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Abstract—There has been tremendous growth in the use of
mobile devices over the last few years. This growth has fueled
the development of millions of software applications for these
mobile devices often called as ‘apps’. Current estimates indicate
that there are hundreds of thousands of mobile app developers.
As a result, in recent years, there has been an increasing
amount of software engineering research conducted on mobile
apps to help such mobile app developers. In this paper, we
discuss current and future research trends within the framework
of the various stages in the software development life-cycle:
requirements (including non-functional), design and development,
testing, and maintenance. While there are several non-functional
requirements, we focus on the topics of energy and security in
our paper, since mobile apps are not necessarily built by large
companies that can afford to get experts for solving these two
topics. For the same reason we also discuss the monetizing aspects
of a mobile app at the end of the paper. For each topic of interest,
we first present the recent advances done in these stages and then
we present the challenges present in current work, followed by
the future opportunities and the risks present in pursuing such
research.

Index Terms—Mobile apps, Mining app markets.

I. INTRODUCTION

In the context of this paper, a mobile app is defined as the
application developed for the current generation of mobile
devices popularly known as smart phones. These apps are often
distributed through a platform specific, and centralized app
market. In this paper, we sometimes refer to mobile apps simply
as apps. In the past few years we are observing an explosion in
the popularity of mobile devices and mobile apps [17]. In fact,
recent market studies show that the the centralized app market
for Apple’s platform (iOS) and Google’s platform (Android),
each have more than 1.5 million apps [8]. These mobile app
markets are extremely popular among developers due to the
flexibility and revenue potential. At the same time, mobile apps
bring a whole slew of new challenges to software practitioners
- such as challenges due to the highly-connected nature of these
devices, the unique distribution channels available for mobile
apps (i.e., app markets like Apple’s App Store and Google’s
Google Play), and novel revenue models (e.g., freemium and
subscription apps).

To date the majority of the software engineering research
has focused on traditional “shrink wrapped” software, such as
Mozilla Firefox, Eclipse or Apache HTTP [79]. However, re-

cently researchers have begun to focus on software engineering
issues for mobile apps. For example, the 2011 Mining Software
Repositories Challenge focused on studying the Android mobile
platform [90]. Other work focused on issues related to code
reuse in mobile apps [84], on mining mobile app data from
the app stores [34], testing mobile apps [70] and teaching
programming on mobile devices [95]. Therefore, we feel it is
a perfect time to reflect on the accomplishments in the area of
Software Engineering research for mobile apps and to draw a
vision for its future. Note that we restrict to just the software
engineering topics for mobile apps in this paper, and even that
not exhaustively due to space restrictions (we skip topics like
usability or performance engineering since an entire paper can
be written on each of these topics). We do not discuss the
advancements in other areas of research for mobile apps such
as cloud based solutions, or networking in mobile apps.

The purpose of this vision paper is to serve as a reference
point for mobile app work. We start by providing some
background information on mobile apps. Then, we discuss
the current state-of-the-art in the field, relating it to each of the
software development phases, i.e., requirements, development,
testing, and maintenance as shown in Figure 1. We also talk
about two non-functional requirements: energy use and security
of mobile apps. Finally, even though it is not one of the software
development phases, we talk about the software engineering
challenges and recommendations for monetizing mobile apps.
Along with a discussion of the state-of-the-art, we also present
the challenges currently faced by the researchers/developers
of mobile apps. Then we discuss our vision for the future of
software engineering research for mobile apps and the risks
involved, based on our experiences.

Our hope is that our vision paper will help newcomers
to quickly gain a background in the area of mobile apps.
Moreover, we hope that our discussion of the vision for the area
will inspire and guide future work and build a community of
researchers with common goals regarding software engineering
challenges for mobile apps. A word of caution though - the
discussion of the current state-of-the-art is not meant to be a
systematic literature survey (for a more comprehensive study
please refer to Sarro et al. [88]), and the future directions of
research are based on our opinions that have been influenced
by our knowledge of the research in this community.



Fig. 1. A framework for presenting the state-of-the-art in software engineering
research for mobile apps.

The rest of the paper is organized as follows: Section II
presents the necessary background information. Sections III-IX
discusses the various software engineering research advance-
ments made with respect to mobile apps. Section X concludes
the paper.

II. BACKGROUND

Mobile apps have been around for a long time now. Back in
the 1990s they were usually created by device manufacturers
like Nokia and Motorola. These apps performed certain basic
tasks. Later on, wireless service providers started making apps
to differentiate the devices sold on their network to others. At
the same time, third party companies started making apps for
the mobile platforms like the Windows mobile OS and the
Symbian OS. These included games for the devices and other
utility apps. However, there was no centralized place where
end users could acquire these apps.

The most modern iteration of the mobile apps started in 2007,
when Apple announced the first generation of the iPhones. At
the same time Apple also announced the centralized market
for mobile apps called the ‘App Store’, through which, the
end users had to download all their apps. Soon after in 2008,
Google deployed their own platform (Android) and their own
app market the ‘Android Market’ (which was later renamed
as ‘Google Play’). Similar app markets were released for
the mobile phone platforms developed by Microsoft, and
BlackBerry as well. With these other app markets, now the
mobile app developers have an even larger customer base to
sell to. It is estimated that there are currently 2.6 Billion mobile
phone users, who mostly own smart phones [59]. An overview
of the various stakeholders in the world of mobile apps is
shown in Figure 2.

With the introduction of app markets for each platform, now
developers have the ability to manage the distribution of their
software through one centralized market for each platform.

All developers big and small have the same app market, thus
making it an even playing field for anyone to succeed. Also,
the app markets made it easy for the developers to upload
their apps, manage updates to them, and push the latest version
seamlessly to the end users. Thus a combination of market
potential, ease of use, and democratized platform, made it
highly lucrative for developers to build mobile apps.

With the increased use of smartphones and mobile apps by
end users, and development of these mobile apps by software
developers, mobile apps became an obvious area for software
engineering researchers to examine. One of the earliest software
engineering papers on such mobile apps was the study of micro
apps on the Android and BlackBerry platforms by Syer et
al. [91], and one of the earliest studies on the app markets
was by Harman et al. [34]. Since then, there have been plenty
of studies on all sorts of data that can be mined from the app
markets, with the app themselves being just one type of data.

We think the increase in such software engineering studies
on mobile apps are because of two reasons - (1) since the app
markets are publicly available, it is now possible to mine the
data relatively easily (although later in this section we explore
where researchers faced trouble in getting this public data), (2)
a variety of new types of data that were previous not available
are now available and reliably well linked together. Some of
these new types of data are discussed below (and a snapshot
of the app store is in Figure 3).

The app markets are not just a venue for the developers
to upload their app, and the user to download their app. App
markets also have a rating and review system in place, where
app users can describe their opinions on the app in free form
text. The review data is rich in what users want from the
app - both features and bug fixes, along with praise for the
features that they love. Therefore, such review data has now
become a treasure trove of data for requirements engineering
researchers (more about this in Section III). Each of the reviews
also have a numeric rating, which are then aggregated to
determine the overall rating of the app, thus making it easy for
users to know if the past users thought an app was good or not.
Additionally, these numeric ratings also provided researchers
with a clear way of knowing if an app is good or not, and if the
review by an user is overall of a complimentary or derogatory
nature. Therefore, researchers may only need natural language
processing techniques like sentiment analysis to know which
parts of a review was complimentary/derogatory of the app.

The app market also allows for the developer to post release
notes on each of the app’s versions. Researchers are able to
mine this information to determine how the apps are evolving.
Another piece of information available in the app store for each
app is the contact information for the developer. Therefore,
now researchers can contact app developers with anything
interesting that they find about the app. We are also able to
mine apps that are similar to the current app, and therefore
examine how similar or different an app is from other apps.

Knowing the similarity between apps is further facilitated
in the app markets by the category classification. Each app in
the app store has to be classified in one of many predefined



Fig. 2. Overview of the various stakeholders with respect to modern day mobile apps.

Fig. 3. Snapshot of an app in the app market

categories. Therefore, now as researchers we have access to
apps that have been self reported to be in the same domain. This
gives researchers tremendous potential to conduct research that
can be controlled for the domain of the app. Often we see that
a software engineering research study is done on an IDE, like
Eclipse and another OSS project like the browser Firefox [20].
However, we do not know what domains of applications that
these results transfer to. In the world of mobile apps, if we
conduct our research on only game apps, then we can be more
certain that our findings would apply to other game apps.

Additionally, all these various data points are available for
hundreds of thousands of apps in a public facing website
making it a rich dataset for researchers to crawl.

A. Common Challenges

In the next section, we discuss the accomplishments, chal-
lenges and risks for each of the development phases. However,
one challenge seems to be a common challenge that impacts all
of the development phases, public access to data. Such access
challenges manifests in three ways.

Firstly, app stores restrict public access to their data and
typically only allow for access to a subset of all the user
reviews. For example, in the case of the Google Play store,
one can only access 500 reviews for an app.

Secondly, app stores do not provide the source code of the
apps, or any other associated artifacts like test code, or design
and requirement documents. Only the app binary and release
notes are made available.

Finally, with respect to the release notes, and the app binary,
one can only get them for the latest release. There is no
historical information that can be collected from the app
store (except user reviews). The only way to gather historical
information on the various releases of the mobile apps is to
continuously mine the app stores at regular intervals (like daily
or weekly basis).

III. REQUIREMENTS

A number of studies have focused on requirement extraction
for mobile applications. Contrary to traditional work on
software requirements, which mainly focused on analysis of
the requirements and specifications document, the majority of
mobile app-related studies leveraged app reviews posted by
users to extract requirements. For example, Iacob et al. [40]
used linguistic rules to detect feature requests from user
reviews. Then, they summarize the feature requests to generate
more abstract requirements. Galvis-Carreno and Winbladh [27]
extract topics from user reviews in order to revise requirements.
They show that their automatically extracted requirements
match with manually extracted requirements. Guzman and
Maalej [30], [60] use natural language processing (NLP)
techniques to identify app features in the reviews and use
sentiment analysis to determine how users feel about app
features. They also compare their extracted features to manually
extracted features and find that the extracted features are
coherent and relevant to requirements evolution tasks.



Besides requirements extraction from the user reviews, there
have been several studies on feature analysis. For example Rein
and Munch [78] present a case study for feature prioritization.
Finkelstein et al. [25] extract the set of features from the the
release notes available in the app store for a large collection
of apps. They found a mild correlation between the number
of features in an app and the cost of an app. Sarro et al. [89]
examined feature migration lifecycles among apps.

Finally many previous studies have looked at the app reviews
and tried to understand what complaints that users have about
an app [26], [38], [41], [43], [67], [71]. In a previous study, we
manually analyzed and tagged reviews of iOS apps to identify
the different issues that users of iOS apps complain about [46],
[49]. We hope to help developers prioritize the issues that they
should be testing for.

A. Challenges and Future Directions

The fact that requirements are extracted from app reviews
has its own challenges. In many cases and for many apps,
there may not be enough user reviews or the quality of the
reviews may be low. All of the aforementioned studies need
a high quantity and quality of user reviews. Chen et al. have
done some initial work in automatically identifying reviews
that are informative [19]. However, there is still more work
left to be done in this area. For example even if there are
high quality reviews available, we do not know if we actually
did get all the reviews from the app store [64]. Typically app
stores restrict the public to be able to see only a subset of
all the reviews. In the case of Google Play it is 500 reviews.
In the case of the Windows Marketplace, they allow you to
see as many as can be loaded in the page before the browser
crashes. Therefore, we have a sampling issue, which has been
illustrated by Martin et al. [64]. One interesting problem that
has already been addressed by app markets like Google Play
is the ability for the developer to reply to user reviews when
they have addressed a requirement.

Another challenge is the applicability of the NLP techniques
used to extract requirements from app reviews. However, off-
the-shelf NLP tools are 1) not designed to extract software
requirements and 2) not designed to analyze text from user
reviews (which can be very brief, tend to be highly unstructured,
and have typos).

Therefore the natural directions of research in the area
of requirements engineering are as follows: building NLP
techniques that are not subject to the limitations in the user
reviews (and exploiting the newly available knowledge bases),
come up with sampling techniques that takes the sampling
bias into account, and building robust data collection tools that
are able to collect a more complete set of reviews. All these
research opportunities will allow us to mine requirements from
the user reviews in a more efficient manner (as Maalej et al.
state in their recent publication [97], the future of requirements
engineering is data driven).

Some more recent research directions in requirements engi-
neering are (a) prioritizing features that have been suggested by
users. AR-Miner [19] has already scratched the surface of this

problem, by proposing a novel ranking algorithm to prioritize
the groups of reviews identified. The authors also found that
their prioritization was comparable to actual developers, and
(b) identifying traceability links between user reviews and
app features, such as the tool CRISTAL [72]. However, it is
important to know if all users are equal or are some users
more influential and therefore, reviews by them might be
more impactful to implement. Another complementary research
problem is in determining which features should be dropped?

B. Risks

One of the risks involved in pursuing the above lines of
research is that we may have reached the limits of NLP when
analyzing poorly written user reviews. Another risk is that
maybe users prefer the features that they are provided before
they ask for it, and when the user complains about the features,
then it is already too late. The only solution might be to build
an updated review system for the app stores that allows a better
mechanism for feature requests from the users.

IV. ENERGY

Due to the fact that energy (or battery) is a scarce resource
for mobile devices, a plethora of studies have proposed ways
to measure and save energy of mobile apps. One of the
first works related to the measurement of energy of mobile
applications is GreenMiner by Hindle et al. [36], [37], which
is a dedicated hardware platform that enables measurement of
energy consumption of mobile devices. In other work, Hao et
al. [33] propose a technique that leverages program analysis to
provide per-instruction energy modeling. They show that their
approach can estimate energy consumption to within 10% of
the ground truth for Android apps. Liu et al. [57], present their
tool GreenDroid that will automatically identify the energy
inefficiency bugs in Android apps. Similarly Banerjee et al. [15]
detect energy bugs in mobile apps.

Other studies performed empirical research on energy
consumption in order to provide developers with ways of
minimizing it. For example, Pathak et al. [74] proposed a
taxonomy of energy bugs based on more than 39,000 posts.
They also propose a framework for the debugging of energy
bugs on smartphones. Li et al. [52] perform an empirical study
on 405 apps to better understand energy consumption. They
make several interesting findings such as: 1) the majority of a
mobile app’s energy is spent in the idle state and 2) networking
is the component that is more resource heavy. Linares-Vasquez
et al. [54] present an empirical study into the categories of API
calls and usage patterns that consume high energy. The findings
of the empirical study can help developers reduce the energy
consumption when using certain categories of Android APIs.
Wan et al. [98] propose a technique that detects UI hotspots to
help developers identify energy problems and reduce energy
consumption. Linares-Vasquez et al. [55] propose a multi-
objective approach that generates color themes that optimize
energy usage of mobile apps.



A. Challenges and Future Directions

The two main challenges in energy related research for
mobile apps is not knowing what to measure for accurately
identifying energy issues, and then trying to fix the issues
for the developers. This is because the current state-of-the-art
tools are not easily accessible to developers. Therefore, we
need good estimates of energy use. In fact, there has been
very little work on even understanding how much developers
know about energy bugs [75], [73], and which of their actions
actually cause them [87], [86]. Knowing more about developer
coding habits and which ones cause more energy bugs could
be impactful research.

Future directions in energy research could be in the area
of identifying practical ways in which energy usage can be
improved in apps. Another potentially impactful area of energy
research is trying to understand how and when our findings
translate to other platforms. Currently most of the energy
research is happening on the Android platform. For example
will the same third party libraries have a similar impact on the
Windows or BlackBerry platform? If not, then can we build
tools that can make recommendations to developers who are
building cross-platform apps?

B. Risks

One of the more practical risks for researchers who want to
pursue this line of research is: access to the hardware that can
measure power or settle for software models that can be inaccu-
rate [53]. There are some initial solutions, like the GreenMiner
framework, that are available for researchers to remotely access
the hardware resources for energy measurements [37]. Even
when researchers have access, there exists the issue of sampling
frequency. If the sampling frequency for energy measurement
is longer than the time interval in which energy bugs occur,
then there is a strong chance that the results are not consistent.

V. SECURITY

A number of recent studies focused on the security of
Android apps. A tangential line of work to this is the
examination of permissions in mobile apps to prevent security
vulnerabilities [23], [13]. However in security, there are two
lines of research in the intersection of software engineering,
mobile apps and security. The first line of work is in identifying
vulnerabilities in apps. For example, Chin et al. [21] propose a
tool called ComDroid, which detects communication vulnera-
bilities. Other work by Sadeghi et al. [85] proposed COVERT,
a technique that detects inter-app vulnerabilities. Potharaju et
al. look at various attack strategies and defense techniques
from plagiarized mobile apps [76]. Quirolgico et al. present
their work on how to vet mobile apps [77]. Jha in their PhD
thesis cataloged a set of risks for mobile applications [42].

The second line of research is in finding malicious apps. For
example Gorla et al. [28] proposed the CHABADA tool, which
detects unexpected behavior of Android apps. CHABADA
generates topics from app descriptions and compares the
behavior of the app against its description. The authors showed
that CHABADA is effective in flagging 56% of malware

without any knowledge of malware patterns. In other work
Avdiienko et al. [14] propose the Mudflow tool, which aims at
detecting malicious apps. Mudflow examines the sources and
sinks of dataflows and examines if such dataflows use sensitive
data such as device ID and phone number. Then, Mudflow
flags apps as being malicious if their dataflows deviate from
the dataflows in benign apps. Arzt et al. [12] proposed the
FlowDroid tool, which performs static taint-analysis of Android
apps. Appscopy is a similar tool that detects Android malware
through static analysis [24].

A. Challenges and Future Directions

Some of the well-known challenges that face static analysis
of software, apply to the security research mentioned here as
well. For example, it is well known that most static analysis
approaches suffer from a high rate of false positives. That issue
however, may be less critical for mobile apps since they tend
to be smaller in size. Other work depends on data provided
by the app developers, such as the app’s description. Such
approaches cannot guarantee to perform well for applications
that do not have well documented descriptions.

Another challenge is the availability of data. Malicious code
and vulnerabilities in code are ever changing (and at a great
pace). In order to build techniques that can identify secure
code from non-secure code statically, we need examples of
both. However, there is a serious lack of malicious/vulnerable
apps. Arzt et al. [12] built a publicly available benchmark
suite of malicious apps called DroidBench. However, even this
benchmark just contains 120 apps currently. Thus there is a
real need to bolster this benchmark with more data.

There are many directions of future research that is possible
in this area. The most obvious of this is to advance the state-of-
the-art in static analysis research. When it comes to malware
research the ultimate goal is to build a lightweight enough
static analysis tool that can be deployed at the app store and
prevent malicious apps from being uploaded to the store to
begin with. Another outcome of such research is to provide
the end user with an easy to use approach to understand what
the app is doing and if its behavior is abnormal.

Another more difficult research problem is to understand
why developers are writing vulnerable code in the apps? How
can we help them prevent unintentionally created security risks
for end users? This line of research requires us to understand
how to write secure software first. Then we need to be able to
educate the developers. Meanwhile, can we build indicators to
determine if an app will likely have vulnerable code in it or
not?

B. Risks

Most of the work has been done for Android apps. This is
mainly due to the fact that the Andorid platform is more open
then other platforms, e.g., iOS or BlackBerry. Also the apps are
written in Java for which there exists many decompilers and
static analysis tools. Performing our studies on Android causes
a risk in terms of how applicable the proposed approaches
would work for mobile apps from other platforms.



Another risk is in just focusing on reactive approaches
to security in order to solve the current security issues and
not focusing on preventive solutions. Focusing on reactive
approaches is not just an issue with mobile apps but with all
software. However, with mobile apps due to the speed at which
they are evolving, this issue could be even more potent - as
we may never catch up.

VI. DEVELOPMENT

While there has been quite a bit of past work in the areas
of requirements, energy, security, testing and maintenance for
mobile apps, there has been very little work that has been
done on actually developing the apps. Most of the work has
been from the platform developers like Google and Apple
in providing the development tools required for building the
mobile apps.

One of the earlier research papers in software engineering
was by Syer et al. [91] who compared the source code of
Android and BlackBerry applications along three dimensions,
source code, code dependencies and code churn. They find
that BlackBerry apps are larger and rely more on third party
libraries, whereas, Android apps have fewer files and rely
heavily on the Android platform. Hecht et al. [35] proposed a
tool called Paprika to study antipatterns in mobile apps using
their byte code. Khalid et al. [47] examined the relationship
between warning from FindBugs and app ratings. They find
that certain warnings correlate with app ratings. Cugola et
al. [22] developed a declarative language for a specific type of
mobile app. Around the same time, Tillmann et al. developed
TouchDevelop, a platform to build mobile apps for the Windows
Phone [96]. This platform was built to help novice developers
with little to no experience in either software engineering or
software development to build apps. Additionally, Acerbis et
al.built the WebRatio Mobile Platform for model-driven mobile
app development [11], [4].

A. Challenges and Future Directions

With the popularity of all platforms increasing in the past
few years, developers are tempted to develop the same app
for multiple platforms (cross-platform development). In order
to enable this, there are several frameworks that are available
- Sencha, PhoneGap, and Appcelerator Titanium to name a
few (some of the cross-platform development frameworks like
Cocos2d, Unity 3D, and Corona are specifically for games).
The developer has to build the app by only calling the APIs
present in these frameworks, and at build time, an app for each
platform is generated by the framework. However, all these
frameworks, due to their design have an adverse affect on both
the performance of the app and its user interface. Very little
research has been conducted to help developers understand
the costs and benefits of the various approaches of developing
cross-platform apps [99].

This issue therefore, provides researchers with a tremendous
opportunity to positively affect the developers. Coming up with
the next best cross-platform app development approach would
be of very high impact.

B. Risks

With the platforms evolving as fast as they are to keep up
with the competition, it may be very difficult to build a static
solution for cross-platform development - the solutions must
evolve just as fast. Additionally, there are hardware and app
market policy mismatches that have to be taken care of. Even
the study of the issues in cross-platform development, may be
difficult because it may be difficult to link the apps across the
app markets. Lastly, in some cases, mobile app developers may
obfuscate their apps, making the study of their development a
challenge since one would need to deal with the obfuscation
of the code before being able to study the app.

VII. TESTING

A wide range of studies have developed techniques to
help mobile app developers improve the testing of mobile
applications, in particular by trying to improve UI and system
testing coverage. Hu et al. propose the Monkey tool, which
automates the GUI testing of Andorid apps [39]. Monkey
generates random events, instruments the apps and analyzes
traces that are produced from the apps to detect errors. Another
tool proposed by Machiry et al. [61] is Dynodroid, which is
a tool that dynamically generates inputs to test Android apps.
Contrary to Monkey, Dynodroid enables the testing of UI and
system events. Due to this difference, the authors showed that
Dynodroid can achieve 55% higher test coverage compared to
Monkey. Mahmood et al. [62] presented the EvoDroid tool,
which combines program analysis and evolutionary algorithms
to test Andorid apps. The authors show that EvoDroid can
outperform Monkey and Dynordoid, achieving coverage values
in the range of 70-80%. Linares-Vasquez et al. [56] propose
MonkeyLab, which mines recorded executions to guide the
testing of Android mobile apps. While all these approaches
are general purpose test generation approaches, Kim et al. [51]
look at performance testing of mobile apps at the unit test
level.

Different from the aforementioned work, another line of work
aims to help developers deal with the Android fragmentation
problem (i.e., the fact that Android has many devices). For
example, Ham came up with their own compatibility test to
prevent Android fragmentation problems [31]. Khalid et al. [48]
proposed an approach that leverages user reviews to prioritize
which Android devices an app should be tested on. Han et
al. [32] examine device level fragmentation for the Android
platform to understand vendor-specific bugs.

A. Challenges and Future Directions

One of the biggest challenges that researchers face in their
current line of research on automated tests for mobile apps is
that they are not able to achieve high code coverage [45], [80].
This is partially because of the inability to produce a wide
range and variety of inputs and partially because of apps that
are designed for user input (like game apps or apps that require
a login), which cannot be automatically generated. Often the
automated testing tools are unable to proceed down a certain
execution path due to the inability to generate inputs, and



therefore cannot test anything further along that execution path.
Therefore research in generating a wider range of input that
can mimic a human could have a great impact on automated
mobile app testing tools.

Another challenge is that often researchers build tools that
will work on the app binary since that is the only thing to which
they have access. The availability of more OSS apps could
yield in more robust tools. One repository of OSS apps is the
F-Droid repository [2]. However, from past research we know
that only a very small percentage of these apps are actually
successful apps in the app market [93]. A repository of OSS
apps with the corresponding app binaries made available as a
benchmark suite could greatly help researchers in advancing
the state-of-the-art in app testing. We would also like to point
out that availability of successful OSS apps would advance the
state-of-the-art in all areas of software engineering for mobile
apps.

Currently most of the work as described above, focuses
on automated testing of mobile apps. Even with these tools,
the tests are often run on a single device and/or a simulator.
However, with the increased success of multiple platforms there
is now a large amount of cross-platform apps. Additionally, in
all the platforms the apps need to run on different hardware
with different versions of the OS (either due to different
versions of the device, as in the case of the the iPhone or on
different devices, as in the case of the Android/Windows Phone
platforms). Thus even if the app is tested on one device, there
is no guarantee that it may work on another device. However,
these problems are not entirely new. In the past software
developers have had to develop for the PC/Mac/Linux platforms
with varying hardware. While it is not a new problem, it still
remains a challenge to test these apps across varying hardware
and platforms. Thus one area of research with the potential for
high impact is that of cross-platform testing. A recent study
by Joorabchi et al. [44] describes a tool, CHECKCAMP that
tests for inconsistencies between iOS and Android versions
of mobile apps using extracted abstract models. Such a study
is a step in the right direction, but a better understanding of
cross-platform apps is still needed.

B. Risks

One of the big risks in pursuing the above line of research is
that researchers may not have access to all the various devices
and/or platforms. Additionally, there is no easy way to identify
cross platform apps from the app stores. So far, there has been
no effort to build such a database of cross platform apps that
researchers can analyze.

VIII. MAINTENANCE

The area of software maintenance is one of the most
researched areas in Software Engineering. However, due to
the fact that mobile apps is a young subarea within SE, the
maintenance of mobile applications remains to be largely
undiscovered. Moreover, since mobile apps are different, the
studies related to the maintenance of mobile apps tend to
focus on issues that have not been traditionally studied in

past software maintenance studies. For example, most mobile
apps display advertisements, and as has been shown in prior
studies, these advertisements require a significant amount
of maintenance [82]. That said, a number of prior studies
investigated the maintenance of mobile apps from different
perspectives, e.g., code ruse and ad-related maintenance.

Mojica-Ruiz et al. [84], [81] compared the extent of code
reuse in the different categories of Android applications. They
find that approximately 23% of the classes inherit from a base
class in the Android API and 27% of the classes inherit from
a domain specific base class. Furthermore, they find that 217
mobile apps are completely reused by another mobile app.
Syer et al. [93] compares mobile apps to larger “traditional”
software systems in terms of size and time to fix defects. They
find that mobile apps resemble Unix utilities, i.e., they tend
to be small and developed by small groups. They also find
that mobile apps tend to respond to reported defects quickly.
Minelli and Lanza [68], [69] proposed SAMOA, a software
analytics platform that was used to to analyze 20 Android apps.
Similar to Syer et al., one of their main findings is that mobile
and tradition software are different since mobile apps tend to
be very small in size, rely heavily on third-party libraries and
essentially do not use inheritance. Bavota et al. [16], show
that the quality (in terms of change and fault-proneness) of the
APIs used by Android apps negatively impacts their success, in
terms of user ratings. Similarly, McDonnell et al. [65], study
the stability and adoption rates for the APIs in the Android
ecosystem.

Another line of work examined Android-related bug reports.
Bhattacharya et al. [18] study 24 mobile Android apps in order
to understand the bug-fixing process. They find that mobile bug
reports are of high quality, especially for security related bugs.
Martie et al. [63] analyzed topics in the Android platform bugs
in order to uncover the most debated topics over time. Similarly,
Liu et al. [58] detected and characterized performance bugs
among Android apps.

A. Challenges and Future Directions

Some of the challenges in maintenance research for mobile
apps is that often there is a lack of historical data. The
software maintenance research community has greatly benefited
from openly available artifacts like source control and bug
repositories of OSS projects. They now have a large trove
of data to evaluate their hypotheses on. Such a support has
spurred an increased level of research in software maintenance
as evidenced by the number of research publications on it.
However, for the most part there are not many OSS mobile
apps as discussed in the previous section. Most of the current
research is based on the data available in the app markets.
Therefore, with limited fine grained commit level information
it is difficult to conduct maintenance research.

One interesting line of future research is in estimating the
maintenance cost for a mobile app. Currently there are just
anecdotal estimates [3]. Careful studies and insight into this can
greatly help small time mobile app developers to plan ahead.
While traditional maintenance issues like bug localization may



not be an issue due to the small size of the apps, mobile app
developers would like to be able to triage features and bugs
from the user reviews (as seen in Section III).

Finally as mentioned in Section IX, there are several
companies that collect operational data from mobile apps that
have been installed on millions of devices. Most of these
companies provide the app developers with the data and some
rudimentary analysis on them. There is a wide variety of
reliability and performance problems that can be solved by
building tools and approaches that mine such operational
data (past work has barely scratched the surface of such
a problem by looking more at the server side of mobile
applications than the client side [92]).

B. Risks

From past research we have seen that mobile apps are
small [93], and have very quick release cycles [66]. With
such rapid release, it may be the case that the maintenance
effort might overlap a lot with the evolution effort. Hence, it
may not be easy to identify costs pertaining to maintenance.
Additionally, the variety of apps are far more than the variety
of successful desktop applications. For example, a small recipe
app like AllTheCooks [5], and a large application like Microsoft
Excel [7] are equally popular, but they may have completely
different maintenance efforts. Thus the issue of placing the
results in the right context becomes paramount. Therefore, it
is highly recommended to keep track of the app domain when
conducting maintenance case studies.

IX. MONETIZATION

Some of the successful gaming apps (like Angry Birds and
Candy Crush) and productivity apps (like Microsoft Excel) are
produced in established software development companies with
large teams. However, from past work, we know that successful
apps can be developed by one or two core developers too [93].
In such apps where the development organization is small,
often the developers will also have to make several engineering
decisions that could affect their bottom line. Therefore software
engineering researchers have examined how we can provide
data to mobile app developers so that they can make these
decisions in a more careful fashion. Some of these research
studies are presented below.

Past research has found that ratings and downloads are often
very highly correlated [34]. Additionally, Kim et al., also found
ratings to be one of the key determinants in a user’s purchase
decision of an app [50]. However, Ruiz et al.examined the
rating system in Google Play and found that the current rating
system of cumulative averages across all versions of an app
makes the ratings sticky and thus does not encourage developers
to improve their app [83].

While ratings may not be a sufficient condition for more
downloads, it may be a necessary condition. With more
downloads, the developers stand to increase their revenues
as well. This is because, often mobile apps are just monetized
through in app advertising. The app itself is given at no cost. If
more users use an app, more ads are shown to users, and more

revenues are generated for the app. A more detailed overview
of the various stakeholders with respect to mobile ads can be
found in the work by Ruiz et al. [82]. In the past, we have
found the number of advertising networks that a developer
connects to does not impact the user perception of an app (ie
the rating) [82]. There were apps that used as many as 28
different ad libraries, and still had a good user rating. This
was probably because, even though the developers connect
to many different networks through many different libraries,
they still were displaying just one ad at a time. Thus we
recommended, that a mobile app developer could add as many
ad libraries as they wanted (as long as they did not disrupt
the user experience) without impacting the rating. However,
we found that including particular ad libraries could affect the
rating. This was because, the ad libraries were being intrusive,
and the user perceived the app to be intrusive as well. Hence,
we recommended that the developer be careful about what
ad networks they were connecting too. This study [82], is a
good example of how software engineering researchers could
make software related recommendations that could improve
the monetization strategies of an app.

Additionally we looked at the cost incurred by the users when
using a free app with advertisements in them [29]. We found
that there are considerable energy, network and performance
related costs associated with ads. Thus we recommend that
users be careful when using an app with ads. If users do realize
this, then developers should be ready with an alternative that
has no ads (which could be paid).

Currently there are also several analytics companies (AppAn-
nie [1], Quettra [9], Crittercism [6] etc.) that provide valuable
usage data to developers for improving their monetization
strategies. They track the downloads of apps, and how the
apps are being used, when users purchase things from the
app etc. These companies are able to track such user data, by
incorporating tracking libraries in the mobile devices. Using
this information developers are able to make smarter data driven
decisions with respect to making their app more successful.
However, most of these recommendations are more from a
marketing perspective than software engineering perspective.

A. Challenges and Future Directions

Even though, it finally comes down to the amount of money
made through an app in most cases, we as software engineering
researchers care more about what makes an app successful.
Success can mean different things to different people. It could
mean more downloads, it could mean driving more users to a
business that is outside the mobile space, and it could mean
just recognition by means of having a high rating. Thus success
is not just one fixed measure, but one from a set of possible
measures depending on the context.

Depending on the choice of success measure, researchers
can then come up with various hypothesis for what factors
could affect this success measure. By gathering a set of
possible factors (independent variables), and the success
measure (dependent variable) for a large collection of apps
from the app store, we can then model the data to see when



an app can be successful. We can also see what factors
are most related to the success measure, and then carry out
controlled experiments to see how far the correlations translate
to causation. There has been some recent initial work in this
direction where Bavota et al. [16] looked at the impact of using
certain APIs on the ratings and Tian et al. [94] model a set of
factors (like size of app, complexity of app and its UI, quality
of the library code etc.) against the ratings. They were able to
find that there is initial evidence that high rated apps have a
certain DNA (certain value for various factors). In the future,
we need to come up with more such factors to be evaluated,
and strengthen our current findings with user studies. These
factors can be derived through mobile app user and developer
surveys for example.

B. Risks

While there is tremendous potential in determining under
what circumstances an app will be successful, there are certain
risks too. It will be easy to misinterpret the correlation in the
data that we gather as causation. We need to be rigorous in
controlling for other factors like category of apps, date apps
were released, platform they run on etc. We also need to identify
these factors based on common sense intuition and motivation
based on previous work. It would be easy to correlate the
name of an app with the success of the app and conclude that
app names starting with a particular letter are more successful.
However, we should avoid such pitfalls and only model factors
that an app developer/past research would actually consider as
a factor that could affect the app success.

We also need to be careful about placing our results in the
correct context. Results that are obtained from free apps may
not translate to freemium apps (apps with in app purchases)
or paid apps. Freemium apps are those apps where the app
developer gives away the app for free and then charges
for additional features or content inside the app. The paid
monetization model is the traditional model, where the app
developer sells the app directly to the user for a monetary price.
There are has not been much software engineering research
on the freemium/paid apps since they are more difficult for
researchers to get access to. Given this limitation we simply
do not know how results would generalize. Another challenge
caused by the lack of access to historical data, is the fact that
success of an app can change overtime, e.g., initially one might
want to just have a popular app, but later will look for revenues,
however it is difficult to capture such changes.

X. CONCLUSIONS

In conclusion, we believe that due to popularity of mobile
apps, and the impact that research can have on developers
from both small and large organizations, combined with the
abundance of publicly available data, interesting research
opportunities still left to be explored, and a vibrant community
being built around it, software engineering research for mobile
apps is a great place for young researchers to start.
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