
The Effect of Branching Strategies on Software Quality

Emad Shihab
Software Analysis and Intelligence Lab (SAIL)

Queens University, Canada
emads@cs.queensu.ca

Christian Bird and Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

{cbird, tzimmer}@microsoft.com

ABSTRACT
Branching plays a major role in the development process of large
software. Branches provide isolation so that multiple pieces of the
software system can be modified in parallel without affecting each
other during times of instability. However, branching has its own
issues. The need to move code across branches introduces addition-
al overhead and branch use can lead to integration failures due to
conflicts or unseen dependencies. Although branches are used ex-
tensively in commercial and open source development projects, the
effects that different branch strategies have on software quality are
not yet well understood. In this paper, we present the first empirical
study that evaluates and quantifies the relationship between soft-
ware quality and various aspects of the branch structure used in a
software project. We examine Windows Vista and Windows 7 and
compare components that have different branch characteristics to
quantify differences in quality. We also examine the effectiveness
of two branching strategies – branching according to the software
architecture versus branching according to organizational structure.
We find that, indeed, branching does have an effect on software
quality and that misalignment of branching structure and organiza-
tional structure is associated with higher post-release failure rates.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Process Metrics

General Terms
Management, Measurement, Reliability, Experimentation,

Keywords
Branching, Quality

1. INTRODUCTION
Coordination is key as software development becomes a more and
more complex enterprise. Software projects today range in size up
to tens of millions of lines of code, are developed by teams of thou-
sands of developers, and may support multiple releases at different
stages of development. Managing all of the changes being made to
a codebase is an increasingly difficult task. Software Configuration
Management Systems (SCMs, also known as version control sys-
tems) are important tools, as they are the primary mechanism used
to coordinate the sharing of actual code artifacts, the key output in
software products. In large-scale software projects where all
changes are immediately seen by all developers (i.e. one “line” of
development), changes can lead to a number of significant prob-
lems: single changes can cause build breaks and halt the progress

of the entire project; piecemeal changes to interoperating compo-
nents can lead to incompatibility, and finding the change that caus-
es a test to fail can almost be impossible, especially for long-
running test suites. While some of these effects are present in
smaller projects too, the impact is intensified in large projects; a
build break that affects a team of five developers is not as serious
as a break that affects thousands of developers.

One of the key features of modern SCMs that helps to mitigate
these problems associated with the complexity of software projects
is the support of parallel lines of development known as branches
[1]. A branch is a virtual workspace created from a particular state
of the source code that a developer or team of developers can make
changes to without affecting others working outside the branch.
Branches provide isolation from other changes; for example a build
break on a branch affects only the teams working on that branch
and not the entire development team. The use of branches within a
project has a profound effect on the processes used during devel-
opment, from the build processes to release management [1].

However, like any development tool, branching needs to be lever-
aged correctly in order to be most effective [2]. Teams may choose
to work in branches to avoid dealing with the work of other teams,
but some coordination is required. Branches may introduce a false
sense of safety, as changes made in different branches will eventu-
ally be merged together (either manually or automatically), and
bugs may arise if these changes are syntactically or semantically
incompatible. The process of moving code between branches rep-
resents additional error-prone work for developers. A complex
branching structure may hinder the development process, making it
hard to track code changes, causing build failures (due to unex-
pected dependencies), increasing the chances of introducing regres-
sion failures and making it difficult to maintain the code base [3].
In fact, some claim that branching is the most problematic area of
SCM [4]. Therefore, it is important to understand how branching
structures affect software systems and impact their quality. We
note that these outcomes are not caused by the branches them-
selves, but rather by the processes and coordination required when
employing the use of branches.

However, the relationship between branching structure and quality
remains an important open question. With more projects in open
source [5] and commercial contexts [6] employing branches in their
development, understanding the impact of branching is increasingly
relevant. To address this, we perform an empirical study to exam-
ine the effect of branch structure on software quality in Windows.
We find that many aspects of branch use do indeed affect software
quality.

As a prescriptive step, we also examine how to best align branching
structures with other aspects of a software project. Specifically, we
compare the branch structure with the organization of the teams
within the project and also with the architecture of the software
itself to determine which is the better branching strategy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

ESEM’12, September 17–22, 2012, Lund, Sweden
Copyright 2012 ACM 1-58113-000-0/00/0010…$10.00.

To the best of our knowledge, this is the first study to empirically
examine the effect of branching on software quality. We make the
following contributions in this study:

1. We define metrics to capture the effects of branching on soft-
ware quality.

2. We perform an empirical study and quantify the effects of
branching on software quality in two releases of a large indus-
trial project.

3. We examine the effect of mismatch between the branching
structure and organizational and architectural structures.

4. We provide recommendations of branch use for projects that
heavily utilize branching.

The rest of the paper is organized as follows. We first survey prior
work in the area of SCM branching. We then provide terminology
and describe our data collection process. Next, we discuss our
hypotheses regarding branching strategies and define the metrics
used to evaluate these hypotheses. Finally, we present the results
of our analysis, discuss implications of these results, and make
recommendations based on our findings.

2. RELATED WORK
A number of researchers have studied the role of branching within
SCMs. Midha [7] outlined key characteristics of SCMs and their
use at Lucent Technologies and iterated the need of future SCMs to
facilitate the creation and support of multiple branches (referred to
in the paper as streams). Walrad and Strom [1] investigated
tradeoffs between several branching models and suggested the use
of a branch-by-purpose model which calls for branches to be creat-
ed only when there is a specific purpose (e.g. when software is
released). Wingerd and Seiwald [4] provided best practices for
SCMs and suggested branching only when necessary, such as when
incompatible policies arise (e.g. when developers have different
commit privileges), branching late to make sure as many changes
as possible are propagated, and using branching instead of code
freezing to allow parallel development. Appleton et al. [2] and
Buffenbarger and Gruell [8] studied and proposed branching pat-
terns and best practices to use in order to achieve efficient parallel
development.

Perry et al. [9] perform an empirical study to investigate and under-
stand the nature of large scale parallel development and find that
multiple levels of parallelism exists (i.e. at the release, MR and
IRM levels), that as much as 12.5% of all deltas may be in conflict
and up to 50% of files are changed by multiple developers in the

same release. Premraj et al. [3] examined the branching and merg-
ing in an industrial agile development setting and found that the
roles of branchers (e.g. architects, developers, or testers) and the
type of files (e.g. header files or configuration files) they work on
dictates the cost of merging. They also presented findings that sug-
gested that programs should be structured not only by the software
architecture, but also by the team structure, so that communication
about prevention and unnecessary branching could be possible.
Bird et al. [6] examined a theory that branches are created to ac-
complish a goal and groups of developers making changes on a
branch represent virtual teams with a common goal. Then, they
examined the relationships between files changed in a branch and
the people who make changes to the branch and found support for
their theory in Windows Vista and Windows 7.
The prior work has focused primarily on providing best practices
for branching or studying the role of branching in large teams. It is
important to note that most of these best practices suggested are
based on experience and theoretical scenarios. In this work, we
complement the previous work by empirically studying and evalu-
ating the effects of branching on software quality. In addition, our
study proposes and validates metrics that capture general character-
istics of branches (i.e. we do not constrain ourselves to one branch-
ing model). For example, our findings regarding branch depth can
be used to compare two different branching models based on their
depth characteristics.

3. TERMINOLOGY AND METRICS
3.1 Terminology
We start by introducing relevant terminology used in this paper.
The Windows Vista and Windows 7 teams heavily relied on
branching to manage their large code base. Generally speaking,
branches are created based on a specific structure that is agreed
upon within the development teams. As the project evolves, more
branches are created to support development.

 To maintain order in the branching structure, related branches are
grouped into branch families. A branch family is a subtree rooted
off of the trunk (a.k.a. main, the release branch). For example, all
of the branches used to build tools are grouped into one ‘tools’
branch family. In some cases, a branch may be added to a branch
family in order to provide further isolation. In such cases, the new
branch is said to be one level “deeper” in the branch tree. Figure 1
shows an example of two branch families and the different branch
depths. In our study, we use the notion of branch depth as the
measure of how deep a branch is from the main branch. Once a

Figure 1: Example branch structure

main

Branch
Integrate

Depth	 2

Branch	 family	
A

Branch	 family	
B

Depth	 1
Depth	 0

Depth	 2
Depth	 3

`

Changes	 to	 foo.dll
Changes	 to	 bar.dll

Time

Depth	 1

change is checked in on a branch at depth n, it is merged into the
parent branch at depth n-1, and eventually is merged into the trunk
(level 0).
To differentiate between development and branching activity, we
classify changes into two types: changes to the actual code, which
we call development changes (add, edit and delete operations) and
changes which move and merge code between branches, which we
call branching changes. In our context, a branch change is a
change that copies or integrates (also known as merges) a file
change from one branch to another. These two categories of chang-
es are fundamentally different, as modifying code and moving code
require different skillsets and pose different types of risk (e.g. im-
plementation errors vs. integration errors). In practice, these two
types of changes are performed by contributors that have different
roles and even different job titles within the project.

3.2 Data Collection
To conduct our study, we leveraged data from two releases of one
of the largest projects at Microsoft, Windows. Windows is com-
posed of thousands of executable files (.exe), shared libraries (.dll)
and drivers (.sys), which we refer to as binaries. We collected his-
torical development data for each binary in Windows Vista and 7
from the release of Windows Server 2003 to the release of Win-
dows 7. We chose to perform our analysis at the binary level be-
cause failure data is collected and reported at this level at Microsoft
and we have observed cases where a failure caused by a change to
one source file for a binary was fixed in a different source file for
the same binary. We decided to perform our case study on Win-
dows Vista and 7 because they are two large releases that have a
rich development history and heavily use branches.

We collected a number of different metrics for each component. To
gather the metrics for each component, we leveraged the commit
histories and software failure data of Windows Vista and Windows
7. Each change in the repository contains the change author, the
change date, a change log message, the source files modified by the
change, the branch and branch family of each source file, the type
of change (e.g. development or branching) and the purpose of the
change (e.g. bug fix or enhancement). We used a mapping of
source files to binaries in order to collect the different metrics at the
component level.

As an indicator of software quality, we used the number of post-
release failures per binary. Both versions of Windows have been
released for multiple years and have an installation base in the hun-
dreds of millions. Most defects are found quickly and the report
rate falls off dramatically after the first year, indicating that our
results are unlikely to change with time. Various code metrics, such
as churn, complexity and size metrics were also gathered from the
source code repositories and build process for each component. We
use the code metrics in our models as control variables since they
are known to also relate to failures [10]. We detail all of the metrics
calculated from our data in the next section. Prior research has
shown that when characteristics such as size and complexity are not
considered, they may affect the validity of other software metrics
[11].

As part of our study examines the relationship between branching
structure and organizational structure, we gathered snapshots of the
Windows organizational hierarchy (who reports to whom as well as
job titles) over the course of Windows Vista and 7 development.
Lastly, the binaries within Windows are logically partitioned into
systems, subsystems, areas, and (in some cases) subareas. For
instance, an mp3 decoding library may be in the audio codec area
of the audio subsystem within the multimedia system. We use this

hierarchical breakdown for both releases of Windows as the system
architecture and use it to determine how well branches span archi-
tectural boundaries.

4. RESEARCH QUESTIONS
Our high level research question is “How much and in what ways
does branching affect software quality?” To answer this question,
we evaluate quality at the component level and the branch level
through the use of a number of measures of branch use. In this
section we present the testable hypotheses that we evaluate as well
as the rationale that underlies each of these hypotheses and the
metrics that we use to quantify different aspects of branch use.
Each hypothesis is related to the research question in a different
way and has different implications for software teams.

Our hypotheses come from discussions with developers, managers,
and other stakeholders in Windows and other projects at Microsoft.
They have indicated that it is just as valuable to know which
branching characteristics (i.e. metrics) do not have a relationship
with software failures as those that do; both inform stakeholders’
decisions and practices.

4.1 Effects on Component Quality
One goal of our research is to examine the effects of branching on
software quality. Based on discussions with developers we expect
that overly complex branching structures negatively impact the
quality of a software system. Since software components that are
developed in more complex branching structures require more pro-
cess overhead in terms of branching and integrating activity as well
as more coordination, we expect more opportunities for error and
that these components will have more post-release failures. There-
fore, we focus our study on three factors that we believe measure
the complexity of a branching structure, namely – branch activity,
branch scatter and branch depth.

H1. Branch Activity: Software components with high branching
activity have more failures.

Branches are meant to provide a level of isolation for development
teams to work on parts of the code base without having to worry
about affecting others. However, this level of isolation comes at the
cost of having to resolve integration conflicts when changes on
these branches are finally merged back. Integration changes are
risk-prone because a) the developer merging the code may not be
the developer that made the code changes (and thus may lack key
knowledge), b) the changes represented in a merge are often aggre-
gated and are therefore large and widespread, c) the integration is
often temporally distant from the development changes themselves,
and d) developers may rely on the invalid assumption that lack of
syntactic conflicts implies a lack of semantic conflicts or issues
[12]. Therefore, we expect higher levels of branching activity to
lead to more post-release failures since higher activity requires
more integration. We use the branching activity metric to evaluate
this hypothesis.

Branching Activity – is defined as a ratio, the number of branch-
ing changes divided by the number of development changes, per
component. We use the ratio instead of simply using the number of
branching changes since components that have many development
changes are more likely to have more branching changes as well
(we control for total number of changes by using a churn metrics in
our models). We use the branching activity metric to evaluate our
first hypothesis (H1) that more branching activity reduces software
quality.
H2a. Branch Scatter: Software components spread across many
branch families have more failures.

In addition to the hypothesis that higher levels of branching activity
may lead to more failures, we also hypothesize based on discus-
sions with developers, that components that have changes scattered
across different branch families will experience more integration
failures. The intuition is that software components that are spread
across many branch families have changes that will not integrate
until they reach the main branch and will thus happen in larger
batches and later in the development cycle. Furthermore, teams
working in different branch families are typically organizationally
farther apart and have disparate tasks. Prior research has shown
that in such cases, awareness is lowered, coordination breakdowns
occur more often, and failures result [13] [14]. This measure is
different from the branching activity metric. A software component
may have high branching activity but only be modified in two
branches that are in a single branch family (i.e., it keeps going back
and forth). In this case, the branch scatter would be low. We use
the branch scatter metric to evaluate this hypothesis.

Branching Scatter – is defined as the ratio of unique branch fami-
lies that a component is in divided by the number of development
changes. Again, we use the ratio instead of using the number of
branch families that a component touches, to control for the fact
that components that have more development changes are more
likely to be scattered across branch families. We use the branching
scatter metrics to evaluate our hypothesis (H2a) that higher levels
of branch scatter reduce software quality.
H2b. Branch Scatter: Software components that are equally de-
veloped across multiple branch families have more failures.

In addition to simple branch scatter, we examine the effect of the
proportion of scatter across branch families. The intuition is that a
component may need to be changed in different branch families;
however the majority of the changes to the component should be
made mainly within a single branch family. If a component is de-
veloped equally across many branch families, then there is more
room for missed dependencies and conflicts. We use the branch
scatter entropy metric to validate this hypothesis.

Branch Scatter Entropy – is defined as the entropy of the scatter
of the changes to a component across branch families. In certain
cases, a component may need to be shared across different families.
The intuition is that if a component is changed equally across the
different branch families, this is worse than having a component
change mainly in one branch family and lightly changed in the
others. For example, a component may need to be modified in two
branch families, however, if 95% of its changes happen in one
branch family and only 5% in the other that is much better than
having 50% of its changes in each branch family. We use Shannon
Entropy [15] to capture this effect of distribution (e.g. [16], [17]).
Entropy is defined as 𝐻 𝑃 = − (𝑝! ∗ 𝑙𝑜𝑔!𝑝!)!

!!! , where
𝑝! ≥ 0,∀ 𝑘 ∈ 1,2,… ,𝑛 and 𝑝! = 1!

!!! . Maximal entropy is
achieved when all elements in a distribution, P have the same prob-
ability of occurrence (i.e. 𝑝! =

!
!
,∀ 𝑘 ∈ 1, 2,… ,𝑛). In contrast,

minimal entropy is achieved if one element 𝑝! in the distribution, P
has probability of occurrence 1 (i.e. 𝑝! = 1) and all remaining ele-
ments in P have a probability of occurrence 0 (i.e. ∀𝑘 ≠ 𝑖, 𝑝! =
0). Since some components are changed in a different number of
branch families compared to others, we normalize by dividing the
entropy value by 𝑙𝑜𝑔!𝑚, where m is the number of branch families
containing changes to that component.

To illustrate our intuition, we use the example shown in Figure 1.
Foo.dll and bar.dll both have equal number of changes (depicted by
the solid and hollow dots on the branches). Three of the four
changes to foo.dll are in branch family A. Therefore, developers

working on the branches in branch family A are more likely to be
aware of the other changes to foo.dll. On the other hand, bar.dll has
two changes in branch family A and another two changes in branch
family B. Therefore, it is more difficult for the developers working
on the branches in the two branch families to be aware of all the
changes to bar.dll, possibly causing incompatible changes, leading
to a higher number of failures. In this example, foo.dll has lower
branch scatter entropy value than bar.dll.

H3a. Branch depth: Software components developed primarily in
deeper branches have more failures.

In addition to measuring the branching activity and frequency,
software components that are developed in deeper branches are
more isolated and must “travel” further to a release branch. Thus,
they have a higher likelihood of conflicts upon integration to the
release branches. To evaluate these claims, we use the branch depth
metrics to examine whether branch depth has an effect on the quali-
ty of a component. We use the low and high branch depth metrics
to validate this hypothesis.

Branching Depth (Low, Medium, High) – is defined as the ratio
of development changes to a component in low depth branches,
medium depth branches and high depth branches. The choice for
using three categories rather than using a continuous measure
maintains confidentiality at Microsoft and also allows for generali-
ty; a branch structure of any depth can be easily binned into these
categories. Furthermore, this allows for a non-monotonic relation-
ship between depth and failure rates. We use the branch depth
metrics to evaluate our hypothesis (H3a) that development at deep-
er branches reduces software quality. In the example, figure 1,
foo.dll has 50% of its changes at low depth branches (i.e. branches
in depth 1) and 50% of its changes at medium depth branches (i.e.
branch at depth 2).
H3b. Branch depth: Software components that are developed
evenly across low, medium and high depth branches have more
failures.
Similar to the proportion of branch scatter across multiple branch
families hypothesis, we also examine whether components that are
mainly developed in one depth level have better quality than com-
ponents that are equally developed at all depth levels. We use the
branch depth entropy metric to validate this hypothesis.

Branch Depth Entropy – is defined as the entropy of the changes
at each depth level (low, medium, and high). This is in an effort to
determine whether changing components evenly at different depth
levels (high depth entropy) is better or worse (in terms of software
quality) than a component that changes primarily in one depth level
(low depth entropy).

Since the depth of the branch reflects its purpose (e.g. core func-
tionality is often developed at lower levels), being distributed
across different depth levels may lead to confusion in the purpose
of the component. Using the example in Figure 1, foo.dll has 50%
of its changes at low branch depth and 50% of its changes at medi-
um branch depth, whereas bar.dll has all of its changes in medium
depth branches. In this example, foo.dll may be harder to work with
since it does not clearly reside in any one depth level. We use the
branch depth entropy metric to evaluate our hypothesis (H3b) that
even distribution across branch depths reduces software quality.
Since different components are changed in a different number of
branch depths compared to others, we normalize by dividing the
entropy value by log2(m), where m is the number of branch depths
containing changes to that component.

4.2 Architectural and Organizational
Congruence
In the previous section, we examined topological characteristics of
the relationships between changes to components on branches and
post-release failures. An equally important question is how the
branching structure should align with the architecture of the system
being developed and the organization of the teams developing the
system. According to Conway’s Law [18], in an ideal setting the
decomposition of the system into subsystems and subsystems into
components would match the division of the developers into teams.
In practice, due to cross-cutting concerns, architectural coupling,
and external organizational factors such as geography [19], pre-
existing organizational structures, and organizational churn [20],
there is rarely perfect congruence between system architecture and
organizational structure. Thus, a branching structure can match
organizational structure at the cost of spanning subsystem and
component boundaries, or it may closely align with the system
architecture and cross-cut the organization.

The decision is not clear. Prior work suggests that components with
changes spanning organizations increase failures [13]. However,
cross-cutting concerns – functionality requiring changes that span
system architecture -- also lead to failures [21].

Therefore, in an effort to provide actionable results to software
teams to assist them to decide on effective branching strategies, we
examine the effect of aligning the branching structure to architec-
tural or organizational structure on branch quality. This leads to
two competing hypotheses:

H4a. Branching according to architectural structure: Branches
with higher architectural mismatch have more failures.

One strategy to follow when creating branches is to dedicate one
branch per component. Doing so, allows software components to
be developed in isolation. However, in certain cases multiple com-
ponents are modified in a single branch, causing branches to cross-
cut the architecture (i.e., architectural mismatch). We expect
branches that include work on multiple components to have more
failures.

Archictectural Mismatch – is the number of individual systems,
subsystems, areas, components and subcomponents (forming a
hierarchy) that are affected by the changes on a branch. We expect
that a branch that contains only changes to one subsystem have
fewer failures than a branch that changes many.

H4b. Branching according to organizational structure: Branch-
es with higher organizational mismatch have more failures.

In many cases multiple teams need to coordinate when developing
a software component. Therefore, having the branching structure
match the organizational structure may be ideal. We expect that
branches that are contributed to from multiple organizations (i.e.,
organizational mismatch) have more failures.

To answer the aforementioned question, we measure the effect that
architectural and organization mismatch has on branch quality. To
measure architectural and organizational mismatch of the branch,
we define the following metrics:

Organizational Mismatch – includes the number of managers,
development leads, and engineers (counted and used in our models
separately) that make changes to files on the branch. The number of
engineers that work in a branch serve to represent the size of the
group working in a branch. However, each team has one
development lead and a number of leads report to one development
manager. Thus, each lead and each manager is indicative of

additional teams working in a branch. We expect a branch with
twenty engineers, six leads, and two managers to have more failures
than a branch with twenty engineers, one lead, and one manager
because the former spans organizational structure.

We quantify branch quality by mapping components (and their
post-release failures) to the branches they were changed on. Using
a technique similar to the approach used by Ostrand et al. to
calculate the failure ratios of developers [22], we use the ratio of a
component’s changes on a branch (analogous to changes made by a
developer in Ostrand’s approach) to map post-release failures to
that specific branch. For example, assume that a component A had
8 post-release failures and that A had a total of 20 development
changes, 15 changes on branch B1 and 5 changes on branch B2.
We map 6 (!"

!"
∗ 8 =6) failures to branch B1 and 2 (!

!"
∗ 8 =2)

failures to B2.

These metrics enable us to study the effect of mismatch on branch
quality. As before, we build linear regression models and use the
goodness-of-fit measure to compare which of architectural or or-
ganizational mismatch better explain branch failures. We also
report direction and magnitude of the relationship to quality (de-
rived from regression coefficients).

4.3 Analysis Techniques and Statistical Model-
ing
We use multiple linear regression models to study the effect of
branching on software quality.
Linear regression models are generally used in empirical studies to
model an outcome of a response variable (e.g. model the number of
post-release failures) or to model the relationship between an ob-
served phenomena (represented by the model independent varia-
bles) and an observed outcome (represented as the dependent vari-
able). In this paper, we use linear regression models to achieve the
latter, to study the relationship. Prediction is not the aim of this
paper. In particular, we use linear regression to examine the rela-
tionship of one or more of the branching metrics with software
quality, while controlling for code and process metrics.
 The independent variables in our linear regression models are the
branching activity, scatter and depth metrics; the dependent varia-
ble is the number of post-release failures. All of our measurements
are performed at the software component level.
One of the assumptions of linear regression is that the residuals
must be normally distributed. We observed that, similar to many
other software metrics, our control variables and some branch met-
rics here highly skewed, leading to non-normality of residuals. To
alleviate this problem, we used a log transformation on these met-
rics with high skew and/or kurtosis values.

 As our evaluation criteria, we examine the statistical significance,
magnitude, and direction of the variable’s contribution in the mod-
el. In addition, similar to previous work (e.g. [23]) we use model
fit (variance explained, also known as adjusted R2) as evaluation as
well. We begin by building a base model, which contains our con-
trol variables, and record the adjusted R2. Then, we incrementally
add one variable at a time and measure the improvement in adjust-
ed R2.
We employed Variance Inflation Factor (VIF) analysis to measure
the level of multicollinearity between independent variables [24]
and removed highly correlated variables from the linear regression
models, i.e. any variables that had a VIF value above 10, as rec-
ommended by Kutner et al. [24]. To test for statistical significance,

we performed ANOVA analysis on the models and report the p-
value of the independent variables.

5. CASE STUDY RESULTS
We now present the results of our case studies on Windows Vista
and Windows 7. We build linear regression models that model the
number of post-release failures and examine whether or not adding
branching metrics improves the model fit. For each version of
Windows, we built five models. We start by building a base model
with the control metrics, which in our case are churn, complexity,
size, the number of files and the number of development changes to
a software component. Then, we build an additional four models
where we incrementally add the branch activity, branch scatter,
branch depth metrics, and branch families, respectively.
Tables 1 and 2 present the results of our analysis. Arrows (↑ and ↓)
are used to denote direction of the effect, a ↑ denotes a positive
effect and a ↓ denotes a negative effect. The model fit (R2) of each
model is shown in the last row of the tables. A log transformation
was applied to some metrics, indicated in the left column, as dis-
cussed earlier. In all cases the effects were statistically significant
with a p<0.01.

The base models provide a model fit of 72% and 17% for Windows
Vista and Windows 7, respectively. The lower model fit for Win-
dows 7 is likely due to the fact that Windows 7 had both fewer
post-release defects and less variance in post-release defects across
binaries. Adding the branch activity metric to the base model im-
proved model fit to 75% for Windows Vista and 18% for Windows
7. The model fit is further increased to 77% when the branch scat-
ter metrics are added Windows Vista and 19% for Windows 7.
Branch depth metrics added a fractional (less than 0.5%) improve-
ment to model fit in Windows Vista and did not add to the model
fit in Windows 7. These model fit values are in the same range as
prior work on software quality that achieves model fits values be-
tween 22-33% deviance explained [25]. In all cases, we found one
or more of the metrics in each metric category (i.e., activity, distri-
bution or depth), except for the case of depth metrics in Windows 7
to be statistically significant and improve model fit.
Furthermore, we divided the changes based on the branch families
they were in. The purpose of doing so was to study whether certain
branch families are more risky than others. The results are shown in

the last column of Tables 1 and 2. Since the sum of the changes in
each branch family is equal to the number of development changes,
we cannot include both metrics in the model. Therefore, we remove
the number of development changes from the model and add the
number of changes in each branch family, labeled as Branch
Groups in the tables. We see that using the branch families im-
proves the model fit to be 79% for Windows Vista and 36% for
Windows 7. This is a large improvement, suggesting that changes
in certain branch families leads to more failures compared to other
branch families. One explanation for the considerable improve-
ment in model fit in Windows 7 compared to Vista is the fact that
Windows 7 had more branch families than Windows Vista. Thus
branch families provide more discrimination in Windows 7.

5.1 Quantifying the Effect of Branching on
Software Quality
Although model fit is traditionally used to evaluate linear regres-
sion models, its importance depends on the context in which it is
evaluated. Since our base models were fairly robust (providing a
model fit of 72% for Windows Vista for example), we did not ex-
pect a large improvement in model fit. Our primary goal was de-
termining which measures had a statistically significant relation-
ship with post-release failures.

Having identified the statistically significant metrics, we are inter-
ested in quantifying the relationship of these metrics on post-
release failures. For example, we would like to be able to quantify
the increase in post-release failures if branching activity increased
by 10%. Quantifying the effect is of primary importance to practi-
tioners because it helps them better understand - how and by how
much – their branching practices impact their software quality.
Quantifying the effect allows practitioners to put a cost on the im-
pact of their branching practices (e.g. mapping an increase of 10%
in failures to dollars lost) and argue for process change, if needed.

To practically quantify effect, we study each metric in isolation.
We do so by using the fitted model and setting all the metrics other
than the metric of interest to their median values. Then, we vary the
metric we are interested in studying the effect of, from its minimum
to its maximum value and observe the change in the projected
number of post-release failures. To put the increase/decrease of
effect into perspective, we normalize the effect of each metric, by

 Base Model Model 2 Model 3 Model 4 Model 5

log(Size) ↑ ↑ ↑ ↑ ↑

log(Churn) ↑ ↑ ↑ ↑ ↑

log(Complexity) - - - - -

log(Dev. Changes) ↑ ↑ ↑ ↑ -

log(No. Files) ↑ ↑ ↑ ↑ ↑

Branch Activity

↑ ↑ ↑ ↑

log(Branch Scatter)

↑ - -

Branch Scatter Entropy

↑ ↑ ↑

Low Branch Depth

↑ ↑

log(High Branch Depth)

- -

Branch Depth Entropy

↓ ↓

Branch Groups

↑

R2 72% 75% 77% 77% 79%

Table 1: Post-release failures model for Vista. Arrows indicate effect on failures. Table 3 shows
magnitude of effects.

its effect at the median value. The direction of the effect can be
positive or negative. A positive direction indicates that an increase
in the metric causes an increase in post-release failures. A negative
direction indicates that an increase in a metric leads to less post-
release failures.
We illustrate with an example in Figure 2 where we plot the change
in effect for the branch activity metric in Windows Vista. The x-
axis shows the change in the value of the metric from its minimum
to its maximum value. The y-axis shows the change in the amount
of projected post-release failures, normalized by the median. We
also plot the 95% confidence interval, shown by the dashed lines.
At 100% on the y-axis represents the modeled number of post-
release failures when branch activity is at its median value (and all
other metrics in the model are also set to their median). Decreasing
the branch activity metric to its minimum value would reduce the
amount of failures to 85% (± 2.9%) of the value observed at the
median. If branch activity was at its maximum value, we expect an

increase of up to 59% (± 11%) more failures. Figure 3 shows a
similar graph, depicting the effects of branch scatter entropy in
Windows 7.

 Table 3 summarizes the effects of all metrics at their minimum and
maximum values (values below 100% indicate decreases in fail-
ures, values above, increases). We find that for Windows Vista,
branch activity, branch scatter and low branch depth have the big-
gest effect, increasing the amount of post-release failures by up to
59%. Branch scatter entropy and depth entropy have a moderate
effect. In Windows 7, we find that branch activity and branch scat-
ter entropy both have a large effect (up to 70%), however they also
have wide variation.

The majority of the metrics have a positive relationship with post-
release failures, except for the entropy metrics, which have a nega-
tive relationship. This finding makes intuitive sense, since entropy
is high when the proportions across the different branches are
equal. Therefore, having a low branch scatter entropy value means
that software components that are mainly developed in one branch

 Base Model Model 2 Model 3 Model 4 Model 5

log(Size) ↑ ↑ ↑ ↑ ↑

log(Churn) ↑ ↑ ↑ ↑ ↑

log(Complexity) ↑ ↑ ↑ ↑ ↑

log(Dev. Changes) ↑ ↑ ↑ ↑ -

log(No. Files) ↑ ↑ ↑ ↑ ↑

Branch Activity

↑ ↑ ↑ ↑

log(Branch Scatter)

- - -

Branch Scatter Entropy

↓ ↓ ↓

Low Branch Depth

- -

log(High Branch Depth)

- -

Branch Depth Entropy

- -

Branch Groups

↑

R2 17% 18% 19% 19% 36%

Table 2. Post-release failure models for Windows 7. Arrows indicate effect on failures. Table 3 shows
magnitude of effects.

Figure 3: Effect of branch scatter entropy on post-release

failures in Windows 7

Figure 2: Effect of branch activity on post-release

failures in Windows Vista

family have less post-release failures than components that are
developed an equal amount across different branch families. One
exception is branch scatter entropy in Windows Vista, which has a
small, but positive effect. One possible explanation is that Win-
dows Vista had few branch families, therefore, branch scatter en-
tropy did not play a major role.
Our results on Windows Vista and 7 can be summarized:
• H1. Branch activity: has a negative impact on software quali-

ty. It can increase post-release failures by up to 59% in Win-
dows Vista and up to 51% in Windows 7.

• H2a. Branch Scatter: has a negative impact on software quali-
ty. It can increase failures by up to 40% in Windows Vista.

• H2b. Branch Scatter Entropy: has a slight positive impact on
software quality in Windows Vista and negatively impacts
software quality in Windows 7. It can increase failures by up to
43% in Windows 7.

• H3a and b. Branch Depth and Branch Depth Entropy: have
very little to no impact on software quality.

6. BRANCHING STRATEGIES
Thus far, we have mainly focused on the three hypotheses
surrounding the effects of branching on software quality at the
attribute level. Our findings showed that branch activity, and
branch scatter effect the software quality of components in
Windows Vista and Windows 7 and branch depth only had a
moderate effect on quality in Windows Vista.
However, one question that still lingers is how to best align the
branching structure? Traditionally, branch structures are aligned in
one of two ways: to match the architecture of the software system
or to match the organizational structure.

Aligning the branching structure with the architectural structure
means that each branch will be dedicated to a component of the
software. For example, in a layered software architecture, a branch
family will be created for each layer. Branches within the branch
family can be used to develop sub-components and so on. The
advantage of matching the branching structure with the
architectural structure is that changes to a component mostly
happen on the same branch, thereby minimizing integrations.

Aligning the branching structure along the organizational structure
means that branches match team boundaries. In such a scenario,
each team manager will have his own branch family. The individu-
al branches within the branch family will be assigned to different
sub-teams, managed by the different team leads under that manag-
er. The advantage of matching the branch structure with the organi-
zational structure is that the personnel working on the branches are
close organizationally, making coordination and communication
much simpler.

We built linear regression models that examined the relationship of
organizational and architectural mismatch of individual branches
with branch quality. All measures of organizational mismatch --
number of development leads and number of managers that made
changes on a branch -- and architectural mismatch – number of
subsystems changed on a branch – were statistically significant (p <
0.05) and had a negative impact; increased mismatch decreased
quality.

Table 4 shows the results of our analysis. We find that organiza-
tional mismatch provided a better fit (i.e., higher R2) when model-
ing branch quality in both, Windows Vista and Windows 7. The
effects of our measures of organizational and architectural
measures on defects in branches are shown in Table 5 (same format
as Table 3). This finding indicates that branches that cross-cut or-
ganizational boundaries have a higher correlation with post-release
failures than branches that cross-cut architectural boundaries.
Therefore, we suggest that, contrary to traditional belief, branching
structures should not only align according to architectural structure
of the software, but also according to its organizational structure.

Our finding complements prior work that showed organizational
metrics outperform the traditional process and product metrics in
modeling software quality at the component level [13]. The differ-
ence between prior work and ours is that we examine the failures
on a per branch basis and compare the effects of architectural vs.
organizational mismatch rather than examining only organizational
mismatch. With regard to our hypotheses, we conclude:
• H4a: Branching according to architectural structure: Ar-

chitectural mismatch increases post-release failures in both re-
leases of Windows.

• H4b: Branching according to organizational structure:
Organizational mismatch increases post-release failures in both
releases of Windows.

• Architectural vs. Organizational Mismatch: Organizational
structure has a stronger relationship with failures than architec-
tural mismatch.

7. IMPLICATIONS
7.1 Future Research
Our work has implications for future work. Our findings indicate
that branching does indeed have an effect on post-release failures.
At the same time, we believe that there are scenarios where more

Release Metric Min % Max % Direction

Windows
Vista

Branch
Activity 85±2.9 159±11 Positive

Branch Scatter 98±1.2 140±10.5 Positive

Branch Scatter
Entropy 83±3.8 111±2.3 Positive

Low Branch
Depth 92±3.8 141±15.4 Positive

Branch Depth
Entropy 86±8.4 111±5.2 Negative

Windows
7

Branch
Activity 78±7.4 151±26.2 Positive

Branch Scatter
Entropy 84±58 143±20.8 Negative

Table 3: Summary of metric relationships with failures

 Vista Windows 7
Arch mismatch 0.426** 0.308**

Org mismatch 0.543** 0.321**

Org + Arch 0.594** 0.385**

(p<0.01 **; p < 0.05 *)
Table 4: Model fit (R2) of architectural and organizational

mismatch

branching activity and scatter is expected, and we are not
advocating a “branch-free” development process. For example,
globally distributed teams, that are not able to communicate
frequently may have more branching activity than co-located
teams. This increase in branching activity is due to the fact that
distributed teams are more concerned about keeping each other up-
to-date and avoiding conflicts (since conflicts will require them to
communicate). Our experience in talking with developers is that
many failures that they deem “caused” by branching are in fact not
directly caused by the creation of a branch, but rather by issues
such as unmet (and sometimes unknown) coordination needs, poor
integration work, and changes that propagate to the rest of the
project late, all that result from how teams work as a result of using
branches.
We have identified which concrete aspects of branching are related
to decreased quality. However, changing the branching structure
will only affect quality to the degree that they change the malignant
behavior and process problems that lead to problems to begin with.
Indeed, our experience studying open source projects that use
branching heavily [5] [26] suggests that different projects use
branches in their development processes differently. Understanding
which “branch processes” lead to better outcomes than others in
different contexts is a clear avenue for future research, and we
exhort others to study this and report their findings (along with
contextual details [27]) as we do the same in contexts at Microsoft.

7.2 Practical Implications
Our results have important practical implications. Based on our
findings in this study, we make the following recommendations to
software practitioners:

• Practitioners should aim to reduce branch activity since it may
lead to an increase in the likelihood of failures.

• Practitioners should aim to reduce the scattering of develop-
ment across many branch families since branch scatter in-
creases the likelihood of failures in Windows Vista.

• When deciding how to best align branch structure, organiza-
tional mismatch should be closely considered by practitioners
since it has a stronger relationship with failures than architec-
tural mismatch.

Based on our findings, we are working with product groups within
Microsoft and suggesting that, in addition to aligning branching
structure according to architectural structure, branching structures
should align with the organizational structure of their teams. When
combined with prior work that empirically evaluates Conway’s
Law ([14] [13]), this study provides further evidence that the

makeup and organization of software teams has a direct relation-
ship with quality. Development projects (especially those at large
scale) would do well to consider this mounting body of evidence.

8. THREATS TO VALIDITY
Threats to Construct Validity: consider the relationship between
theory and observation, in case the measured variables do not
measure the actual factors. We use post-release failures to measure
software quality. In certain cases, it might be more beneficial to use
pre-release failures as a measure of quality since branching may
cause integration failures that are often reported as pre-release
failures. However, in our case changes were used to identify pre-
release failures, therefore, using them to measure quality as well
would introduce bias in our study. More importantly, post-release
failures represent those failures not caught by QA processes and are
more costly as they are customer-facing failures.

When evaluating the effect of architectural and organizational
mismatch on branch quality, we measured branch failures as a ratio
of development that a component had on that branch times the
number of failures for that component. Ideally (and if possible),
one would map each failure to the branch that the it was
introduced in. However, we were unable to create such a mapping
due to lack of data.

Threats to External Validity: consider the generalization of our
findings. The studied projects are both developed by Microsoft and
follow processes that are defined by the development and
management teams at Microsoft. A common misconception about
industrial research at large companies such as Microsoft is that the
software projects are not representative of other software projects
and thus not valuable. This is not true. While projects might be
larger in size, most development practices at Microsoft are adapted
from the general software engineering community outside
Microsoft. Many commercial and OSS projects also use branches
to partition work and filter changes based on quality and this study
represents a first step in examining the relationship between
branching and quality. Therefore, we believe that this study can be
replicated on other large software systems that use branches.
Another frequent misconception is that empirical research within
one company or one project is not good enough, provides little
value for the academic community, and does not contribute to
scientific development. Historical evidence shows otherwise.
Flyvbjerg provides several examples of individual cases that
contributed to discovery in physics, economics, and social science
[28]. W. I. B. Beveridge observed for social sciences: “More
discoveries have arisen from intense observation than from
statistics applied to large groups” (as quoted in Kuper & Kuper
[29] p. 95). This should not be interpreted as a criticism of research
that focuses on large samples or entire populations. For the
development of an empirical body of knowledge as championed by
Basili [30], both types of research are essential.

Lastly, a common misinterpretation of empirical studies is that
nothing new is learned (e.g., “I already knew this result”).
However, such wisdom has rarely been shown to be true and is
often quoted without scientific evidence. This paper provides such
evidence: Most common wisdom and intuition is confirmed (e.g.,
“binaries with more branch activity tend to have more failures”)
while some is challenged (e.g., “branches should be divided along
architectural boundaries”).

9. CONCLUSION
We have presented the first, but hopefully not last, empirical
evaluation of the relationship between various aspects of branch

 Vista Windows 7

Metric Min % Max % Min % Max %

Managers 100±5 135±24 100±6 146±34

Leads 78±6 201±25 83±8 156±29

Engineers 65±8 217±24 67±14 169±25

Components 92±10 120±8 88±9 119±11

Subcomponents 88±9 130±9 89±9 113±11

Table 5: Summary of organizational and architectural
mismatch on branch quality

use in a software project and post-release quality. We have
demonstrated not only that branch activity and branch scatter lead
to decreased quality, but we have also quantified the magnitude of
the relationship. Further, we have evaluated two differing
branching strategies and found that organizational alignment is
more important than architectural alignment, thereby allowing
software teams to make more informed decisions about their
branching structure. This evidence is being used within Microsoft
and can be of value to other software projects that use branching, or
are considering it, as well.

10. REFERENCES
[1] Walrad, C. and Strom, D. The importance of branching

models in SCM. Computer (2002), 31--38.

[2] Appleton, B., Berczuk, S., Cabrera, R., and Orenstein, R.
Streamed Lines: Branching Patterns for Parallel Software
Development. Vol. 2002, 1998.

[3] Premraj, R., Tang, A., Linssen, N., Geraats, H., and Vliet, H.
To Branch or Not to Branch? In Proceeding of the 2nd
workshop on Software engineering for sensor network
applications. 81-90, (2011).

[4] Wingerd, L. and Seiwald, C. High-Level Best Practices in
Software Configuration Management. In Proceedings of the
Symposium on System Configuration Management. 57-66,
(1998).

[5] Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán,
D.M., and Devanbu, P.T. The promises and perils of mining
git. In Mining Software Repositories.1-10, (2009).

[6] Bird, C., Zimmermann, T., and Teterev, A. A Theory of
Branches as Goals and Virtual Teams. In Proceedings of the
International Workshop on Cooperative and Human Aspects
of Software Engineering. 53-56, (2011).

[7] Midha, A.K. Software configuration management for the 21st
century. Bell Labs Technical Journal, 2 (1997), 154--165.

[8] Buffenbarger, J. and Gruell, K. A Branching/Merging Strategy
for Parallel Software Development. In System Configuration
Management. 86-99, (1999).

[9] Perry, D.E., Siy, H.P., and Votta, L.G. Parallel changes in
large-scale software development: an observational case
study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 10 (2001), 308--337.

[10] Nagappan, N. and Ball, T. Use of relative code churn
measures to predict system defect density. In Proceedings of
the 27th international conference on Software engineering
(2005), 284--292.

[11] Briand, L., Daly, J.W., and Wust, J. A Unified Framework for
Cohesion Measurement in Object-OrientedSystems. Empirical
Softw. Engg., 3, 1 (July 1998), 65--117.

[12] Brun, Y., Holmes, R., Ernst, M.D., and Notkin, D. Proactive
Detection of Collaboration Conflicts. In Proceedings of the
8th Joint Meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE11). 168-
178, (2011).

[13] Nagappan, N., Murphy, B., and Basili, V.R. The Influence of

Organizational Structure on Software Quality: An Empirical
Case Study. In Proceedings of the International Conference on
Software Engineering. 521-530, 2008.

[14] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., and Carley,
K.M. Identification of coordination requirements: implications
for the Design of collaboration and awareness tools. In
Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work (2006), 353--362.

[15] Shannon, C. A mathematical theory of communication. The
Bell System Technical Journal, 27 (1948), 379--423.

[16] D'Ambros, M., Lanza, M., and Robbes, R. An extensive
comparison of bug prediction approaches. In Mining Software
Repositories. 31-41, (2010).

[17] Hassan, A.E. Predicting faults using the complexity of code
changes. In International Conference on Software
Engineering. 78-88, (2009).

[18] Conway, M. How do committees invent? Datamation, 14, 4
(1968).

[19] Herbsleb, J.D., Mockus, A., Finholt, T.A., and Grinter, R.E.
An Empirical Study of Global Software Development:
Distance and Speed. In Proceedings of the 23rd International
Conference on Software Engineering. 81-90, (2001).

[20] Mockus, A. Organizational volatility and its effects on
software defects. In ACM SIGSOFT International Symposium
on Foundations of Software Engineering. 117-126, (2010).

[21] Eaddy, M., Zimmermann, T., Sherwood, K.D., Garg, V.,
Murphy, G.C., Nagappan, N., and Aho, A.V. Do Crosscutting
Concerns Cause Defects? IEEE Transactions on Software
Engineering. Vol. 34, 4. 497-515, (2008).

[22] Ostrand, T.J., Weyuker, E.J., and Bell, R.M. Programmer-
based fault prediction. In International Conference on
Predictive Models in Software Engineering. 1-10, (2010).

[23] Cataldo, M., Mockus, A., Roberts, J.A., and Herbsleb, J.D.
Software Dependencies, Work Dependencies, and Their
Impact on Failures. IEEE Transactions on Software
Engineering, 35, 6 (2009), 864--878.

[24] Kutner, M., Nachtsheim, C., and Neter, J. Applied Linear
Regression Models. , 2004.

[25] Cataldo, M., Mockus, A., Roberts, J.A., and Herbsleb, J.D.
Software dependencies, work dependencies, and their impact
on failures. Software Engineering, IEEE Transactions on, 35
(2009), 864--878.

[26] Barr, E.T., Bird, C., Rigby, P.C., Hindle, A., German, D.M.,
and Devanbu, P. Cohesive and isolated Development with
Branches. In International Conference on Fundamental
Approaches to Software Engineering. To appear, (2012).

[27] Murphy-Hill, E.R., Murphy, G.C., and Griswold, W.G.
Understanding context: creating a lasting impact in
experimental software engineering research. In Proceedings of
the Workshop on Future of Software Engineering. 255-258,
(2010).

[28] Flyvbjerg, B. Five misunderstandings about case-study
research. Qualitative inquiry, 12 (2006), 219-245.

[29] Kuper, A. and Kuper, J., eds. The Social Science
Encyclopedia. Routledge, 1985.

[30] Basili, V.R., Shull, F., and Lanubile, F. Building knowledge
through families of experiments. IEEE Transactions on
Software Engineering, 25 (Jul/Aug 1999), 456-473.

