
Practical Software Quality Prediction
Emad Shihab

Department of Computer Science and Software Engineering
Concordia University

eshihab@cse.concordia.ca

Abstract—Software systems continue to play an increasingly
important role in our daily lives, making the quality of software
systems an extremely important issue. Therefore, a signicant
amount of recent research focused on the prioritization of
software quality assurance efforts. One line of work that has been
receiving an increasing amount of attention is Software Defect
Prediction (SDP), where predictions are made to determine where
future defects might appear. Our survey showed that in the
past decade, more than 100 papers were published on SDP.
Nevertheless, the practical adoption of SDP to date is limited.

In this paper, I highlight the findings of my thesis, which
identifies the challenges that hinder the adoption of SDP in
practice. These challenges include the fact that the majority
of SDP research rarely considers the impact of defects when
performing their predictions, seldom provides guidance on how
to use the SDP results, and is too reactive and defect-centric
in nature. Therefore, I propose approaches that tackle these
challenges. First, I present approaches that predict high-impact
defects. Our approaches illustrate how SDP research can be
tailored to consider the impact of defects when making their
predictions. Second, I present approaches that simplify SDP
models so they can be easily understood and illustrate how these
simple models can be used to assist practitioners in prioritizing
the creation of unit tests in large software systems. These
approaches show how SDP research can provide guidance to
practitioners using SDP. Then, I argue that organizations are
interested in proactive risk management, which covers more
than just defects. For example, risky changes may not introduce
defects but they could delay the release of projects. Therefore, I
present an approach that predicts risky changes, illustrating how
SDP can be more encompassing (i.e., by predicting risk, not only
defects) and proactive (i.e., by predicting changes before they are
incorporated into the code base). Finally, I present a number of
avenues for future research and discuss several lessons learned
during the PhD degree process.

I. INTRODUCTION

Software systems are becoming increasingly complex and
are being used in everything from mobile devices to space
shuttles. The increasing importance and complexity of soft-
ware systems in our daily lives makes their quality a critical,
yet extremely difficult issue to address. The US National
Institute of Standards and Technology (NIST) estimated that
software faults and failures cost the US economy $59.5 billion
a year [1]. Other studies show that an average Fortune 100
company maintains 35 million lines of code and that this
amount of maintained code is expected to double every 7
years [19]. Software Quality Assurance (SQA), i.e., the set of
activities that ensure software meets a specific quality level,
is one area that takes up a large amount of this maintenance
effort [9].

Therefore, a significant amount of recent research has
focused on the prioritization of SQA efforts. One line of work
that has been receiving increasing amounts of attention re-
cently is Software Defect Prediction (SDP), where code and/or
repository data (i.e., recorded data about the development
process) is used to predict where defects might appear in the
future (e.g., [18], [36]). In fact my literature review [25] shows
that in the past decade more than 100 papers were published
on SDP alone.

Nevertheless, the adoption of software engineering research,
especially SDP, in practice has been a challenge [6], [9], [24].
My thesis hypothesized that the limited adoption of SDP is
attributed to the fact that most SDP studies are not designed
with a pragmatic view in mind [16], [31]. This hypothesis
is supported through prior work and numerous discussions
with software engineering practitioners from a large software
company where I spent 1.5 years as a SQA specialist and one
year as an embedded SQA researcher. Based on an extensive
literature review of SDP research in the past decade, I observe
that the following challenges play a key role in the limited
adoption of SDP in practice:

1) Rarely consider the impact of defects: SDP research
rarely considers the impact of defects when providing
recommendations of software locations that should be
addressed [4], [17]. This makes the SDP approaches less
effective since, for example, a documentation defects
tend to have far less impact than security defects.

2) Seldom provide guidance for use of results in prac-
tice: Very few SDP studies focus on what to do once
the predictions are made. Practitioners are left with no
guidance on how to make use of SDP results [9], [16].

In addition, the majority of SDP approaches are reactive in
nature and only focus on predicting defects, i.e., they assume
that defects are already in the code and flag code that these
defects might exist in. However, organizations are interested
in managing risk, which covers more than just defects. For
example, risky changes may not introduce defects but they
could delay the release of projects, and/or negatively impact
customer satisfaction. At the same time, it would be ideal to
proactively flag risky code and address it before is injected
into the code base. I believe that proactive approaches that
predict risky changes are needed [12].

To improve the adoption of SDP in practice, in my thesis, I
propose approaches that demonstrate how prior SDP research
can be tailored to deal with the aforementioned challenges

(i.e., considering the impact of defects and providing guidance
on how to use the results), making SDP more pragmatic. The
thesis contains three main parts, two parts focus on each of
the two aforementioned challenges. The third part proposes
an approach that demonstrates how SDP research can be more
encompassing and proactive. Furthermore, I detail avenues for
future work that can improve the adoption of SDP in practice.
Finally, I discuss some insights on what did and did not work
during the PhD process.

The rest of the paper is organized as follows. Section II
presents the thesis contributions. Section III summarizes the
contributions of the thesis. Section IV identifies several av-
enues for future work. Section V shares some insights on the
PhD process.

II. THESIS CONTRIBUTIONS

The main contributions of the thesis are divided into three
parts. Each part focuses on tackling a specific challenge of
SDP. It is important to note that when evaluating the different
approaches presented in my thesis, I follow an empirical
approach which requires access to historical data. Ideally, I
would like to evaluate each approach on both, data from com-
mercial and data from open source systems. However, this can
be extremely difficult since some systems (e.g., commercial
projects) have specific data that open source systems might not
have. On the other hand, open source systems are more likely
to share their data, whereas, data for commercial systems can
be difficult to obtain (for confidentiality reasons). Therefore, I
did my best to evaluate each approach presented in the thesis
on as many projects as possible, however, some approaches are
evaluated only on commercial systems while other approaches
are evaluated only on open source systems.

Before presenting the thesis contributions, it is important to
note that the thesis provides background on SDP and surveys
the state-of-the-art in SDP. However, due to space limitations,
this survey is omitted and interested readers are encouraged
to read the survey in [25], Chapter 2.

A. Part 1: Considering Impact of Defects

A large body of prior work focuses on predicting post-
release defects in open source and commercial systems [5],
[18], [21], [35], [36]. One of the main reasons for the limited
adoption of prior SDP research in practice is that even though
they show promising accuracy results, all defects are consid-
ered to have the same negative impact. This is not realistic,
because, for example, documentation defects tend to have far
less impact than security defects. Therefore, I believe that there
is a need for SDP approaches to consider impact when making
their predictions [4], [17]. In this part, I present approaches
that focuses on predicting the highest-impacting defects. I
consider three possible definitions of high-impact defects:
breakages (defects that occur in functionality that customers
are used to), surprises (defects that occur in locations where
practitioners did not expect) and re-opened defects (defects
that have to be fixed more than once). My work illustrates
how SDP approaches can be tailored to consider the impact
of defects.

1) Studying and Predicting Breakage and Surprise Defects:
The relationship between various software-related phenomena
(e.g., code complexity) and post-release software defects has
been thoroughly examined [5], [18], [21], [35], [36]. However,
to date these predictions have limited adoption in practice. The
most commonly cited reason is that the prediction identifies
too much code to review without distinguishing the impact
of these defects. In this chapter, I aim to address this chal-
lenge by focusing on high-impact defects for customers and
practitioners. Customers are highly impacted by defects that
break pre-existing functionality (breakage defects), whereas
practitioners are caught off-guard by defects in files that had
relatively few pre-release changes (surprise defects) [32].

I perform an empirical study on a large commercial software
system to study and predict high-impact defects. I mine the
project’s repositories and extract a number of factors related
to code and process, factors related to co-changes and factors
related to time pressures. I present models that can effectively
identify files containing breakage and surprise defects. In
addition, I perform analysis to identify and quantify the effect
of the various factors on the likelihood of a file containing a
breakage or surprise defect.

Our study addresses a number of research questions such
as Can we effectively predict which files will have break-
age/surprise defects?, Which factors are important for the
breakage/surprise defect prediction models? and How much
effort savings do specialized models that focus on break-
age/surprise defect provide over state-of-the-art models?. The
main recommendations based on the findings of the work on
breakage and surprise defects are:

• Practitioners need to consider both, breakage and sur-
prise defects, separately since they are rare, unique and
different. Surprise defects have high severity and indicate
problems in the requirements.

• Using specialized defect prediction models can effec-
tively predict breakage and surprise defects, yielding
sizeable effort savings (3.3% for breakages and 30% for
surprise defects.) over using simple post-release defect
prediction models.

• Traditional defect prediction factors (i.e., the number of
pre-release defects and file size) are good predictors of
breakage defects. However, the number of co-changed
files, the size of recently co-changed files and the time
since the last change should be used to predict surprise
defects.

2) Studying and Predicting Re-opened Defects: Defect fix-
ing accounts for a large amount of the software maintenance
resources. Generally, defects are reported, fixed, verified and
closed. However, in some cases defects have to be re-opened.
Re-opened defects increase maintenance costs, degrade the
overall user-perceived quality of the software and lead to
unnecessary rework by practitioners.

Therefore, I study and predict re-opened defects through
a case study on three large open source projects – namely
Eclipse, Apache and OpenOffice. I build prediction models
that effectively predict re-opened defects [23], [27]. Then, I

analyze the prediction models to determine which factors are
the most important indicators of whether or not a defect will
be re-opened. In particular, I ask two main research questions:
Which factors indicate, with high probability, that a defect
will be re-opened? and Can we accurately predict whether
a defect will be re-opened using the extracted factors?. The
main recommendations based on the findings of the work on
re-opened defects are:

• The occurrence of re-opened defects should be minimized
since they take considerably longer to resolve.

• Practitioners can leverage decision tree prediction models
to accurately predict re-opened defects. Predicting re-
opened defects in three different projects, I was able to
achieve a precision between 49.9-78.3% and a recall in
the range of 72.6-93.5%.

• The factors that best indicate re-opened bugs vary based
on the project. The comment text is the most important
factor for the Eclipse and OpenOffice projects, while the
last status is the most important one for Apache. All of
these factors can be extracted from the bug reports.

B. Part 2: Making Use of SDP Results

Most SDP research today provides black-box type of mod-
els, i.e., a list of defect-prone software locations is given
without any explanation as to why. This makes it difficult to
understand why these models are making their predictions.
To make prediction models easier to understand, I present
an approach that simplifies prediction models. In addition, I
present an approach to prioritize the creation of unit tests in
large software systems (i.e., which parts of the code we should
write unit tests for) to show how SDP results can be applied
in practice (i.e., applying SDP to determine the most defect-
prone functions so they can have unit tests created for them).

1) Simplifying and Understanding SDP Models: Research
studying the quality of software applications continues to
grow rapidly with researchers building regression models that
combine a large number of factors. However, these prediction
models are hard to deploy in practice due to the cost associated
with collecting all the needed factors, the complexity of the
models and the black box nature of the models. For example,
techniques such as Principle Component Analysis (PCA) are
commonly used to merge a large number of factors into
composite factors that are no longer easy to explain.

I use a statistical approach recently proposed by Cataldo
et al. to create and operationalize explainable regression
models [30]. In addition, I show that the approach is able
to quantify the impact of the used factors in a prediction
model on the likelihood of finding post-release defects. Finally,
I demonstrate that the simple models achieve comparable
performance over more complex PCA-based models while
providing practitioners with intuitive explanations on how to
make use of the results. The main recommendations based
on the findings of the work on simplifying and understanding
SDP models are:

• Practitioners should use a small number of metrics in their
prediction models since it makes the prediction models

simple and easy to understand.
• Using a small number of metrics can achieve prediction

and explanative powers similar to more complex models.
On a case study using the Eclipse project, using 3 or
4 metrics achieves precision and recall values that are
comparable to more complex models that use 34 metrics.

2) Prioritizing the Creation of Unit Tests: One major
challenge of SDP research is that it does not provide any
guidance on how to make use of their results. I believe that
this challenge is due to the fact that this SDP work is not
designed with a specific scenario in mind.

I use factors extracted from the development history of
software projects to build simple SDP models that prioritize
the creation of unit tests [28], [29]. The approach is different
from traditional SDP studies in that it performs its predictions
at the function level and it takes into consideration the effort
required to create the unit tests. This approach illustrates how
software development and testing managers can leverage SDP
to efficiently allocation their limited SQA resources. The main
recommendations based on the findings of the work on the
prioritization and creation of unit tests are:

• Indeed, practitioners can leverage the history of a project
to effectively prioritize the creation of unit tests for their
large software projects.

• Using historical data can achieve a three-fold improve-
ment over a naive strategy that randomly selects functions
to write unit tests for.

• Performing a case study on a large commercial and open
source project, we find that the size of a function should
be used to prioritize the creation of unit tests.

C. Part 3: Making SDP Approaches More Encompassing and
Proactive

The majority of SDP research focuses on predicting defects
and is reactive in nature, i.e., it assumes that the defects already
exist in the code, and aim to identify the code that contains
these defects [2], [3], [7], [8], [10], [11], [13], [14], [18], [20],
[22], [33], [34], [36]. However, I believe that organizations
are interested in more than just defects, they are interested
in managing risk. Risk is more encompassing than defects. In
this part, I present an approach to identify risky code changes,
i.e., changes that require additional attention through careful
code/design review and possibly more testing. The work
illustrates how SDP approaches can be more encompassing
and proactive

1) Studying and Predicting the Risk of Software Changes:
Modelling and understanding defects has been the focus of
much of the Software Engineering research today. However,
organizations are interested in more than just defects. In
particular, they are more concerned about managing risk, i.e.,
the likelihood that a code or design change will cause a
negative impact on their products and processes, regardless
of whether or not it introduces a defect.

I conduct a study to predict and better understand risky
changes, i.e., changes for which developers believe that addi-
tional attention is needed in the form of careful code/design

reviewing and/or more testing [26]. The findings and models
are being used today by an industrial partner to manage the risk
of their software projects. The main recommendations based
on the findings of the work on risky software changes are:

• The developer making the change and the team they
belong to need to be considered when studying the risk
of a software change.

• Developers are accurate 96.1% of the time when identi-
fying changes that introduce defects. However, develop-
ers’ identification of risky changes is less reliable when
changes have many related changes.

• Practitioners should use factors such as the number of
lines and chunks added by the changes, the bugginess of
the files being changed, the number of bug reports linked
to the change and the experience of the developer making
the change to identify risky changes.

III. SUMMARY OF THESIS CONTRIBUTIONS

To summarize, the major contributions of the thesis are
listed below. The details regarding each contribution can be
found in the respective publication cited above or the thesis
document [25].

• An extensive review of the state of the art in SDP. Such
a review is of paramount importance at this time since
a large amount (more than 100 papers according to my
review) of research related to SDP has been done in the
last decade, making it a good time to reflect on what has
been addressed and what remains as an open issue in the
field today. This survey provides an empirical foundation
and motivation for the work in my thesis.

• The development of an approach to predict and better
understand high-impact defects. This approach can be fol-
lowed by other researchers to tailor their SDP approaches
so they can focus on high-impact defects. I believe that
such an approach is more applicable than the state-of-the-
art in SDP today, since impact is taken into consideration
when making predictions.

• The development of an approach to simplify SDP models
by reducing the number of used factors. This approach
shows how SDP research can be simplified, making
it easier to understand and use. The presented results
show that my approach can significantly simplify SDP
models and that these simple models are able to achieve
comparable performance to models that are much more
complex.

• The development of an approach to guide the prioriti-
zation of unit test creation. This approach shows how
simple SDP models can be used to prioritize the creation
of unit tests. The presented results show that my approach
outperforms ad-hoc methods used by practitioners today.

• The proposal of an approach that makes SDP more
encompassing and proactive. The approach identifies po-
tentially risky code changes before they are incorporated
into the code base.

IV. FUTURE WORK

I believe that my thesis makes a positive contribution
towards the goal of making SDP research more pragmatic.
However, there are still many open challenges that need to be
tackled in order to increase the adoption of SDP in practice.
I now highlight some avenues for future work.

A. Formally Investigating Reasons for Lack of SDP Adoption
in Practice

In my thesis, I relied on my experience when deciding some
of the challenges that hinder the adoption of SDP in practice.
The reasons given in my thesis are by no means complete. I
encourage future research to conduct more detailed and formal
studies regarding the reasons that hinder the adoption of SDP
in practice.

B. Considering Other Types of High-Impact Defects

In my thesis, I focused on three different types of high-
impact software defects. I believe that this is a good start,
however, there remains more work to do in this area. Differ-
ent types of high-impact defects need to be examined. For
example, another type of defect that might have a high impact
is defects in software artifacts that many other artifacts depend
on. I encourage future research to continue this line of work
and study and predict other types of high-impact defects.

C. Building Tools to Guide Practitioners

Today, most SDP research proposes solutions and empir-
ically evaluates them based on historical data. This type of
work has significantly contributed to the research side of
software engineering, however, very little work actually builds
tools based on their research to advance and applicability of
SDP research in practice. I encourage future research to focus
more on how to build tools so that our research can be easier
to incorporate in industry.

D. More Realistic Evaluations

As shown in my survey [25], the vast majority of SDP
studies evaluate their approaches using the precision and recall
measures. However, as pointed out by other researchers [15]
and from my own industrial experience, standard statistical
measures of performance such as precision and recall might
not be the best way to evaluate the practical value of SDP
approaches. Whenever possible, I strived to obtain feedback
from practitioners about the proposed approaches. I encourage
future research to investigate and propose evaluation criteria
that practitioners use to measure the value of SDP approaches.
I believe that using such criteria will provide a more realistic
evaluation of SDP approaches and significantly improve the
adoption of SDP in practice.

E. Examining Replicability

The majority of SDP research heavily depends on historical
development data. Till now, the availability of open source data
has been relatively easy, however, acquiring commercial data
is still a challenge. The fact that commercial data is not widely

available makes it difficult to examine the repeatability of SDP
studies. Examining repeatability is important since it indicates
how generalizable the finding are. I believe that the entire
software engineering research community needs to address this
issue of making data (especially commercial data) available in
order to facilitate the repeatability of proposed approaches.

V. LESSONS LEARNED DURING THE PHD PROCESS

In this section, I share some of the lessons learned during
the PhD. I divide the section into two parts. First, I discuss
things that worked well during the PhD and second, I discuss
things that I wish I did (most of which are things I did not
realize until I started my faculty position).

A. Things That Worked Well
I list a number of things that worked well for me during

the PhD. Obviously, this is not a complete list, however, it
contains most things that I found to work.

1) Working with Industry: I was fortunate enough to work
closely with industry during the PhD, and the feedback they
provided was invaluable. Especially in an applied field like
Software Engineering, feedback from industry on our research
can be a very frank reality check. Although those reality
checks can lead to disappointing outcomes sometimes (e.g.,
when the perfect algorithm does not perform well in a realistic
setting), it often ends up saving a ton of time and ends up
making the research a lot more practical.

Another positive aspect about collaborating with industry
is that industry is where the majority of real problems occur.
Hence, I often found interesting research problems to work on
just by working or talking to industry. One word of caution
however, is that industry can also hinder your research plan. In
many cases their goals are different than that of a researcher.
For example, in many cases (but not all), industry is interested
in tools or in solving problems that have been solved in the
research community. Therefore, it is critical to set expectations
early in order to avoid disappointments for both, the researcher
and the industrial partner.

2) Performing Community Service: My advisor always
encouraged his students to review papers, volunteer to help at
workshops and conferences, etc. Early on, I knew that doing
this community service was a positive thing, if not for us, at
least for the community. However, I never knew how important
it was for my career. First, serving on program committees
allowed me to see, first hand, high quality and not so high
quality work. Such observations immediately allowed me to
reflect on my own work and realize how I can improve it so
that it can be accepted. Second, in most conferences I served
as PC on, the review phase is often followed by a discussion
phase. Being able to objectively argue for or against a paper,
in my humble opinion, earns you respect from others in the
research community. Having this respect from your colleagues
plays a critical role once you graduate and are writing your
own papers and grant proposals. Lastly, I learned a ton by
reviewing other work, which in turn helped me improve my
own research. From my own experience, I highly recommend
that a PhD student perform some community service.

3) Building Depth and Breadth: During the PhD (and I
assume this holds for most PhD students), I built a strong
and deep understanding in my research topic. However, I
strongly believe that depth is not enough during a PhD. A
PhD student absolutely need to build breadth as well. Having
breadth becomes very important because you will need to
make sure you can do research in more than your area of
specialization, especially once you graduate and become an
independent researcher. This helps in securing funding for my
research program, as well as, makes me attractive to a larger
number of graduate students.

4) Keeping an Agenda: At the beginning of the PhD, I
found it very difficult to get anything done, especially since a
PhD follows a learn-do-succeed/fail process. At some points
in time, it seemed like I did not get anything done. One of
the best things to keep track of my progress and (at the least)
prove to myself that I was indeed making progress was to keep
an agenda of what I did. Keeping an agenda at least doubled
my productivity. It also helped me realize how much time I
spent on some tasks so that when someone like my advisor
says“maybe you should pursue another avenue to solve this
problem”, I can justify to myself that indeed, I have been
spending too much time pursuing something that is fruitless.

5) Teaching: Towards the end of the PhD, I knew that
I wanted to pursue a faculty position. Although research is
an important part of a professor’s job, teaching is of high
importance as well. Therefore, at the end of the PhD, I asked to
teach an undergraduate course. It was one of the most difficult
things I did during the PhD. However, it made the first teaching
experience as a professor so much more effective. Teaching
as a PhD student helped me realize how much time and effort
teaching requires and prepared me in figuring out the balance
between teaching, research and service when I started as a
faculty member. I highly recommend teaching towards the end
of your PhD, especially if you plan on pursuing an academic
career after your PhD.

B. Things I Wish I Did Before Graduating

On the other hand there are some tings that I only realized
were important after I completed the PhD and started to work
as a faculty member. Below are things I wish I was aware of
during the PhD.

1) Writing Grants: It is probably no surprise, but funding
is crucial for any successful research program. Unfortunately,
writing grants to secure funding is something that PhD stu-
dents are rarely exposed to. Therefore, something that I wish I
could have gotten more experience with is writing grants, since
it gives you a big advantage when you start your academic
career. If you get a chance to be involved in any grant writing
during your PhD, make sure you take advantage of it.

2) Recruiting Students: Another big question that faced me
after starting the faculty position is - how can I recruit the
best students? This is often another aspect that is critical to
the success of a faculty position, which is never taught in the
PhD program. If you ever have a chance to be involved in the
recruitment of junior students, make sure you get involved.

Being able to (or even just getting familiar with) evaluate
student applications and know how to determine good students
is an invaluable skill to have as a faculty.

ACKNOWLEDGEMENTS

I thank my advisor Dr. Ahmed E. Hassan for his guidance,
support and advice during the PhD process. Also, I thank all
my collaborators, co-authors and colleagues for all their help. I
thank the Natural Sciences and Engineering Research Council
of Canada (NSERC) for funding parts of my research.

REFERENCES

[1] The economic impacts of inadequate infrastructure for software testing.
http://www.nist.gov/director/planning/upload/report02-3.pdf.

[2] Erik Arisholm and Lionel C. Briand. Predicting fault-prone components
in a java legacy system. In Proceedings of the 2006 ACM/IEEE
International Symposium on Empirical Software Engineering, ISESE
’06, pages 8–17, 2006.

[3] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE Transactions
on Software Engineering, 22(10):751–761, 1996.

[4] Marco D’Ambros, Michele Lanza, and Romain Robbes. On the
relationship between change coupling and software defects. In Proc.
Working Conference on Reverse Engineering (WCRE’09), pages 135–
144, 2009.

[5] Khaled El Emam, Walcelio Melo, and Javam C. Machado. The
prediction of faulty classes using object-oriented design metrics. Journal
of Systems and Software, 56:63–75, February 2001.

[6] Michael W. Godfrey, Ahmed E. Hassan, James Herbsleb, Gail C.
Murphy, Martin Robillard, Prem Devanbu, Audris Mockus, Dewayne E.
Perry, and David Notkin. Future of mining software archives: A
roundtable. IEEE Software, 26(1):67 –70, Jan.-Feb. 2009.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. IEEE Transactions on Software
Engineering, 26(7):653–661, July 2000.

[8] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation
of object-oriented metrics on open source software for fault prediction.
IEEE Transactions on Software Engineering, 31:897–910, October 2005.

[9] A.E. Hassan. The road ahead for mining software repositories. In
Frontiers of Software Maintenance, 2008, pages 48 –57, Oct. 2008.

[10] Ahmed E. Hassan. Predicting faults using the complexity of code
changes. In Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 78–88, 2009.

[11] Israel Herraiz, Jesus M. Gonzalez-Barahona, and Gregorio Robles.
Towards a theoretical model for software growth. In Proc. International
Workshop on Mining Software Repositories (MSR’07), pages 21–28,
2007.

[12] Y. Kamei, E. Shihab, B. Adams, AE. Hassan, A Mockus, A Sinha,
and N. Ubayashi. A large-scale empirical study of just-in-time quality
assurance. Software Engineering, IEEE Transactions on, 39(6):757–773,
June 2013.

[13] Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, and John P.
Hudepohl. Data mining for predictors of software quality. International
Journal of Software Engineering and Knowledge Engineering, 9(5):547–
564, 1999.

[14] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. Classification and
evaluation of defects in a project retrospective. Journal of Systems and
Software, 61:173–187, April 2002.

[15] Paul Luo Li, James Herbsleb, Mary Shaw, and Brian Robinson. Experi-
ences and results from initiating field defect prediction and product test
prioritization efforts at abb inc. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages 413–422, 2006.

[16] Thilo Mende, Rainer Koschke, and Jan Peleska. On the utility of a
defect prediction model during hw/sw integration testing: A retrospective
case study. In Proceedings of the 2011 15th European Conference on
Software Maintenance and Reengineering, CSMR ’11, pages 259–268,
2011.

[17] Audris Mockus, Ping Zhang, and Paul Luo Li. Predictors of customer
perceived software quality. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 225–233, 2005.

[18] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative
analysis of the efficiency of change metrics and static code attributes for
defect prediction. In Proceedings of the 30th International Conference
on Software Engineering, ICSE ’08, pages 181–190, 2008.

[19] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding
software systems using reverse engineering technology perspectives
from the rigi project. In Proceedings of the 1993 Conference of the
Centre for Advanced Studies on Collaborative Research, CASCON ’93,
pages 217–226, 1993.

[20] Nachiappan Nagappan and Thomas Ball. Static analysis tools as early
indicators of pre-release defect density. In International Conference on
Software Engineering(ICSE’05), pages 580–586, 2005.

[21] Nachiappan Nagappan and Thomas Ball. Using software dependencies
and churn metrics to predict field failures: An empirical case study. In
Proceedings of the First International Symposium on Empirical Software
Engineering and Measurement, ESEM ’07, pages 364–373, 2007.

[22] Niclas Ohlsson and Hans Alberg. Predicting fault-prone software mod-
ules in telephone switches. IEEE Transactions on Software Engineering,
22(12):886–894, 1996.

[23] E. Shihab, A Ihara, Y. Kamei, W.M. Ibrahim, M. Ohira, B. Adams,
AE. Hassan, and K.-i. Matsumoto. Predicting re-opened bugs: A case
study on the eclipse project. In Reverse Engineering (WCRE), 2010
17th Working Conference on, pages 249–258, Oct 2010.

[24] Emad Shihab. Pragmatic prioritization of software quality assurance
efforts. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pages 1106–1109, 2011.

[25] Emad Shihab. An Exploration of Challenges Limiting Pragmatic
Software Defect Prediction. Phd thesis, Queen’s University, 2012.

[26] Emad Shihab, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang.
An industrial study on the risk of software changes. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, pages 62:1–62:11, 2012.

[27] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao
Ohira, Bram Adams, Ahmed E Hassan, and Ken-ichi Matsumoto.
Studying re-opened bugs in open source software. Emp. Software
Engineering, 18(5):1005–1042, 2013.

[28] Emad Shihab, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan,
and Robert Bowerman. Prioritizing unit test creation for test-driven
maintenance of legacy systems. In Proc. International Conference on
Quality Software (QSIC’10), QSIC ’10, pages 132–141, 2010.

[29] Emad Shihab, Zhen Ming Jiang, Bram Adams, Ahmed E. Hassan, and
Robert Bowerman. Prioritizing the creation of unit tests in legacy
software systems. Softw. Pract. Exper., 41(10):1027–1048, September
2011.

[30] Emad Shihab, Zhen Ming Jiang, Walid M. Ibrahim, Bram Adams, and
Ahmed E. Hassan. Understanding the impact of code and process
metrics on post-release defects: A case study on the eclipse project.
In Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’10, pages
4:1–4:10, 2010.

[31] Emad Shihab, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan.
Is lines of code a good measure of effort in effort-aware models?
Information and Software Technology, 55(11):1981–1993, 2013.

[32] Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and
Ahmed E. Hassan. High-impact defects: A study of breakage and sur-
prise defects. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 300–310, 2011.

[33] Ramanath Subramanyam and M. S. Krishnan. Empirical analysis of ck
metrics for object-oriented design complexity: Implications for software
defects. IEEE Tran. on Software Engineering, 29(4):297–310, 2003.

[34] T.-J. Yu, V. Y. Shen, and H. E. Dunsmore. An analysis of several
software defect models. IEEE Transactions on Software Engineering,
14(9):1261–1270, 1988.

[35] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects
using network analysis on dependency graphs. In Proceedings of the
30th International Conference on Software Engineering, ICSE ’08, pages
531–540, 2008.

[36] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting
defects for Eclipse. In PROMISE ’07: Proceedings of the Third
International Workshop on Predictor Models in Software Engineering,
pages 1–7, 2007.

