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ABSTRACT
A plethora of recent work leverages historical data to help prac-
titioners better prioritize their software quality assurance efforts.
However, the adoption of this prior work in practice remains low. In
our work, we identify a set of challenges that need to be addressed
to make previous work on quality assurance prioritization more
pragmatic. We outline four guidelines that address these challenges
to make prior work on software quality assurance more pragmatic:
1) Focused Granularity (i.e., small prioritization units), 2) Timely
Feedback (i.e., results can be acted on in a timely fashion), 3) Es-
timate Effort (i.e., estimate the time it will take to complete tasks),
and 4) Evaluate Generality (i.e., evaluate findings across multiple
projects and multiple domains). We present two approaches, at the
code and change level, that demonstrate how prior approaches can
be more pragmatic.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, per-
formance measures

General Terms
Software Quality Assurance

Keywords
Unit Testing, Software Metrics, Change Risk

1. INTRODUCTION
Prior studies show that more than 90% of the software develop-

ment cost is spent on maintenance and evolution activities [2, 11].
Other studies showed that an average Fortune 100 company main-
tains 35 million lines of code and that this amount of maintained
code is expected to double every 7 years [10]. Software Quality
Assurance (SQA) is one area that takes up a large amount of this
maintenance effort [5]. Therefore, practitioners are in dire need
of pragmatic approaches to assist them effectively prioritize SQA
efforts.
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A significant amount of recent research has focused on the priori-
tization of SQA efforts, fueled by the formation of the Mining Soft-
ware Repositories (MSR) field and the wide use of software repos-
itory data. The majority of this work focuses on code level quality
(e.g., predicting buggy software locations), while other work ex-
plores change level quality (e.g., predicting buggy changes). How-
ever, the adoption of these approaches into practice remains low [3,
5]. This low adoption may be attributed to many reasons. For ex-
ample, most defect prediction work provides predictions at the file
level, a granularity deemed too coarse for practical use [5].

In this work, we study the prioritization of SQA efforts at the
code and change levels from a pragmatic point of view in order to
provide software practitioners with pragmatic approaches that help
them in the prioritization of SQA efforts. Our approache is built
on four guidelines that practitioners demand from SQA approaches
to significantly increase their chance of adoption in practice. They
are:

1. Focused Granularity: the unit of prioritization must be small
enough (i.e., function/method level) such that tasks can be
easily assigned [5],

2. Timely Feedback: must be able to act on the feedback/results
of the approach in a timely fashion to maximize the useful-
ness of the feedback [7],

3. Estimate Effort: practitioners should be aware of the amount
of effort needed for the task at hand to better allocate re-
sources [9],

4. Evaluate Generality: the approaches must be evaluated on
multiple projects that cover multiple domains (i.e., open source
and commercial) to clearly understand the implications of the
findings [5].

In addition to the mention of these guidelines in previous re-
search work, these guidelines are the outcome of numerous discus-
sions with software engineering practitioners from a large software
company where I spent 1.5 years as a SQA specialist and 1 year as
an embedded SQA researcher.

The code level and change level work complement each other.
Code level quality assurance will assure a high quality of already
implemented code (e.g., evolving and legacy code). On the other
hand, change level quality assurance takes a more pro-active ap-
proach to assure a high level of quality for new code changes (e.g.,
new features).

We show how we can extend and enhance prior work to consider
these pragmatic guidelines. For example, at the code level we pro-
vide an approach to help practitioners prioritize the creation of unit
tests (i.e., we tell them which functions to create unit tests for first).
At the change level, we propose a pragmatic approach that flags
risky code changes for closer examination (e.g., code review).



The rest of the paper is organized as follows. Section 2 pro-
vides a motivating example for the work. Section 3 highlights our
research hypothesis. Section 4 discusses the current state of the
work. Section 5 examines related work. Section 6 concludes the
paper.

2. MOTIVATING EXAMPLE
Lisa manages a large software team that consists of a number of

developers and testers. Lisa wants to improve the overall quality of
the software produced by her team.

The testing team focuses on testing already-implemented code
(e.g., legacy code). To improve the effectiveness of their testing in
finding bugs, Lisa wants to be able to prioritize for which functions
to write unit tests. Since this already-implemented code has a rich
set of data in the software repositories, Lisa can leverage this data
to know which functions to write unit tests for.

Lisa needs an approach that analyzes her historical data and pro-
vides her with a list of functions (Focused Granularity) to write
unit tests for. Lisa must be able to act on the results of this analy-
sis in a timely fashion (Timely Feedback), so that tests can be cre-
ated quickly. Furthermore, Lisa wants to make sure she knows
how much time it will take to write the unit tests (Estimate Ef-
fort). Lastly, Lisa would like to explore the generality of the ap-
proach (Evaluate Generality) to better understand how to apply the
approach in different projects that her team manages (e.g., can a
model created using one project be used in other projects).

On the other hand, the development team makes code changes
that either implement new features or perform general maintenance
(e.g., bug fixes). Lisa wants to be more pro-active and find prob-
lems before they even get into the code. She wants to prioritize the
review of the riskiest changes.

In this case, Lisa needs an approach that can determine the over-
all risk of a particular change by analyzing the history of the code
being changed. For each change, the functions/methods (Focused
Granularity) that were changed are shown, so her team knows ex-
actly what to review. Since the analysis is being done at the change
level, the results of the approach need to be returned as soon as
a change happens, such that developers can act while the changes
are still fresh in their mind (Timely Feedback). In order to balance
the reviewing work with the development work, the effort required
to review the change must be provided (Estimate Effort). Finally,
Lisa would like to explore the generality of the metrics used to de-
termine the risk of the change, to know whether these metrics are
project specific or if they can work on different projects (Evaluate
Generality).

3. RESEARCH HYPOTHESIS
Software repositories, such as source control and bug reposito-

ries, are commonly used in practice for record keeping purposes.
However, the information in these repositories can be mined and
analyzed to assist in future decision making [5]. A large amount
of prior work in the area of Empirical Software Engineering and
Mining Software Repositories leverages this data to validate var-
ious hypotheses and build useful techniques. For example, Zim-
mermann et al. [18] leverage the data stored in source control and
bug repositories to identify buggy files in the Eclipse Open Source
project.

In this thesis, we leverage historical data stored in software repos-
itories to propose two approaches - one at the code level and one
at the change level. These approaches differ from previous work in
that they are designed to be pragmatic (according to our aforemen-
tioned guidelines). Our underlying research hypothesis is:
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Pragmatic SQA prioritization approaches are needed in
practice. These approaches need to provide recommenda-
tions at a fine-granularity, offer results that can be acted
on in a timely manner, provide an estimate of the effort re-
quired to complete the task and be examined across various
projects.

4. CURRENT STATE OF THE WORK
In this section, we report the current state of the work. We have

completed the majority of the code level quality work that is related
to the prioritization of unit test creation. We are currently working
on the change level quality work.

Code Level: Prioritization of Unit Test Creation
Motivation: To improve the quality of their software, practition-
ers of large software systems test their systems extensively. This
testing is done in multiple forms, for example, by performing func-
tional testing, unit testing and performance testing. In this work,
we focus on the problem of prioritization of unit test creation (i.e.,
which parts of the code we should write unit tests for).

This problem is a very important one, since in most large soft-
ware systems, it is not practically feasible to write unit tests for all
of the code base. For example, if a team has enough resources to
write unit tests to assess the quality of 100 lines of code per day, it
would take them 27 years to write unit tests for a 1 million lines of
code (LOC) system [14].
Approach: We present an approach that uses the history of a project
to prioritize the writing of unit tests. The approach uses heuristics
to recommend a prioritized list of functions to write unit tests for.
Our approach is pragmatic, in that 1) provides results with a fine-
grained granularity (i.e., at the function/method level), 2) takes into
consideration the effort required to write the unit test when rec-
ommending functions to create unit tests for, 3) provides a list of
functions to a practitioner can act on immediately and 4) our re-
sults were verified on a large open source project (i.e., Eclipse) and
a large commercial system.

In a nutshell, the approach extracts a project’s historical knowl-
edge, calculates various heuristics (listed below) and recommends
a prioritized list of functions to write unit tests for.

Extracting Historical Data: We combine source code change in-
formation from the source code control system with bug data stored
in the bug tracking system and map the code changes to the actual
source code functions that changed (Focused Granularity). We are
able to achieve this focused granularity by extracting the source
code of the changed files, comparing them to their previous version
and mapping the changed functions to the change itself.

Calculating Heuristics: We use the extracted historical data to
calculate various heuristics that are used to generate the prioritized
list of functions for testing. We choose to use heuristics that can be
extracted from a project’s history for two main reasons: 1) evolving
software systems have a rich history that we can use to our advan-
tage and 2) previous work in fault prediction showed that history-
based heuristics are good indicators of future bugs (e.g., [1, 13]).

The used heuristics are as follows:
• Most Freq. Modified (MFM): Functions that were modified

the most since the start of the project.
• Most Recently Modified (MRM): Functions that were most

recently modified.
• Most Freq. Fixed (MFF): Functions that were fixed the most

since the start of the project.
• Most Recently Fixed (MRF): Functions that were most re-

cently fixed.



• Largest Modified (LM): The largest modified functions, in
terms of total lines of code.

• Largest Fixed (LF): The largest fixed functions, in terms of
total lines of code.

• Size Risk (SR): Riskiest functions, defined as the number of
bug fixing changes divided by the size of the function in lines
of code.

• Change Risk (CR): Riskiest functions, defined as the number
of bug fixing changes divided by the total number of changes.

• Random: Randomly selects functions to write unit tests for.
Generating a List of Functions: Following the heuristic calcula-

tion phase, we use the heuristics to generate a prioritized list of
functions for which unit tests should be written for first. Each
heuristic generates a different prioritized list of functions. For ex-
ample, one of the used heuristics (i.e., MFM) recommends that we
write tests for functions that have been modified the most since the
beginning of the project. Another heuristic recommends that we
write tests for functions that are fixed the most (i.e., MFF). Once
the initial data processing is done, the lists can be generated imme-
diately. As soon as the practitioner would like to write unit tests,
he/she can generate a list on demand and start to write unit tests for
functions immediately, i.e., no need to wait for further data, such
as static analysis or runtime information (Timely Feedback).

The size of a function, in lines of code, is provided as an indicator
of the amount of effort needed to write the unit test for a function
(Estimate Effort). Previous work also used size as an indicator of
effort [9].
Result: To figure out which heuristic we should use to effectively
prioritize the creation of unit tests, we measure the performance of
the different heuristics using two measures: Usefulness and Per-
centage of Optimal Performance (POP). Due to space limitations,
we only present the results for usefulness. More details on POP are
available in [14].
Usefulness: The first question that comes up after we write unit
tests for a set of functions is - was writing the tests for these func-
tions worth the effort? For example, if we write unit tests for func-
tions that have no bugs after the tests are written, then our effort
may be wasted. Ideally, we would like to write unit tests for func-
tions that have the highest risk of having a bug in the future.

We define the usefulness metric as the percentage of functions
for which we write unit tests that end up having at least one bug af-
ter the tests are written. The usefulness metric indicates how much
of our effort on writing unit tests is actually worth the effort.

The median usefulness values for each of the heuristics in the
commercial system and the Eclipse OSS system are listed in Ta-
ble 1 (Evaluate Generality). The last row of the table shows the
usefulness achieved by the random heuristic. The heuristics are
ranked from 1 to 9, with 1 indicating the best performing heuristic
and 9 the worst.

Our findings show that the LF, LM, MFF and MFM heuristics
should be used to prioritize the creation of unit tests. The approach
was designed in conjunction with a development team from an in-
dustrial partner that praised it for its pragmatic promise.

Change Level: Change Risk Analysis
We are currently working on the second part of the thesis, which
is concerned with change level quality. This approach focuses on
flagging risky code changes for further examination.
Motivation: Practitioners are interested in taking pro-active that
catch bugs before they are injected into the code base. This can
be done by closely identifying the risky changes (i.e., changes that
have a high chance of introducing a bug) and rigourously review-
ing them before they are incorporated into the code base. Since it is

Table 1: Median Usefulness Results of the Commercial (Comm)
and Open Source (OSS) Systems

Med. Usefulness Imp. over rand. Rank

Heuristic Comm
(%)

OSS
(%) Comm OSS Comm OSS

LF 87.0 44.7 3.1X 5.3X 1 1
LM 84.7 32.9 3.1X 3.9X 2 2

MFF 83.8 32.3 3.0X 3.8X 3 3
MFM 80.0 28.1 2.9X 3.3X 4 4
MRF 56.9 16.0 2.1X 1.9X 5 6
CR 55.0 17.4 2.0X 2.0X 6 5
SR 48.8 12.6 1.8X 1.5X 7 7

MRM 43.1 9.9 1.6X 1.2X 8 8

Random 27.7 8.5 - - 9 9

practically infeasible to review every change, having an approach
that can estimate the risk of the changes and prioritize them accord-
ing to their risk would benefit these practitioners in knowing which
changes to focus on first.
Proposed Approach: We plan to extract data about a given change,
in addition to using historical data about the changed functions or
methods, to determine a particular risk of the change. As of now,
we plan to calculate various metrics such as: 1) the amount of churn
in each function due to the change, 2) the spread of the change (i.e.,
how many folders a change spans), 3) the number of total changes
and bug-fixing changes done to the changed functions previously,
and 4) the number of different developers that previously touched
the changed functions and other metrics. For example, if a change
has high churn in a function that is known to be buggy in the past,
then it probably should be flagged as being risky and carefully re-
viewed.

To know which metrics have an impact on the risk of a change,
we plan to extract the various metrics for changes that introduced
bugs (identified using the SZZ algorithm [16]) and compare these
metrics values to the metric values from a clean set of changes
(training data set). Then we plan to build prediction models, us-
ing logistic regression, that use the metrics to predict whether or
not a change will introduce a bug (on a separate testing data set).
These models will tell us which metrics are good predictors of risky
changes. We used a similar approach in our previous work [15] to
narrow down a large set of process and product metrics into a few
that had the greatest impact on the performance of the prediction
models.

Using a similar technique to our code level work in [14], we
will be able to map the change down to the changed functions (Fo-
cused Granularity). This way, practitioners will be able to know
the functions or methods that they should closely review. In addi-
tion, practitioners will be able to generate the list of risky changes
on demand and address the risky changes while they are fresh in
the developers’ minds (Timely Feedback).

The approach will use the number of different functions/methods,
the size of these methods and their spread across different subsys-
tems (i.e., folders) as an indicator of the effort required to review
the changes (Estimate Effort). This effort can be leveraged by the
practitioners to prioritize changes, not only on their risk level, but
also on the amount of effort that their review requires.

To study the generality of our findings, we plan to perform this
study on many projects, from both the open source and commercial
domains (Evaluate Generality). We have partnered with an indus-
trial partner who has provided us access to their source control and
bug repositories and we are in the final stages of the data collec-



tion phase. As for open source projects, we are in the process of
collecting the publicly available data.
Proposed Results: The outcome of the work will be an approach
that can be used to determine risky changes. This approach will
also provide an explanation for the assigned risk value of the change
(e.g., too much churn). The approach will help practitioners take
a pro-active role in assuring that a high level of software quality is
achieved.

5. RELATED WORK
Code Level: Work by Arisholm et al. [1], Graves et al. [4] and Yu
et al. [17] has shown that historical heuristics (e.g., prior changes
and bug fixes) are good indicators of future bugs.

The work closest to our work used the idea of building a cache
that recommends buggy code. Hassan and Holt [6] used change and
fault metrics to generate a Top Ten List of subsystems (i.e., fold-
ers) that managers need to focus their testing resources on. Kim et
al. [8] extended the work in [6] and used the idea of a cache that
keeps track of locations that were recently added, recently changed
and where faults were fixed to predict where future faults may oc-
cur. They performed their prediction at two levels of granularity:
file- and method/function-level.

Our work prioritizes functions at a finer granularity than most
previous work on fault prediction (except for Kim et al.’s approach [8]).
Instead of identifying buggy files or subsystems, we identify buggy
functions. Furthermore, our work considers the effort required to
write the unit tests for the function/method and provides feedback
that can be acted on within a short time frame. Lastly, we val-
idated our study on two large projects from the commercial and
open source domains. Our work puts forward a pragmatic approach
to assist in the prioritization of unit test writing, given the knowl-
edge about the history of the functions.
Change Level: The work that most closely relates to our proposed
work on change risk is the prior work by Mockus and Weiss [12]
and Kim et al. [7]. Mockus and Weiss [12] assess the risk of Ini-
tial Modification Requests (IMR) on the 5ESS commercial project.
IMRs consist of multiple Modification Requests (MR), which are
made up of multiple changes. Our work plans to complement the
previous work in [12] by providing recommendations at a finer
granularity (i.e., at the change level). Furthermore, we plan to con-
sider the effort required to review the change. We plan to validate
our results on commercial and open source projects.

Kim et al. [7] uses features to classify changes as being buggy or
clean. We plan to complement the work by Kim et al. by providing
a measure of the effort required to review a change, by providing
tool support and by validating our results on commercial and open
source projects. Overall, these enhancements will make effort pri-
oritization more pragmatic.

Table 2 summarizes the comparison to the closest related work.

6. CONCLUSION
Practitioners require pragmatic prioritization of quality assur-

ance efforts. Our thesis outlines four guidelines that need to be
adhered to make SQA research more pragmatic. We propose two
approaches. one at the code- level and one at the change level, that
are concerned with the prioritization of unit test creation and the
code review of risky changes. We believe that the outcome of this
thesis will assist practitioners improve the overall quality of their
software.

Table 2: Comparison to the Closest Related Work Using Our
Pragmatic Guidelines

Focused
Granular-
ity

Timely
Feedback

Consider
Effort

Evaluate
General-
ity

Code Hassan [6] No Yes No OSS only
Kim [8] Yes Yes No OSS only

Ours Yes Yes Yes OSS and
Comm

Change Mockus [12] No Yes No Comm
only

Kim [7] Yes Yes No OSS only

Ours Yes Yes Yes OSS and
Comm
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