
The Effect of Branching Strategies on Software Quality 

Emad Shihab 
Software Analysis and Intelligence Lab (SAIL) 

Queens University, Canada 
emads@cs.queensu.ca 

Christian Bird and Thomas Zimmermann 
Microsoft Research 
Redmond, WA, USA 

{cbird, tzimmer}@microsoft.com
 

ABSTRACT 
Branching plays a major role in the development process of large 
software. Branches provide isolation so that multiple pieces of the 
software system can be modified in parallel without affecting each 
other during times of instability. However, branching has its own 
issues. The need to move code across branches introduces addition-
al overhead and branch use can lead to integration failures due to 
conflicts or unseen dependencies. Although branches are used ex-
tensively in commercial and open source development projects, the 
effects that different branch strategies have on software quality are 
not yet well understood. In this paper, we present the first empirical 
study that evaluates and quantifies the relationship between soft-
ware quality and various aspects of the branch structure used in a 
software project. We examine Windows Vista and Windows 7 and 
compare components that have different branch characteristics to 
quantify differences in quality. We also examine the effectiveness 
of two branching strategies – branching according to the software 
architecture versus branching according to organizational structure. 
We find that, indeed, branching does have an effect on software 
quality and that misalignment of branching structure and organiza-
tional structure is associated with higher post-release failure rates. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Process Metrics 

General Terms 
Management, Measurement, Reliability, Experimentation,  

Keywords 
Branching, Quality 

1.  INTRODUCTION 
Coordination is key as software development becomes a more and 
more complex enterprise.  Software projects today range in size up 
to tens of millions of lines of code, are developed by teams of thou-
sands of developers, and may support multiple releases at different 
stages of development.  Managing all of the changes being made to 
a codebase is an increasingly difficult task. Software Configuration 
Management Systems (SCMs, also known as version control sys-
tems) are important tools, as they are the primary mechanism used 
to coordinate the sharing of actual code artifacts, the key output in 
software products. In large-scale software projects where all 
changes are immediately seen by all developers (i.e. one “line” of 
development), changes can lead to a number of significant prob-
lems: single changes can cause build breaks and halt the progress 

of the entire project; piecemeal changes to interoperating compo-
nents can lead to incompatibility, and finding the change that caus-
es a test to fail can almost be impossible, especially for long-
running test suites. While some of these effects are present in 
smaller projects too, the impact is intensified in large projects; a 
build break that affects a team of five developers is not as serious 
as a break that affects thousands of developers. 

One of the key features of modern SCMs that helps to mitigate 
these problems associated with the complexity of software projects 
is the support of parallel lines of development known as branches 
[1].  A branch is a virtual workspace created from a particular state 
of the source code that a developer or team of developers can make 
changes to without affecting others working outside the branch. 
Branches provide isolation from other changes; for example a build 
break on a branch affects only the teams working on that branch 
and not the entire development team.  The use of branches within a 
project has a profound effect on the processes used during devel-
opment, from the build processes to release management [1].  

However, like any development tool, branching needs to be lever-
aged correctly in order to be most effective [2]. Teams may choose 
to work in branches to avoid dealing with the work of other teams, 
but some coordination is required.  Branches may introduce a false 
sense of safety, as changes made in different branches will eventu-
ally be merged together (either manually or automatically), and 
bugs may arise if these changes are syntactically or semantically 
incompatible.  The process of moving code between branches rep-
resents additional error-prone work for developers.  A complex 
branching structure may hinder the development process, making it 
hard to track code changes, causing build failures (due to unex-
pected dependencies), increasing the chances of introducing regres-
sion failures and making it difficult to maintain the code base [3].  
In fact, some claim that branching is the most problematic area of 
SCM [4]. Therefore, it is important to understand how branching 
structures affect software systems and impact their quality.  We 
note that these outcomes are not caused by the branches them-
selves, but rather by the processes and coordination required when 
employing the use of branches. 

However, the relationship between branching structure and quality 
remains an important open question. With more projects in open 
source [5] and commercial contexts [6] employing branches in their 
development, understanding the impact of branching is increasingly 
relevant. To address this, we perform an empirical study to exam-
ine the effect of branch structure on software quality in Windows. 
We find that many aspects of branch use do indeed affect software 
quality. 

As a prescriptive step, we also examine how to best align branching 
structures with other aspects of a software project.  Specifically, we 
compare the branch structure with the organization of the teams 
within the project and also with the architecture of the software 
itself to determine which is the better branching strategy. 
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To the best of our knowledge, this is the first study to empirically 
examine the effect of branching on software quality. We make the 
following contributions in this study: 

1. We define metrics to capture the effects of branching on soft-
ware quality. 

2. We perform an empirical study and quantify the effects of 
branching on software quality in two releases of a large indus-
trial project. 

3. We examine the effect of mismatch between the branching 
structure and organizational and architectural structures. 

4. We provide recommendations of branch use for projects that 
heavily utilize branching. 

The rest of the paper is organized as follows. We first survey prior 
work in the area of SCM branching.  We then provide terminology 
and describe our data collection process.  Next, we discuss our 
hypotheses regarding branching strategies and define the metrics 
used to evaluate these hypotheses.  Finally, we present the results 
of our analysis, discuss implications of these results, and make 
recommendations based on our findings. 

2. RELATED WORK 
A number of researchers have studied the role of branching within 
SCMs. Midha [7] outlined key characteristics of SCMs and their 
use at Lucent Technologies and iterated the need of future SCMs to 
facilitate the creation and support of multiple branches (referred to 
in the paper as streams). Walrad and Strom [1] investigated 
tradeoffs between several branching models and suggested the use 
of a branch-by-purpose model which calls for branches to be creat-
ed only when there is a specific purpose (e.g. when software is 
released).  Wingerd and Seiwald [4] provided best practices for 
SCMs and suggested branching only when necessary, such as when 
incompatible policies arise (e.g. when developers have different 
commit privileges), branching late to make sure as many changes 
as possible are propagated, and using branching instead of code 
freezing to allow parallel development. Appleton et al. [2] and 
Buffenbarger and Gruell [8] studied and proposed branching pat-
terns and best practices to use in order to achieve efficient parallel 
development.  

Perry et al. [9] perform an empirical study to investigate and under-
stand the nature of large scale parallel development and find that 
multiple levels of parallelism exists (i.e. at the release, MR and 
IRM levels), that as much as 12.5% of all deltas may be in conflict 
and up to 50% of files are changed by multiple developers in the 

same release. Premraj et al. [3] examined the branching and merg-
ing in an industrial agile development setting and found that the 
roles of branchers (e.g. architects, developers, or testers) and the 
type of files (e.g. header files or configuration files) they work on 
dictates the cost of merging. They also presented findings that sug-
gested that programs should be structured not only by the software 
architecture, but also by the team structure, so that communication 
about prevention and unnecessary branching could be possible. 
Bird et al. [6] examined a theory that branches are created to ac-
complish a goal and groups of developers making changes on a 
branch represent virtual teams with a common goal. Then, they 
examined the relationships between files changed in a branch and 
the people who make changes to the branch and found support for 
their theory in Windows Vista and Windows 7. 
The prior work has focused primarily on providing best practices 
for branching or studying the role of branching in large teams. It is 
important to note that most of these best practices suggested are 
based on experience and theoretical scenarios. In this work, we 
complement the previous work by empirically studying and evalu-
ating the effects of branching on software quality. In addition, our 
study proposes and validates metrics that capture general character-
istics of branches (i.e. we do not constrain ourselves to one branch-
ing model). For example, our findings regarding branch depth can 
be used to compare two different branching models based on their 
depth characteristics.  

3. TERMINOLOGY AND METRICS 
3.1 Terminology 
We start by introducing relevant terminology used in this paper. 
The Windows Vista and Windows 7 teams heavily relied on 
branching to manage their large code base. Generally speaking, 
branches are created based on a specific structure that is agreed 
upon within the development teams. As the project evolves, more 
branches are created to support development. 

 To maintain order in the branching structure, related branches are 
grouped into branch families. A branch family is a subtree rooted 
off of the trunk (a.k.a. main, the release branch). For example, all 
of the branches used to build tools are grouped into one ‘tools’ 
branch family. In some cases, a branch may be added to a branch 
family in order to provide further isolation. In such cases, the new 
branch is said to be one level “deeper” in the branch tree. Figure 1 
shows an example of two branch families and the different branch 
depths. In our study, we use the notion of branch depth as the 
measure of how deep a branch is from the main branch.  Once a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example branch structure 
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change is checked in on a branch at depth n, it is merged into the 
parent branch at depth n-1, and eventually is merged into the trunk 
(level 0). 
To differentiate between development and branching activity, we 
classify changes into two types: changes to the actual code, which 
we call development changes (add, edit and delete operations) and 
changes which move and merge code between branches, which we 
call branching changes. In our context, a branch change is a 
change that copies or integrates (also known as merges) a file 
change from one branch to another. These two categories of chang-
es are fundamentally different, as modifying code and moving code 
require different skillsets and pose different types of risk (e.g. im-
plementation errors vs. integration errors).  In practice, these two 
types of changes are performed by contributors that have different 
roles and even different job titles within the project.  

3.2 Data Collection 
To conduct our study, we leveraged data from two releases of one 
of the largest projects at Microsoft, Windows.  Windows is com-
posed of thousands of executable files (.exe), shared libraries (.dll) 
and drivers (.sys), which we refer to as binaries. We collected his-
torical development data for each binary in Windows Vista and 7 
from the release of Windows Server 2003 to the release of Win-
dows 7. We chose to perform our analysis at the binary level be-
cause failure data is collected and reported at this level at Microsoft 
and we have observed cases where a failure caused by a change to 
one source file for a binary was fixed in a different source file for 
the same binary. We decided to perform our case study on Win-
dows Vista and 7 because they are two large releases that have a 
rich development history and heavily use branches. 

We collected a number of different metrics for each component. To 
gather the metrics for each component, we leveraged the commit 
histories and software failure data of Windows Vista and Windows 
7. Each change in the repository contains the change author, the 
change date, a change log message, the source files modified by the 
change, the branch and branch family of each source file, the type 
of change (e.g. development or branching) and the purpose of the 
change (e.g. bug fix or enhancement). We used a mapping of 
source files to binaries in order to collect the different metrics at the 
component level. 

As an indicator of software quality, we used the number of post-
release failures per binary. Both versions of Windows have been 
released for multiple years and have an installation base in the hun-
dreds of millions. Most defects are found quickly and the report 
rate falls off dramatically after the first year, indicating that our 
results are unlikely to change with time. Various code metrics, such 
as churn, complexity and size metrics were also gathered from the 
source code repositories and build process for each component. We 
use the code metrics in our models as control variables since they 
are known to also relate to failures [10]. We detail all of the metrics 
calculated from our data in the next section. Prior research has 
shown that when characteristics such as size and complexity are not 
considered, they may affect the validity of other software metrics 
[11]. 

As part of our study examines the relationship between branching 
structure and organizational structure, we gathered snapshots of the 
Windows organizational hierarchy (who reports to whom as well as 
job titles) over the course of Windows Vista and 7 development. 
Lastly, the binaries within Windows are logically partitioned into 
systems, subsystems, areas, and (in some cases) subareas.  For 
instance, an mp3 decoding library may be in the audio codec area 
of the audio subsystem within the multimedia system. We use this 

hierarchical breakdown for both releases of Windows as the system 
architecture and use it to determine how well branches span archi-
tectural boundaries. 

4. RESEARCH QUESTIONS 
Our high level research question is “How much and in what ways 
does branching affect software quality?”  To answer this question, 
we evaluate quality at the component level and the branch level 
through the use of a number of measures of branch use.  In this 
section we present the testable hypotheses that we evaluate as well 
as the rationale that underlies each of these hypotheses and the 
metrics that we use to quantify different aspects of branch use. 
Each hypothesis is related to the research question in a different 
way and has different implications for software teams. 

Our hypotheses come from discussions with developers, managers, 
and other stakeholders in Windows and other projects at Microsoft.  
They have indicated that it is just as valuable to know which 
branching characteristics (i.e. metrics) do not have a relationship 
with software failures as those that do; both inform stakeholders’ 
decisions and practices. 

4.1 Effects on Component Quality 
One goal of our research is to examine the effects of branching on 
software quality. Based on discussions with developers we expect 
that overly complex branching structures negatively impact the 
quality of a software system. Since software components that are 
developed in more complex branching structures require more pro-
cess overhead in terms of branching and integrating activity as well 
as more coordination, we expect more opportunities for error and 
that these components will have more post-release failures. There-
fore, we focus our study on three factors that we believe measure 
the complexity of a branching structure, namely – branch activity, 
branch scatter and branch depth. 

H1. Branch Activity: Software components with high branching 
activity have more failures. 

Branches are meant to provide a level of isolation for development 
teams to work on parts of the code base without having to worry 
about affecting others. However, this level of isolation comes at the 
cost of having to resolve integration conflicts when changes on 
these branches are finally merged back. Integration changes are 
risk-prone because a) the developer merging the code may not be 
the developer that made the code changes (and thus may lack key 
knowledge), b) the changes represented in a merge are often aggre-
gated and are therefore large and widespread, c) the integration is 
often temporally distant from the development changes themselves, 
and d) developers may rely on the invalid assumption that lack of 
syntactic conflicts implies a lack of semantic conflicts or issues 
[12]. Therefore, we expect higher levels of branching activity to 
lead to more post-release failures since higher activity requires 
more integration. We use the branching activity metric to evaluate 
this hypothesis. 

Branching Activity – is defined as a ratio, the number of branch-
ing changes divided by the number of development changes, per 
component. We use the ratio instead of simply using the number of 
branching changes since components that have many development 
changes are more likely to have more branching changes as well 
(we control for total number of changes by using a churn metrics in 
our models). We use the branching activity metric to evaluate our 
first hypothesis (H1) that more branching activity reduces software 
quality. 
H2a. Branch Scatter: Software components spread across many 
branch families have more failures. 



In addition to the hypothesis that higher levels of branching activity 
may lead to more failures, we also hypothesize based on discus-
sions with developers, that components that have changes scattered 
across different branch families will experience more integration 
failures. The intuition is that software components that are spread 
across many branch families have changes that will not integrate 
until they reach the main branch and will thus happen in larger 
batches and later in the development cycle.  Furthermore, teams 
working in different branch families are typically organizationally 
farther apart and have disparate tasks.  Prior research has shown 
that in such cases, awareness is lowered, coordination breakdowns 
occur more often, and failures result [13] [14].  This measure is 
different from the branching activity metric. A software component 
may have high branching activity but only be modified in two 
branches that are in a single branch family (i.e., it keeps going back 
and forth). In this case, the branch scatter would be low.  We use 
the branch scatter metric to evaluate this hypothesis. 

Branching Scatter – is defined as the ratio of unique branch fami-
lies that a component is in divided by the number of development 
changes. Again, we use the ratio instead of using the number of 
branch families that a component touches, to control for the fact 
that components that have more development changes are more 
likely to be scattered across branch families. We use the branching 
scatter metrics to evaluate our hypothesis (H2a) that higher levels 
of branch scatter reduce software quality.  
H2b. Branch Scatter: Software components that are equally de-
veloped across multiple branch families have more failures. 

In addition to simple branch scatter, we examine the effect of the 
proportion of scatter across branch families. The intuition is that a 
component may need to be changed in different branch families; 
however the majority of the changes to the component should be 
made mainly within a single branch family. If a component is de-
veloped equally across many branch families, then there is more 
room for missed dependencies and conflicts. We use the branch 
scatter entropy metric to validate this hypothesis. 

Branch Scatter Entropy – is defined as the entropy of the scatter 
of the changes to a component across branch families. In certain 
cases, a component may need to be shared across different families. 
The intuition is that if a component is changed equally across the 
different branch families, this is worse than having a component 
change mainly in one branch family and lightly changed in the 
others. For example, a component may need to be modified in two 
branch families, however, if 95% of its changes happen in one 
branch family and only 5% in the other that is much better than 
having 50% of its changes in each branch family. We use Shannon 
Entropy [15] to capture this effect of distribution (e.g. [16], [17]). 
Entropy is defined as 𝐻 𝑃 = − (𝑝! ∗ 𝑙𝑜𝑔!𝑝!)!

!!! , where 
𝑝! ≥ 0,∀  𝑘   ∈ 1,2,… ,𝑛  and 𝑝! = 1!

!!! . Maximal entropy is 
achieved when all elements in a distribution, P have the same prob-
ability of occurrence (i.e. 𝑝! =   

!
!
,∀  𝑘   ∈ 1, 2,… ,𝑛). In contrast, 

minimal entropy is achieved if one element 𝑝! in the distribution, P 
has probability of occurrence 1 (i.e. 𝑝! = 1) and all remaining ele-
ments in P have a probability of occurrence 0 (i.e. ∀𝑘   ≠ 𝑖, 𝑝! =
0).   Since some components are changed in a different number of 
branch families compared to others, we normalize by dividing the 
entropy value by 𝑙𝑜𝑔!𝑚, where m is the number of branch families 
containing changes to that component. 

To illustrate our intuition, we use the example shown in Figure 1. 
Foo.dll and bar.dll both have equal number of changes (depicted by 
the solid and hollow dots on the branches). Three of the four 
changes to foo.dll are in branch family A.  Therefore, developers 

working on the branches in branch family A are more likely to be 
aware of the other changes to foo.dll. On the other hand, bar.dll has 
two changes in branch family A and another two changes in branch 
family B. Therefore, it is more difficult for the developers working 
on the branches in the two branch families to be aware of all the 
changes to bar.dll, possibly causing incompatible changes, leading 
to a higher number of failures. In this example, foo.dll has lower 
branch scatter entropy value than bar.dll. 

H3a. Branch depth: Software components developed primarily in 
deeper branches have more failures. 

In addition to measuring the branching activity and frequency, 
software components that are developed in deeper branches are 
more isolated and must “travel” further to a release branch.  Thus, 
they have a higher likelihood of conflicts upon integration to the 
release branches. To evaluate these claims, we use the branch depth 
metrics to examine whether branch depth has an effect on the quali-
ty of a component. We use the low and high branch depth metrics 
to validate this hypothesis. 

Branching Depth (Low, Medium, High) – is defined as the ratio 
of development changes to a component in low depth branches, 
medium depth branches and high depth branches. The choice for 
using three categories rather than using a continuous measure 
maintains confidentiality at Microsoft and also allows for generali-
ty; a branch structure of any depth can be easily binned into these 
categories. Furthermore, this allows for a non-monotonic relation-
ship between depth and failure rates.  We use the branch depth 
metrics to evaluate our hypothesis (H3a) that development at deep-
er branches reduces software quality. In the example, figure 1, 
foo.dll has 50% of its changes at low depth branches (i.e. branches 
in depth 1) and 50% of its changes at medium depth branches (i.e. 
branch at depth 2). 
H3b. Branch depth: Software components that are developed 
evenly across low, medium and high depth branches have more 
failures. 
Similar to the proportion of branch scatter across multiple branch 
families hypothesis, we also examine whether components that are 
mainly developed in one depth level have better quality than com-
ponents that are equally developed at all depth levels. We use the 
branch depth entropy metric to validate this hypothesis. 

Branch Depth Entropy – is defined as the entropy of the changes 
at each depth level (low, medium, and high).  This is in an effort to 
determine whether changing components evenly at different depth 
levels (high depth entropy) is better or worse (in terms of software 
quality) than a component that changes primarily in one depth level 
(low depth entropy).  

Since the depth of the branch reflects its purpose (e.g. core func-
tionality is often developed at lower levels), being distributed 
across different depth levels may lead to confusion in the purpose 
of the component. Using the example in Figure 1, foo.dll has 50% 
of its changes at low branch depth and 50% of its changes at medi-
um branch depth, whereas bar.dll has all of its changes in medium 
depth branches. In this example, foo.dll may be harder to work with 
since it does not clearly reside in any one depth level. We use the 
branch depth entropy metric to evaluate our hypothesis (H3b) that 
even distribution across branch depths reduces software quality. 
Since different components are changed in a different number of 
branch depths compared to others, we normalize by dividing the 
entropy value by log2(m), where m is the number of branch depths 
containing changes to that component. 



4.2 Architectural and Organizational        
Congruence 
In the previous section, we examined topological characteristics of 
the relationships between changes to components on branches and 
post-release failures.  An equally important question is how the 
branching structure should align with the architecture of the system 
being developed and the organization of the teams developing the 
system. According to Conway’s Law [18], in an ideal setting the 
decomposition of the system into subsystems and subsystems into 
components would match the division of the developers into teams.  
In practice, due to cross-cutting concerns, architectural coupling, 
and external organizational factors such as geography [19], pre-
existing organizational structures, and organizational churn [20], 
there is rarely perfect congruence between system architecture and 
organizational structure. Thus, a branching structure can match 
organizational structure at the cost of spanning subsystem and 
component boundaries, or it may closely align with the system 
architecture and cross-cut the organization. 

The decision is not clear. Prior work suggests that components with 
changes spanning organizations increase failures [13].  However, 
cross-cutting concerns – functionality requiring changes that span 
system architecture -- also lead to failures [21]. 

Therefore, in an effort to provide actionable results to software 
teams to assist them to decide on effective branching strategies, we 
examine the effect of aligning the branching structure to architec-
tural or organizational structure on branch quality.  This leads to 
two competing hypotheses: 

H4a. Branching according to architectural structure: Branches 
with higher architectural mismatch have more failures. 

One strategy to follow when creating branches is to dedicate one 
branch per component. Doing so, allows software components to 
be developed in isolation. However, in certain cases multiple com-
ponents are modified in a single branch, causing branches to cross-
cut the architecture (i.e., architectural mismatch). We expect 
branches that include work on multiple components to have more 
failures. 

Archictectural Mismatch – is the number of individual systems, 
subsystems, areas, components and subcomponents (forming a 
hierarchy) that are affected by the changes on a branch.  We expect 
that a branch that contains only changes to one subsystem have 
fewer failures than a branch that changes many. 

H4b. Branching according to organizational structure: Branch-
es with higher organizational mismatch have more failures. 

In many cases multiple teams need to coordinate when developing 
a software component. Therefore, having the branching structure 
match the organizational structure may be ideal. We expect that 
branches that are contributed to from multiple organizations (i.e., 
organizational mismatch) have more failures. 

To answer the aforementioned question, we measure the effect that 
architectural and organization mismatch has on branch quality. To 
measure architectural and organizational mismatch of the branch, 
we define the following metrics: 

Organizational Mismatch – includes the number of managers, 
development leads, and engineers (counted and used in our models 
separately) that make changes to files on the branch. The number of 
engineers that work in a branch serve to represent the size of the 
group working in a branch.  However, each team has one 
development lead and a number of leads report to one development 
manager.  Thus, each lead and each manager is indicative of 

additional teams working in a branch.  We expect a branch with 
twenty engineers, six leads, and two managers to have more failures 
than a branch with twenty engineers, one lead, and one manager 
because the former spans organizational structure. 

We quantify branch quality by mapping components (and their 
post-release failures) to the branches they were changed on. Using 
a technique similar to the approach used by Ostrand et al. to 
calculate the failure ratios of developers [22], we use the ratio of a 
component’s changes on a branch (analogous to changes made by a 
developer in Ostrand’s approach) to map post-release failures to 
that specific branch. For example, assume that a component A had 
8 post-release failures and that A had a total of 20 development 
changes, 15 changes on branch B1 and 5 changes on branch B2. 
We map  6 (!"

!"
∗ 8 =6) failures to branch B1 and 2 ( !

!"
∗ 8 =2)  

failures to B2.  

These metrics enable us to study the effect of mismatch on branch 
quality. As before, we build linear regression models and use the 
goodness-of-fit measure to compare which of architectural or or-
ganizational mismatch better explain branch failures.  We also 
report direction and magnitude of the relationship to quality (de-
rived from regression coefficients). 

4.3 Analysis Techniques and Statistical Model-
ing 
We use multiple linear regression models to study the effect of 
branching on software quality.  
Linear regression models are generally used in empirical studies to 
model an outcome of a response variable (e.g. model the number of 
post-release failures) or to model the relationship between an ob-
served phenomena (represented by the model independent varia-
bles) and an observed outcome (represented as the dependent vari-
able). In this paper, we use linear regression models to achieve the 
latter, to study the relationship. Prediction is not the aim of this 
paper. In particular, we use linear regression to examine the rela-
tionship of one or more of the branching metrics with software 
quality, while controlling for code and process metrics.  
 The independent variables in our linear regression models are the 
branching activity, scatter and depth metrics; the dependent varia-
ble is the number of post-release failures. All of our measurements 
are performed at the software component level. 
One of the assumptions of linear regression is that the residuals 
must be normally distributed.  We observed that, similar to many 
other software metrics, our control variables and some branch met-
rics here highly skewed, leading to non-normality of residuals.  To 
alleviate this problem, we used a log transformation on these met-
rics with high skew and/or kurtosis values. 

 As our evaluation criteria, we examine the statistical significance, 
magnitude, and direction of the variable’s contribution in the mod-
el.  In addition, similar to previous work (e.g. [23]) we use model 
fit (variance explained, also known as adjusted R2) as evaluation as 
well. We begin by building a base model, which contains our con-
trol variables, and record the adjusted R2. Then, we incrementally 
add one variable at a time and measure the improvement in adjust-
ed R2.  
We employed Variance Inflation Factor (VIF) analysis to measure 
the level of multicollinearity between independent variables [24] 
and removed highly correlated variables from the linear regression 
models, i.e. any variables that had a VIF value above 10, as rec-
ommended by Kutner et al. [24]. To test for statistical significance, 



we performed ANOVA analysis on the models and report the p-
value of the independent variables.  

5. CASE STUDY RESULTS 
We now present the results of our case studies on Windows Vista 
and Windows 7. We build linear regression models that model the 
number of post-release failures and examine whether or not adding 
branching metrics improves the model fit. For each version of 
Windows, we built five models. We start by building a base model 
with the control metrics, which in our case are churn, complexity, 
size, the number of files and the number of development changes to 
a software component. Then, we build an additional four models 
where we incrementally add the branch activity, branch scatter, 
branch depth metrics, and branch families, respectively.  
Tables 1 and 2 present the results of our analysis. Arrows (↑ and ↓) 
are used to denote direction of the effect, a ↑ denotes a positive 
effect and a ↓ denotes a negative effect. The model fit (R2) of each 
model is shown in the last row of the tables. A log transformation 
was applied to some metrics, indicated in the left column, as dis-
cussed earlier. In all cases the effects were statistically significant 
with a p<0.01. 

The base models provide a model fit of 72% and 17% for Windows 
Vista and Windows 7, respectively. The lower model fit for Win-
dows 7 is likely due to the fact that Windows 7 had both fewer 
post-release defects and less variance in post-release defects across 
binaries. Adding the branch activity metric to the base model im-
proved model fit to 75% for Windows Vista and 18% for Windows 
7. The model fit is further increased to 77% when the branch scat-
ter metrics are added Windows Vista and 19% for Windows 7. 
Branch depth metrics added a fractional (less than 0.5%) improve-
ment to model fit in Windows Vista and did not add to the model 
fit in Windows 7. These model fit values are in the same range as 
prior work on software quality that achieves model fits values be-
tween 22-33% deviance explained [25]. In all cases, we found one 
or more of the metrics in each metric category (i.e., activity, distri-
bution or depth), except for the case of depth metrics in Windows 7 
to be statistically significant and improve model fit. 
Furthermore, we divided the changes based on the branch families 
they were in. The purpose of doing so was to study whether certain 
branch families are more risky than others. The results are shown in 

the last column of Tables 1 and 2. Since the sum of the changes in 
each branch family is equal to the number of development changes, 
we cannot include both metrics in the model. Therefore, we remove 
the number of development changes from the model and add the 
number of changes in each branch family, labeled as Branch 
Groups in the tables. We see that using the branch families im-
proves the model fit to be 79% for Windows Vista and 36% for 
Windows 7. This is a large improvement, suggesting that changes 
in certain branch families leads to more failures compared to other 
branch families.  One explanation for the considerable improve-
ment in model fit in Windows 7 compared to Vista is the fact that 
Windows 7 had more branch families than Windows Vista. Thus 
branch families provide more discrimination in Windows 7. 

5.1 Quantifying the Effect of Branching on 
Software Quality  
Although model fit is traditionally used to evaluate linear regres-
sion models, its importance depends on the context in which it is 
evaluated. Since our base models were fairly robust (providing a 
model fit of 72% for Windows Vista for example), we did not ex-
pect a large improvement in model fit. Our primary goal was de-
termining which measures had a statistically significant relation-
ship with post-release failures. 

Having identified the statistically significant metrics, we are inter-
ested in quantifying the relationship of these metrics on post-
release failures. For example, we would like to be able to quantify 
the increase in post-release failures if branching activity increased 
by 10%. Quantifying the effect is of primary importance to practi-
tioners because it helps them better understand - how and by how 
much – their branching practices impact their software quality. 
Quantifying the effect allows practitioners to put a cost on the im-
pact of their branching practices (e.g. mapping an increase of 10% 
in failures to dollars lost) and argue for process change, if needed.  

To practically quantify effect, we study each metric in isolation. 
We do so by using the fitted model and setting all the metrics other 
than the metric of interest to their median values. Then, we vary the 
metric we are interested in studying the effect of, from its minimum 
to its maximum value and observe the change in the projected 
number of post-release failures. To put the increase/decrease of 
effect into perspective, we normalize the effect of each metric, by 

  Base Model Model 2 Model 3 Model 4 Model 5 

log(Size) ↑ ↑ ↑ ↑ ↑ 

log(Churn) ↑ ↑ ↑ ↑ ↑ 

log(Complexity) - - - - - 

log(Dev. Changes) ↑ ↑ ↑ ↑ - 

log(No. Files) ↑ ↑ ↑ ↑ ↑ 

Branch Activity 
 

↑ ↑ ↑ ↑ 

log(Branch Scatter) 
  

↑ - - 

Branch Scatter Entropy  
 

↑ ↑ ↑ 

Low Branch Depth 
   

↑ ↑ 

log(High Branch Depth) 
  

- - 

Branch Depth Entropy 
   

↓ ↓ 

Branch Groups 
    

↑ 

R2 72% 75% 77% 77% 79% 

Table 1: Post-release failures model for Vista. Arrows indicate effect on failures.  Table 3 shows 
magnitude of effects. 



its effect at the median value. The direction of the effect can be 
positive or negative. A positive direction indicates that an increase 
in the metric causes an increase in post-release failures. A negative 
direction indicates that an increase in a metric leads to less post-
release failures. 
We illustrate with an example in Figure 2 where we plot the change 
in effect for the branch activity metric in Windows Vista. The x-
axis shows the change in the value of the metric from its minimum 
to its maximum value. The y-axis shows the change in the amount 
of projected post-release failures, normalized by the median. We 
also plot the 95% confidence interval, shown by the dashed lines. 
At 100% on the y-axis represents the modeled number of post-
release failures when branch activity is at its median value (and all 
other metrics in the model are also set to their median). Decreasing 
the branch activity metric to its minimum value would reduce the 
amount of failures to 85% (± 2.9%) of the value observed at the 
median. If branch activity was at its maximum value, we expect an 

increase of up to 59% (± 11%) more failures.  Figure 3 shows a 
similar graph, depicting the effects of branch scatter entropy in 
Windows 7. 

 Table 3 summarizes the effects of all metrics at their minimum and 
maximum values (values below 100% indicate decreases in fail-
ures, values above, increases). We find that for Windows Vista, 
branch activity, branch scatter and low branch depth have the big-
gest effect, increasing the amount of post-release failures by up to 
59%. Branch scatter entropy and depth entropy have a moderate 
effect. In Windows 7, we find that branch activity and branch scat-
ter entropy both have a large effect (up to 70%), however they also 
have wide variation. 

The majority of the metrics have a positive relationship with post-
release failures, except for the entropy metrics, which have a nega-
tive relationship. This finding makes intuitive sense, since entropy 
is high when the proportions across the different branches are 
equal. Therefore, having a low branch scatter entropy value means 
that software components that are mainly developed in one branch 

  Base Model Model 2 Model 3 Model 4 Model 5 

log(Size) ↑ ↑ ↑ ↑ ↑ 

log(Churn) ↑ ↑ ↑ ↑ ↑ 

log(Complexity) ↑ ↑ ↑ ↑ ↑ 

log(Dev. Changes) ↑ ↑ ↑ ↑ - 

log(No. Files) ↑ ↑ ↑ ↑ ↑ 

Branch Activity 
 

↑ ↑ ↑ ↑ 

log(Branch Scatter) 
  

- - - 

Branch Scatter Entropy  
  

↓ ↓ ↓ 

Low Branch Depth 
   

- - 

log(High Branch Depth) 
   

- - 

Branch Depth Entropy 
   

- - 

Branch Groups 
    

↑ 

R2 17% 18% 19% 19% 36% 

Table 2. Post-release failure models for Windows 7. Arrows indicate effect on failures. Table 3 shows 
magnitude of effects. 

 
Figure 3: Effect of branch scatter entropy on post-release 

failures in Windows 7 

 
Figure 2: Effect of branch activity on post-release 

failures in Windows Vista 



family have less post-release failures than components that are 
developed an equal amount across different branch families. One 
exception is branch scatter entropy in Windows Vista, which has a 
small, but positive effect. One possible explanation is that Win-
dows Vista had few branch families, therefore, branch scatter en-
tropy did not play a major role. 
Our results on Windows Vista and 7 can be summarized: 
• H1. Branch activity: has a negative impact on software quali-

ty. It can increase post-release failures by up to 59% in Win-
dows Vista and up to 51% in Windows 7. 

• H2a. Branch Scatter: has a negative impact on software quali-
ty. It can increase failures by up to 40% in Windows Vista. 

• H2b. Branch Scatter Entropy: has a slight positive impact on 
software quality in Windows Vista and negatively impacts 
software quality in Windows 7. It can increase failures by up to 
43% in Windows 7. 

• H3a and b. Branch Depth and Branch Depth Entropy: have 
very little to no impact on software quality. 

6. BRANCHING STRATEGIES 
Thus far, we have mainly focused on the three hypotheses 
surrounding the effects of branching on software quality at the 
attribute level. Our findings showed that branch activity, and 
branch scatter effect the software quality of components in 
Windows Vista and Windows 7 and branch depth only had a 
moderate effect on quality in Windows Vista. 
However, one question that still lingers is how to best align the 
branching structure? Traditionally, branch structures are aligned in 
one of two ways: to match the architecture of the software system 
or to match the organizational structure. 

Aligning the branching structure with the architectural structure 
means that each branch will be dedicated to a component of the 
software. For example, in a layered software architecture, a branch 
family will be created for each layer. Branches within the branch 
family can be used to develop sub-components and so on. The 
advantage of matching the branching structure with the 
architectural structure is that changes to a component mostly 
happen on the same branch, thereby minimizing integrations. 

Aligning the branching structure along the organizational structure 
means that branches match team boundaries. In such a scenario, 
each team manager will have his own branch family. The individu-
al branches within the branch family will be assigned to different 
sub-teams, managed by the different team leads under that manag-
er. The advantage of matching the branch structure with the organi-
zational structure is that the personnel working on the branches are 
close organizationally, making coordination and communication 
much simpler. 

We built linear regression models that examined the relationship of 
organizational and architectural mismatch of individual branches 
with branch quality.  All measures of organizational mismatch -- 
number of development leads and number of managers that made 
changes on a branch -- and architectural mismatch – number of 
subsystems changed on a branch – were statistically significant (p < 
0.05) and had a negative impact; increased mismatch decreased 
quality. 

Table 4 shows the results of our analysis. We find that organiza-
tional mismatch provided a better fit (i.e., higher R2) when model-
ing branch quality in both, Windows Vista and Windows 7.  The 
effects of our measures of organizational and architectural 
measures on defects in branches are shown in Table 5 (same format 
as Table 3). This finding indicates that branches that cross-cut or-
ganizational boundaries have a higher correlation with post-release 
failures than branches that cross-cut architectural boundaries. 
Therefore, we suggest that, contrary to traditional belief, branching 
structures should not only align according to architectural structure 
of the software, but also according to its organizational structure.  

Our finding complements prior work that showed organizational 
metrics outperform the traditional process and product metrics in 
modeling software quality at the component level [13].  The differ-
ence between prior work and ours is that we examine the failures 
on a per branch basis and compare the effects of architectural vs. 
organizational mismatch rather than examining only organizational 
mismatch.  With regard to our hypotheses, we conclude: 
• H4a: Branching according to architectural structure: Ar-

chitectural mismatch increases post-release failures in both re-
leases of Windows. 

• H4b: Branching according to organizational structure: 
Organizational mismatch increases post-release failures in both 
releases of Windows. 

• Architectural vs. Organizational Mismatch: Organizational 
structure has a stronger relationship with failures than architec-
tural mismatch. 

7. IMPLICATIONS 
7.1 Future Research 
Our work has implications for future work. Our findings indicate 
that branching does indeed have an effect on post-release failures. 
At the same time, we believe that there are scenarios where more 

 

Release Metric Min % Max % Direction 

Windows 
Vista 

Branch 
Activity 85±2.9 159±11 Positive 

Branch Scatter 98±1.2 140±10.5 Positive 

Branch Scatter 
Entropy 83±3.8 111±2.3 Positive 

Low Branch 
Depth 92±3.8 141±15.4 Positive 

Branch Depth 
Entropy 86±8.4 111±5.2 Negative 

Windows 
7 

Branch 
Activity 78±7.4 151±26.2 Positive 

Branch Scatter 
Entropy 84±58 143±20.8 Negative 

Table 3: Summary of metric relationships with failures 

 

 Vista Windows 7 
Arch mismatch 0.426** 0.308** 

Org mismatch 0.543** 0.321** 

Org + Arch 0.594** 0.385** 

(p<0.01 **; p < 0.05 *)  
Table 4: Model fit (R2) of architectural and organizational 

mismatch 



branching activity and scatter is expected, and we are not 
advocating a “branch-free” development process.  For example, 
globally distributed teams, that are not able to communicate 
frequently may have more branching activity than co-located 
teams. This increase in branching activity is due to the fact that 
distributed teams are more concerned about keeping each other up-
to-date and avoiding conflicts (since conflicts will require them to 
communicate). Our experience in talking with developers is that 
many failures that they deem “caused” by branching are in fact not 
directly caused by the creation of a branch, but rather by issues 
such as unmet (and sometimes unknown) coordination needs, poor 
integration work, and changes that propagate to the rest of the 
project late, all that result from how teams work as a result of using 
branches.  
We have identified which concrete aspects of branching are related 
to decreased quality.  However, changing the branching structure 
will only affect quality to the degree that they change the malignant 
behavior and process problems that lead to problems to begin with.  
Indeed, our experience studying open source projects that use 
branching heavily [5] [26] suggests that different projects use 
branches in their development processes differently. Understanding 
which “branch processes” lead to better outcomes than others in 
different contexts is a clear avenue for future research, and we 
exhort others to study this and report their findings (along with 
contextual details [27]) as we do the same in contexts at Microsoft. 

7.2 Practical Implications 
Our results have important practical implications. Based on our 
findings in this study, we make the following recommendations to 
software practitioners: 

• Practitioners should aim to reduce branch activity since it may 
lead to an increase in the likelihood of failures.  

• Practitioners should aim to reduce the scattering of develop-
ment across many branch families since branch scatter in-
creases the likelihood of failures in Windows Vista.  

• When deciding how to best align branch structure, organiza-
tional mismatch should be closely considered by practitioners 
since it has a stronger relationship with failures than architec-
tural mismatch. 

Based on our findings, we are working with product groups within 
Microsoft and suggesting that, in addition to aligning branching 
structure according to architectural structure, branching structures 
should align with the organizational structure of their teams.  When 
combined with prior work that empirically evaluates Conway’s 
Law ( [14] [13]), this study provides further evidence that the 

makeup and organization of software teams has a direct relation-
ship with quality.  Development projects (especially those at large 
scale) would do well to consider this mounting body of evidence. 

8. THREATS TO VALIDITY 
Threats to Construct Validity: consider the relationship between 
theory and observation, in case the measured variables do not 
measure the actual factors. We use post-release failures to measure 
software quality. In certain cases, it might be more beneficial to use 
pre-release failures as a measure of quality since branching may 
cause integration failures that are often reported as pre-release 
failures. However, in our case changes were used to identify pre-
release failures, therefore, using them to measure quality as well 
would introduce bias in our study. More importantly, post-release 
failures represent those failures not caught by QA processes and are 
more costly as they are customer-facing failures. 

When evaluating the effect of architectural and organizational 
mismatch on branch quality, we measured branch failures as a ratio 
of development that a component had on that branch times the 
number of failures for that component. Ideally (and if possible), 
one would  map each failure to the branch that the it was 
introduced in. However, we were unable to create such a mapping 
due to lack of data.  

Threats to External Validity: consider the generalization of our 
findings. The studied projects are both developed by Microsoft and 
follow processes that are defined by the development and 
management teams at Microsoft. A common misconception about 
industrial research at large companies such as Microsoft is that the 
software projects are not representative of other software projects 
and thus not valuable. This is not true. While projects might be 
larger in size, most development practices at Microsoft are adapted 
from the general software engineering community outside 
Microsoft. Many commercial and OSS projects also use branches 
to partition work and filter changes based on quality and this study 
represents a first step in examining the relationship between 
branching and quality. Therefore, we believe that this study can be 
replicated on other large software systems that use branches. 
Another frequent misconception is that empirical research within 
one company or one project is not good enough, provides little 
value for the academic community, and does not contribute to 
scientific development. Historical evidence shows otherwise. 
Flyvbjerg provides several examples of individual cases that 
contributed to discovery in physics, economics, and social science 
[28]. W. I. B. Beveridge observed for social sciences: “More 
discoveries have arisen from intense observation than from 
statistics applied to large groups” (as quoted in Kuper & Kuper 
[29] p. 95). This should not be interpreted as a criticism of research 
that focuses on large samples or entire populations. For the 
development of an empirical body of knowledge as championed by 
Basili [30], both types of research are essential. 

Lastly, a common misinterpretation of empirical studies is that 
nothing new is learned (e.g., “I already knew this result”). 
However, such wisdom has rarely been shown to be true and is 
often quoted without scientific evidence. This paper provides such 
evidence: Most common wisdom and intuition is confirmed (e.g., 
“binaries with more branch activity tend to have more failures”) 
while some is challenged (e.g., “branches should be divided along 
architectural boundaries”).  

9. CONCLUSION 
We have presented the first, but hopefully not last, empirical 
evaluation of the relationship between various aspects of branch 

 Vista Windows 7 

Metric Min % Max % Min % Max % 

Managers 100±5 135±24 100±6 146±34 

Leads 78±6 201±25 83±8 156±29 

Engineers 65±8 217±24 67±14 169±25 

Components 92±10 120±8 88±9 119±11 

Subcomponents 88±9 130±9 89±9 113±11 

Table 5: Summary of organizational and architectural 
mismatch on branch quality 



use in a software project and post-release quality.  We have 
demonstrated not only that branch activity and branch scatter lead 
to decreased quality, but we have also quantified the magnitude of 
the relationship.  Further, we have evaluated two differing 
branching strategies and found that organizational alignment is 
more important than architectural alignment, thereby allowing 
software teams to make more informed decisions about their 
branching structure.  This evidence is being used within Microsoft 
and can be of value to other software projects that use branching, or 
are considering it, as well. 

10. REFERENCES 
[1] Walrad, C. and Strom, D. The importance of branching 

models in SCM. Computer (2002), 31--38. 

[2] Appleton, B., Berczuk, S., Cabrera, R., and Orenstein, R. 
Streamed Lines: Branching Patterns for Parallel Software 
Development. Vol. 2002, 1998. 

[3] Premraj, R., Tang, A., Linssen, N., Geraats, H., and Vliet, H. 
To Branch or Not to Branch? In Proceeding of the 2nd 
workshop on Software engineering for sensor network 
applications. 81-90, (2011). 

[4] Wingerd, L. and Seiwald, C. High-Level Best Practices in 
Software Configuration Management. In Proceedings of the 
Symposium on System Configuration Management. 57-66, 
(1998). 

[5] Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, 
D.M., and Devanbu, P.T. The promises and perils of mining 
git. In Mining Software Repositories.1-10, (2009). 

[6] Bird, C., Zimmermann, T., and Teterev, A. A Theory of 
Branches as Goals and Virtual Teams. In Proceedings of the 
International Workshop on Cooperative and Human Aspects 
of Software Engineering. 53-56, (2011). 

[7] Midha, A.K. Software configuration management for the 21st 
century. Bell Labs Technical Journal, 2 (1997), 154--165. 

[8] Buffenbarger, J. and Gruell, K. A Branching/Merging Strategy 
for Parallel Software Development. In System Configuration 
Management. 86-99, (1999). 

[9] Perry, D.E., Siy, H.P., and Votta, L.G. Parallel changes in 
large-scale software development: an observational case 
study. ACM Transactions on Software Engineering and 
Methodology (TOSEM), 10 (2001), 308--337. 

[10] Nagappan, N. and Ball, T. Use of relative code churn 
measures to predict system defect density. In Proceedings of 
the 27th international conference on Software engineering 
(2005), 284--292. 

[11] Briand, L., Daly, J.W., and Wust, J. A Unified Framework for 
Cohesion Measurement in Object-OrientedSystems. Empirical 
Softw. Engg., 3, 1 (July 1998), 65--117. 

[12] Brun, Y., Holmes, R., Ernst, M.D., and Notkin, D. Proactive 
Detection of Collaboration Conflicts. In Proceedings of the 
8th Joint Meeting of the European Software Engineering 
Conference and ACM SIGSOFT Symposium on the 
Foundations of Software Engineering (ESEC/FSE11). 168-
178, (2011). 

[13] Nagappan, N., Murphy, B., and Basili, V.R. The Influence of 

Organizational Structure on Software Quality: An Empirical 
Case Study. In Proceedings of the International Conference on 
Software Engineering. 521-530, 2008. 

[14] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley, 
K.M. Identification of coordination requirements: implications 
for the Design of collaboration and awareness tools. In 
Proceedings of the 2006 20th anniversary conference on 
Computer supported cooperative work (2006), 353--362. 

[15] Shannon, C. A mathematical theory of communication. The 
Bell System Technical Journal, 27 (1948), 379--423. 

[16] D'Ambros, M., Lanza, M., and Robbes, R. An extensive 
comparison of bug prediction approaches. In Mining Software 
Repositories. 31-41, (2010). 

[17] Hassan, A.E. Predicting faults using the complexity of code 
changes. In International Conference on Software 
Engineering. 78-88, (2009). 

[18] Conway, M. How do committees invent? Datamation, 14, 4 
(1968). 

[19] Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter, R.E. 
An Empirical Study of Global Software Development: 
Distance and Speed. In Proceedings of the 23rd International 
Conference on Software Engineering. 81-90, (2001). 

[20] Mockus, A. Organizational volatility and its effects on 
software defects. In ACM SIGSOFT International Symposium 
on Foundations of Software Engineering. 117-126, (2010). 

[21] Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V., 
Murphy, G.C., Nagappan, N., and Aho, A.V. Do Crosscutting 
Concerns Cause Defects? IEEE Transactions on Software 
Engineering. Vol. 34, 4. 497-515, (2008). 

[22] Ostrand, T.J., Weyuker, E.J., and Bell, R.M. Programmer-
based fault prediction. In International Conference on 
Predictive Models in Software Engineering. 1-10, (2010). 

[23] Cataldo, M., Mockus, A., Roberts, J.A., and Herbsleb, J.D. 
Software Dependencies, Work Dependencies, and Their 
Impact on Failures. IEEE Transactions on Software 
Engineering, 35, 6 (2009), 864--878. 

[24] Kutner, M., Nachtsheim, C., and Neter, J. Applied Linear 
Regression Models. , 2004. 

[25] Cataldo, M., Mockus, A., Roberts, J.A., and Herbsleb, J.D. 
Software dependencies, work dependencies, and their impact 
on failures. Software Engineering, IEEE Transactions on, 35 
(2009), 864--878. 

[26] Barr, E.T., Bird, C., Rigby, P.C., Hindle, A., German, D.M., 
and Devanbu, P. Cohesive and isolated Development with 
Branches. In International Conference on Fundamental 
Approaches to Software Engineering. To appear, (2012). 

[27] Murphy-Hill, E.R., Murphy, G.C., and Griswold, W.G. 
Understanding context: creating a lasting impact in 
experimental software engineering research. In Proceedings of 
the Workshop on Future of Software Engineering. 255-258, 
(2010). 

[28] Flyvbjerg, B. Five misunderstandings about case-study 
research. Qualitative inquiry, 12 (2006), 219-245. 



[29] Kuper, A. and Kuper, J., eds. The Social Science 
Encyclopedia. Routledge, 1985. 

[30] Basili, V.R., Shull, F., and Lanubile, F. Building knowledge 
through families of experiments. IEEE Transactions on 
Software Engineering, 25 (Jul/Aug 1999), 456-473. 

 

 


