
CCCD: Concolic Code Clone Detection
Daniel E. Krutz and Emad Shihab
Rochester Institute of Technology
{dxkvse,emad.shihab}@rit.edu

Abstract—Code clones are multiple code fragments that pro-
duce similar results when provided the same input. Prior research
has shown that clones can be harmful since they elevate mainte-
nance costs, increase the number of bugs caused by inconsistent
changes to cloned code and may decrease programmer compre-
hensibility due to the increased size of the code base.

To assist in the detection of code clones, we propose a new tool
known as Concolic Code Clone Discovery (CCCD). CCCD is the
first known clone detection tool that uses concolic analysis as its
primary component and is one of only three known techniques
which are able to reliably detect the most complicated kind of
clones, type-4 clones.

I. INTRODUCTION

Code clones may adversely affect the software development
process for several reasons. Clones often raise the maintenance
costs of a software project since alterations may need to be
done several times [4]. Additionally, unintentionally making
inconsistent bug fixes to cloned code across a software system
is also likely to lead to further system faults [2].

There are four types of code clones which are generally
recognized. Type-1 clones are the simplest and represent
identical code except for variations in whitespace, comments
and layout. Type-2 clones are syntactically similar except
for variations in identifiers and types. Type-3 clones are two
segments which differ due to altered or removed statements.
Type-4 clones are the most difficult to detect and represent
two code segments which significantly differ syntactically, but
produce identical results when executed [3].

In this paper, we propose Concolic Code Clone Detection
(CCCD), a tool which uses concolic analysis as a driving force
for discovering clones. Concolic analysis combines concrete
and symbolic values in order to traverse all possible paths (up
to a given length) of an application [6]. CCCD is innovative for
several reasons. First, only two other works [5] [7] are able to
effectively discover type-4 clones. Additionally, it represents
the only known proposed technique for discovering clones
which is based on concolic analysis.

Concolic analysis assists in creating a powerful clone detec-
tion tool because it does not consider the syntactic properties
of the source code of an application. Only the functionality is
analyzed. This means that issues such as naming conventions
and comments which have proven to be problematic for
existing clone detection systems will have no adverse affect
on CCCD.

II. TOOL OVERVIEW

Figure 1 shows the basic components of CCCD. As shown,
CCCD is comprised of two primary phases. The first step is
to generate the necessary concolic output for analysis and is

accomplished using two components which are invoked from
a Unix bash script. The first component is an open source
tool for generating the concolic output known as CREST [1].
CREST was selected since it was able to analyze a variety
of function types, regardless of the signature. The second
major component of the bash script is CTAGS 1 which is
used to identify the functions in the source code of the target
application.

The only modification which is done to CREST is with how
it generates the necessary concolic output. Other than this, all
default values are used and CREST is used in its native form.
No details regarding the maximum path exploration length,
main function for exploration or any other application details
are needed. Only C programs are compatible with CCCD since
CREST is only capable of analyzing C code.

The analysis phase is conducted using a component written
in Java. This component separates the generated concolic
output into individual function files using the list of functions
generated by CTAGS as a guideline. Since the concolic output
is separated at the function level, only function level clones
are identified by CCCD. Code segments within functions or
clones which partially traverse multiple functions will likely
not be identified by CCCD.

Once the concolic information has been split into individual
function files, the comparison process may begin. The concolic
output for each function is compared to one another in a
round robin fashion using the Levenshtein distance algorithm.
Comparisons with a lower Levenshtein distance means the
concolic output is more closely related, and thus indicative
of a code clone candidate. The final report contains a listing
of all code clone candidates as identified by CCCD.

The tool and complete results may be found by visiting the
main project website at http://www.se.rit.edu/∼dkrutz/CCCD/.

III. EVALUATION

In order to evaluate CCCD, we first compare its perfor-
mance on the code clone benchmarks provided by Krawitz [7]
and Roy et al. [8]. These works provided several explicit
examples of all four types of clones. The initial step was
to ensure that CCCD would be able to detect all of these
predefined clones individually. A simple C application was
created which contained the sixteen clones as defined by
Roy et al. and four as defined by Krawitz.

Several functions were inserted into this class which were
not clones of any other functions. The purpose of this was to

1http://ctags.sourceforge.net

http://www.se.rit.edu/~dkrutz/CCCD/


Fig. 1. Overview of the CCCD Tool

help ensure that CCCD did not incorrectly identify functions
to be clones which were not. This class was then analyzed by
CCCD. Out of 465 comparisons, 296 were manually deter-
mined not to be comparisons between two functions which
represented clones while 165 comparisons were manually
determined to represent code clones. CCCD was then run
against the target source code. Comparisons with a Leven-
shtein similarity score of under 35 were deemed to be code
clone candidates. These values were selected after several
previous test runs with this source code, along with the source
code from other applications. Higher Levenshtein scores were
found to include too many false positives, while lower scores
ignored a large number of clones. All results were manually
verified by two researchers.

CCCD was able to determine whether or not two functions
were clones with an accuracy of 93%. An additional, 17
comparisons were recommended for further manual analy-
sis (i.e., had a Levenshtein score close to 35). Another 14
comparisons should have been identified as clones, but were
not. These all interact with Krawitz type4 clones. This is due
to CREST’s inability to traverse all paths of the code, thus
creating incomplete concolic output and therefore hindering
the ability of CCCD to detect clones. Since CCCD was able
to identify the remaining type-4 clones presented in the work
by Roy et al., this is not considered to be a concern for
CCCD. There were not false positives, meaning that all clone
candidates identified by CCCD were manually verified to be
actual clones. These results are shown in Table I.

TABLE I
CLONE DETECTION RESULTS

Total Comparisons 465
Not clones 296 (65%)
Clones 165 (35%)
Correctly Identified 434 (93%)
Not Identified 14 (3%)
Recommended 17 (3.5%)
False Positive 0 (0%)
Avg. Leven Clones 12.7
Avg. Leven Non-Clones 58.4

The next step was to ensure that these clones could be
discovered in several open source applications. These included
FileZilla 2, VLC 3 and MySQL 4. Each of the predefined
clones taken from the works of Roy et al. and Krawitz were
randomly inserted into the source code of these applications
with their locations being noted. These results are shown in
Table III.

TABLE II
RESULTS OF THE INJECTED CLONES BY CCCD

Application Type-1 Type-2 Type-3 Type-4 Total
VLC 5/5 6/6 7/7 6/8 24/26 (92%)

MySQL 5/5 6/6 7/7 6/8 24/26 (92%)
FileZilla 5/5 6/6 7/7 6/8 24/26 (92%)

IV. CONCLUSION AND FUTURE WORK

This paper presented CCCD, a tool which uses concolic
analysis to discover code clones. Preliminary work demon-
strated its effectiveness in discovering clones of all four types.
This includes type-4 clones, which only two other techniques
are able to reliably locate.

REFERENCES

[1] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation.
In Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, pages 443–446, Washington,
DC, USA, 2008. IEEE Computer Society.

[2] Florian Deissenboeck, Benjamin Hummel, and Elmar Juergens. Code
clone detection in practice. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ICSE ’10,
pages 499–500, New York, NY, USA, 2010. ACM.

[3] Nicolas Gold, Jens Krinke, Mark Harman, and David Binkley. Issues
in clone classification for dataflow languages. In Proceedings of the 4th
International Workshop on Software Clones, IWSC ’10, pages 83–84,
New York, NY, USA, 2010. ACM.

[4] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan
Wagner. Do code clones matter? In Proceedings of the 31st Interna-
tional Conference on Software Engineering, ICSE ’09, pages 485–495,
Washington, DC, USA, 2009. IEEE Computer Society.

[5] Heejung Kim, Yungbum Jung, Sunghun Kim, and Kwankeun Yi. Mecc:
memory comparison-based clone detector. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 301–
310, New York, NY, USA, 2011. ACM.

[6] Yunho Kim, Moonzoo Kim, YoungJoo Kim, and Yoonkyu Jang. Industrial
application of concolic testing approach: a case study on libexif by using
crest-bv and klee. In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 1143–1152, Piscataway, NJ,
USA, 2012. IEEE Press.

[7] Ronald M. Krawitz. Code Clone Discovery Based on Functional
Behavior. PhD thesis, Nova Southeastern University, 2012.

[8] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison
and evaluation of code clone detection techniques and tools: A qualitative
approach. Sci. Comput. Program., 74(7):470–495, May 2009.

2https://filezilla-project.org
3http://www.videolan.org
4http://www.mysql.com


	Introduction
	Tool Overview
	Evaluation
	Conclusion and Future Work
	References

