
Detecting Wearable App Permission Mismatches:
A Case Study on Android Wear

Suhaib Mujahid
Data-driven Analysis of Software (DAS) Lab

Department of Computer Science and Software Engineering
Concordia University, Montreal, Canada

s_mujahi@encs.concordia.ca

ABSTRACT
Wearable devices are becoming increasingly popular. These wear-
able devices run what is known as wearable apps. Wearable apps
are packaged with handheld apps, that must be installed on the
accompanying handheld device (e.g., phone).

Given that wearable apps are tightly coupled with the handheld
apps, any wearable permission must also be requested in the hand-
held version of the app on the Android Wear platform. However,
in some cases, the wearable apps may request permissions that do
not exist in the handheld app, resulting in a permission mismatch,
and causing the wearable app to error or crash. In this paper, we
propose a technique to detect wear app permission mismatches. We
perform a case study on 2,409 free Android Wear apps and find that
73 released wearable apps suffer from the permission mismatch
problem.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Software maintenance
tools; Parsers;

KEYWORDS
Android Wear; Permissions; Empirical Study; Wearable
ACM Reference Format:
Suhaib Mujahid. 2017. Detecting Wearable App Permission Mismatches:
A Case Study on Android Wear. In Proceedings of 2017 11th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Paderborn, Germany,
September 4–8, 2017 (ESEC/FSE’17), 3 pages.
https://doi.org/10.1145/3106237.3121279

1 INTRODUCTION
Mobile apps are playing an increasingly important role in our daily
lives. These mobile apps can monitor all types of actions, e.g., our
location, contacts, etc. To help protect the users privacy and make
sure that apps do not intentionally or unintentionally access data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3121279

that need not be shared, permissions are used to control what an
app can access.

Previous work showed that the management of permissions is
complicated for the developers and there exists many misuses even
for the most popular permissions [1, 5, 10]. With the recent intro-
duction of wearable devices, the management of permissions has be-
come even more complicated. Furthermore a previous study shows
that the official documentation for permissions is incomplete [4].
The Android platform (before Android Wear 2.0) stipulates that any
permission requested by the wearable version of an app be also
requested in the handheld version of the app. These permissions
need to be listed in the manifest file of the (wearable/handheld).

However, in some cases, the permissions are not requested prop-
erly, i.e., the wearable version of an app may request permissions
that are not requested by the handheld version of the app [3]. We
call this the permission mismatch problem. The permission mis-
match issue is particularly problematic since 1) it does not raise
an compilation errors, 2) it does not log any message in the logcat,
3) it runs normally in the emulator or on any wearable device using
Android Debug Bridge (adb) and 4) is not automatically detected
as a problem by most IDEs, including Android Studio. Often, the
permission mismatch problem may lead to any of the following:
1) cause the wearable app to not be installed on the wearable device,
2) cause parts of the wearable app’s functionality to error or fail
and/or 3) throw a security exception and/or crash the app. To make
matters even worse, even under the new permission model, intro-
duced in android API level 23 (requesting permissions at run time)
makes the detection and debugging of problems due to permission
mismatches even harder. Hence, the permission mismatch problem
is usually caught by the user and often leads to a negative user
experience, which results in low ratings and revenues.

A wearable app can be categorized as one of the following: 1)
a completely independent app, that can be installed directly on
the wearable device without any need of a handheld device, 2) a
semi-independent app (a handheld app is not required and would
provide only optional features) or 3) a dependent wear app, that
needs an accompanying handheld app to fully functions [3]. Our
technique applies to semi-dependent and dependent wear apps,
since they are most are most prone to the permissions mismatch
issue.

To help developers avoid releasingwearable apps that suffer from
the permission mismatch problem, we develop a technique that
analyzes the manifest files of the wearable and handheld versions
of an app to ensure that all permissions that are requested by the
wearable app are also requested by the handheld app. We perform a
preliminary study on the 2,409 free wearable apps from the Google

https://doi.org/10.1145/3106237.3121279
https://doi.org/10.1145/3106237.3121279

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany S. Mujahid

Unpack the
handheld APK

Find wearable
APK file

Unpack the
wearable APK

Parse manifest files
(handheld/wearable)

Detect permission
mismatches

Figure 1: Overview of the permission mismatches detection
process.

Play store and find 73 released wearable apps that contain existing
permissions mismatch problems.

The remainder of this paper is organized as follows: Section 2
shows the related work. Section 3 describes our approach to detect
the permission mismatch problem. In Section 4, we show the pre-
liminary findings of our study. We conclude the paper and sketch
future work in Section 5

2 RELATEDWORK
In a previous work [8], we studied the user complaints of wearable
apps by analyzing 589 reviews from 6 Android wearable apps. One
of our findings indicates that users complain mostly about func-
tional errors of wearable apps. A number of prior studies focused
on permission issues in Android apps. For example, some studies
found issues and misuses in declaring app permissions [1, 2, 10].
More recently, a number of studies propose techniques to that pro-
vide API to permission mappings, in order to mitigate the missed
permissions [1, 6]. Jha et al. [5] study mistakes in writing Android
manifests for mobile apps and they find that more than 78% of
studied apps have at least one configuration error. Our study differs
from the prior work since we focus on the inconsistent permission
problem that may exist between wearable and handheld versions.

3 APPROACH
We describe the overview of our approach in Figure 1. Each part of
the approach is detailed in the following subsections.

3.1 Unpack App APKs and Extract Handheld
and Wearable Mainfest Files

In order to read the manifest files we unpack the handheld app’s
APK and decode the resources1 using Apktool [11]. After obtaining
the unpacked resources for the handheld apps, we need to identify
the path to the wearable version’s APK file, so we apply the follow-
ing steps: 1) extract the AndroidManifest.xml file from the main
directory, 2) parse the XML tree of the manifest file, 3) select the
meta data tag that refers to the wearable app description file2 by tar-
geting the tag name com.google.android.wearable.beta.app,
and 4) parse the XML tree for wearable app description file and ex-
tract the path of the wearable APK by targeting the rawPathResId
tag. A configuration mistake, e.g., a missed declaration of the wear-
able app description file path, or incorrect APK path could cause

1which includes the reverse engineered source code, etc.
2A file that contains the version and path information of the wearable app APK.

a failure in detecting the wearable APK. In this case, we use the
MANIFEST.MF file to detect the path of the wearable APK.

Every Java package has the file MANIFEST.MF as a default mani-
fest, which is stored in the META-INF directory, the default manifest
used to define extensions and package-related data, like the list
of files and their paths. Since the APK file of the wearable app
is packaged inside its handheld app APK, we use regular expres-
sions to find the paths of all files with .apk extension from the
MANIFEST.MF file. In case of multiple APK files, we extract and
unpack them to figure out which one belongs to the wearable app.
We distinguish the wear apps’ APKs based on several heuristics,
which include: 1) matching the package ID name with the handheld
package ID name, 2) looking at the name of the APK file seek-
ing for keywords like ‘wear’, or 3) looking for the usage of tags
that indicate the use of wearble hardware in the manifest file, e.g.,
android.hardware.type.watch.

3.2 Detect Missing Permissions
To detect permission mismatches, we extract all the permissions de-
clared in the wearable and handheld manifest files by targeting the
android:name attribute in all uses-permission tags. Afterwards,
we compare the wearable and handheld permission lists and detect
any permission for the wearable version that does not exist in the
manifest file of the handheld version.

However, we exclude the permissions from protection level
normal. This protection level applies lower-risk permissions that
allow requesting applications to access isolated application-level
features, with minimal risk to other applications, the system, or the
user. The system automatically grants these type of permissions to
a requesting application at installation time, without asking for the
user’s explicit approval (though the user always has the option to
review these permissions before installing). Since these permission
do not require the explicit user approval, it is allowed to declare
them in the wearable manifest without listing them in the handheld
manifest file.

Additionally, we ignore the permissions that have been already
deleted from the Android wear platform and do not have an effect
on the functionality of the app, e.g., PROVIDE_BACKGROUND, which
can be safely removed.

4 PRELIMINARY FINDINGS
We select the available Android Wear apps on Google Play Store
by collecting their identifiers from two alternative app markets:
Android Wear Center [9] and GoKo [7]. By filtering paid apps from
the set of 4,722 apps, we end up with 2,417 free wearable app. We
focus on free apps since we need to download and unpack the
apps. In order to download the last version of the selected apps, we
developed a crawler that interfaces with the Google play store API
as a regular mobile device.

Using the approach described in Section 3, we were able to ana-
lyze the permissions of 2,409 apps. We find that 73 of the examined
apps suffer from the permission mismatch problem. Of the 73 apps,
the number of missed permissions ranges between 1 to 4 permis-
sions, with a median of one missed permission per app. We also
investigate which permissions are missed. Table 1 shows the missed
permission types and the number of cases for each one of them.

Detecting Wearable App Permission Mismatches:
A Case Study on Android Wear ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

Table 1: List of missed permissions and the number of apps
the permissions are missed. Others present all permission
types that appears just one time.

Permissions Count

READ_CALENDAR 10
READ_PHONE_STATE 9
WAKE_LOCK 9
ACCESS_FINE_LOCATION 8
READ_EXTERNAL_STORAGE 7
WRITE_EXTERNAL_STORAGE 7
BODY_SENSORS 5
VIBRATE 5
ACCESS_COARSE_LOCATION 2
RECORD_AUDIO 2
SYSTEM_ALERT_WINDOW 2
Others 28

We see that the most commonly missed permissions are related to
calendar, phone state and wake/lock.

Our findings show that the permission mismatch problem does
exist in wearable apps and that certain permissions are more likely
to be missed than others. This motivates us to study these mismatch
problems further and to develop techniques to help developers avoid
such issues.

5 CONCLUSION AND FUTUREWORK
Wearable device popularity is increasing. In fact, based on our data
collection, Google Play Store contains more than 4,700 wearable
apps. One of the requirements to properly package a semi- or de-
pendent wearable app is to include all the permissions declared
in the manifest file of the wearable app in the manifest file of the

handheld app. Our study shows that the permissions mismatch
problem exists in 73 wearable apps and that can negatively im-
pact the quality of the apps. In the future, we plan to further build
techniques to help developers deal with permission inconsistency
problems.

REFERENCES
[1] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:

Analyzing the Android Permission Specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS ’12). ACM, 217–228.

[2] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. 2010.
A Methodology for Empirical Analysis of Permission-based Security Models
and Its Application to Android. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS ’10). ACM, 73–84.

[3] Android Developers Documentation. 2017. Packaging Wearable Apps. https:
//developer.android.com/training/wearables/apps/packaging.html. (2017). (Ac-
cessed on 01/19/2017).

[4] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proceedings of the 18th ACMConference
on Computer and Communications Security (CCS ’11). ACM, 627–638.

[5] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2017. Developer Mistakes
in Writing Android Manifests: An Empirical Study of Configuration Errors. In
Proceedings of the 14th International Conference on Mining Software Repositories
(MSR ’17). IEEE Press, 25–36.

[6] M. Y. Karim, H. Kagdi, andM.D. Penta. 2016. MiningAndroid Apps to Recommend
Permissions. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. 427–437.

[7] Jakob KÃűrner, Lars Hitzges, and Dennis Gehrke. 2016. Goko. http://goko.me.
(2016). (Accessed on 09/09/2016).

[8] Suhaib Mujahid, Giancarlo Sierra, Rabe Abdalkareem, Emad Shihab, and Weiyi
Shang. 2017. Examining User Complaints of Wearable Apps: A Case Study
on Android Wear. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems. IEEE Press, 96–99.

[9] Wearable Software. 2016. Android Wear Center. http://www.androidwearcenter.
com. (2016). (Accessed on 09/09/2016).

[10] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen. 2013. Asking for (and
about) permissions used by Android apps. In 2013 10th Working Conference on
Mining Software Repositories (MSR). 31–40.

[11] Connor Tumbleson and Ryszard WiÅŻniewski. 2017. Apktool - A tool for reverse
engineering 3rd party, closed, binary Android apps. https://ibotpeaches.github.
io/Apktool/. (2017). (Accessed on 05/04/2017).

https://developer.android.com/training/wearables/apps/packaging.html
https://developer.android.com/training/wearables/apps/packaging.html
http://goko.me
http://www.androidwearcenter.com
http://www.androidwearcenter.com
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Unpack App APKs and Extract Handheld and Wearable Mainfest Files
	3.2 Detect Missing Permissions

	4 Preliminary Findings
	5 Conclusion and Future Work
	References

