
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 1

Using Natural Language Processing to
Automatically Detect Self-Admitted

Technical Debt
Everton da S. Maldonado, Emad Shihab, Member, IEEE, and Nikolaos Tsantalis, Member, IEEE,

Abstract—The metaphor of technical debt was introduced to express the trade off between productivity and quality, i.e., when
developers take shortcuts or perform quick hacks. More recently, our work has shown that it is possible to detect technical debt using
source code comments (i.e., self-admitted technical debt), and that the most common types of self-admitted technical debt are design
and requirement debt. However, all approaches thus far heavily depend on the manual classification of source code comments. In this
paper, we present an approach to automatically identify design and requirement self-admitted technical debt using Natural Language
Processing (NLP). We study 10 open source projects: Ant, ArgoUML, Columba, EMF, Hibernate, JEdit, JFreeChart, JMeter, JRuby and
SQuirrel SQL and find that 1) we are able to accurately identify self-admitted technical debt, significantly outperforming the current
state-of-the-art based on fixed keywords and phrases; 2) words related to sloppy code or mediocre source code quality are the best
indicators of design debt, whereas words related to the need to complete a partially implemented requirement in the future are the best
indicators of requirement debt; and 3) we can achieve 90% of the best classification performance, using as little as 23% of the
comments for both design and requirement self-admitted technical debt, and 80% of the best performance, using as little as 9% and
5% of the comments for design and requirement self-admitted technical debt, respectively. The last finding shows that the proposed
approach can achieve a good accuracy even with a relatively small training dataset.

Index Terms—Technical debt, Source code comments, Natural language processing, Empirical study.

F

1 INTRODUCTION

D EVELOPERS often have to deal with conflicting goals
that require software to be delivered quickly, with high

quality, and on budget. In practice, achieving all of these
goals at the same time can be challenging, causing a tradeoff
to be made. Often, these tradeoffs lead developers to take
shortcuts or use workarounds. Although such shortcuts help
developers in meeting their short-term goals, they may have
a negative impact in the long-term.

Technical debt is a metaphor coined to express sub-
optimal solutions that are taken in a software project in
order to achieve some short-term goals [1]. Generally, these
decisions allow the project to move faster in the short-term,
but introduce an increased cost (i.e., debt) to maintain this
software in the long run [2], [3]. Prior work has shown
that technical debt is widespread in the software domain, is
unavoidable, and can have a negative impact on the quality
of the software [4].

Technical debt can be deliberately or inadvertently in-
curred [5]. Inadvertent technical debt is technical debt that
is taken on unknowingly. One example of inadvertent tech-
nical debt is architectural decay or architectural drift. To
date, the majority of the technical debt work has focused on
inadvertent technical debt [6]. On the other hand, deliberate
technical debt, is debt that is incurred by the developer with

• E. da S. Maldonado and E. Shihab are with the Data-driven Analysis of
Software (DAS) lab at the Department of Computer Science and Software
Engineering, Concordia University, Montreal, Quebec, Canada. E-mail:
e silvam, eshihab@encs.concordia.ca

• N. Tsantalis is with the Department of Computer Science and Software
Engineering, Concordia University, Montreal, Quebec, Canada. E-mail:
tsantalis@encs.concordia.ca

knowledge that it is being taken on. One example of such
deliberate technical debt, is self-admitted technical debt,
which is the focus of our paper.

Due to the importance of technical debt, a number of
studies empirically examined technical debt and proposed
techniques to enable its detection and management. Some of
the approaches analyze the source code to detect technical
debt, whereas other approaches leverage various techniques
and artifacts, e.g., documentation and architecture reviews,
to detect documentation debt, test debt or architecture debt
(i.e., unexpected deviance from the initial architecture) [7],
[8].

The main findings of prior work are three-fold. First,
there are different types of technical debt, e.g., defect debt,
design debt, testing debt, and that among them design
debt has the highest impact [9], [10]. Second, static source
code analysis helps in detecting technical debt, (i.e., code
smells) [11], [12], [13]. Third, more recently, our work has
shown that it is possible to identify technical debt through
source comments, referred to as self-admitted technical
debt [14], and that design and requirement debt are the most
common types of self-admitted technical debt [15].

The recovery of technical debt through source code com-
ments has two main advantages over traditional approaches
based on source code analysis. First, it is more lightweight
compared to source code analysis, since it does not require
the construction of Abstract Syntax Trees or other more
advanced source code representations. For instance, some
code smell detectors that also provide refactoring recom-
mendations to resolve the detected code smells [16], [17]
generate computationally expensive program representa-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 2

tion structures, such as program dependence graphs [18],
and method call graphs [19] in order to match structural
code smell patterns and compute metrics. On the other
hand, the source code comments can be easily and efficiently
extracted from source code files using regular expressions.
Second, it does not depend on arbitrary metric threshold
values, which are required in all metric-based code smell de-
tection approaches. Deriving appropriate threshold values is
a challenging open problem that has attracted the attention
and effort of several researchers [20], [21], [22]. As a matter
of fact, the approaches based on source code analysis suffer
from high false positive rates [23] (i.e., they flag a large
number of source code elements as problematic, while they
are not perceived as such by the developers), because they
rely only on the structure of the source code to detect code
smells without taking into account the developers’ feedback,
the project domain, and the context in which the code smells
are detected.

However, relying solely on the developers’ comments to
recover technical debt is not adequate, because developers
might be unaware of the presence of some code smells
in their project, or might not be very familiar with good
design and coding practices (i.e., inadvertent debt). As a
result, the detection of technical debt through source code
comments can be only used as a complementary approach to
existing code smell detectors based on source code analysis.
We believe that self-admitted technical debt can be useful
to prioritize the pay back of debt (i.e., develop a pay back
plan), since the technical debt expressed in the comments
written by the developers themselves might be more rele-
vant to them. As a matter of fact, in a recent survey [24]
with 152 developers of a large financial organization (ING
Netherlands), 88% of the participants responded that they
annotate poor implementation choices (i.e., design technical
debt) with comments in the source code (i.e., self-admitted
technical debt), and when time allows, they act on them by
trying to refactor such smells using some automated tool
support (71%), or manually (29%).

Despite the advantages of recovering technical debt from
source code comments, the research in self-admitted techni-
cal debt, thus far, heavily relies on the manual inspection of
code comments. The current-state-of-the art approach [14]
uses 62 comment patterns (i.e., words and phrases) derived
after the manual examination of more than 100K comments.
The manual inspection of code comments is subject to
reader bias, time consuming and, as any other manual task,
susceptible to errors. These limitations in the identification
of self-admitted technical debt comments makes the current
state-of-the-art approach difficult to be applied in practice.

Therefore, in this paper we investigate the efficiency of
using Natural Language Processing (NLP) techniques to
automatically detect the two most common types of self-
admitted technical debt, i.e., design and requirement debt.
We analyze ten open source projects from different appli-
cation domains, namely, Ant, ArgoUML, Columba, EMF,
Hibernate, JEdit, JFreeChart, JMeter, JRuby and SQuirrel
SQL. We extract and classify the source comments of these
projects. Then, using the classified dataset we train a maxi-
mum entropy classifier using the Stanford Classifier tool [25]
to identify design and requirement self-admitted technical
debt. The advantages of the maximum entropy classifier

over keyword-based and pattern-based approaches, such as
comment patterns, are twofold. First, the maximum entropy
classifier automatically extracts the most important features
(i.e., words) for each class (i.e., design self-admitted tech-
nical debt, requirement self-admitted technical debt, and
without technical debt) based on a classified training dataset
given as input. Second, the maximum entropy classifier,
apart from finding features that contribute positively to
the classification of a comment in a given class, also finds
features that contribute negatively to the classification of a
comment in a given class.

We perform a leave-one-out cross-project validation (i.e.,
we train on nine projects and test on one project). Our
results show that we are able to achieve an average F1-
measure of 0.620 when identifying design self-admitted
technical debt, and an average F1-measure of 0.403 when
identifying requirement self-admitted technical debt. We
compare the performance of our approach to a simple
(random) baseline and the state-of-the-art approach used to
detect self-admitted technical debt [14]. Our results show
that on average, we outperform the state-of-the-art by2.3
times, when detecting design debt, and by 6 times when
detecting requirement debt.

To better understand how developers express technical
debt we analyze the 10 most prevalent words appearing
within self-admitted technical debt comments. We find
that the top design debt words are related to sloppy or
mediocre source code. For example, words such as ‘hack’,
‘workaround’ and ‘yuck!’ are used to express design self-
admitted technical debt. On the other hand, for requirement
debt, words indicating the need to complete a partially im-
plemented requirement are the best indicators. For example,
words such as ‘todo’, ‘needed’ and ‘implementation’ are
strong indicators of requirement debt.

Finally, to determine the most efficient way to apply our
approach, we analyze the amount of training data necessary
to effectively identify self-admitted technical debt. We find
that training datasets using 23% of the available data can
achieve a performance equivalent to 90% of the maximum
F1-measure score for both design and requirement self-
admitted technical debt. Similarly, 80% of the maximum F1-
measure can be achieved using only 9% of the available
data for design self-admitted technical debt, and 5% for
requirement self-admitted technical debt.

The main contributions of our work are the following:

• We provide an automatic, NLP-based, approach to
identify design and requirement self-admitted tech-
nical debt.

• We examine and report the words that best indicate
design and requirement self-admitted technical debt.

• We show that using a small training set of comments,
we are able to effectively detect design and require-
ment self-admitted technical debt.

• We make our dataset publicly available, so that oth-
ers can advance work in the area of self-admitted
technical debt [26].

The rest of the paper is organized as follows. Section
2 describes our approach. We setup our experiment and
present our results in Section 3. We discuss the implications
of our findings in Section 4. In Section 5 we present the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 3

related work. Section 6 presents the threats to validity and
Section 7 presents our conclusions and future work.

2 APPROACH

The main goal of our study is to automatically identify self-
admitted technical debt through source code comments. To
do that, we first extract the comments from ten open source
projects. Second, we apply five filtering heuristics to remove
comments that are irrelevant for the identification of self-
admitted technical debt (e.g., license comments, commented
source code and Javadoc comments). After that, we man-
ually classify the remaining comments into the different
types of self-admitted technical debt (i.e., design debt, re-
quirement debt, defect debt, documentation debt and test
debt). Lastly, we use these comments as training data for
the maximum entropy classified and use the trained model
to detect self-admitted technical debt from source code
comments. Figure 1 shows an overview of our approach,
and the following subsections detail each step.

2.1 Project Data Extraction

To perform our study, we need to analyze the source code
comments of software projects. Therefore, we focused our
study on ten open source projects:Ant is a build tool written
in Java, ArgoUML is an UML modeling tool that includes
support for all standard UML 1.4 diagrams, Columba is an
email client that has a graphical interface with wizards and
internationalization support, EMF is a modeling framework
and code generation facility for building tools and other
applications, Hibernate is a component providing Object Re-
lational Mapping (ORM) support to applications and other
components, JEdit is a text editor written in Java, JFreeChart
is a chart library for the Java platform, JMeter is a Java
application designed to load functional test behavior and
measure performance, JRuby is a pure-Java implementation
of the Ruby programming language and SQuirrel SQL is
a graphical SQL client written in Java. We selected these
projects since they belong to different application domains,
are well commented, vary in size, and in the number of
contributors.

Table 1 provides details about each of the projects used in
our study. The columns of Table 1 present the release used,
followed by the number of classes, the total source lines
of code (SLOC), the number of contributors, the number
of extracted comments, the number of comments analyzed
after applying our filtering heuristics, and the number
of comments that were classified as self-admitted techni-
cal debt together with the percentage of the total project
comments that it represent. The final three columns show
the percentage of self-admitted technical debt comments
classified as design debt, requirement debt, and all other
remaining types of debt (i.e., defect, documentation and test
debt), respectively.

Since there are many different definitions for the SLOC
metric we clarify that, in our study, a source line of code
contains at least one valid character, which is not a blank
space or a source code comment. In addition, we only use
the Java files to calculate the SLOC, and to do so, we use the
SLOCCount tool [27].

The number of contributors was extracted from Open-
Hub, an on-line community and public directory that offers
analytics, search services and tools for open source software
[28]. It is important to note that the number of comments
shown for each project does not represent the number of
commented lines, but rather the number of Single-line,
Block and Javadoc comments. In total, we obtained 259,229
comments, found in 16,249 Java classes. The size of the
selected projects varies between 81,307 and 228,191 SLOC,
and the number of contributors of these projects ranges from
9 to 328.

2.2 Parse Source Code
After obtaining the source code of all projects, we extract the
comments from the source code. We use JDeodorant [29], an
open-source Eclipse plug-in, to parse the source code and
extract the code comments. JDeodorant provides detailed
information about the source code comments such as: their
type (i.e., Block, Single-line, or Javadoc), their location (i.e.,
the lines where they start and end), and their context (i.e.,
the method/field/type declaration they belong to).

Due to these features, we adapted JDeodorant to extract
the aforementioned information about source code com-
ments and store it in a relational database to facilitate the
processing of the data.

2.3 Filter Comments
Source code comments can be used for different purposes in
a project, such as giving context, documenting, expressing
thoughts, opinions and authorship, and in some cases, dis-
abling source code from the program. Comments are used
freely by developers and with limited formalities, if any at
all. This informal environment allows developers to bring
to light opinions, insights and even confessions (e.g., self-
admitted technical debt).

As shown in prior work [15], part of these comments
may discuss self-admitted technical debt, but not the major-
ity of them. With that in mind, we develop and apply 5 fil-
tering heuristics to narrow down the comments eliminating
the ones that are less likely to be classified as self-admitted
technical debt.

To do so, we developed a Java based tool that reads from
the database the data obtained by parsing the source code.
Next, it executes the filtering heuristics and stores the results
back in the database. The retrieved data contains informa-
tion like the line number that a class/comment starts/ends
and the comment type, considering the Java syntax (i.e.,
Single-line, Block or Javadoc). With this information we
process the filtering heuristics as described next.

License comments are not very likely to contain self-
admitted technical debt, and are commonly added before
the declaration of the class. We create a heuristic that re-
moves comments that are placed before the class declara-
tion. Since we know the line number that the class was
declared we can easily check for comments that are placed
before that line and remove them. In order to decrease the
chances of removing a self-admitted technical debt comment
while executing this filter we calibrated this heuristic to
avoid removing comments that contain one of the prede-
fined task annotations (i.e., “TODO:”, “FIXME:”, or “XXX:”)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 4

Parse Source
Code

Heuristics to
Remove

Irrelevant
Comments

Identification of
Comment
Patterns

Analyse the
Results

Source
Code

Repository Manual
Investigation

Data Extraction

Parse Source
Code Filter Comments Analyse the

Results
Source
Code

Repository

Manual
InvestigationProject

Data Extraction

Parse Source
Code

Filter
Comments

NLP
Classification

Source
Code

Repository

Analyse the
Results

Manual
Classification

Project
Data

Extraction

Parse Source
Code

Filter
Comments

NLP
Classification

Source
Code

Repository

Manual
Classification

Project
Data

Extraction

Fig. 1. Approach Overview
TABLE 1

Details of the Studied Projects

Project

Project Details Comments Details Technical Debt Details

Release #
of Classes SLOC # of

Contributors
of

Comments

of
Comments

After Filtering

#,(%) of
TD

Comments

% of
Design
Debt

% of
Requirement

Debt

% of
Other
Debt

Ant 1.7.0 1,475 115,881 74 21,587 4,137 131 (0.60) 72.51 09.92 17.55
ArgoUML 0.34 2,609 176,839 87 67,716 9,548 1,413 (2.08) 56.68 29.08 14.22
Columba 1.4 1,711 100,200 9 33,895 6,478 204 (0.60) 61.76 21.07 17.15
EMF 2.4.1 1,458 228,191 30 25,229 4,401 104 (0.41) 75.00 15.38 09.61
Hibernate 3.3.2 GA 1,356 173,467 226 11,630 2,968 472 (4.05) 75.21 13.55 11.22
JEdit 4.2 800 88,583 57 16,991 10,322 256 (1.50) 76.56 05.46 17.96
JFreeChart 1.0.19 1,065 132,296 19 23,474 4,423 209 (0.89) 88.03 07.17 04.78
JMeter 2.10 1,181 81,307 33 20,084 8,162 374 (1.86) 84.49 05.61 09.89
JRuby 1.4.0 1,486 150,060 328 11,149 4,897 622 (5.57) 55.14 17.68 27.17
SQuirrel 3.0.3 3,108 215,234 46 27,474 7,230 286 (1.04) 73.07 17.48 09.44

Average 1,625 146,206 91 25,923 6,257 407 (1.86) 71.84 14.24 13.89
Total 16,249 1,462,058 909 259,229 62,566 4,071 (-) - - -

[30]. Task annotations are an extended functionality pro-
vided by most of the popular Java IDEs including Eclipse,
InteliJ and NetBeans. When one of these words is used
inside a comment the IDE will automatically keep track of
the comment creating a centralized list of tasks that can be
conveniently accessed later on.

Long comments that are created using multiple Single-
line comments instead of a Block comment can hinder the
understanding of the message considering the case that the
reader (i.e., human or machine) analyzes each one of these
comments independently. To solve this problem, we create a
heuristic that searches for consecutive single-line comments
and groups them as one comment.

Commented source code is found in the projects due to
many different reasons. One of the possibilities is that the
code is not currently being used. Other is that, the code is
used for debugging purposes only. Based on our analysis,
commented source code does not have self-admitted tech-
nical debt. Our heuristic removes commented source code
using a simple regular expression that captures typical Java
code structures.

Automatically generated comments by the IDE are fil-
tered out as well. These comments are inserted as part
of code snippets used to generate constructors, meth-
ods and try catch blocks, and have a fixed format
(i.e., “Auto-generated constructor stub”, “Auto-generated
method stub”, and “Auto-generated catch block”). There-
fore our heuristic searches for these automatically generated
comments and removes them.

Javadoc comments rarely mention self-admitted techni-
cal debt. For the Javadoc comments that do mention self-
admitted technical debt, we notice that they usually contain
one of the task annotations (i.e., “TODO:”, “FIXME:”, or

“XXX:”). Therefore, our heuristic removes all comments of
the Javadoc type, unless they contain at least one of the task
annotations. To do so, we create a simple regular expression
that searches for the task annotations before removing the
comment.

The steps mentioned above significantly reduced the
number of comments in our dataset and helped us focus on
the most applicable and insightful comments. For example,
in the Ant project, applying the above steps helped to reduce
the number of comments from 21,587 to 4,137 resulting in
a reduction of 80.83% in the number of comments to be
manually analyzed. Using the filtering heuristics we were
able to remove from 39.25% to 85.89% of all comments. Table
1 provides the number of comments kept after the filtering
heuristics for each project.

2.4 Manual Classification

Our goal is to inspect each comment and label it with a
suitable technical debt classification. Since there are many
comments, we developed a Java based tool that shows one
comment at a time and gives a list of possible classifications
that can be manually assigned to the comment. The list of
possible classifications is based on previous work by Alves
et al. [9]. In their work, an ontology on technical debt terms
was proposed, and they identified the following types of
technical debt across the researched literature: architecture,
build, code, defect, design, documentation, infrastructure,
people, process, requirement, service, test automation and
test debt. During the classification process, we notice that
not all types of debt mentioned by Alves et al. [9] could
be found in code comments. However, we were able to
identify the following types of debt in the source comments:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 5

design debt, defect debt, documentation debt, requirement
debt and test debt.

In our previous work [15], we manually classified 33,093
commentsextracted from the following projects: Ant, Ar-
goUML, Columba, JFreeChart and JMeter. In the current
study we manually classified an additional 29,473 com-
mentsfrom EMF, Hibernate, JEdit, JRuby and SQuirrel,
which means that we extended our dataset of classified
comments by 89.06%. In total, we manually classified 62,566
comments into the five different types of self-admitted tech-
nical debt mentioned above. The classification process took
approximately 185 hours in total, and was performed by the
first author of the paper. It is important to note that this
manual classification step does not need to be repeated in
order to apply our approach, since our dataset is publicly
available [26], and thus it can used as is, or even extended
with new classified comments.

Below, we provide definitions for design and require-
ment self-admitted technical debt, and some indicative com-
ments to help the reader understand the different types of
self-admitted technical debt comments.
Self-admitted design debt: These comments indicate that
there is a problem with the design of the code. They can be
comments about misplaced code, lack of abstraction, long
methods, poor implementation, workarounds, or temporary
solutions. Usually these kinds of issues are resolved through
refactoring (i.e., restructuring of existing code), or by re-
implementing existing code to make it faster, more secure,
more stable and so forth. Let us consider the following
comments:

“TODO: - This method is too complex, lets break it up”
- [from ArgoUml]

“/* TODO: really should be a separate class */” - [from
ArgoUml]

These comments are clear examples of what we consider
as self-admitted design debt. In the above comments, the
developers state what needs to be done in order to improve
the current design of the code, and the payback of this
kind of design debt can be achieved through refactoring. Al-
though the above comments are easy to understand, during
our study we came across more challenging comments that
expressed design problems in an indirect way. For example:

“// I hate this so much even before I start writing it.
// Re-initialising a global in a place where no-one will
see it just // feels wrong. Oh well, here goes.” - [from
ArgoUml]

“//quick & dirty, to make nested mapped p-sets work:” -
[from Apache Ant]

In the above example comments the authors are certain
to be implementing code that does not represent the best
solution. We assume that this kind of implementation will
degrade the design of the code and should be avoided.

“// probably not the best choice, but it solves the problem
of // relative paths in CLASSPATH” - [from Apache
Ant]

“//I can’t get my head around this; is encoding treatment
needed here?” - [from Apache Ant]

The above comments expressed doubt and uncertainty
when implementing the code and were considered as self-
admitted design debt as well. The payback of the design
debt expressed in the last four example comments can be
achieved through the re-implementation of the currently
existing solution.
Self-admitted requirement debt: These comments convey
the opinion of a developer supporting that the implemen-
tation of a requirement is not complete. In general, require-
ment debt comments express that there is still missing code
that needs to be added in order to complete a partially
implemented requirement, as it can be observed in the
following comments:

“/TODO no methods yet for getClassname” - [from
Apache Ant]

“//TODO no method for newInstance using a reverse-
classloader” - [from Apache Ant]

“TODO: The copy function is not yet * completely
implemented - so we will * have some exceptions here
and there.*/” - [from ArgoUml]

“TODO: This dialect is not yet complete. Need to
provide implementations wherever Not yet implemented
appears” - [from SQuirrel]

To mitigate the risk of creating a dataset that is biased,
we extracted a statistically significant sample of our dataset
and asked another student to classify it. To prepare the
student for the task we gave a 1-hour tutorial about the
different kinds of self-admitted technical debt, and walked
the student through a couple of examples of each different
type of self-admitted technical debt comment. The tutorial
is provided online as well [26]. The statistically significant
sample was created based on the total number of comments
(62,566) with a confidence level of 99% and a confidence
interval of 5%, resulting in a stratified sample of 659 com-
ments. We composed the stratified sample according to
the percentage of each classification found in the original
dataset. Therefore, the stratified sample was composed of:
92% comments without self-admitted technical debt (609
comments), 4% design debt (29 comments), 2% requirement
debt (5 comments), 0.75% test debt (2 comments) and 0.15%
documentation debt (1 comment). Lastly, we evaluate the
level of agreement between both reviewers of the stratified
sample by calculating Cohen’s kappa coefficient [31]. The
Cohen’s Kappa coefficient has been commonly used to
evaluate inter-rater agreement level for categorical scales,
and provides the proportion of agreement corrected for
chance. The resulting coefficient is scaled to range between
-1 and +1, where a negative value means poorer than chance
agreement, zero indicates exactly chance agreement, and a
positive value indicates better than chance agreement [32].
The closer the value is to +1, the stronger the agreement.
In our work, the level of agreement measured between the
reviewers was of +0.81.

We also measured the level of agreement in the classifica-
tion of design and requirement self-admitted technical debt
individually. This is important because the stratified sample
contains many more comments without self-admitted tech-
nical debt than the other types of debt, and therefore, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 6

coefficient reported above could indicate that the reviewers
are agreeing on what is not self-admitted technical debt,
instead of agreeing on a particular type of debt. However,
we achieved a level of agreement of +0.75 for design self-
admitted technical debt, and +0.84 for requirement self-
admitted technical debt. According to Fleiss [33] values
larger than +0.75 are characterized as excellent agreement.

2.5 NLP Classification
Our next step is to use the classified self-admitted technical
debt comments as a training dataset for the Stanford Classi-
fier, which is a Java implementation of a maximum entropy
classifier [25]. A maximum entropy classifier, in general,
takes as input a number of data items along with a clas-
sification for each data item, and automatically generates
features (i.e., words) from each datum, which are associated
with positive or negative numeric votes for each class. The
weights of the features are learned automatically based
on the manually classified training data items (supervised
learning). The Stanford Classifier builds a maximum entropy
model, which is equivalent to a multi-class regression model,
and it is trained to maximize the conditional likelihood of
the classes taking into account feature dependences when
calculating the feature weights.

After the training phase, the maximum entropy classifier
can take as input a test dataset that will be classified accord-
ing to the model built during the training phase. The output
for each data item in the test dataset is a classification, along
with the features contributing positively or negatively in
this classification.

In our case, the training dataset is composed of source
code comments and their corresponding manual classifica-
tion. According to our findings in previous work [15], the
two most common types of self-admitted technical debt are
design and requirement debt (defect, test, and documenta-
tion debt together represent less that 10% of all self-admitted
technical debt comments). Therefore, we train themaximum
entropy classifier on the dataset containing only these two
specific types of self-admitted technical debt comments.

In order to avoid having repeated features differing
only in letter case (e.g., “Hack”, “hack”, “HACK”), or in
preceding/succeeding punctuation characters (e.g., “,hack”,
“hack,”), we preprocess the training and test datasets to
clean up the original comments written by the developers.
More specifically, we remove the character structures that
are used in the Java language syntax to indicate comments
(i.e., ‘//’ or ‘/*’ and ‘*/’), the punctuation characters (i.e.,
‘,’, ‘...’, ‘;’, ‘:’), and any excess whitespace characters (e.g., ‘
’, ‘\t’, ‘\n’), and finally we convert all comments to lower-
case. However, we decided not to remove exclamation and
interrogation marks. These specific punctuations were very
useful during the identification of self-admitted technical
debt comments, and provide insightful information about
the meaning of the features.

3 EXPERIMENT RESULTS

The goal of our research is to develop an automatic way to
detect design and requirement self-admitted technical debt
comments. To do so, we first manually classify a large num-
ber of comments identifying those containing self-admitted

technical debt. With the resulting dataset, we train the max-
imum entropy classifier to identify design and requirement
self-admitted technical debt (RQ1). To better understand
what words indicate self-admitted technical debt, we in-
spect the features used by the maximum entropy classifier
to identify the detected self-admitted technical debt. These
features are words that are frequently found in comments
with technical debt. We present the 10 most common words
that indicate design and requirement self-admitted technical
debt (RQ2). Since the manual classification required to create
our training dataset is expensive, ideally we would like
to achieve maximum performance with the least amount
of training data. Therefore, we investigate how variations
in the size of training data affects the performance of our
classification (RQ3). We detail the motivation, approach and
present the results of each of our research questions in the
remainder of this section.

RQ1. Is it possible to more accurately detect self-admitted
technical debt using NLP techniques?

Motivation: As shown in previous work [15], self-admitted
technical debt comments can be found in the source code.
However, there is no automatic way to identify these com-
ments. The methods proposed so far heavily rely on the
manual inspection of source code, and there is no evidence
on how well these approaches perform. Moreover, most of
them do not discriminate between the different types of
technical debt (e.g., design, test, requirement).

Therefore, we want to determine if NLP techniques such
as, the maximum entropy classifier, can help us surpass
these limitations and outperform the accuracy of the cur-
rent state-of-the-art. The maximum entropy classifier can
automatically classify comments based on specific linguistic
characteristics of these comments. Answering this question
is important, since it helps us understand the opportunities
and limitations of using NLP techniques to automatically
identify self-admitted technical debt comments.

Approach: For this research question, we would like to
examine how effectively we can identify design and re-
quirement self-admitted technical debt. Therefore, the first
step is to create a dataset that we can train and test the
maximum entropy classifier on. We classified the source
code comments into the following types of self-admitted
technical debt: design, defect, documentation, requirement,
and test debt. However, our previous work showed that
the most frequent self-admitted technical debt comments
are design and requirement debt. Therefore, in this paper,
we focus on the identification of these two types of self-
admitted technical debt, because 1) they are the most com-
mon types of technical debt, and 2) NLP-based techniques
require sufficient data for training (i.e., they cannot build an
accurate model with a small number of samples).

We train the maximum entropy classifier using our
manually created dataset. The dataset contains comments
with and without self-admitted technical debt, and each
comment has a classification (i.e., without technical debt,
design debt, or requirement debt). Then, we add to the
training dataset all comments classified as without technical
debt and the comments classified as the specific type of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 7

TABLE 2
Comparison of F1-measure between the NLP-based, the Comment Patterns and the Random Baseline Approaches for Design and Requirement

Debt

Project

Design Debt Requirement Debt

Our
Approach

Comment
Patterns

Random
Classifier

Imp. Over
Comment
Patterns

Imp. Over
Random
Classifier

Our
Approach

Comment
Patterns

Random
Classifier

Imp. Over
Comment
Patterns

Imp. Over
Random
Classifier

Ant 0.517 0.237 0.044 2.1× 11.7 × 0.154 0.000 0.006 - 25.6×
ArgoUML 0.814 0.107 0.144 7.6× 5.6 × 0.595 0.000 0.079 - 7.5 ×
Columba 0.601 0.264 0.037 2.2× 16.2 × 0.804 0.117 0.013 6.8 × 61.8×
EMF 0.470 0.231 0.034 2.0× 13.8 × 0.381 0.000 0.007 - 54.4×
Hibernate 0.744 0.227 0.193 3.2× 3.8 × 0.476 0.000 0.041 - 11.6×
JEdit 0.509 0.342 0.037 1.4× 13.7 × 0.091 0.000 0.003 - 30.3×
JFreeChart 0.492 0.282 0.077 1.7× 6.3 × 0.321 0.000 0.007 - 45.8×
JMeter 0.731 0.194 0.072 3.7× 10.1 × 0.237 0.148 0.005 1.6 × 47.4×
JRuby 0.783 0.620 0.123 1.2× 6.3 × 0.435 0.409 0.043 1.0 × 10.1×
SQuirrel 0.540 0.175 0.055 3.0× 9.8 × 0.541 0.000 0.014 - 38.6×

Average 0.620 0.267 0.081 2.3× 7.6 × 0.403 0.067 0.021 6.0 × 19.1×

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter JRuby SQuirrel0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NLP-based

Comment patterns

Random classifier

F
1

-M
e

a
s
u

re

(a) Design Debt

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter JRuby SQuirrel0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

NLP-based

Comment patterns

Random classifier

F
1

-M
e

a
s
u

re

(b) Requirement Debt

Fig. 2. Visualization of the F1-measure for Different Approaches

self-admitted technical debt that we want to identify (i.e.,
design or requirement debt). We use the comments from
9 out of the 10 projects that we analyzed to create the
training dataset. The comments from the remaining one
project are used to evaluate the classification performed by
the maximum entropy classifier. We choose to create the
training dataset using comments from 9 out of 10 projects,
because we want to train the maximum entropy classifier
with the most diverse data possible (i.e., comments from
different domains of applications). However, we discuss the
implications of using training datasets of different sizes in
RQ3. We repeat this process for each one of the ten projects,
each time training on the other 9 projects and testing on the
remaining 1 project.

Based on the training dataset, the maximum entropy
classifier will classify each comment in the test dataset.
The resulting classification is compared with the manual
classification provided in the test dataset. If a comment in
the test dataset has the same manual classification as the
classification suggested by the maximum entropy classifier,
we will have a true positive (tp) or a true negative (tn).
True positives are the cases where the maximum entropy
classifier correctly identifies self-admitted technical debt
comments, and true negatives are comments without techni-
cal debt that are classified as being as such. Similarly, when

the classification provided by the tool diverges from the
manual classification provided in the test dataset, we have
false positives or false negatives. False positives (fp) are
comments classified as being self-admitted technical debt
when they are not, and false negatives (fn) are comments
classified as without technical debt when they really are self-
admitted technical debt comments. Using the tp, tn, fp, and
fn values, we are able to evaluate the performance of differ-
ent detection approaches in terms of precision (P = tp

tp+fp),
recall (R = tp

tp+fn) and F1-measure (F = 2 × P×R
P+R). To de-

termine how effective the NLP classification is, we compare
its F1-measure values with the corresponding F1-measure
values of the two other approaches. We use the F1-measure
to compare the performance between the approaches as it
is the harmonic mean of precision and recall. Using the
F1-measure allows us to incorporate the trade-off between
precision and recall and present one value that evaluates
both measures.

The first approach is the current state-of-the-art in de-
tecting self-admitted technical debt comments [14]. This
approach uses 62 comment patterns (i.e., keywords and
phrases) that were found as recurrent in self-admitted
technical debt comments during the manual inspection
of 101,762 comments. The second approach is a simple
(random) baseline, which assumes that the detection of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 8

self-admitted technical debt is random (this approach is
used as a F1 lower bound). The precision of this approach
is calculated by taking the total number of self-admitted
technical debt over the total number of comments of each
project. For example, project Ant has 4,137 comments, of
those, only 95 comments are design self-admitted technical
debt. The probability of randomly labelling a comment as
a self-admitted technical debt comment is 0.023 (i.e., 95

4,137).
Similarly, to calculate the recall we take into consideration
the two possible classifications available: one is the type of
self-admitted technical debt (e.g., design) and the other is
without technical debt. Therefore, there is a 50% chance that
the comment will be classified as self-admitted technical
debt. Thus, the F1-measure for the random baseline for
project Ant is computed as 2× 0.023×0.5

0.023+0.5 = 0.044.

Results - design debt: Table 2 presents the F1-measure of
the three approaches, as well as the improvement achieved
by our approach compared to the other two approaches. We
see that for all projects, the F1-measure achieved by our ap-
proach is higher than the other approaches. The F1-measure
values obtained by our NLP-based approach range between
0.470 - 0.814, with an average of 0.620. In comparison, the F1-
measure values using the comment patterns range between
0.107 - 0.620, with an average of 0.267, while the simple
(random) baseline approach achieves F1-measure values in
the range of 0.034 - 0.193, with an average of 0.081. Figure
2(a) visualizes the comparison of the F1-measure values for
our NLP-based approach, the comment patterns approach,
and the simple (random) baseline approach. We see from
both, Table 2 and Figure 2(a) that, on average, our approach
outperforms the comment patterns approach by 2.3 times
and the simple (random) baseline approach by 7.6 times
when identifying design self-admitted technical debt.

It is important to note that the comment patterns
approach has a high precision, but low recall, i.e., this
approach points correctly to self-admitted technical debt
comments, but as it depends on keywords, it identifies a
very small subset of all the self-admitted technical debt
comments in the project. Although we only show the F1-
measure values here, we present the precision and recall
values in Table 9 in the Appendix section.
Results - requirement debt: Similarly, the last five columns
of Table 2 show the F1-measure performance of the three ap-
proaches, and the improvement achieved by our approach
over the two other approaches. The comment patterns
approach was able to identify requirement self-admitted
technical debt in only 3 of the 10 analyzed projects. A
possible reason for the low performance of the comment
patterns in detecting requirement debt is that the comment
patterns do not differentiate between the different types of
self-admitted technical debt. Moreover, since most of the
debt is design debt, it is possible that the patterns tend to
favor the detection of design debt.

That said, we find that for all projects, the F1-measure
values obtained by our approach surpass the F1-measure
values of the other approaches. Our approach achieves F1-
measure values between 0.091 - 0.804 with an average of
0.403, whereas the comment pattern approach achieves F1-
measure values in the range of 0.117 - 0.409 with an average
of 0.067, while the simple (random) baseline ranges between

0.003 - 0.079, with an average of 0.021. Figure 2(b) visualizes
the performance comparison of the two approaches.We also
examine if the differences in the F1-measure values obtained
by our approach and the other two baselines are statisti-
cally significant. Indeed, we find that the differences are
statistically significant (p<0.001) for both baselines and both
design and requirement self-admitted technical debt.

Generally, requirement self-admitted technical debt is
less common than design self-admitted technical debt,
which makes it more difficult to detect.Nevertheless, our
NLP-based approach provides a significant improvement
over the comment patterns approach, outperforming it by
6 times, on average. Table 2 only presents the F1-measure
values for the sake of brevity, however, we present the
detailed precision and recall values in the Appendix section,
Table 10.

We find that our NLP-based approach, is more accurate
in identifying self-admitted technical debt comments
compared to the current state-of-art. We achieved an av-
erage F1-measure of 0.620 when identifying design debt
(an average improvement of 2.3× over the state-of-the-
art approach) and an average F1-measure of 0.403 when
identifying requirement debt (an average improvement of
6× over the state-of-the-art approach).

RQ2. What are the most impactful words in the classifica-
tion of self-admitted technical debt?

Motivation: After assessing the accuracy of our NLP-based
approach in identifying self-admitted technical debt com-
ments, we want to better understand what words devel-
opers use when expressing technical debt. Answering this
question will provide insightful information that can guide
future research directions, broaden our understanding on
self-admitted technical debt and also help us to detect it.

Approach: The maximum entropy classifier learns optimal
features that can be used to detect self-admitted technical
debt. A feature is comment fragment (e.g., word) that is
associated with a specific class (i.e., design debt, require-
ment debt, or without technical debt), and a weight that
represents how strongly this feature relates to that class.
The maximum entropy classifier uses the classified training
data to determine the features and their weights. Then,
these features and their corresponding weights are used to
determine if a comment belongs to a specific type of self-
admitted technical debt or not.

For example, let us assume that after the training, the
maximum entropy classifier determines that the features
“hack” and “dirty” are related to the design-debt class with
weights 5.3 and 3.2, respectively, and the feature “some-
thing” relates to the without-technical-debt class with a weight
of 4.1. Then, to classify the comment “this is a dirty hack
it’s better to do something” from our test data, all features
present in the comment will be examined and the follow-
ing scores would be calculated: weightdesign−debt = 8.5
(i.e., the sum of “hack” and “dirty” feature weights) and
weightwithout−technical−debt = 4.1. Since weightdesign−debt

is larger than weightwithout−technical−debt, the comment
will be classified as design debt.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 9

For each analyzed project, we collect the features used to
identify the self-admitted technical debt comments. These
features are provided by the maximum entropy classifier
as output and stored in a text file. The features are written
in the file according to their weights in descending order
(starting from more relevant, ending to less relevant fea-
tures). Based on these files, we rank the words calculating
the average ranking position of the analyzed features across
the ten different projects.
Results: Table 3 shows the top-10 textual features used
to identify self-admitted technical debt in the ten studied
projects, ordered by their average ranking. The first column
shows the ranking of each textual feature, the second col-
umn lists the features used in the identification of design
self-admitted technical debt, and the third column lists the
textual features used to identify requirement self-admitted
technical debt.

TABLE 3
Top-10 Textual Features Used to Identify Design and Requirement

Self-Admitted Technical Debt

Rank Design Debt Requirement Debt

1 hack todo
2 workaround needed
3 yuck! implementation
4 kludge fixme
5 stupidity xxx
6 needed? ends?
7 columns? convention
8 unused? configurable
9 wtf? apparently
10 todo fudging

From Table 3 we observe that the top ranked textual
features for design self-admitted technical debt, i.e., hack,
workaround, yuck!, kludge and stupidity, indicate sloppy code,
or mediocre source code quality. For example, we have the
following comment that was found in JMeter:

“Hack to allow entire URL to be provided in host field”

Other textual features, such as needed?, unused? and wtf? are
questioning the usefulness or utility of a specific source code
fragment, as indicated by the following comment also found
in JMeter:

“TODO: - is this needed?”

For requirement self-admitted technical debt, the top ranked
features, i.e., todo, needed, implementation, fixme and xxx indi-
cate the need to complete requirements in the future that
are currently partially complete. An indicative example is
the following one found in JRuby:

“TODO: implement, won’t do this now”

Some of the remaining lower ranked textual features, such
as convention, configurable and fudging also indicate potential
incomplete requirements, as shown in the following com-
ments:

“Need to calculate this... just fudging here for now”
[from JEdit]

“could make this configurable” [from JFreeChart]

“TODO: This name of the expression language should
be configurable by the user” [from ArgoUML]

“TODO: find a way to check the manifest-file, that is
found by naming convention” [from Apache Ant]

It should be noted that the features highlighted in bold
in Table 3 appear in all top-10 lists extracted from each one
of the ten training datasets, and therefore can be considered
as more universal/stable features compared to the others.

We also observe that it is possible for a single textual fea-
ture to indicate both design and requirement self-admitted
technical debt. However, in such cases, the ranking of the
feature is different for each kind of debt. For example, the
word “todo” is ranked tenth for design debt, whereas it is
ranked first for requirement debt. This finding is intuitive,
since requirement debt will naturally be related to the
implementation of future functionality.

It is important to note here that although we present
only the top-10 textual features, the classification of the
comments is based on a combination of a large number
of textual features. In fact, two different types of textual
features are used to classify the comments, namely positive
and negative weight features. Positive weight features will
increase the total weight of the vote suggesting that the
classification should be equal to the class of the feature (i.e.,
design or requirement debt). On the other hand, negative
weight features will decrease the total weight of the vote
suggesting a classification different from the class of the
feature. On average, the number of positive weight features
used to classify design and requirement debt is 5,014 and
2,195, respectively. The exact number of unique textual
features used to detect self-admitted technical debt for each
project is shown in Table 4. The fact that our NLP-based
approach leverages so many features helps to explain the
significant improvement we are able to achieve over the
state-of-the-art, which only uses 62 patterns. In comparison,
our approach leverages 35,828 and 34,056 unique textual
features for detecting comments with design and require-
ment debt, respectively.

We find that design and requirement debt have their
own textual features that best indicate such self-admitted
technical debt comments. For design debt, the top textual
features indicate sloppy code or mediocre code quality,
whereas for requirement debt they indicate the need to
complete a partially implemented requirement in the
future.

RQ3. How much training data is required to effectively
detect self-admitted technical debt?

Motivation: Thus far, we have shown that our NLP-based
approach can effectively identify comments expressing self-
admitted technical debt. However, we conjecture that the
performance of the classification depends on the amount
of training data. At the same time, creating the training
dataset is a time consuming and labor intensive task. So,
the question that arises is: how much training data do we
need to effectively classify the source code comments? If we
need a very large number of comments to create our training
dataset, our approach will be more difficult to extend and
apply for other projects. On the other hand, if a small dataset
can be used to reliably identify comments with self-admitted

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 10

TABLE 4
Number of Unique Textual Features Use to Detect Design and Requirement Debt for Each Project

Project

Design Debt Requirement Debt

Positive
Weight

Features

Negative
Weight

Features

of
Features

Positive
Weight

Features

Negative
Weight

Features

of
Features

Ant 5,299 23,623 28,922 1,812 27,673 29,485
ArgoUML 3,917 26,012 29,929 2,779 27,260 30,039
Columba 5,255 24,182 29,437 2,433 27,561 29,994
EMF 5,346 23,667 29,013 1,889 27,637 29,526
Hibernate 4,914 24,070 28,984 2,748 26,654 29,402
JEdit 5,042 24,644 29,686 1,831 28,267 30,098
JFreeChart 5,361 23,530 28,891 1,902 27,439 29,341
JMeter 5,172 23,916 29,088 1,893 27,716 29,609
JRuby 4,856 24,553 29,409 2,850 27,085 29,935
SQuirrel 4,982 25,146 30,128 1,814 26,914 28,728

Average 5,014 24,334 29,348 2,195 27,420 29,615
Total unique 6,327 31,518 35,828 4,015 32,954 34,056

technical debt, then this approach can be applied with
minimal effort, i.e., less training data. That said, intuitively
we expect that the performance of the maximum entropy
classifier will improve as more comments are being added
to the training dataset.
Approach: To answer this research question, we follow
a systematic process where we incrementally add train-
ing data and evaluate the performance of the classifica-
tion. More specifically, we combine the comments from
all projects into a single large dataset. Then, we split this
dataset into ten equally-sized folds, making sure that each
partition has the same ratio of comments of self-admitted
technical debt and without technical debt as the original
dataset. Next, we use one of the ten folds for testing and
the remaining nine folds as training data. Since we want
to examine the impact of the quantity of training data on
performance, we train the classifier with batches of 100
comments at a time and test its performance on the testing
data. It is important to note that even within the batches of
100 comments, we maintain the same ratio of self-admitted
technical debt and non technical debt comments as in the
original dataset. We keep adding comments until all of the
training dataset is used. We repeat this process for each one
of the ten folds and report the average performance across
all folds.

We compute the F1-measure values after each iteration
(i.e., the addition of a batch of 100 comments) and record the
iteration that achieves the highest F1-measure. Then we find
the iterations in which at least 80% and 90% of the maximum
F1-measure value is achieved, and report the number of
comments added up to those iterations.
Results - design debt: Figure 3(a) shows the average
F1-measure values obtained when detecting design self-
admitted technical debt, while adding batches of 100 com-
ments. We find that the F1-measure score improves as we
increase the number of comments in the training dataset,
and the highest value (i.e., 0.824) is achieved with 42,700
comments. However, the steepest improvement in the F1-
measure performance takes place within the first 2K-4K
comments. Additionally, 80% and 90% of the maximum F1-

measure value is achieved with 3,900 and 9,700 comments
in the training dataset, respectively. Since each batch of
comments consists of approximately 5% (i.e., 2,703

58,122) com-
ments with design self-admitted technical debt, the iteration
achieving 80% of the maximum F1-measure value contains
195 comments with design self-admitted technical debt,
while the iteration achieving 90% of the maximum F1-
measure value contains 485 such comments. In conclusion,
to achieve 80% of the maximum F1-measure value, we need
only 9.1% (i.e., 3,900

42,700) of the training data, while to achieve
90% of the maximum F1-measure value, we need only 22.7%
(i.e., 9,700

42,700) of the training data.

Results - requirement debt: Figure 3(b) shows the average
F1-measure values obtained when detecting requirement
self-admitted technical debt, while adding batches of 100
comments. As expected, the F1-measure increases as we
add more comments into the training dataset, and again the
steepest improvement takes place within the first 2-3K com-
ments. The highest F1-measure value (i.e., 0.753) is achieved
using 51,300 comments of which 675 are requirement self-
admitted technical debt. Additionally, 80% of the maxi-
mum F1-measure score is achieved with 2,600 comments,
while 90% of the maximum F1-measure score with 11,800
comments in the training dataset. Each batch contains two
comments with requirement self-admitted technical debt,
since the percentage of such comments is 1.3% (i.e., 757

58,122) in
the entire dataset. As a result, the iteration achieving 80% of
the maximum F1-measure value contains 52 comments with
requirement self-admitted technical debt, while the iteration
achieving 90% of the maximum F1-measure value contains
236 such comments. In conclusion, to achieve 80% of the
maximum F1-measure value, we need only 5% (i.e., 2,600

51,300)
of the training data, while to achieve 90% of the maximum
F1-measure value, we need only 23% (i.e., 11,800

51,300) of the
training data.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 11

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comments used in training dataset

F
1−

M
ea

su
re

90%

9700

80%

3900

(a) Design Debt

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comments used in training dataset

F
1−

M
ea

su
re

90%

11800

80%

2600

(b) Requirement Debt

Fig. 3. F1-measure achieved by incrementally adding batches of 100 comments in the training dataset.

We find that to achieve a performance equivalent to 90%
of the maximum F1-measure score, only 23% of the com-
ments are required for both design and requirement self-
admitted technical debt. For a performance equivalent
to 80% of the maximum F1-measure score, only 9%
and 5% of the comments are required for design and
requirement self-admitted technical debt, respectively.

4 DISCUSSION

Thus far, we have seen that our NLP-based approach can
perform well in classifying self-admitted technical debt.
However, there are some observations that warrant further
investigation. For example, when it comes to the different
types of self-admitted technical debt, we find that require-
ment debt tends to require less training data, which is
another interesting point that is worth further investigation
(Section 4.1).

Moreover, we think that is also interesting to know the
performance of our approach when trained to distinguish
between self-admitted technical debt and non-self-admitted
technical debt, i.e., without using fine-grained classes of
debt, such as design and requirement debt (Section 4.2).

Also, when performing our classification, there are sev-
eral different classifiers that can be used in the Stanford
Classifier toolkit, hence we investigate what is the impact
of using different classifiers on the accuracy (Section 4.3).

Lastly, we analyze the overlap between the files that con-
tain self-admitted technical debt and the files that contain
code smells. This is an interesting point of discussion to
provide insights on how technical debt found in comments
relates to code smells found by static analysis tools (Sec-
tion 4.4).

4.1 Textual Similarity for Design and Requirement Debt

For RQ3, we hypothesize that one of the reasons that the
detection of requirement self-admitted technical debt com-
ments needs less training data is because such comments are

more similar to each other compared to design self-admitted
technical debt comments. Therefore, we compare the intra-
similarity of the requirement and design debt comments.

We start by calculating the term frequency-inverse doc-
ument frequency (tf-idf) weight of each design and require-
ment self-admitted technical debt comment. Term frequency
(tf) is the simple count of occurrences that a term (i.e.,
word) has in a document (i.e., comment). Inverse document
frequency (idf) takes into account the number of documents
that the term appears. However, as the name implies, the
more one term is repeated across multiple documents the
less relevant it is. Therefore, let N be the total number of
documents in a collection, the idf of a term t is defined as
follows: idft = log N

dft
. The total tf-idf weight of a document

is equal to the sum of each individual term tf-idf weight in
the document. Each document is represented by a document
vector in a vector space model.

Once we have the tf-idf weights for the comments, we
calculate the cosine similarity between the comments. The
Cosine similarity can be viewed as the dot product of the
normalized versions of two document vectors (i.e., two
comments) [34]. The value of the cosine distance ranges
between 0 to 1, where 0 means that the comments are not
similar at all and 1 means that the comments are identical.

For example, the requirement self-admitted technical
debt dataset contains 757 comments, for which we generate
a 757×757 matrix (since we compare each comment to
all other comments). Finally, we take the average cosine
similarity for design and requirement debt comments, re-
spectively, and plot their distributions. Figure 4 shows that
the median and the upper quartile for requirement self-
admitted technical debt comments are higher than the me-
dian and upper quartile for design self-admitted technical
debt. The median for requirement debt comments is 0.018,
whereas, the median for design debt comments is 0.011.
To ensure that the difference is statistically significant, we
perform the Wilcoxon test to calculate the p-value. The
calculated p-value is less than 2.2e-16 showing that the
result is indeed statistically significant (i.e., p <0.001). Con-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 12

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

Design Requirement

C
o

s
in

e
 S

im
ila

ri
ty

Fig. 4. Textual Similarity Between Design and Requirement Debt Com-
ments

sidering our findings, our hypothesis is validated, showing
that requirement self-admitted technical debt comments
are more similar to each other compared to design self-
admitted technical debt comments. This may help explain
why requirement debt needs a smaller set of positive weight
textual features to be detected.

4.2 Distinguishing Self-Admitted Technical Debt from
Non-Self-Admitted Technical Debt Comments
So far, we analyzed the performance of our NLP-based
approach to identify distinct types of self-admitted technical
debt (i.e., design and requirement debt). However, a simpler
distinction between self-admitted technical debt and non-
debt comments can also be interesting in the case that those
fine-grained classes of debt are not considered necessary by
a user of the proposed NLP-based detection approach. An-
other reason justifying such a coarse-grained distinction is
that the cost of building a training dataset with fine-grained
classes of debt is more expensive, mentally challenging, and
subjective than building a training dataset with just two
classes (i.e., comments with and without technical debt).

In order to compute the performance of our NLP-based
approach using only two classes (i.e., comments with and
without technical debt), we repeat RQ1 and RQ2 with
modified training and test datasets. First, we take all design
and requirement self-admitted technical debt comments and
label them with a common class i.e., technical debt, and the
remaining comments we kept them labeled as without tech-
nical debt. Second, we run the maximum entropy classifier
in the same leave-one-out cross-project validation fashion,
using the comments of 9 projects to train the classifier
and the comments from the remaining project to test the
classifier. We repeat this process for each of the ten projects
and compute the average F1-measure. Lastly, we analyze the
textual features used to identify the self-admitted technical
debt comments.

Table 5 compares the F1-measure achieved when de-
tecting design debt, requirement debt, separately and when
detecting both combined in a single class. As we can see, the
performance when detecting technical debt is very similar

with the performance of the classifier when detecting design
debt. This is expected, as the majority of technical debt
comments in the training dataset are labeled with the design
debt class. Nevertheless, the performance achieved when
detecting design debt was surpassed in the projects where
the classifier performed well in detecting requirement debt,
for example, in Columba (0.601 vs. 0.750) and SQuirrel SQL
(0.540 vs. 0.593).

We find that the average performance when detecting
design and requirement self-admitted technical debt com-
bined is better (0.636) than the performance achieved when
detecting them individually (0.620 and 0.403 for design and
requirement debt, respectively).

TABLE 5
F1-measure Performance Considering Different Types of Self-admitted

Technical Debt

Project Design
Debt

Requirement
Debt

Technical
Debt

Ant 0.517 0.154 0.512
ArgoUML 0.814 0.595 0.819
Columba 0.601 0.804 0.750
EMF 0.470 0.381 0.462
Hibernate 0.744 0.476 0.763
JEdit 0.509 0.091 0.461
JFreeChart 0.492 0.321 0.513
JMeter 0.731 0.237 0.715
JRuby 0.783 0.435 0.773
SQuirrel 0.540 0.541 0.593

Average 0.620 0.403 0.636

TABLE 6
Top-10 Textual Features Used to Identify Different Types of

Self-Admitted Technical Debt

Project Design
Debt

Requirement
Debt

Technical
Debt

1 hack todo hack
2 workaround needed workaround
3 yuck! implementation yuck!
4 kludge fixme kludge
5 stupidity xxx stupidity
6 needed? ends? needed?
7 columns? convention unused?
8 unused? configurable fixme
9 wtf? apparently todo
10 todo fudging wtf?

Table 6 shows a comparison of the top-10 textual features
used to detect design and requirement debt comments sepa-
rately, and those used to detect both types of debt combined
in a single class. When analyzing the top-10 textual features
used to classify self-admitted technical debt, we find once
more, a strong overlap with the top-10 textual features
used to classify design debt. The weight of the features is
attributed in accordance to the frequency that each word
is found in the training dataset, and therefore, the top-
10 features tend to be similar with the top-10 design debt
features, since design debt comments represent the majority
of self-admitted technical debt comments in the dataset.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 13

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter JRuby SQuirrel0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Logistic Regression

Binary

Naive Bayes

F
1

-M
e

a
s
u

re

(a) Design Debt

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter JRuby SQuirrel0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Logistic Regression

Binary

Naive Bayes

F
1

-M
e

a
s
u

re

(b) Requirement Debt

Fig. 5. Underlying Classifier Algorithms Performance Comparison

4.3 Investigating the Impact of Different Classifiers on
the Accuracy of the Classification

In our work, the classification performed by the Stanford
Classifier used the maximum entropy classifier. However,
the Stanford Classifier can use other classifiers too. In order
to examine the impact of the underlying classifier on the
accuracy of the proposed approach, we investigate two
more classifiers, namely the Naive Bayes, and the Binary
classifiers.

Figures 5(a) and 5(b) compare the performance between
the three different classifiers. We find that the Naive Bayes
has the worst average F1-measure of 0.30 and 0.05 for
design and requirement technical debt, respectively. Based
on our findings, the Naive Bayes algorithm favours recall
at the expense of precision. For example, while classifying
design debt, the average recall was 0.84 and precision 0.19.
The two other algorithms present more balanced results
compared to the Naive Bayes, and the difference in their
performance is almost negligible. The Logistic Regression
classifier achieved F1-measures of 0.62 and 0.40, while the
Binary classifier F1-measures were 0.63 and 0.40, for design
and requirement self-admitted technical debt, respectively.
Tables 11 and 12 in the Appendix section provide detailed
data for each classifier and all ten examined projects.

Although the Binary classifier has a slightly better per-
formance, for our purpose, the Logistical Regression classi-
fier provides more insightful textual features. These features
were analyzed and presented in RQ2.

According to previous work, developers hate to deal
with false positives (i.e., low precision) [35], [36], [37]. Due
to this fact, we choose to present our results in this study
using the maximum entropy classifier, which has an average
precision of 0.716 throughout all projects. However, favour-
ing recall over precision by using the Naives Bayes classifier
might still be acceptable, if a manual process to filter out
false positives is in place, as reported by Berry et al. [38].

One important question to ask when choosing what kind
of classifier to use is how much training data is currently
available. In most of the cases, the trickiest part of applying
a machine learning classifier in real world applications is
creating or obtaining enough training data. If you have
fairly little data at your disposal, and you are going to
train a supervised classifier, then machine learning theory
recommends classifiers with high bias, such as the Naive

Bayes [39], [40]. If there is a reasonable amount of labeled
data, then you are in good stand to use most kinds of
classifiers [34]. For instance, you may wish to use a Support
Vector Machine (SVM), a decision tree or, like in our study, a
max entropy classifier. If a large amount of data is available,
then the choice of classifier probably has little effect on the
results and the best choice may be unclear [41]. It may be
best to choose a classifier based on the scalability of training,
or even runtime efficiency.

4.4 Investigating the Overlap Between Technical Debt
Found in Comments and Technical Debt Found by Static
Analysis Tools

Thus far, we analyzed technical debt that was expressed
by developers through source code comments. However,
there are other ways to identify technical debt, such as
architectural reviews, documentation analysis, and static
analysis tools. To date, using static analysis tools is one of
the most popular approaches to identify technical debt in
the source code [42]. In general, static analysis tools parse
the source code of a project to calculate metrics and identify
possible object oriented design violations, also known as
code smells, anti-patterns, or design technical debt, based
on some fixed metric threshold values.

We analyze the overlap between what our NLP-based
approach identifies as technical debt and what a static anal-
ysis tool identifies as technical debt. We selected JDeodorant
as the static analysis tool, since it supports the detection
of three popular code smells, namely Long Method, God
Class, and Feature Envy. We avoided the use of metric-
based code smell detection tools, because they tend to have
high false positive rates and flag a large portion of the code
base as problematic [23]. On the other hand, JDeodorant
detects only actionable code smells (i.e., code smells for
which a behavior-preserving refactoring can be applied to
resolve them), and does not rely on any metric thresholds,
but rather applies static source code analysis to detect
structural anomalies and suggest refactoring opportunities
to eliminate them [29].

First, we analyzed our 10 open source projects using
JDeodorant. The result of this analysis is a list of Java files
that were identified having at least one instance of the Long
Method, God Class, and Feature Envy code smells. Table 7
shows the total number of files and the number/percentage

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 14

of files that contain each of the aforementioned smells. We
find that, on average, 29.3%, 5.5%, 16.6% of all files have at
least one instance of the Long Method, Feature Envy or God
Class smells, respectively. These code smells have been ex-
tensively investigated in the literature, and are considered to
occur frequently [43], [44]. Second, we created a similar list
containing the files that were identified with self-admitted
technical debt comments. Finally, we examined the overlap
of the two lists of files. It should be emphasized that we did
not examine if the self-admitted technical debt comments
actually discuss the detected code smells, but only if there
is a co-occurrence at file-level.

Table 8 provides details about each one of the projects
used in our study. The columns of Table 8 present the total
number of files with self-admitted technical debt, followed
by the number of files containing self-admitted technical
debt comments and at least one code smell instance, along
with the percentage over the total number of files with self-
admitted technical debt, for Long Method, Feature Envy,
God Class, and all code smells combined, respectively.

JMeter, for example, has 200 files that contain self-
admitted technical debt comments, and 143 of these files
also contain at least one Long Method code smell (i.e.,
71.5%). In addition, we can see that 20.5% of the files that
have self-admitted technical debt are involved in Feature
Envy code smells, and 48.5% of them are involved in God
Class code smells. In summary, we see that 80.5% of the
files that contain self-admitted technical debt comments are
also involved in at least one of the three examined code
smells. In general, we observe from Tables 7 and 8 that
the overlap between self-admitted technical debt and code
smells is higher than the ratio of files containing code smells.
This indicates that there is some form of agreement between
files that have code smells and files containing self-admitted
technical debt.

We find that the code smell that overlaps the most with
self-admitted technical debt is Long Method. Intuitively, this
is expected, since Long Method is a common code smell
and may have multiple instances per file, because it is
computed at the method level. The overlap between files
with self-admitted technical debt and Long Method ranged
from 43.6% to 82% of all the files containing self-admitted
technical debt comments, and considering all projects, the
average overlap is 65%. In addition, 44.2% of the files with
self-admitted technical debt comments are also involved in
God Class code smells, and 20.7% in Feature Envy code
smells. Taking all examined code smells in consideration we
find that, on average, 69.7% of files containing self-admitted
technical debt are also involved in at least one of the three
examined code smells.

Our findings here shows that using code comments to
identify technical debt is a complementary approach to
using code smells to detect technical debt. Clearly, there
is overlap, however, each approach also identifies unique
instances of technical debt.

5 RELATED WORK

Our work uses code comments to detect self-admitted
technical debt using a Natural Language Processing (NLP)
technique. Therefore, we divide the related work into three

subsections, namely source code comments, technical debt,
and NLP in software engineering.

5.1 Source Code Comments

A number of studies examined the co-evolution of source
code comments and the rationale for changing code com-
ments. For example, Fluri et al. [45] analyzed the co-
evolution of source code and code comments, and found
that 97% of the comment changes are consistent. Tan et
al. [46] proposed a novel approach to identify inconsisten-
cies between Javadoc comments and method signatures.
Malik et al. [47] studied the likelihood of a comment to
be updated and found that call dependencies, control state-
ments, the age of the function containing the comment, and
the number of co-changed dependent functions are the most
important factors to predict comment updates.

Other works used code comments to understand devel-
oper tasks. For example. Storey et al. [30] analyzed how task
annotations (e.g., TODO, FIXME) play a role in improving
team articulation and communication. The work closest to
ours is the work by Potdar and Shihab [14], where code
comments were used to identify technical debt, called self-
admitted technical debt.

Similar to some of the prior work, we also use source
code comments to identify technical debt. However, our
main focus is on the detection of different types of self-
admitted technical debt. As we have shown, our approach
yields different and better results in the detection of self-
admitted technical debt.

5.2 Technical Debt

A number of studies has focused on the detection and
management of technical debt. For example, Seaman et
al. [2], Kruchten et al. [3] and Brown et al. [48] make several
reflections about the term technical debt and how it has been
used to communicate the issues that developers find in the
code in a way that managers can understand.

Other work focused on the detection of technical debt.
Zazworka et al. [13] conducted an experiment to compare
the efficiency of automated tools in comparison with hu-
man elicitation regarding the detection of technical debt.
They found that there is a small overlap between the two
approaches, and thus it is better to combine them than
replace one with the other. In addition, they concluded that
automated tools are more efficient in finding defect debt,
whereas developers can realize more abstract categories of
technical debt.

In a follow up work, Zazworka et al. [49] conducted a
study to measure the impact of technical debt on software
quality. They focused on a particular kind of design debt,
namely, God Classes. They found that God Classes are
more likely to change, and therefore, have a higher impact
on software quality. Fontana et al. [42] investigated design
technical debt appearing in the form of code smells. They
used metrics to find three different code smells, namely God
Classes, Data Classes and Duplicated Code. They proposed
an approach to classify which one of the different code
smells should be addressed first, based on its risk. Ernst et al.
[36] conducted a survey with 1,831 participants and found

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 15

TABLE 7
Detailed information about the files containing bad smells as detected by JDeodorant

Project # of files

of
Files with

Long
Method

% of
Files with

Long
Method

of
Files with

Feature
Envy

% of
Files with

Feature
Envy

of
Files with

God
Class

% of
Files with

God
Class

of
Files with
Any Code

Smell

% of
Files with
Any Code

Smell

Ant 1,475 508 34.4 110 7.4 365 24.7 612 41.4
ArgoUML 2,609 654 25.0 62 2.3 249 9.5 730 27.9
Columba 1,711 505 29.5 65 3.7 244 14.2 593 34.6
EMF 1,458 362 24.8 50 3.4 231 15.8 448 30.7
Hibernate 1,356 216 15.9 69 5.0 190 14.0 331 24.4
JEdit 800 268 33.5 57 7.1 133 16.6 311 38.8
JFreeChart 1,065 523 49.1 54 5.0 231 21.6 583 54.7
JMeter 1,181 487 41.2 113 9.5 241 20.4 564 47.7
JRuby 1,486 319 21.4 87 5.8 218 14.6 394 26.5
SQuirrel 3,108 566 18.2 204 6.5 466 14.9 825 26.5

Average 29.3 5.5 16.6 35.3

TABLE 8
Overlap between the files containing self-admitted technical debt and the files containing code smells as detected by JDeodorant

Project
of

Files with
SATD

of SATD
Files with

Long
Method

% of SATD
Files with

Long
Method

of SATD
Files with

Feature
Envy

% of SATD
Fles with
Feature

Envy

of SATD
Files with

God
Class

% of SATD
Files with

God
Class

of SATD
Files with
Any Code

Smell

% of SATD
Files with
Any Code

Smell

Ant 73 57 78.0 19 26.0 42 57.5 63 86.3
ArgoUML 419 255 60.8 43 10.2 128 30.5 283 67.5
Columba 117 76 64.9 18 15.3 47 40.1 89 76.0
EMF 53 33 62.2 14 26.4 28 52.8 28 52.8
Hibernate 206 90 43.6 44 21.3 72 34.9 116 56.3
JEdit 108 74 68.5 23 21.2 47 43.5 82 75.9
JFreeChart 106 87 82.0 20 18.8 52 49.0 92 86.7
JMeter 200 143 71.5 41 20.5 97 48.5 161 80.5
JRuby 163 107 65.5 43 26.3 79 48.4 85 52.1
SQuirrel 156 82 52.5 32 20.5 58 37.1 99 63.4

Average 65.0 20.7 44.2 69.7

that architectural decisions are the most important source of
technical debt.

Our work is different from the work that uses code
smells to detect design technical debt, since we use code
comments to detect technical debt. Moreover, our approach
does not rely on code metrics and thresholds to identify
technical debt and can be used to identify bad quality code
symptoms other than bad smells.

More recently, Potdar and Shihab [14] extracted the
comments of four projects and analyzed 101,762 comments
to come up with 62 patterns that indicate self-admitted
technical debt. Their findings show that 2.4% - 31% of
the files in a project contain self-admitted technical debt.
Bavota and Russo [50] replicated the study of self-admitted
technical debt on a large set of Apache projects and con-
firmed the findings observed by Potdar and Shihab in their
earlier work. Wehaibi et al. [51] examined the impact of
self-admitted technical debt and found that self-admitted
technical debt leads to more complex changes in the future.
All three of the aforementioned studies used the comment
patterns approach to detect self-admitted technical debt.
Our earlier work [15] examined more than 33 thousands
comments to classify the different types of self-admitted
technical debt found in source code comments. Farias et

al. [52] proposed a contextualized vocabulary model for
identifying technical debt in comments using word classes
and code tags in the process.

Our work also uses code comments to detect design
technical debt. However, we use these code comments to
train a maximum entropy classifier to automatically identify
technical debt. Also, our focus is on self-admitted design and
requirement technical debt.

5.3 NLP in Software Engineering

A number of studies leveraged NLP in software engineer-
ing, mainly for the traceability of requirements, program
comprehension and software maintenance. For example,
Lormans and van Deursen [53] used latent semantic in-
dexing (LSI) to create traceable links between requirements
and test cases and requirements to design implementations.
Hayes et al. [54], [55] created a tool called RETRO that
applies information retrieval techniques to trace and map
requirements to designs. Yadla et al. [56] further enhanced
the RETRO tool and linked requirements to issue reports.
On the other hand, Runeson et al. [57] implemented a NLP-
based tool to automatically identify duplicated issue reports,
they found that 2/3 of the possible duplicates examined
in their study can be found with their tool. Canfora and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 16

Cerulo [58] linked a change request with the corresponding
set of source files using NLP techniques, and then, they
evaluated the performance of the approach on four open
source projects.

The prior work motivated us to use NLP techniques.
However, our work is different from the aforementioned
ones, since we apply NLP techniques on code comments to
identify self-admitted technical debt, rather than use it for
traceability and linking between different software artifacts.

6 THREATS TO VALIDITY

Construct validity considers the relationship between the-
ory and observation, in case the measured variables do not
measure the actual factors. When performing our study,
we used well-commented Java projects. Since our approach
heavily depends on code comments, our results and per-
formance measures may be impacted by the quantity and
quality of comments in a software project. Considering
the intentional misrepresentation of measures, it is possible
that even a well commented project does not contain self-
admitted technical debt. Given the fact that the developers
may opt to not express themselves in source code comments.
In our study, we made sure that we choose case studies that
are appropriately commented for our analysis. On the same
point, using comments to determine some self-admitted
technical debt may not be fully representative, since com-
ments or code may not be updated consistently. However,
previous work shows that changes in the source code are
consistent with comment changes [14], [45]. In addition,
it is possible that a variety of technical debt that is not
self-admitted is present in the analyzed projects. However,
since the focus of this paper is to improve the detection
of the most common types of self-admitted technical debt,
considering all technical debt is out of the scope of this
paper.
Reliability validity The training dataset used by us heavily
relied on a manual analysis and classification of the code
comments from the studied projects. Like any human activ-
ity, our manual classification is subject to personal bias. To
reduce this bias, we took a statistically significant sample of
our classified comments and asked a Master’s student, who
is not an author of the paper, to manually classify them.
Then, we calculate the Kappa’s level of agreement between
the two classifications. The level of agreement obtained
was +0.81, which according to Fleiss [33] is characterized
as an excellent inter-rater agreement (values larger than
+0.75 are considered excellent). Nevertheless, due to the
irregular data distribution of our significant sample (which
has many more comments without technical debt, than
comments with the other classes of debt), we also measured
Kappa’s level of agreement for design and requirement self-
admitted technical debt separately. The level of agreement
obtained for design and requirement self-admitted technical
debt was +0.75 and +0.84, respectively. Also, our approach
depends on the correctness of the underlying tools we use.
To mitigate this risk, we used tools that are commonly used
by practitioners and by the research community, such as
JDeodorant for the extraction of source code comments and
for investigating the overlap with code smells (Section 4.4)

and the Stanford Classifier for training and testing the max
entropy classifier used in our approach.
External validity considers the generalization of our find-
ings. All of our findings were derived from comments in
open source projects. To minimize the threat to external va-
lidity, we chose open source projects from different domains.
That said, our results may not generalize to other open
source or commercial projects, projects written in different
languages, projects from different domains and/or technol-
ogy stacks. In particular, our results may not generalize
to projects that have a low number or no comments or
comments that are written in a language other than English.

7 CONCLUSION AND FUTURE WORK

Technical debt is a term being used to express non-optimal
solutions, such as hacks and workarounds, that are applied
during the software development process. Although these
non-optimal solutions can help achieve immediate pressing
goals, most often they will have a negative impact on the
project maintainability [49].

Our work focuses on the identification of self-admitted
technical debt through the use of Natural Language Process-
ing. We analyzed the comments of 10 open source projects
namely Ant, ArgoUML, Columba, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby and SQuirrel SQL. These projects
are considered well commented and they belong to different
application domains. The comments of these projects were
manually classified into specific types of technical debt
such as design, requirement, defect, documentation and test
debt. Next, we selected 61,664 comments from this dataset
(i.e., those classified as design self-admitted technical debt,
requirement self-admitted technical debt and without tech-
nical debt) to train the maximum entropy classifier, and then
this classifier was used to identify design and requirement
self-admitted technical debt automatically.

We first evaluated the performance of our approach by
comparing the F1-measure of our approach with the F1-
measure of two other baselines, i.e., the comment patterns
baseline and the simple (random) baseline. We have shown
that our approach outperforms the comment patterns base-
line on average 2.3 and 6 times in the identification of
design and requirement self-admitted technical debt, re-
spectively. Moreover, our approach can identify requirement
self-admitted technical debt, while the comment patterns
baseline fails to detect this kind of debt in most of the
examined projects. Furthermore, the performance of our ap-
proach surpasses the simple (random) baseline on average
7.6 and 19.1 times for design and requirement self-admitted
technical debt, respectively.

Then, we explored the characteristics of the features (i.e.,
words) used to classify self-admitted technical debt. We find
that the words used to express design and requirement self-
admitted technical debt are different from each other. The
three strongest indicators of design self-admitted technical
debt are ‘hack’, ‘workaround’ and ‘yuck!’, whereas, ‘todo’,
‘needed’ and ‘implementation’ are the strongest indicators
of requirement debt. In addition, we find that using only 5%
and 23% of the comments in the training dataset still leads
to an accuracy that is equivalent to 80% and 90% of the
best performance, respectively. In fact, our results show that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 17

developers use a richer vocabulary to express design self-
admitted technical debt and a training dataset of at least
3,900 comments (of which 195 comments are design self-
admitted technical debt) is necessary to obtain a satisfactory
classification. On the other hand, requirement self-admitted
technical debt is expressed in a more uniform way, and
with a training dataset of 2,600 comments (of which 52 are
self-admitted technical debt) it is possible to classify with
relatively high accuracy requirement self-admitted technical
debt.

In the future, we believe that more analysis is needed
to fine tune the use of the current training dataset in
order to achieve maximum efficiency in the detection of
self-admitted technical debt comments. For example, using
subsets of our training dataset can be more suitable for
some applications than using the whole dataset due to
domain particularities. However, the results thus far are not
to be neglected as our approach has the best F1-measure
performance on every analyzed project. In addition, we
plan to examine the applicability of our approach to more
domains (than those we study in this paper) and software
projects developed in different programming languages.

Another interesting research direction that we plan to
investigate in the future is the use of other machine learning
techniques, such as active learning to reduce the number of
labeled data necessary to train the classifier. This technique,
if proved successful, can further expand the horizon of
projects that our approach can be applied to.

Moreover, to enable future research, we make the dataset
created in this study publicly available1. We believe that
it will be a good starting point for researchers interested
in identifying technical debt through comments and even
experimenting with different Natural Language Processing
techniques. Lastly, we plan to use the findings of this study
to build a tool that will support software engineers in the
task of identifying and managing self-admitted technical
debt.

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,”
in Addendum to the Proceedings on Object-oriented Programming
Systems, Languages, and Applications, 1992, pp. 29–30.

[2] C. Seaman and Y. Guo, “Chapter 2 - measuring and monitoring
technical debt,” ser. Advances in Computers, M. V. Zelkowitz, Ed.
Elsevier, 2011, vol. 82, pp. 25–46.

[3] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical
debt: Towards a crisper definition report on the 4th international
workshop on managing technical debt,” SIGSOFT Softw. Eng.
Notes, pp. 51–54, 2013.

[4] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What
software practitioners have to say about technical debt,” IEEE
Software, vol. 29, pp. 22–27, 2012.

[5] “M. Fowler. Technical debt quadrant.” http://martinfowler.com/
bliki/TechnicalDebtQuadrant.html, accessed: 2016-06-09.

[6] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In
search of a metric for managing architectural technical debt,” in
Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on,
2012, pp. 91–100.

[7] N. Alves, T. Mendes, M. G. de Mendonca, R. Spinola, F. Shull, and
C. Seaman, “Identification and management of technical debt: A
systematic mapping study,” Information and Software Technology,
vol. 70, pp. 100–121, 2016.

1. https://github.com/maldonado/tse.satd.data

[8] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying
and quantifying architectural debt,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 488–498.

[9] N. Alves, L. Ribeiro, V. Caires, T. Mendes, and R. Spinola, “To-
wards an ontology of terms on technical debt,” in Proceedings of
the 6th International Workshop on Managing Technical Debt, 2014, pp.
1–7.

[10] R. Marinescu, “Assessing technical debt by identifying design
flaws in software systems,” IBM Journal of Research and Develop-
ment, vol. 56, pp. 1–13, 2012.

[11] ——, “Detection strategies: Metrics-based rules for detecting de-
sign flaws,” in Proceedings of the 20th IEEE International Conference
on Software Maintenance, 2004, pp. 350–359.

[12] R. Marinescu, G. Ganea, and I. Verebi, “Incode: Continuous quality
assessment and improvement,” in Proceedings of the 14th European
Conference on Software Maintenance and Reengineering, 2010, pp.
274–275.

[13] N. Zazworka, R. O. Spinola, A. Vetro, F. Shull, and C. Seaman, “A
case study on effectively identifying technical debt,” in Proceedings
of the 17th International Conference on Evaluation and Assessment in
Software Engineering, 2013, pp. 42–47.

[14] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Proceedings of the IEEE International Conference
on Software Maintenance and Evolution, 2014, pp. 91–100.

[15] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying
different types of self-admitted technical debt,” in Proceedings of
the 7th International Workshop on Managing Technical Debt, 2015, pp.
9–15.

[16] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract
method refactoring opportunities for the decomposition of meth-
ods,” Journal of Systems and Software, vol. 84, no. 10, pp. 1757–1782,
Oct. 2011.

[17] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the
refactorability of software clones,” IEEE Transactions on Software
Engineering, vol. 41, no. 11, pp. 1055–1090, Nov 2015.

[18] J. Graf, “Speeding up context-, object- and field-sensitive sdg gen-
eration,” in Proceedings of the 2010 10th IEEE Working Conference on
Source Code Analysis and Manipulation, ser. SCAM ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 105–114.

[19] K. Ali and O. Lhoták, “Application-only call graph construction,”
in Proceedings of the 26th European Conference on Object-Oriented
Programming, ser. ECOOP’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 688–712.

[20] P. Oliveira, M. Valente, and F. Paim Lima, “Extracting relative
thresholds for source code metrics,” in Proceedings of the IEEE
Conference on Software Maintenance, Reengineering and Reverse En-
gineering, 2014, pp. 254–263.

[21] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita, “Auto-
matic metric thresholds derivation for code smell detection,” in
Proceedings of the Sixth International Workshop on Emerging Trends in
Software Metrics, 2015, pp. 44–53.

[22] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Com-
paring and experimenting machine learning techniques for code
smell detection,” Empirical Software Engineering, pp. 1–49, 2015.

[23] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni,
“Antipattern and code smell false positives: Preliminary conceptu-
alization and classification,” in IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering, 2016, pp. 609–
613.

[24] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella,
M. D. Penta, and A. Zaidman, “Continuous delivery practices in a
large financial organization,” in Proceedings of the 32nd International
Conference on Software Maintenance and Evolution, ser. ICSME’16,
2016, p. To Appear.

[25] C. Manning and D. Klein, “Optimization, maxent models, and
conditional estimation without magic,” in Proceedings of the 2003
Conference of the North American Chapter of the Association for Compu-
tational Linguistics on Human Language Technology: Tutorials-Volume
5, 2003, pp. 8–8.

[26] E. Maldonado, E. Shihab, and N. Tsantalis, “Replication Package
for Using Natural Language Processing to Automatically Detect
Self-Admitted Technical Debt,” https://github.com/maldonado/
tse satd data/, 2016.

[27] D. A. Wheeler, SLOC count users guide, 2004. [Online]. Available:
http://www.dwheeler.com/sloccount/sloccount.html

[28] “OpenHub homepage,” https://www.openhub.net/, accessed:
2014-12-12.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 18

[29] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Jdeodorant:
Identification and removal of type-checking bad smells,” in Pro-
ceedings of the 12th European Conference on Software Maintenance and
Reengineering, 2008, pp. 329–331.

[30] M. Storey, J. Ryall, R. Bull, D. Myers, and J. Singer, “Todo or to
bug,” in Proceedings of the 30th International Conference on Software
Engineering, 2008, pp. 251–260.

[31] J. Cohen, “A coefficient of agreement for nominal scales,” Educa-
tional and psychological measurement, vol. 20, pp. 37–46, 1960.

[32] J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa
and the intraclass correlation coefficient as measures of reliability,”
Educational and Psychological Measurement, vol. 33, pp. 613–619,
1973.

[33] J. Fleiss, “The measurement of interrater agreement,” Statistical
methods for rates and proportions., pp. 212–236, 1981.

[34] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
information retrieval. Cambridge University Press, 2008.

[35] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few
billion lines of code later: Using static analysis to find bugs in
the real world,” Commun. ACM, pp. 66–75, 2010.

[36] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? manage it? ignore it? software practitioners and tech-
nical debt,” in Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 50–60.

[37] C. Sadowski, J. v. Gogh, C. Jaspan, E. Soderberg, and C. Win-
ter, “Tricorder: Building a program analysis ecosystem,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, 2015, pp. 598–608.

[38] D. Berry, R. Gacitua, P. Sawyer, and S. F. Tjong, The Case for Dumb
Requirements Engineering Tools, 2012.

[39] G. Forman and I. Cohen, “Learning from little: Comparison of
classifiers given little training,” in Proc. PKDD, 2004, pp. 161–172.

[40] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative
classifiers: A comparison of logistic regression and naive bayes.”
in Proc. NIPS, 2001, pp. 841–848.

[41] M. Banko and E. Brill, Scaling to Very Very Large Corpora for Natural
LanguageDisambiguation, 2001.

[42] F. Fontana, V. Ferme, and S. Spinelli, “Investigating the impact
of code smells debt on quality code evaluation,” in Proceedings of
the 3rd International Workshop on Managing Technical Debt, 2012, pp.
15–22.

[43] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjberg, “Are all code smells
harmful? a study of god classes and brain classes in the evolution
of three open source systems,” in Software Maintenance (ICSM),
2010 IEEE International Conference on, Sept 2010, pp. 1–10.

[44] D. I. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus, and T. Dyba,
“Quantifying the effect of code smells on maintenance effort,”
IEEE Transactions on Software Engineering, vol. 39, no. 8, pp. 1144–
1156, 2013.

[45] B. Fluri, M. Wursch, and H. Gall, “Do code and comments
co-evolve? on the relation between source code and comment
changes,” in Proceedings of the 14th Working Conference on Reverse
Engineering, 2007, pp. 70–79.

[46] S. H. Tan, D. Marinov, L. Tan, and G. Leavens, “@tcomment: Test-
ing javadoc comments to detect comment-code inconsistencies,”
in Proceedings of the IEEE Fifth International Conference on Software
Testing, Verification and Validation, 2012, pp. 260–269.

[47] H. Malik, I. Chowdhury, T. Hsiao-Ming, Z. M. Jiang, and A. Has-
san, “Understanding the rationale for updating a function com-
ment,” in Proceedings of the IEEE International Conference on Software
Maintenance, 2008, pp. 167–176.

[48] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten,
E. Lim, A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Sea-
man, K. Sullivan, and N. Zazworka, “Managing technical debt in
software-reliant systems,” in Proceedings of the FSE/SDP Workshop
on Future of Software Engineering Research, 2010, pp. 47–52.

[49] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating
the impact of design debt on software quality,” in Proceedings of
the 2nd International Workshop on Managing Technical Debt, 2011,
pp. 17–23.

[50] G. Bavota and B. Russo, “A large-scale empirical study on self-
admitted technical debt,” in Proceedings of the 13th International
Workshop on Mining Software Repositories, 2016, pp. 315–326.

[51] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact
of self-admitted technical debt on software quality,” in IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), 2016, pp. 179–188.

[52] M. A. d. F. Farias, M. G. d. M. Neto, A. B. d. Silva, and R. O.
Spinola, “A contextualized vocabulary model for identifying tech-
nical debt on code comments,” in Proceedings of the 7th International
Workshop on Managing Technical Debt, 2015, pp. 25–32.

[53] M. Lormans and A. Van Deursen, “Can LSI help reconstructing
requirements traceability in design and test?” in Proceedings of the
10th European Conference on Software Maintenance and Reengineering,
2006, pp. 47–56.

[54] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Improving after-
the-fact tracing and mapping: supporting software quality predic-
tions,” IEEE Software, vol. 22, pp. 30–37, 2005.

[55] ——, “Advancing candidate link generation for requirements
tracing: the study of methods,” IEEE Transactions on Software
Engineering, vol. 32, pp. 4–19, 2006.

[56] S. Yadla, J. H. Hayes, and A. Dekhtyar, “Tracing requirements to
defect reports: an application of information retrieval techniques,”
Innovations in Systems and Software Engineering, vol. 1, pp. 116–124,
2005.

[57] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” in
Proceedings of the 29th International Conference on Software Engineer-
ing, 2007, pp. 499–510.

[58] G. Canfora and L. Cerulo, “Impact analysis by mining software
and change request repositories,” in Proceedings of the 11th IEEE
International Symposium on Software Metrics, 2005, pp. 21–29.

Everton da S. Maldonado received his BS de-
gree in Information Systems from University Im-
pacta of Technology, Brazil, in 2009 and his MS
degree in Software Engineering from Concor-
dia University, Canada, in 2016. His main re-
search interests are Mining Software Reposito-
ries, Software Quality Assurance, Technical Debt
and Software Maintenance.

Emad Shihab is an Assistant Professor in the
Department of Computer Science and Soft-
ware Engineering at Concordia University. He re-
ceived his PhD from Queens University. Dr. Shi-
hab’s research interests are in Software Quality
Assurance, Mining Software Repositories, Tech-
nical Debt, Mobile Applications and Software Ar-
chitecture. He worked as a software research in-
tern at Research In Motion in Waterloo, Ontario
and Microsoft Research in Redmond, Washing-
ton. Dr. Shihab is a member of the IEEE and

ACM. More information can be found at http://das.encs.concordia.ca

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 19

Nikolaos Tsantalis is an Assistant Professor at
the Department of Computer Science and Soft-
ware Engineering, Concordia University, Mon-
treal, Canada, and holds a Concordia University
Research Chair in Web Software Technologies.
He received the PhD degree in Computer Sci-
ence from the University of Macedonia, Thessa-
loniki, Greece, in 2010. From January 2011 until
May 2012, he was a postdoctoral fellow at the
Department of Computing Science, University of
Alberta, Edmonton, Canada. His research inter-

ests include Software Maintenance, Empirical Software Engineering,
Refactoring Recommendation Systems, and Software Quality Assur-
ance. In 2016, he has been awarded with an ACM SIGSOFT Distin-
guished Paper Award and an ACM SIGSOFT Distinguished Artifact
Award at FSE. He serves regularly as a program committee member
of international conferences in the field of software engineering, such
as ASE, ICSME, SANER, ICPC, and SCAM. He is a member of the
IEEE and ACM, and holds a license from the Association of Professional
Engineers of Ontario.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 20

APPENDIX

Detailed Precision and Recall Values
In Section 3, we presented the F1-measure values for all
projects when answering our research questions. In this
appendix, we add the detailed precision and recall values
that are used to compute the F1-measure values.

TABLE 9
Detailed Comparison of F1-measure Between the NLP-based, the Comment Patterns and the Random Baseline Approaches for Design Debt

Project

NLP-based Comment Patterns Random Baseline

Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.554 0.484 0.517 0.608 0.147 0.237 0.023 0.5 0.044
ArgoUML 0.788 0.843 0.814 0.793 0.057 0.107 0.084 0.5 0.144
Columba 0.792 0.484 0.601 0.800 0.158 0.264 0.019 0.5 0.037
EMF 0.574 0.397 0.470 0.647 0.141 0.231 0.018 0.5 0.034
Hibernate 0.877 0.645 0.744 0.920 0.129 0.227 0.12 0.5 0.193
JEdit 0.779 0.378 0.509 0.857 0.214 0.342 0.019 0.5 0.037
JFreeChart 0.646 0.397 0.492 0.507 0.195 0.282 0.042 0.5 0.077
JMeter 0.808 0.668 0.731 0.813 0.110 0.194 0.039 0.5 0.072
JRuby 0.798 0.770 0.783 0.864 0.483 0.620 0.07 0.5 0.123
SQuirrel 0.544 0.536 0.540 0.700 0.100 0.175 0.029 0.5 0.055

TABLE 10
Detailed Comparison of F1-measure Between the NLP-based, the Comment Patterns and the Random Baseline Approaches for Requirement

Debt

Project

NLP-based Comment Patterns Random Baseline

Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.154 0.154 0.154 0.000 0.000 0.000 0.003 0.5 0.006
ArgoUML 0.663 0.540 0.595 0.000 0.000 0.000 0.043 0.5 0.079
Columba 0.755 0.860 0.804 0.375 0.069 0.117 0.007 0.5 0.013
EMF 0.800 0.250 0.381 0.000 0.000 0.000 0.004 0.5 0.007
Hibernate 0.610 0.391 0.476 0.000 0.000 0.000 0.022 0.5 0.041
JEdit 0.125 0.071 0.091 0.000 0.000 0.000 0.001 0.5 0.003
JFreeChart 0.220 0.600 0.321 0.102 0.266 0.148 0.003 0.5 0.007
JMeter 0.153 0.524 0.237 0.000 0.000 0.000 0.003 0.5 0.005
JRuby 0.686 0.318 0.435 0.573 0.318 0.409 0.022 0.5 0.043
SQuirrel 0.657 0.460 0.541 0.000 0.000 0.000 0.007 0.5 0.014

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 2016 21

Detailed Precision and Recall Values When Using Differ-
ent Classifiers.
When discussing the results in Section 4.3, we only pre-
sented the F1-measure values. Here, we present the detailed
precision and recall values that are used to compute the F1-
measure values presented earlier.

TABLE 11
Comparison Between Different Classifiers for Design Debt

Project

Maximum Entropy Naive Bayes Binary

Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.554 0.484 0.517 0.072 0.874 0.134 0.620 0.516 0.563
ArgoUML 0.788 0.843 0.814 0.358 0.985 0.525 0.790 0.858 0.822
Columba 0.792 0.484 0.601 0.181 0.786 0.294 0.840 0.500 0.627
EMF 0.574 0.397 0.470 0.057 0.872 0.106 0.633 0.397 0.488
Hibernate 0.877 0.645 0.744 0.288 0.890 0.435 0.895 0.670 0.767
JEdit 0.779 0.378 0.509 0.227 0.791 0.353 0.807 0.342 0.480
JFreeChart 0.646 0.397 0.492 0.140 0.560 0.224 0.658 0.397 0.495
JMeter 0.808 0.668 0.731 0.224 0.801 0.350 0.819 0.671 0.737
JRuby 0.798 0.770 0.783 0.275 0.971 0.429 0.815 0.808 0.811
SQuirrel 0.544 0.536 0.540 0.133 0.947 0.233 0.567 0.550 0.558

Average 0.716 0.5602 0.6201 0.1955 0.8477 0.3083 0.7444 0.5709 0.6348

TABLE 12
Comparison Between Different Classifiers for Requirement Debt

Project

Maximum Entropy Naive Bayes Binary

Precision Recall F1 measure Precision Recall F1 measure Precision Recall F1 measure

Ant 0.154 0.154 0.154 0.007 0.769 0.013 0.188 0.231 0.207
ArgoUML 0.663 0.540 0.595 0.119 0.808 0.207 0.659 0.569 0.611
Columba 0.755 0.860 0.804 0.030 0.930 0.057 0.755 0.860 0.804
EMF 0.800 0.250 0.381 0.009 1.000 0.018 0.800 0.250 0.381
Hibernate 0.610 0.391 0.476 0.041 0.781 0.078 0.615 0.375 0.466
JEdit 0.125 0.071 0.091 0.011 0.857 0.022 0.143 0.071 0.095
JFreeChart 0.220 0.600 0.321 0.009 0.800 0.018 0.179 0.467 0.259
JMeter 0.153 0.524 0.237 0.011 0.952 0.022 0.180 0.524 0.268
JRuby 0.686 0.318 0.435 0.058 0.836 0.109 0.679 0.327 0.442
SQuirrel 0.657 0.460 0.541 0.018 0.900 0.036 0.455 0.500 0.476

Average 0.4823 0.4168 0.4035 0.0313 0.8633 0.058 0.4653 0.4174 0.4009

