
An Exploratory Study on
Self-Admitted Technical Debt

Aniket Potdar
Department of Software Engineering

Rochester Institute of Technology
Rochester, NY, USA

Email: asp6719@rit.edu

Emad Shihab
Department of Computer Science and Software Engineering

Concordia University
Montreal, QC, Canada

Email: eshihab@cse.concordia.ca

Abstract—Throughout a software development life cycle, devel-
opers knowingly commit code that is either incomplete, requires
rework, produces errors, or is a temporary workaround. Such
incomplete or temporary workarounds are commonly referred to
as ’technical debt’. Our experience indicates that self-admitted
technical debt is common in software projects and may negatively
impact software maintenance, however, to date very little is
known about them.

Therefore, in this paper, we use source-code comments in four
large open source software projects - Eclipse, Chromium OS,
Apache HTTP Server, and ArgoUML to identify self-admitted
technical debt. Using the identified technical debt, we study
1) the amount of self-admitted technical debt found in these
projects, 2) why this self-admitted technical debt was introduced
into the software projects and 3) how likely is the self-admitted
technical debt to be removed after their introduction. We find
that the amount of self-admitted technical debt exists in 2.4%
- 31% of the files. Furthermore, we find that developers with
higher experience tend to introduce most of the self-admitted
technical debt and that time pressures and complexity of the
code do not correlate with the amount of self-admitted technical
debt. Lastly, although self-admitted technical debt is meant to be
addressed or removed in the future, only between 26.3% - 63.5%
of self-admitted technical debt gets removed from projects after
introduction.

I. INTRODUCTION

Delivering high quality, defect-free software is the goal of
all software projects. To ensure the delivery of high quality
software, software project often plan their development and
maintenance efforts. However, in many cases, developers are
rushed into completing tasks for various reasons. A few of
these reasons mentioned in prior work include, cost reduc-
tion, satisfying customers and market pressure from competi-
tion [1]. Intuition and general belief indicate that such rushed
development tasks (also known as technical debt) negatively
impact software maintenance and overall quality [2].

A plethora of prior work proposed techniques to support
software maintenance and ensure high software quality. For
example, prior work focused on understanding and predicting
software defects (e.g. [3]), analyzing bug fix patterns (e.g. [4]),
and attempting to understand and eliminate rework and main-
tenance (e.g., [5]). The majority of the aforementioned prior
work used historical development data and source-code met-
rics to perform their studies. More recently, researchers lever-
aged natural language to help identify potentially problematic

areas of the software. For example, work by Tan et al. [6]
developed natural language processing tools to find comment-
bug inconsistencies. Other work identified the coevolutionary
relationship between source code and its associated comments
(e.g., [7], [8]) and used task annotations to manage productiv-
ity [9].

The majority of the prior work focused on quality issues
that are due to unintentional errors by developers (i.e., er-
rors introduced by the developers are assumed to mistakes).
However, to the best of our knowledge, very few prior studies
examined the impact of errors that might be introduced due to
intentional (i.e., self admitted) quick or temporary fixes (i.e.,
technical debt). Studying this self-admitted technical debt is
important since they appear frequently in some projects (as
we show later in this study) and prior work indicated that
they negatively impact quality [2].

Therefore, in this paper we perform an exploratory study
to better understand self-admitted technical debt. Inspired
by prior work (e.g., [6], [8], [10], [11]), we use source-
code comments to detect self-admitted technical debt. We
perform our study on four large open source projects - namely
Eclipse, Chromium OS, ArgoUML and Apache httpd. We
focus on quantifying the amount of self-admitted technical
debt (RQ1), on determining why self-admitted technical debt
is introduced (RQ2) and how much of self-admitted technical
debt is actually removed after their introduction (RQ3).

We make the following contributions:
• Identify comment patterns that indicate self-admitted

technical debt. We manually read through 101,762
code comments to determine patterns that indicated self-
admitted technical debt. In the end, we identified 62
different comment patterns that indicate self-admitted
technical debt.

• Measure how much self-admitted technical debt
exists, why self-admitted technical debt is introduced
and how much self-admitted technical debt is
removed after their introduction. We find that 2.4% -
31.0% of the files contain self-admitted technical debt,
that more experienced developers introduce more self-
admitted technical debt and that self-admitted technical
debt is introduced throughout their development activity
(i.e., they do not only introduce self-admitted technical

debt during the beginning or end of their development
activity). Also, we find that time to release and
complexity of the code are not strongly associated with
self-admitted technical debt and that even after many
releases only between 26.3% - 63.5% of self-admitted
technical debt is removed.

• Contribute a rich data set of self-admitted technical
debt. In order to encourage future research in the area of
self-admitted technical debt, we make our dataset from
this study publicly available1.

The rest of the paper is organized as follows. Sections II
presents the related work. We setup our case study in Section
III and describe our approach. Section IV presents our case-
study results. In section V we analyze the instances when
code and comments evolve consistently and instances when
either code or comments are updated inconsistently. Section VI
present the threats to validity and Section VII concludes our
study.

II. RELATED WORK

The work that is most related to ours comes from two areas,
work related that uses source-code comments and work in the
area of technical debt.
Work using source-code comments: Previous work on
source-code comments focused on studying comment up-
dates [6], [8], [10], [11] and how comments can assist in task
assignment and task completion [9], [12], [13].

Fluri et al. [8] examined the co-evolution of code and
comments in ArgoUML, Azureus, and JDT Core and found
that new code is rarely commented and that 97% of comment
changes are done in the same revision as the code (i.e.,
consistently co-changed). Malik et al. [10] propose techniques
to predict the likelihood of a comment being updated and
were able to do so with high accuracy (i.e., 80%). Tan et
al. [6] analyzed inconsistencies in code and corresponding
comments by classifying comments as either those that would
lead to bugs and comments that do not sync with the source
code. They propose a tool called iComment and show that
iComment can achieve an accuracy between 90.8-100%. In
follow-on work, Tan et al. [11] studied the inconsistencies
between method bodies and Javadoc comments.

Other work used comments to assist in task assignment and
completion. Storey et al. [9] investigated how task annotations
can assist developers achieve tasks and enhance communica-
tion about the code. They found that the use of task annotations
varies from individuals to teams and if incorrectly managed,
could negatively impact the maintenance of a system. Khamis
et al. [12] focus on assessing the quality of documentation in
software and need for maintaining source-code comments for
better documentation. Padioleau et al. [13] manually examined
1050 comments from Linux, FreeBSD and OpenSolaris and
found that 52.6% of the examined comments can be leveraged
by tools to improve reliability.

1http://users.encs.concordia.ca/ eshihab/data/ICSME2014/satd.html

Our work differs from the prior work in several ways. First,
the main focus of our work is on self-admitted technical debt.
In particular, we focus on quantifying and understanding why
and how much self-admitted technical debt is removed after
its introduction, in contrast to the prior work which focused
on the inconsistency on code and comment co-change or
the examination of source-code comments to assist in task
completion. Second, our work examines the personnel aspect
(i.e., developers involved) of self-admitted technical debt,
which is something prior work did not investigate. Lastly, our
work also complements the prior work since we also examine
the co-change of code and comments in Section V in order
to shed light on the validity of our approach. Our findings
corroborate the findings of the prior work, especially the work
in [8].
Work on technical debt: Zazworka et al. [14] identified
technical debt by asking a project team to identify technical
debt items in artifacts from their software project. The goal of
the study was to ascertain if automated tools find the same
technical debt items as the project team and quantify the
overlap of items. The technical debt items identified by both
approaches were categorized under defect debt, design debt,
documentation debt, testing debt and usability debt. Kruchten
et al. [15] present an in-depth description of technical debt.
The study notes how organizations have embraced technical
debt, by making technical debt visible, integrating it into plan-
ning and considering it into future risks. The study concludes
that poorly managed risks can negatively affect the future of
the software but properly managed risks can add value to the
software ”in the form of deferred investment opportunities”.
Guo et al. [16] analyzed the effect of technical debt by tracking
a single delayed task in a software project throughout its
lifecycle.

In many ways, our work complements the aforementioned
work on technical debt. First, our work focuses on self-
admitted technical debt, which can be thought of as intentional
technical debt. Second, our work performs an exploratory
study on self-admitted technical debt, hence, contributing to
the body of work on technical debt. Lastly, since we share
our data from this study, we believe that sharing this data will
help spur new research in the area of self-admitted technical
debt and technical debt in general.

III. CASE-STUDY SETUP

The goal of this study is to better understand self-admitted
technical debt. In particular, we focus on quantifying the
amount self-admitted technical debt, examining why self-
admitted technical debt is introduced and determining the
amount of self-admitted technical debt that is removed after
their introduction. We formalize our study in the following
research questions:

RQ1. How much self-admitted technical debt exists in the
studied software projects?

RQ2. Why is self-admitted technical debt introduced into the
software project?

Fig. 1. Approach Overview

TABLE I
PROJECT STATISTICS

Project Release Release Date Code Lines Comment Lines Committers
Eclipse 4.3 June 2013 659,231 437,640 221
Chromium OS 30 November 2009 107,706 37,889 1,784
ArgoUML 0.34 December 2011 122,575 115,713 53
Apache httpd 2.4.6 July 2913 192,333 54,295 145

RQ3. How much self-admitted technical debt is removed after
its introduction?

To conduct our study, we use data from four, large open-
source projects namely - Eclipse, Chromium OS, Apache
httpd, and ArgoUML. When selecting our case-study projects,
we wanted to have projects that are long-lived, have a large
number of contributors and are well commented (since a large
part of our analysis depends on the comments). We selected
Eclipse, Chromium OS, Apache httpd, and ArgoUML for our
study since they have large and accessible codebases with
a lengthy development history. Furthermore, Ohloh.net
mentions that the projects have ”a well established, mature
codebase” and ”average” to ”well-commented source code”.

Figure 1 provides an overview of the approach used to
perform our study. First, we mine the source code for the four
open source projects. Then, we parse the code to distinguish
comment lines and source code. We read through the com-
ments to identify patterns in the comments that indicate self-
admitted technical debt. Then, we use these identified patterns
to automatically identify self-admitted technical debt in the
projects. Lastly, we use the self-admitted technical debt to
perform our analysis and answer our research questions.

A. Extracting Repository Data

To perform our analysis, we require the source code as
input. We extracted the latest public releases available at the
time from each project’s source control systems. To assure
validity of our results, we extracted data for four large open
source projects - namely Eclipse, Chromium OS, ArgoUML
and Apache httpd. Once we extracted the files, we found
that Chromium OS files contained both Java and C++ files.
Chromium OS constituted of 544 Java files and 13,784 C++
files; ArgoUML contained 1,846 Java files; Apache HTTP
Server had 255 C files; Eclipse had 6,389 Java files. Table
I represents statistics for all the studied projects.

The source code extracted for each project was the latest
release before January 2014, listed in Table I. While Eclipse,
Apache httpd, and ArgoUML had public releases closer to the
date of extraction, the only public release by Chromium OS
was a few years prior. Chromium OS uses different release
channels to roll out stable updates to users roughly every six

weeks [17]. Hence, for Chromium OS, we extracted the latest
source code available on their repository which corresponded
to branch point 30.

B. Parsing Code Using srcML

After obtaining the source code of the software projects,
we needed to discriminate between source code and comment
lines. To extract the source-code comments, we utilized the
srcML Toolkit [18], a command line tool that parses source
code into XML files. Then, we developed a Java-based tool
that parses the XML files produced by srcML, and stores
the comment nodes of the code into separate text files for
each project. The Chromium OS Java files contained 12,387
comments while the C++ files contained 3,944 comments.
The Eclipse, ArgoUML and Apache projects contained 9,273,
62,256, and 13,902 comments, respectively. The srcML tool
reads a comment block - a comment that spans multiple lines
- as a single comment and hence it is important to note that
the aforementioned numbers denote the number of comments
and not the number of lines of comments in the source files.

C. Identifying self-admitted Technical Debt

Once the comments are extracted, our next step is to
determine the comments that indicate self-admitted technical
debt. Since comments are written in natural language, it is
very difficult to automatically analyze them. Therefore, the
comments were analyzed manually by reading through each
of them to identify those that indicated self-admitted technical
debt. In total, Potdar read through 101,762 comments. A link
containing the all of the comments analyzed is provided2.
Table II provides a sample of comments that were identified
as indicating self-admitted technical debt.

D. Identifying Specific Self-Admitted Technical-Debt Patterns

Once we identified all of the comments that indicate self-
admitted technical debt, we needed to further distill these com-
ments to specific patterns that indicate self-admitted technical
debt (e.g., we removed stop words). In total, we ended up
with a set of 62 recurring patterns that were identified across

2http://users.encs.concordia.ca/ eshihab/data/ICSME2014/satd.html

TABLE II
SAMPLE COMMENTS INDICATING SELF-ADMITTED TECHNICAL DEBT

Project Comment

Eclipse // TODO this is such a hack it is silly
Chromium OS // Unsafe; should error.
ArgoUML // FIXME: This is such a gross hack...
Apache /* Ugly, but what else? */

TABLE III
SELF-ADMITTED TECHNICAL-DEBT COMMENT INSTANCES

Type Project Total Self-
Admitted
Technical
Debt

%

Files Eclipse 6,389 152 2.4%
Chromium OS 14,328 574 4.0%
ArgoUML 1,846 77 4.2%
Apache httpd 255 79 31.0%

Classes Eclipse 11,993 151 1.3%
Chromium OS 18,249 82 0.4%
ArgoUML 2,304 76 3.3%
Apache httpd - - -%

Methods/
Functions

Eclipse 48,382 145 0.3%

Chromium OS 153,514 626 0.4%
ArgoUML 12,845 71 0.6%
Apache httpd 4,361 112 2.6%

Constructors Eclipse 5,561 151 0.2%
Chromium OS 18,988 82 0.1%
ArgoUML 1,920 76 0.5%
Apache httpd - - -%

the four projects. The following are examples of patterns we
identified: hack, fixme, is problematic, this isn’t very solid,
probably a bug, hope everything will work, fix this crap. A full
list of the patterns in provided in the supplementary data3. We
use the final set of 62 patterns to perform all of our analysis,
which we discuss in the next section.

IV. CASE-STUDY RESULTS
The goal of our research is to perform an exploratory study

on self-admitted technical debt. We study data from four, large
open source projects namely - Eclipse, Chromium OS, Apache
httpd, and ArgoUML. Since, to the best of our knowledge, this
is one of the first studies to focus on self-admitted technical
debt, our first question is related to the quantity of self-
admitted technical debt.

RQ1. How much self-admitted technical debt exists in the
studied software projects?

Motivation: Intuitively, self-admitted technical debt is not
considered to be good practice. At the same time, our experi-
ence indicates that it does exist [19]. However, how common
self-admitted technical debt is is still unknown. Quantifying
the amount of self-admitted technical debt that exists helps us
better understand how much of a problem it poses and whether
it warrants more attention or not.
Approach: To quantify how much self-admitted technical debt
exists in the different projects, we use the 62 self-admitted
technical-debt patterns described earlier in Section III. For

3http://users.encs.concordia.ca/ eshihab/data/ICSME2014/satd.html

each source-code file, we quantified the number of self-
admitted technical debt that exists using their comments. Since
different projects have a different number of comments, we
normalized our results by the total number of comments that
the project has. For example, if a project has 100 comments
in total and another has 1,000 comments in total, and 10
comments in each project match one of the 62 patterns
identified earlier, then we say that 10% of the first project
and 1% of the second project contains self-admitted technical
debt. Since comments can be mapped at different granularities,
we report the results of our analysis at the file, class and
method/function level.
Results: Table III shows the results of our analysis at different
levels of granularity. We find that at the file level, between
2.4 - 31.0% of the files contained one or more instances
of self-admitted technical debt. Since source-code comments
and therefore self-admitted technical debt also lie outside the
boundary of a class, as expected, the percentage was lower for
the class level, ranging between 0.4 - 3.3% and 0.3 - 2.6% at
the method/function level. Table III also shows the raw number
of files, classes and methods/functions. The class analysis does
not include results for the Apache httpd project since Apache
httpd is written in C, and therefore, it does not have classes.

For Eclipse and ArgoUML a couple of anomalies were
noted where the number of files with self-admitted technical
debt outnumbered the number of classes with self-admitted
technical debt. On further analysis, we found that there existed
self-admitted technical debt in the files that were located
outside the Class constructs, i.e., in constructor declarations.
Parsing the source code with srcML places the constructor
nodes outside the scope of the class nodes. Therefore, we also
include the number and percentage of self-admitted technical
debt at the bottom of Table III.

To shed light on the most frequent self-admitted technical
debt, we also quantified the most recurring patterns across all
of the projects. Moreover, to determine whether these patterns
were all by a single developer or multiple developers, we also
measure the number of unique developers that use a pattern.

We found that in Eclipse, the most commonly occurring
self-admitted technical debt pattern is there is a problem
with 36 instances by 10 different developers followed by
workaround for bug with 30 instances by 7 different develop-
ers. In ArgoUML, the most commonly occurring pattern was
hack with 17 instances by 4 different developers followed by
give up with 14 instances by 2 different developers. In Apache
httpd, the most commonly occurring pattern was fixme with
20 instances by 17 different developers followed by kludge
with 19 instances by 6 different developers. In Chromium
OS, the most commonly occurring pattern was fixme with 761
instances by 212 different developers followed by hack with
89 instances by 35 different developers. This finding clearly
shows that self-admitted technical debt is not only by a single
developer, but is actually made by different developers.

We find that 2.4 - 31.0% of files, 0.4 - 3.3% of classes
and 0.3 - 2.6% of methods/functions contain self-admitted
technical debt.

RQ2. Why is self-admitted technical debt introduced into the
software project?

Motivation: After quantifying the amount of self-admitted
technical debt, we want to better understand why self-admitted
technical debt is introduced. To answer this research question,
we investigate three types of factors that might be causing
the introduction of self-admitted technical debt: experience,
time and complexity. Our conjuncture is that less experienced
developers do not know the codebase very well, and therefore,
introduce self-admitted technical debt. For time factors, our
conjuncture is that developers are pressured by tight release
deadlines and are therefore introducing self-admitted technical
debt close to the release dates. Finally, for the complexity
factors, our conjuncture is that more complex code is harder
to change, therefore, developers are more likely to introduce
self-admitted technical debt. Answering this question will help
us and future research better address this issue of self-admitted
technical debt.
Approach: To investigate whether or not experience plays
a role in the introduction of self-admitted technical debt, we
used the git blame (for Eclipse and Chromium OS) and svn
blame (for ArgoUML and Apache) commands to know which
developer introduced the self-admitted technical debt. Then, to
get the developer’s experience on the project, we measured the
number of commits the developer made prior to the commit
that introduced the self-admitted technical debt. The number
of prior commits serves as a proxy for experience and has
been used in a similar manner in previous work [20], [21].

We also measure when in their development experience
developers introduce self-admitted technical debt. To do so,
we obtained the timestamps of all commits. Then, we used
the obtained timestamp to build scatter plots that superimpose
the self-admitted technical debt over all the commits that a
developer makes.

To investigate whether or not time pressure plays a role in
the introduction of self-admitted technical debt, we quantify
the number of self-admitted technical debt introduced more
than 6 months before a release, between 3 and 6 months before
a release, between 1 and 3 months and within less than a month
before a release.

To investigate whether or not complexity plays a role in
the introduction of self-admitted technical debt, we measure
the Spearman correlation between the dependencies (i.e., Fan-
in) of files and the number of self-admitted technical debt
they contain. Since larger files have more commits overall and
will naturally have a higher likelihood of having more self-
admitted technical debt, we measured the partial correlations
(rather than the simple Spearman correlations) between the
dependencies and the number of self-admitted technical debt.

Fig. 2. Eclipse: Commits by E1

Fig. 3. Chromium OS: Commits by C1

The partial correlation measures the degree of association be-
tween two variables, while removing the effect of a controlling
variable [22]. In our case, size of a file, measured in LOC, is
used as the controlling variable.
Results - Developer Experience: Table IV shows the top 5
contributors of self-admitted technical debt in the four studied
projects. For each contributor, we provide their total number
of commits, the number of self-admitted technical debt and
their rank in terms of experience. We find that in Eclipse and
ArgoUML, the top 5 contributors in terms of the number of
self-admitted technical debt are in the top 4% (100 ∗ 9

221) and
15% (100∗ 8

53) of most experienced contributors, respectively.
In Apache httpd, the top 5 contributors of self-admitted tech-

nical debt are ranked in the top 18% in terms of experience.
However, the outlier here is the Chromium OS, where we
find that the most experienced contributor is also the one with
the most self-admitted technical debt, however, there are other
contributors such as C2 and C5 who are ranked much lower.
At first, the fact that someone with an experience rank as low
as 232 is in the top 5 contributors to self-admitted technical
debt seems out of place. However, given that Chromium OS
also has a large number of contributors, we find that Chromium
OS is similar to the other projects, i.e., the top 5 contributors
of self-admitted technical debt are ranked in the top 13%
(100 ∗ 232

1784) in terms of experience.
In addition, to see when in their experience developers

TABLE IV
SELF-ADMITTED DEBT-COMMITS BY DEVELOPERS

Project Developer Total Commits Self-Admitted Technical Debt Experience Rank Total Committers
Eclipse E1 1,231 21 8

E2 2,513 20 2
E3 1,508 12 5 221
E4 4,436 10 1
E5 1,190 7 9

Chromium OS C1 4,853 28 1
C2 410 24 219
C3 1,034 21 64 1,784
C4 1,930 21 26
C5 388 21 232

ArgoUML AU1 2,544 17 4
AU2 4,879 7 1
AU3 3,088 6 3 53
AU4 3,192 4 2
AU5 480 3 8

Apache AH1 4,908 14 1
AH2 3,214 13 3
AH3 721 11 26 145
AH4 1,219 11 13
AH5 1,239 10 11

introduce self-admitted technical debt, we plotted the commits
for the top developer, in terms of their experience, of each
project. Figures 2, 3, 4, and 5 show the commits for the top
developers of the Eclipse Platform, Chromium OS, ArgoUML
and Apache httpd, respectively. The gray line shows the
cumulative number of commits by the developer and the
’x’ indicates a self-admitted technical debt. In all cases, we
observe that developers introduce self-admitted technical debt
throughout their development experience, i.e., not only at the
beginning of their development or later in their development
experience.

Developers with higher experience tend to introduce
more self-admitted technical debt into software projects.
At the same time, developers introduce self-admitted
technical debt throughout their project experience.

Results - Time to release: Table V shows the number of self-
admitted technical debt, the total number of changes, the ratio
of self-admitted technical debt to total changes, and the ratio
of self-admitted technical debt to the total number of self-
admitted technical debt at different times before a release for
Eclipse, ArgoUML and Apache httpd. Note that we do not
include the results for Chromium OS, since there has been
only one public release of the project and hence we would
not be able to derive a comparative analysis.

Initially, we measured the raw number of self-admitted
technical debt at different time intervals before a release,
however, we realized that the number of total changes will vary
at different time intervals before a release as well. Therefore,
we report the ratio of self-admitted technical debt to total
changes and the ratio of self-admitted technical debt to the
total number of self-admitted technical debt. We find that in
all of the studied projects, most of the self-admitted technical
debt is introduced more than 3 months before a release. In

Fig. 4. ArgoUML: Commits by AU1

Fig. 5. Apache: Commits by AH1

fact, in all the studied projects, less than 15% of the self-
admitted technical debt is introduced one month before the
release. This finding leads us to the conclusion that in our
case-study projects, release pressure does not play a major
role in the introduction of self-admitted technical debt.

TABLE V
DEBT COMMITS - TIME TO RELEASE WINDOWS

Project Time to Release Self-
Admitted
Technical
Debt

Total
Changes

% Over
Total
Changes

% Self-
Admitted
Technical
Debt

Eclipse >= 6month 55 16,682 0.33% 41.7%
>= 3month & <= 6month 48 7,452 0.64% 36.4%
>= 1month & <= 3month 22 5,591 0.39% 16.7%
<= 1month 7 1,777 0.39% 5.3%

ArgoUML >= 6month 16 7,973 0.20% 33.3%
>= 3month & <= 6month 20 5,917 0.34% 41.7%
>= 1month & <= 3month 8 4,315 0.19% 16.7%
<= 1month 4 1,708 0.23% 8.3%

Apache >= 6month 51 23,579 0.22% 37.5%
>= 3month & <= 6month 43 13,960 0.31% 31.6%
>= 1month & <= 3month 28 11,670 0.24% 20.6%
<= 1month 14 6,614 0.21% 10.3%

TABLE VI
PARTIAL SPEARMAN CORRELATIONS BETWEEN CYCLOMATIC

COMPLEXITY, FAN-IN, FAN-OUT AND THE NO. OF SELF-ADMITTED
TECHNICAL DEBT WHILE CONTROLLING FOR SIZE

Project Cyclomatic Comp. Fan-in Fan-out

Eclipse -0.1992618 ** 0.3159485 -0.08568448
Chromium OS 0.1840126 ** -0.01470615 * -0.2529673 *
ArgoUML -0.03449873 * -0.01459957 * 0.1686399
Apache 0.2386505 ** 0.3333192 *** 0.1108314 *

(p < 0.01 ***; p < 0.1 **; p < 1 *)

Release pressure does not play a major role in the
introduction of self-admitted technical debt. Less than
15% of the self-admitted technical debt is introduced
within 1 month of the latest release.

Results - Complexity: Table VI shows the partial correlations
between the number of self-admitted technical debt in a file
and the McCabe cyclomatic complexity, fan-in and fan-out of
the file, while controlling for size. We also indicate the p-value
of the partial correlations next to the correlation value in the
table.

From Table VI, we find that for all projects, there is weak
positive or weak negative correlation between the complexity
metrics and self-admitted technical debt. Although this finding
is not conclusive, the fact that all the correlation values are low
indicates that, at least in terms of correlations, self-admitted
technical debt is not correlated with any complexity metrics.
It is important to note here that our finding is based on
correlations and in no way indicate a causation.

When controlling for size, we find a weak to very weak
correlation between the number of self-admitted technical
debt in a file and complexity.

TABLE VII
DEBT PATTERNS ACROSS ECLIPSE RELEASES

Version Release Date Removed Self-
Admitted
Technical Debt

Change

3.0 − > 3.0 June 2004 - -
3.0 − > 3.1 June 2005 26.3% 26.3%
3.0 − > 3.2 June 2006 27.9% 1.6%
3.0 − > 3.3 June 2007 29.9% 2%
3.0 − > 3.4 June 2008 35.6% 5.7%
3.0 − > 3.5 June 2009 35.6% 0%
3.0 − > 3.6 June 2010 36.9% 1.3%
3.0 − > 3.7 June 2011 36.9% 0%

TABLE VIII
DEBT PATTERNS ACROSS ARGOUML RELEASES

Version Release Date Removed Self-
Admitted
Technical Debt

Change

0.20 − > 0.20 February 2006 - -
0.20 − > 0.22 August 2006 37.3% 37.3%
0.20 − > 0.24 February 2007 41.3% 4.0%
0.20 − > 0.26 September 2008 58.7% 17.4%
0.20 − > 0.28 March 2009 62.7% 4.0%
0.20 − > 0.30 March 2010 65.3% 2.6%
0.20 − > 0.32 January 2011 65.3% 0%
0.20 − > 0.34 December 2011 65.3% 0%

RQ3. How much self-admitted technical debt is removed after
its introduction?

Motivation: In the majority of cases, when self-admitted
technical debt is introduced, they are meant to be removed or
addressed later on. However, whether this self-admitted techni-
cal debt is indeed removed and exactly how much of this self-
admitted technical debt is removed is not known. Therefore, in
this research question, we quantify the amount of self-admitted
technical debt that is removed after its introduction.
Approach: To determine how much self-admitted technical
debt is removed, we compute how much of the self-admitted
technical debt that was introduced remains in future releases.

TABLE IX
DEBT PATTERNS ACROSS APACHE RELEASES

Version Release Date Removed Self-
Admitted
Technical Debt

Change

1.3.x − > 1.3.x February 2002 - -
1.3.x − > 2.0.x January 2004 65.45% 65.45%
1.3.x − > 2.2.x December 2005 73.64% 8.19%
1.3.x − > 2.4.x February 2012 74.55% 0.91%

First, we identify all the self-admitted technical debt in the
first release of the project. Then, we search for each of the
identified self-admitted technical debt in the future releases.
It is important to note that we used the comments in the
following releases to identify the self-admitted technical debt.
We discuss the implications of using this approach later in
Section V. Since we could only identify a single public release
of Chromium OS, we were unable to perform this analysis for
Chromium OS.

Results: We present our results on a per project basis. Ta-
ble VII shows the results for Eclipse. We started by identifying
all of the 301 instances of self-admitted technical debt in
release 3.0 and then measuring how much of this remained
in the following releases. For Table VII, we see that 26.3%
of the self-admitted technical debt found in release 3.0 was
removed in release 3.1. Even after 7 releases, approximately
63% of the self-admitted technical debt remained in Eclipse.
Furthermore, we see from Table VII that the majority of the
self-admitted technical debt is removed after the first release.

Table VIII shows the results for ArgoUML. Release 0.20 of
ArgoUML had 75 instances of self-admitted technical debt.
Of that, 37.3% was removed in the immediate next release.
After seven releases, 65.3% of the self-admitted technical debt
was removed. In contrast to Eclipse, in ArgoUML, most of the
self-admitted technical debt was removed. However, similar to
Eclipse, the majority of the self-admitted technical debt was
removed after the first release.

Table IX shows the results for Apache httpd. Release 1.3.0
had a total of 110 instances of self-admitted technical debt.
After four major releases (in 10 years), 25.45% of the self-
admitted technical debt remains in the system. Similar to
ArgoUML, we observe that the majority of self-admitted
technical debt is removed. Furthermore, similar to both Eclipse
and ArgoUML, most of the self-admitted technical debt is
removed after one release.

We find that between 26.25% to 63.45% of the self-
admitted technical debt is removed in following releases.
The majority of the self-admitted technical debt is re-
moved in the immediate next release, however, self-
admitted technical debt tends to persist in software
projects over multiple releases.

TABLE X
SCENARIO INSTANCES SUMMARY

Release Case Code Comment Count

R3.0 − > R3.1 1 Changed Changed 57
R3.0 − > R3.1 2 Changed Unchanged 14
R3.0 − > R3.1 3 Unchanged Changed 11
R3.0 − > R3.1 4 Unchanged Unchanged 203

R3.0 − > R3.7 1 Changed Changed 73
R3.0 − > R3.7 2 Changed Unchanged 64
R3.0 − > R3.7 3 Unchanged Changed 10
R3.0 − > R3.7 4 Unchanged Unchanged 122

V. DISCUSSION

In this paper, we answer questions related to how much,
by who, when, and why self-admitted technical debt exist. To
identify self-admitted technical debt, we used the comments
provided by the developers themselves. For example, in RQ3,
we used the comments to investigate how much self-admitted
technical debt is removed in the future. However, if a developer
updates the code without updating the comment, then we
may wrongly assume that the self-admitted technical debt still
exists, where in reality it does not.

Therefore, in this section, we quantify the scenarios where
code and comments are updated inconsistently [11]. In partic-
ular, we consider the following four cases:

Case1.The self-admitted technical debt was removed along
with change in enclosing code

Case2.The self-admitted technical debt was removed but
enclosing code was unchanged

Case3.The self-admitted technical debt persisted despite
enclosing code changing

Case4.The self-admitted technical debt persisted with no
change in enclosing code

In the listed cases, Case 1 and Case 4 are considered to
be consistent updates, i.e., the code and comments were both
updated or neither the code nor the comment were updated.
Case 2 and Case 3 are the two problematic cases, i.e., where
the code was updated but not the code and vice versa. To
verify whether using the comments to identify self-admitted
technical debt is a viable approach, we are mainly interested
in quantifying the frequency of Cases 2 and 3.

To quantify the amount of inconsistent changes, we select
the first release from each project and use that as the base
version. For the base version of each project, we measure
the number of self-admitted technical debt in each file. Then,
we locate the file in future releases and subsequently match
the comment and code to determine the various cases. We
developed a tool that navigates through the files of the base
version, identify a file containing the self-admitted technical
debt, search for the file in the following releases and make
both files easily available for us to analyze. Once the files
were procured, we manually compared the code and comments
of the files of the base version against the files in the future
releases and categorized them under one of the four above
mentioned cases. Due to space limitations, we perform this

Fig. 6. Eclipse Risky Commits

Fig. 7. Chromium OS Risky Commits

experiment on the Eclipse software project. We use version
3.0 (R3.0), released in June 2004, as the base release. We
investigate by comparing against two following releases -
version 3.1 (R3.1), released in June 2005 and version 3.7
(R3.7), released in June 2011.

Table X shows our findings for each case in releases
R3.1 and R3.7. From the Table X, we observe that in R3.1
approximately 8.8% (14+11

57+14+11+203) of the self-admitted tech-
nical debt is inconsistently changed (i.e., belong to cases 2
and 3). For R3.7, approximately 27.5% (60+10

73+64+10+122) are
inconsistently changed. One possible reason for the increase
in inconsistent changes is that as the time between base
release and the actual release increases, developers forget that
a self-admitted technical-debt comment existed and just update
the code or update the comment without changing the code
since it might have been addressed in another way. In any
case, our findings show that the majority of the self-admitted
technical debt is consistently changed (i.e., either the code and
comments change consistently or the code and comments both
do not change).

In this paper, we look at who introduces self-admitted
technical debt but it would also be interesting to further delve
into why less experienced developers introduce less technical
debt, or if at all they simply do not admit it. Since most
technical debt is never removed and introduced without any
time pressure, should developers be taking specific precautions
to avoid self-admitted technical debt. These further questions
can be part of future work on this topic.

Fig. 8. Apache Risky Commits

Fig. 9. ArgoUML Risky Commits

VI. THREAT TO VALIDITY

In this section, we discuss the possible threats to the validity
of our study:
Threats to Internal Validity refers specifically to whether an
experimental condition makes a difference or not, and whether
there is sufficient evidence to support the claim of the study. To
identify self-admitted technical debt, we needed to identify the
comments that would distinguish such self-admitted technical
debt. Since comments are written in natural language, they
had to be analyzed manually to identify those that would
indicate self-admitted technical debt. Any manual process
is prone to human error and/or subjectivity. On the same
point, as mentioned in our discussion section (Section V),
in some cases, using the comments to determine some self-
admitted technical debt may not be fully representative since
comments or code may not be updated consistently. As shown
in Section V, most of the self-admitted technical debt is
updated consistently. Furthermore, it is important to note that
our work focuses on self-admitted technical debt and not all
technical debt. There may exist a variety of technical debt that
is not self-admitted. Considering all technical debt is out of
the scope of this work.

Through manual examination, we identified a set of 62
recurring patterns that we use to determine self-admitted
technical debt. We built this set by studying source-code
comments of only the four projects we selected. Our choice of
recurring patterns may have an impact on our findings. To help
alleviate this threat, we manually examined each comment and
performed this step using four different projects.

Threats to External Validity refers to the generalizability
of the outcomes of the study. Our study uses four large,
well-established open source software projects with well com-
mented source code. Our results may not necessarily general-
ize to all other open source or commercial projects. A large
part of our analysis depends on source-code patterns detected
from the four studied projects. Hence, these patterns may be
different for different projects.

VII. CONCLUSION

Developers knowingly commit code that is either incom-
plete, requires rework, produces errors, or is a temporary
workaround. These temporary fixes are often referred to as
technical debt, and in many cases, developers admit when
they are coding such technical debt. We call such debt self-
admitted technical debt. Although such self-admitted technical
debt is common, very little empirical evidence is known
about self-admitted technical debt. Therefore, in this paper
we perform an exploratory study, using four large open source
projects, to determine how much self-admitted technical debt
code exists, why self-admitted technical debt exists and how
much of this self-admitted technical debt is removed after
its introduction. Our findings show that 2.4 - 31.0% of the
files in a project contain self-admitted technical debt, that
developers with higher experience tend to introduce more self-
admitted technical debt and that time pressure and complexity
do not correlate with self-admitted technical debt. Finally, we
find that even after multiple releases, only between 26.3 -
63.5% of the self-admitted technical debt is removed after its
introduction.

Our findings shed light on the extent and existence of self-
admitted technical debt and we plan (and hope that others)
will use this study as motivation to dedicate more work on
this important area of software maintenance. The findings also
serve as motivation to build tools that support developers so
they can avoid self-admitted technical debt or at least help
them track and manage such self-admitted technical debt after
its introduction.

REFERENCES

[1] Erin Lim, Nitin Taksande, and Carolyn Seaman. A balancing act: What
software practitioners have to say about technical debt. IEEE Softw.,
29(6):22–27, November 2012.

[2] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman.
Investigating the impact of design debt on software quality. In Pro-
ceedings of the 2Nd Workshop on Managing Technical Debt, MTD ’11,
pages 17–23, New York, NY, USA, 2011. ACM.

[3] Thomas Zimmermann, Nachiappan Nagappan, and Andreas Zeller. Soft-
ware Evolution, chapter Predicting Bugs from History, pages 69–88.
Springer, 2008.

[4] Kai Pan, Sunghun Kim, and E. James Whitehead, Jr. Toward an
understanding of bug fix patterns. Empirical Softw. Engg., 14(3):286–
315, June 2009.

[5] Bee Bee Chua. Rework requirement changes in software maintenance.
In Proceedings of the 2010 Fifth International Conference on Software
Engineering Advances, ICSEA ’10, pages 252–258, Washington, DC,
USA, 2010. IEEE Computer Society.

[6] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*icomment:
Bugs or bad comments?*/. SIGOPS Oper. Syst. Rev., 41(6):145–158,
October 2007.

[7] Zhen Ming Jiang and Ahmed E. Hassan. Examining the evolution of
code comments in postgresql. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR ’06, pages 179–180,
New York, NY, USA, 2006. ACM.

[8] Beat Fluri, Michael Wursch, and Harald C. Gall. Do code and comments
co-evolve? on the relation between source code and comment changes.
In Proceedings of the 14th Working Conference on Reverse Engineering,
WCRE ’07, pages 70–79, Washington, DC, USA, 2007. IEEE Computer
Society.

[9] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice
Singer. Todo or to bug: Exploring how task annotations play a role
in the work practices of software developers. In Proceedings of the
30th International Conference on Software Engineering, ICSE ’08, pages
251–260, New York, NY, USA, 2008. ACM.

[10] Haroon Malik, Istehad Chowdhury, Hsiao-Ming Tsou, Zhen Ming Jiang,
and Ahmed E. Hassan. Understanding the rationale for updating a
function’s comment. In ICSM, pages 167–176. IEEE, 2008.

[11] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tcom-
ment: Testing javadoc comments to detect comment-code inconsisten-
cies. In Proceedings of the 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, ICST ’12, pages 260–269,
Washington, DC, USA, 2012. IEEE Computer Society.

[12] Ninus Khamis, René Witte, and Juergen Rilling. Automatic quality
assessment of source code comments: The javadocminer. In Proceedings
of the Natural Language Processing and Information Systems, and
15th International Conference on Applications of Natural Language to
Information Systems, NLDB’10, pages 68–79, Berlin, Heidelberg, 2010.
Springer-Verlag.

[13] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. Listening to program-
mers taxonomies and characteristics of comments in operating system
code. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 331–341, Washington, DC, USA, 2009.
IEEE Computer Society.

[14] Nico Zazworka, Rodrigo O. Spı́nola, Antonio Vetro’, Forrest Shull, and
Carolyn Seaman. A case study on effectively identifying technical debt.
In Proceedings of the 17th International Conferenceon Evaluation and
Assessment in Software Engineering, EASE ’13, pages 42–47, New
York, NY, USA, 2013. ACM.

[15] Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, and Davide Falessi.
Technical debt: Towards a crisper definition report on the 4th interna-
tional workshop on managing technical debt. SIGSOFT Softw. Eng.
Notes, 38(5):51–54, August 2013.

[16] Yuepu Guo, Carolyn Seaman, Rebeka Gomes, Antonio Cavalcanti,
Graziela Tonin, Fabio Q. B. Da Silva, Andre L. M. Santos, and
Clauirton Siebra. Tracking technical debt – an exploratory case study.
In Proceedings of the 2011 27th IEEE International Conference on
Software Maintenance, ICSM ’11, pages 528–531, Washington, DC,
USA, 2011. IEEE Computer Society.

[17] Google. Chrome release channels.
[18] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic.

Lightweight transformation and fact extraction with the srcml toolkit.
In SCAM, pages 173–184. IEEE, 2011.

[19] Eric Allman. Managing technical debt. Commun. ACM, 55(5):50–55,
May 2012.

[20] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall,
and Premkumar Devanbu. Don’t touch my code!: Examining the
effects of ownership on software quality. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, pages 4–14, New
York, NY, USA, 2011. ACM.

[21] Emad Shihab, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang.
An industrial study on the risk of software changes. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 62:1–62:11, New York, NY,
USA, 2012. ACM.

[22] SAS. Base sas(r) 9.2 procedures guide: Statistical procedures, third
edition.

