time. I’ll get this re-made soon and try to be a little more proactive about
getting input.” ). Not receiving timely reviews from the maintainers may also send a signal to the
contributors that their work is not treated seriously (e.g., [P182] said “I’m happy to resolve these
merge conflicts now, but before I do, I am curious if I have messed something else up in my contribution?
Since this didn’t get a comment since July of last year, I am afraid I’ve missed something crucial.” ). If
PRs are not reviewed in a timely manner, they may become outdated and require extra work from
their contributors to rebase and update them.

Difficulty resolving the CI failures (20.9%). The third reason includes cases where the contribu-
tors found it difficult to resolve the Continuous Integration (CI) failures arisen during the review
process. Such failures are often brought up by the project bots even before the PR gets a review
from the maintainers. Sometimes, the contributors do not even know how to fix the CI failures and
ask the maintainers for help (e.g., [P346] said “I’ve looked at the errors in Travis. Most of them seem
unrelated to the PR. Could you please help me out with this?” ).

Difficulty resolving the merge issues (14.1%). The fourth reason includes cases where the
contributors found it difficult to resolve the merge issues arisen during the review process. If
the project codebase has been updated, the contributors are asked to rebase their local branch,
resolve any merge conflicts, and then push their changes again. Such issues typically arise when
the maintainers take a long time to review the PR, and the PR becomes outdated (e.g., [P181] said
“I am willing to keep rebasing (and certainly willing to continue responding to comments), but not
without some indication that it will eventually be merged.” ). We also observe that contributors are
sometimes asked to squash their pushed commits into a single commit to reduce the noise in the
revision history, which also requires additional effort and time from them.

Lack of answer from the maintainers (9.3%). In some cases, we observe the reason for abandon-
ment is because the contributors had not received a timely (if any) answer from the maintainers
when they asked for help to complete a task (e.g., [P300] said “CI is timing out. Everything is fine
until the timeout. Anything I can do to get this merged?” ) or asked for clarification (e.g., [P313] said
“Modifying the passed in proxyTransport cannot be considered ‘safe’?” ) or asked for confirmation (e.g.,
[P273] said “Is that the right way?” ). Note that this reason is different from “lack of review from the
maintainers” as such PRs are blocked because the contributor is awaiting an answer to a question
from the maintainer and not awaiting a review for the applied changes.

Lack of integration by the maintainers (6.5%). This reason includes cases where a PR has been
already approved by the reviewers but has been pending integration. In some projects, such as
Kubernetes, a PR should undergo a two-phase review process. In the first round, reviewers approve
the changes, and then project integrators need to merge the changes. However, contributors may
abandon their PRs if the integrators do not attempt to merge the PR in a timely (if any) manner
after the reviewers have approved the PR. For example, in [P1], the PR has been approved for
integration multiple times. However, since the integrators were not responsive, the PR needs to be
rebased, requiring additional work from the contributor. In [P307], a reviewer suggested “Might be
worth pinging the reviewers too if that is all that is stopping progress.”
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Lack of consensus among the maintainers (4.5%). This reason includes cases where the re-
viewers could not reach a consensus on how to continue with the PR. This disagreement typically
arises when there is no straightforward solution to resolve the PR issues, and each alternative has
its own advantages and disadvantages. Such PRs often undergo a long discussion and demand lots
of time and effort from both reviewers and contributors (e.g., [P354]). However, the PR eventually
gets abandoned by the contributor due to inconsistent feedback and often overlong discussions.

Existence of duplicated work (3.1%). This reason includes cases where the work is either a
duplicate of an existing PR (e.g., [P294] said “I am abandoning this PR in favor of npm-ramda,
but I wont close it in case someone want to make use of it.” ), another contributor has submitted a
more comprehensive PR, or the issue addressed in the PR is no longer applicable (e.g., [P340] said
“pkg-config should no longer be able to pick up non-deps under superenv. Hopefully that means this is
resolved.” ).

Difficulty complying with the project requirements (1.4%). This reason includes rare cases
where the contributors found it difficult to comply with the project-specific requirements. In
projects such as Kubernetes, the contributors are asked to sign the contribution level agreements
before their PR even gets reviewed by the maintainers (e.g., [P149]). Also, many projects provide
templates for the PR description and ask the contributors to update the description according to
the templates (e.g., [P134]).

Dependency on upcoming changes (1.4%). In rare cases, the abandoned PRs were not valuable
on their own and depended on other changes that must be merged first before the proposed changes
can be considered (e.g., [P11] said “Hopefully, once mappable and partial types land in TS, I will fix
this.” ).

Answer to RQ3. Our findings suggest that the most frequent abandonment reasons are
related to the obstacles faced by contributors followed by the hurdles imposed bymaintainers
during the review process. Specifically, difficulty addressing the maintainers’ comments, lack
of review from the maintainers, difficulty resolving the CI failures, and difficulty resolving
the merge issues are the most common reasons why contributors abandon their PRs.

6 PERSPECTIVES OF THE PROJECT MAINTAINERS
To gain deeper insights on PR abandonment, we design a survey asking the core maintainers of
the studied projects about their perspectives on our findings and how to tackle PR abandonment.
After explaining the goal of this research and presenting a summary of our findings, we ask the
following three open-ended questions in the survey:

• Does your team implement any approaches to deal with abandoned PRs? If so, what ap-
proaches does your team use?

• Do you suggest any approaches that can minimize the risk of a PR being abandoned by its
contributor? (these can be approaches that your team does or does not use)

• Do you have any feedback about the four findings of our study? (we would love to hear it,
positive or negative)

We send e-mails to the top 25 core developers of each studied project (a total of 250 e-mails) to
invite them to participate in our survey. From these invitations, we receive a total of 16 responses
(6.5%) to our survey. Our response rate is similar to the 5% response rate, commonly observed in
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software engineering studies [43]. From the ten studied projects, we received responses from all
the projects except Elasticsearch. As our sample is small, we refrain from discussing particular
projects and instead present the overarching themes that appeared in the participant responses.

6.1 How do projects deal with abandoned PRs?
In this question, we aim to understand the processes and practices that the projects have already
put in place to deal with abandoned PRs. Out of the 16 participants, six responded that their team
had implemented approaches to deal with abandoned PRs. These approaches are:

Holding triage meetings (4x). The most commonly mentioned approach to deal with abandoned
PRs is holding (recurrent) triage meetings, where developers review the status of PRs and support
PRs that need attention. According to the survey participants, triage meetings streamline the
communication and help find problems before it causes the PRs to become abandoned.

“We have regular triage meetings to review the status of PRs that abandoned or about to be
abandon. We also help new comers and new maintainers for reviving the old PRs and merge them.”
[S1]
“Better upfront planning and communication help eliminate abandoned PRs. Many times, a quick
zoom with a teammate to talk through the proposed change goes a long way into finding problems
before a large effort is needed.” [S6]

Using bots to auto-close abandoned PRs (2x). While all the projects use Stale bot [23] or a
similar in-house implementation (e.g., fejta-bot in Kubernetes [40]) to follow up with PRs that
are about to get abandoned and auto-close already abandoned PRs, two participants explicitly
mentioned their use of such bots. As a respondent explained:

“A bot first pings owners of the code after a week. Then it pings the submitter a couple of weeks
later, telling them that it will be closed soon.” [S2]

Most of the participants (10 responses) reported that their project does not implement any
particular approach to deal with abandoned PRs. Of these participants, four explained why their
team had not adopted any specific approach to prevent PR abandonment:

The maintainers are overwhelmed with work (2x). Two maintainers reported that they are
overwhelmed with work and thus have decided to reduce their efforts on retaining PRs from
external contributors. As a respondent explained:

“We are overwhelmed with work, and most community PRs have a low ration value/effort needed
to merge it, so we essentially gave up, except for rare cases.” [S13]

The project does not rely on open source contributions (2x). Two participants mentioned
that their project does not rely on external contributions for the implementation of new features or
improvements. Therefore, there is little incentive to spend special time and effort in retaining PRs
from external contributors. As a respondent explained:

“We appreciate community PRs, but the vast majority of the contributors to our project are
employees and so we don’t rely on open source contributions for features or improvements.
Community PRs are usually applicable to a specific niche usecase which we’d be happy to accept
if the contributor is willing to go through the process with us.” [S5]
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6.2 How do maintainers recommend to mitigate PR abandonment?
In this question, we aim to understand the approaches that the maintainers recommend to minimize
the risk of PRs getting abandoned by their contributors, whether their team has adopted them yet
or not. Out of the 16 participants, 15 responded with suggestions that they believe could mitigate
PR abandonment. In the following, we summarize these recommendations into suggestions for
contributors and suggestions for maintainers.

Maintainers should strive to make the contributor experience as smooth as possible (6x).
It stands to reason that the more obstacles contributors face, the higher the chances of abandonment.
One participant (S5) mentioned that having helpful and understandable error messages can help
contributors fix issues in their PRs. Another participant (S3) mentioned that maintainers should
“put kid gloves on” when dealing with newcomers and make community contributions as painless
as possible. One participant (S15) even suggested that maintainers merge PRs with minor issues
and then either make the required changes themselves or open an issue in the project. As one
respondent aptly summarizes:

“Responding quickly and encouragingly, and making your PR contributor experience as seamless
as possible (automatic CI, helpful and understandable error messages) are likely all you can do.
It’s a lot of work even to submit a PR, the extra work necessary when updates are needed isn’t
something most people will be willing to give.” [S5]

The participants also mentioned that improving the project’s testing documentation (S1) and
contribution guidelines (S2), and making bot instructions more understandable (S2) could help
to mitigate PR abandonment. One participant (S13) also cited that projects need to increase their
available resources, with another participant (S1) mentioning that increasing community reach
and having maintainers from the community may help maintainers better handle the required
workload.

Maintainers should establish a triage process for external contributions (2x). Once again,
the participants mentioned the importance of a triage process in mitigating PR abandonment. A
triage process helps assign reviewers to a PR based on their expertise and experience and may lead
to timely responses to contributors. One participant (S14) suggested that PRs should preferably be
assigned to one reviewer instead of an entire team to compel reviewers to act and prevent idleness.
Another respondent described that the triage process should also monitor the status of PRs and act
if reviewers have not responded to the contributors yet:

“[Projects should have] a human rotation that triages pull requests and checks if they are pro-
gressing, or if someone has dropped the ball or is waiting on some event that will never happen.“
[S16]

Contributors should create PRs that are clear and concise (3x). The participants emphasized
the importance of PRs to focus only on a single use case and provide a clear description of changes.
PRs that include multiple unrelated changes create a burden for reviewers that need to ensure all
changes are correct. As two participants responded:

“Make the proposal clear and concise. The reviewer might take 10 or 15 seconds to figure out the
problem being solved and the solution. If it takes longer, the reviewer will probably give up.” [S11]

“Smaller PRs are obviously better. We try not to nit-pick though it is human nature that a 100
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line diff gets no nitpicking and a 4 line diff gets plenty. This can hardly make people want to
contribute and is unfortunate.” [S9]

Contributors should assess the project’s interest in the proposed changes before sub-
mitting PRs (3x). Managing expectations is important in contributing to open source projects.
As different projects have different philosophies and needs regarding community contributions,
contributors should assess whether maintainers value their PRs. Typically, new features are harder
to integrate than bug fixes and performance improvement patches.

“In large projects, a performance improvement or a bug fix proposed by an external contributor is
more likely to be merged than a new feature. Not only because it’s usually simpler, but because the
feature might not be in line with the project’s interests. A bug fix or a performance improvement
is always in line with the project’s interest.” [S10]
“Managing expectations could be a factor. We won’t merge entirely new features just like that,
simply because it is really important that Odoo remains and improves on being kept simple. E.g.
PRs could come from a client project that needs a certain feature, but merging it like this, might
do harm to a lot of other clients or cause more further problems where we need some distance to
really think about the best solution.” [S12]

One way to assess the validity of the contribution is to open an issue in the project. The
contribution guidelines of the majority of the projects explicitly state that contributors should
first open an issue to discuss their contributions and defer the implementation until when the
maintainers have agreed on the usefulness of the proposed changes. As a participant responded:

“Opening issues to discuss changes prior to posting PRs helps reduce abandoned PRs. Discussing
the change ahead of time gives developers and the community time to explore the change and
ensure that the 1) proposed change is one that the project wants to maintain, 2) proposed change
is scalable, 3) proposed change is a feature that is needed by many use cases and not a one off for
specific use case, 4) proposed implementation is maintainable and fits with the architecture and
future of the project.” [S6]

Both contributors and maintainers should be more upfront about their intentions (2x).
Two participants stated that communication should be improved from both sides. Maintainers need
to be upfront about their intentions on merging (or not) the contribution from contributors to avoid
wasting effort and time. As a participant responded:

“There needs to be a clear signal from the project to the PR contributor if there is no interest at all
in the PR, or if there is interest, what needs to be fixed to be accepted. Then participate or help, or
signal when the effort can no longer be sustained. If there is no clear signal, the contributor has no
idea what’s going on. Automated "closer-bots" cannot solve this problem (or make it worse).” [S8]

Similarly, contributors should mention their willingness to make the requested changes. One
participant mentioned that anxiety could play an important factor leading to PR abandonment,
particularly when miscommunication happens to newcomers to the project:

“Anxiety about contribution probably leads to some abandonment. I suggest to all newish contrib-
utors that they remember the people in charge of these projects where just like them once.” [S9]
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Table 8. Overview of the explanation of our findings based on our survey responses.

Study Findings Survey Explanations

Complex PRs are more likely to get abandoned. • Complex PRs are less likely to get a timely review.
• Contributor becomes frustrated by frequent change requests.

Novice contributors are more likely to abandon their PRs. • Maintainers expect quality changes regardless of the contributor experience.
• Novice contributors may find the contribution process difficult.

PRs with long discussions are more likely to get abandoned. • Long discussions often indicate a controversial PR.
• Lack of unanimous decisions lengthens the review process.

Projects have a significant influence on the likelihood of PR abandonment. • Maintainer team structure, attitude, and workload influence PRs.
• Project scope, architecture, and ownership influence PRs.

6.3 How do developers interpret our findings?
We provided participants with a pre-print of this manuscript and encouraged participants to
report any negative or positive remarks they had about our findings. Out of the 16 participants, 14
participants commented on our findings ( 87.5%). Table 8 overviews the explanations provided by
survey participants regarding each of our main findings. In the following, we discuss the survey
responses for each of our findings in more detail.

Complex PRs are more likely to get abandoned. Our findings suggest that PRs with lengthier
descriptions, more commits, or more changed lines are more likely to get abandoned (RQ1–RQ2).
The participants argued that such complex PRs require extra efforts from both their contributors
and reviewers. Therefore, such PRs might linger for a while before getting reviewed, and also might
require more changes from the contributor to become satisfactory:
“The more complex a PR is, the less likely a reviewer is going to spend valuable time on it, in
particular if the contributor is not well known.” [S11]
“Either the maintainers leave them open for months or the contributor is frustrated by the numerous
requested changes.” [S9]

Novice contributors are more likely to abandon their PRs. Our findings suggest that con-
tributors who submitted fewer PRs, have a lower acceptance rate, have a lower contribution
period, or have a higher abandonment rate within a project are more likely to abandon their PRs
(RQ1–RQ2). The participants suggested that this can be due to projects expecting high-quality
changes (with proper formatting, documentation, and description of changes) that often require
access to experienced maintainers. However, projects can lower their expectations from external
contributors:
“Like any wall in life, it is scary and something to throw yourself against. The project can
help—making contributions feel more welcome. Unfortunately if you are too welcoming to contri-
bution you get rapidly overwhelmed by contribution and cannot accept it all.” [S9]
“The main issue I see with abandoned PRs is that the bar for a commit is too high. To give you some
perspective, new developers in my team take a few weeks to land their first commit. And that is
with constant access to experienced developers/mentors. This is because we expect our commit to
have: proper tests, linting, inline documentation, references to relevant commits, documentation
in some cases, good commit message, and targetting the correct branch. I think we should lower
the bar for external contributors (so they can quickly land a fix), but eventually, still add an
additional commit with a test or something if needed. Clearly, doing that requires some resources.
I tried doing that a few years ago, and was quickly slammed with pings everywhere to ask me to
work on those PRs!” [S13]
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PRs with long discussions are more likely to get abandoned. Our findings suggest that PRs
involving more participants, more responses from the participants or from the contributor, or with
higher latency to get a response from a reviewer in a project are more likely to get abandoned
(RQ1–RQ2). The participants argued that long discussions could indicate a controversial PR lacking
a unanimous solution to address the PR issues:

“Long discussions themselves are not a problem. However, they are often indicative of disagreement,
a complex topic, or an absence of a solution (the solution in the PR is not correct, but commenters
on the PR don’t have a good suggestion either).” [S16]
“[long discussions] seems like a proxy for controversial PRs, which I suspect is also a factor at play.
In my personal experience, open source projects are often lead by passionate individuals with
strong opinions about the way things should be done, which often conflict with the opinions of
new people to the project. I think this could be addressed by discussing changes beforehand but
this is another hurdle which makes contributing more challenging.” [S5]

However, a strong leadership team could prevent such controversial PRs from becoming extra
lengthy:

“Good projects have strong leaders that make decisions and don’t deliberate too long. Bitcoin
suffered here greatly after Satoshi left.” [S9]

Projects have a significant influence on the likelihood of PR abandonment. Our findings
suggest that projects have a significant influence over PR abandonment and that throughout the
history of projects, the rate of PR abandonment has significantly fluctuated as the projects evolved.
The participants suggested that such fluctuations might be related to changes in the attitude of the
team, scope and architecture of the software, and popularity and ownership of the project:

“It’s a multitude of factors. Attitudes of maintainers. Software architecture of the projects (if well
designed you can expect well designed PRs). Scope of the projects (ie. documentation is clear on
the scope to prevent PRs that feature creep). Fame: too big a project will get too much contribution
and likely there will be insufficient people to manage it.” [S9]
“You might also take into account the ownership of the project: is it a community project? A
company project? Who is writing the roadmap of the project? A company project has a roadmap
in line with its business development, which is not the case for a community project.”

7 DISCUSSION
Combining the results from our quantitative (RQ1–RQ2) and qualitative (RQ3) investigation provides
evidence that contributors and the review process play a more prominent role in PR abandonment
than projects and PRs themselves. In the following, we integrate the findings from our three research
questions and our survey with core developers and further discuss the implications of our findings.

The Role of Contributors in PR Abandonment. Our findings indicate that the contributors of
abandoned PRs usually have less experience than the contributors of nonabandoned PRs. Specifically,
we observed that novice contributors who have submitted fewer PRs, have a lower acceptance
rate, or have a lower contribution period within a project are more likely to abandon their PRs
in most of our studied projects (RQ1–RQ2). Our survey results suggest that novice contributors
often find the contribution process more difficult as maintainers typically expect high-quality
changes (with proper tests, formatting, documentation, and description of changes) regardless of
contributor experience before approving the changes to get merged (Section 6). We also observed
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that the contributors of abandoned PRs have frequently faced many obstacles (due to lack of enough
knowledge, time, or even interest) to continue and complete the review process (RQ3). Indeed,
inexperienced contributors face various barriers in making their contributions accepted [66–68].
Prior studies have also reported the positive impact of contributor experience in acceptance and
review time of PRs [25, 39, 64, 77]. Our survey respondents recommend maintainers either lower
their expectations or be more attentive and supportive towards external contributors (especially
casual contributors or newcomers) throughout the review process. Also, contributors can discuss
their proposed changes before submitting a PR to facilitate the review process, especially if the
change introduces new features or involves large changes. This discussion helps contributors to
ensure that their proposed changes align with the project roadmap and design. Contributors are
also expected to adhere to contribution guidelines and project conventions as it helps them have a
better grasp of the review process.

The Role of Review Processes in PR Abandonment. Our findings indicate that the review
process of abandoned PRs is usually lengthier than the review process of nonabandoned PRs.
Specifically, we observed that lengthy PRs which involve more participants, or more responses
from the participants or from the contributor are more likely to get abandoned in most of our
studied projects (RQ1–RQ2). Our survey results suggest that long discussions are often indicative
of a controversial PR that is addressing a complex issue or does not have a unanimously accepted
solution (Section 6).We also observed that abandoned PRs frequently lack a (timely) review, response,
or even action from the maintainers which also unnecessarily lengthens the review process of a
PR (RQ3). Prior studies have also reported that high response latencies and lengthy discussions
negatively impact the acceptance and review time of PRs [39, 71, 76, 77]. Our survey respondents
recommend maintainers be more responsive and support external contributors (especially casual
contributors or newcomers) till the completion of their PRs. In cases that a PR needs only trivial
changes, maintainers can merge the PR as is and either implement the changes themselves or open
a new issue for the required changes. Also, maintainers can hold recurrent triage meetings to
review the status of PRs and support PRs that need attention to mitigate PR abandonment. In cases
where a PR has become lengthy, lead maintainers should involve and decide on the outcome of the
PR using a voting process.

The Role of Projects in PR Abandonment. Our findings indicate that projects have a significant
influence over PR abandonment. Specifically, we observed that the rate of abandoned PRs has
significantly fluctuated throughout the history of projects, with some projects constantly decreasing
the abandonment rate as they become mature, i.e., Ansible, Kibana, and Odoo (RQ1–RQ2). Our
survey results suggest that projects typically undergo changes in their team, size, architecture,
scope, policies, practices, or even ownership during their development lifecycle. Such changes bring
with them both positive and negative aspects, which can fluctuate the rate of PR abandonment
(Section 6). Prior studies have also reported that project maturity has a mixed impact on the
acceptance and review time of PRs [71, 77]. Our survey respondents recommend projects streamline
their contribution process as much as possible to better accommodate new contributors.

The Role of PRs in PR Abandonment. Our findings indicate that abandoned PRs are usually
more complex than nonabandoned PRs. Specifically, we observed that complex PRs which have
lengthier descriptions or more commits are more likely to get abandoned in most of our studied
projects (RQ1–RQ2). A PR can be complex at submission time, when it contains too many commits
or an abnormally lengthy description, or become more complex as its contributor submit additional
commits (and thus makes more changed lines) during the review process to address the changes
requested by the maintainers. Our survey results suggest that a complex PR is more likely to
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linger for a while before getting a first or even a follow-up review, especially if its contributor
is not well-known to the maintainers (Section 6). We also observed the lack of review from the
maintainers as a frequent reason among abandoned PRs (RQ3). Prior studies have also reported that
complex PRs negatively impact their acceptance and review time [39, 64, 71, 76, 77]. Our survey
respondents recommend contributors make their PRs clear, concise, and focused as complex PRs
are more difficult to review and require more interactions with the contributor to become ready
(Section 6). Also, maintainers expect PRs to have proper tests, formatting, documentation, and
description of changes according to the project requirements (Section 6).

8 RELATEDWORK
PRLatency andDecision. The literature has extensively studied how various technical, social, and
personal factors influence the acceptance and review process of PRs. Gousios et al. [25] investigated
how technical factors affect the merge decision and merge time of PRs. They found that the merge
decision is mainly affected by whether the PR touches recently modified code. Also, they observed
that the contributor’s experience as well as the project’s size, test coverage, and openness to external
contributions influence the merge time. Gousios et al. [27] found that the decision of maintainers
to accept a PR is driven by its quality, especially conformance to the project style and architecture,
code quality, and test coverage.
Tsay et al. [71] found that both technical and social factors influence PR acceptance, especially

PRs with many comments are less likely to be accepted. Additionally, they observed that well-
established projects are more conservative in accepting PRs. Soares et al. [64] found that the
programming language, the number of commits, and the number of files added in a PR, as well
as whether its contributor is an external developer and whether it is the contributor’s first PR,
influence the merge decision and merge time. Yu et al. [76] found that the PR size, the first response
delay, and the availability of CI pipelines impact the review time of PRs. Yu et al. [77] found that
projects prefer PRs that are small, have less controversy, and are submitted by trusted contributors.
Kononenko et al. [39] found that the size of PRs, the number of participants in the review

discussions, and the contributor’s experience and affiliation influence both the review time and
merge decision. Moreover, they reported that developers consider PR quality, type of change, and
responsiveness of the contributor as important factors in the merge decision. Developers perceive
the quality of a PR by its description, complexity, and revertability; and the quality of a review by
its feedback, tests, and discussions. Pinto et al. [56] found that in company-owned open-source
projects, external contributors compared to the employees face significantly more rejections and
have to wait longer to receive a decision on their contributions. Zou et al. [82] found that PRs
that violate the code style of projects are more likely to get rejected and take longer to get closed.
Lenarduzzi et al. [42] found that code quality does not affect the acceptance of PRs, and suggested
that other factors such as the maintainer’s reputation and the feature’s importance might be more
influential on PR acceptance.
Several studies have also investigated how demographic characteristics of contributors can

influence the outcome of PRs. Terrell et al. [69] found that among external contributors, women
whose gender is identifiable have lower acceptance rates. Rastogi [60] and Rastogi et al. [61] also
found that PRs are more likely to get accepted when both the contributors and the maintainers are
from the same geographical location. Moreover, Nadri et al. [52] found evidence of bias against
perceptible non-White races. Later, Nadri et al. [53] found that contributions from perceptible
White developers have a higher acceptance chance, and perceptible non-White contributors are
more likely to get their PRs accepted if the maintainer is also from the same race. Furtado et al.
[17] also found that contributors from countries with low human development indexes submit
fewer PRs but face the most rejections. Beside social and technical factors, Iyer et al. [33] also
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studied how personality traits [12] influence PR acceptance. They found that personal and technical
factors play a significant and comparable role in PR acceptance, but still not to the extent of social
factors. Additionally, they observed that contributors who are more open and conscientious but
less extroverted have a higher chance of getting their PRs accepted. Similarly, maintainers who are
more conscientious, extroverted, and neurotic accept more PRs.

Duplicated PRs. Li et al. [46] found that duplicate PRs waste human and computing resources and
adversely impact OSS development. To facilitate studies on duplicated PRs, Yu et al. [75] compiled
a dataset of duplicated PRs from 26 popular GitHub projects. To identify duplicate PRs, Li et al. [44]
proposed an approach that uses textual information within PRs to automatically identify similar
PRs. Li et al. [47] extended the previous work by also considering the change information of PRs.
Ren et al. [62] proposed an approach to identify redundant code changes in forks as early as possible.
Wang et al. [72] enhanced the performance of the previous approach by considering the time factor.

Abandoned PRs. Recently, Li et al. [45] manually examined 321 abandoned PRs from five GitHub
projects (namely, Cocos2d-x, Kubernetes, Node.js, Rails, and Rust) to identify the reasons why
PRs get abandoned by their contributors, the impact of abandoned PRs on the maintainers, and
the strategies adopted by the projects to deal with abandoned PRs. Then, they quantified the
frequency of the identified reasons, impacts, and strategies by surveying 710 developers of 100
popular GitHub projects. They found that the reasons why contributors abandon their PRs relate
to the lack of maintainers’ responsiveness and the lack of contributors’ time and interest. While
this study discussed the developers’ perspective on PR abandonment, the influence of the factors
related to PRs, contributors, review processes, and projects on the abandonment probability of PRs
is still not known. To fill this knowledge gap, we curated a larger dataset consisting of 10 popular
and mature GitHub projects and analyzed abandoned PRs from both a quantitative and qualitative
perspective.

9 LIMITATIONS
Threats to Internal Validity. Threats to internal validity are concerned about the issues that
might affect the validity of our findings. The first threat is related to our definition of abandoned PRs.
We define abandoned PRs as those promising PRs that have been neither integrated nor rejected
because their contributors have left the review process unfinished. While in our preliminary
investigation, we rarely found cases where another developer continues an abandoned PR, but this
can be systematically investigated in future studies. The second threat is related to the process
of identifying abandoned PRs. Our heuristics may have missed some truly abandoned PRs and
wrongly marked some PRs as abandoned. To mitigate this threat, we considered as many relevant
keywords as possible by iteratively refining our keywords as we observed new patterns in the
discussion comments of known abandoned PRs. Also, we assessed the quality of our dataset by
manually investigating 100 abandoned PRs. The third threat is related to the process of identifying
the reasons why PRs get abandoned by their contributors. We may have drawn wrong conclusions
in card sorting because the coders may have had preconceptions. To minimize this bias, each PR
was independently labeled by at least two authors, and then the three authors discussed and merged
the labels. The fourth threat is related to the completeness of the abandonment reasons. To further
minimize this risk, we coded all the remaining cards when saturation was reached in card sorting.
We also performed a second pass over all cards to ensure that we did not miss any important
information.

Threats to External Validity. Threats to external validity are concerned with the generalizability
of our findings across different projects. To conduct our study, we focused on ten popular GitHub
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projects with the richest historical PR data. Although the studied projects cover several different
application domains and programming languages, they do not represent the entire open-source
ecosystem. Therefore, our findings may not generalize beyond our studied projects, especially since
we observe conflicting patterns across different projects due to their inherent differences. Future
replication studies with a more diverse selection of projects both inside and outside the open-source
ecosystem are required to obtain more widely applicable insights. Also, our survey findings are
based on the responses from 16 participants. While these participants are all among the top core
maintainers of the studied projects, different maintainers may have different perspectives, and thus
our findings may not be generalized to other settings.

10 CONCLUSION
Abandoned PRs waste the time and effort of their contributors and their reviewers. To provide
more comprehensive insights into the underlying dynamics of PR abandonment, we conducted a
mixed-methods study on ten popular and mature GitHub projects. Using statistical techniques, we
found that abandoned PRs tend to be more complex, their contributors tend to be less experienced,
and their review processes tend to be lengthier than nonabandoned PRs. We then relied on machine
learning techniques to determine the relative importance of the features and describe how each
feature varies the predicted abandonment probability of PRs. We found that the features of review
processes, contributors, and projects are more important for predicting PR abandonment than
the features of PRs themselves. Specifically, PRs with more than three responses from either the
participants or the contributors, and those submitted by novice contributors are more likely to get
abandoned. Also, the abandonment probability changes as projects evolve, with half the projects
showing a decrease in abandonment in their mature stages and the other half showing an increase
in abandonment. To identify the probable reasons why contributors abandon their PRs, we manually
examined a random sample of abandoned PRs. We found that difficulty addressing the maintainers’
comments, lack of review from the maintainers, difficulty resolving the CI failures, and difficulty
resolving the merge issues are the most common reasons why contributors abandon their PRs.
Finally, we surveyed the top core maintainers of the studied projects to gain additional insights on
how they deal with or suggest dealing with abandoned PRs and their perspectives on our findings.
Combining the findings from our research questions and survey responses, we discussed the role
of PRs, contributors, review processes, and projects in PR abandonment.
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APPENDIX
A COMPARISON OF ABANDONED AND NONABANDONED PRS
A.1 PR Features:

Fig. 7. Comparison of abandoned and nonabandoned PRs wrt pr_description across the studied projects.

Fig. 8. Comparison of abandoned and nonabandoned PRs wrt pr_commits across the studied projects.
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Fig. 9. Comparison of abandoned and nonabandoned PRs wrt pr_changed_lines across the studied projects.

Fig. 10. Comparison of abandoned and nonabandoned PRs wrt pr_changed_files across the studied projects.

A.2 Contributor Features:

Fig. 11. Comparison of abandoned and nonabandoned PRs wrt contributor_contribution_period across the
studied projects.
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Fig. 12. Comparison of abandoned and nonabandoned PRs wrt contributor_pulls across the studied projects.

Fig. 13. Comparison of abandoned and nonabandoned PRs wrt contributor_acceptance_rate across the studied
projects.

Fig. 14. Comparison of abandoned and nonabandoned PRs wrt contributor_abandonment_rate across the
studied projects.
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A.3 Review Process Features:

Fig. 15. Comparison of abandoned and nonabandoned PRs wrt review_response_latency across the studied
projects.

Fig. 16. Comparison of abandoned and nonabandoned PRs wrt review_participants across the studied projects.

Fig. 17. Comparison of abandoned and nonabandoned PRs wrt review_participants_responses across the
studied projects.
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Fig. 18. Comparison of abandoned and nonabandoned PRs wrt review_contributor_responses across the
studied projects.

A.4 Project Features:

Fig. 19. Comparison of abandoned and nonabandoned PRs wrt project_age across the studied projects.

Fig. 20. Comparison of abandoned and nonabandoned PRs wrt project_pulls across the studied projects.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: May 2022.



On Wasted Contributions: Understanding the Dynamics of Contributor-Abandoned Pull Requests 37

Fig. 21. Comparison of abandoned and nonabandoned PRs wrt project_contributors across the studied
projects.

Fig. 22. Comparison of abandoned and nonabandoned PRs wrt project_open_pulls across the studied projects.

B ALE PLOTS FOR DIFFERENT FEATURES

Fig. 23. ALE plots showing how pr_changed_lines varies the abandonment probability of PRs across the
studied projects.
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Fig. 24. ALE plots showing how project_open_pulls varies the abandonment probability of PRs across the
studied projects.

Fig. 25. ALE plots showing how pr_description varies the abandonment probability of PRs across the studied
projects.

Fig. 26. ALE plots showing how review_response_latency varies the abandonment probability of PRs across
the studied projects.
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Fig. 27. ALE plots showing how contributor_abandonment_rate varies the abandonment probability of PRs
across the studied projects.

Fig. 28. ALE plots showing how pr_commits varies the abandonment probability of PRs across the studied
projects.
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