
On the Central Role of Mailing Lists in Open Source
Projects: An Exploratory Study

Emad Shihab Nicolas Bettenburg Bram Adams Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)
Queen’s University

Kingston, K7L 3N6, Canada
{nicbet, emads, bram, ahmed}@cs.queensu.ca

Abstract. Mailing lists provide a rich set of data that can be used to improve
and enhance our understanding of software processes and practices. This infor-
mation allows us to study development characteristics like team structure, ac-
tivity, and social interaction. In this paper, we perform an exploratory study on
the GNOME project and recover operational knowledge from mailing list dis-
cussions. Our findings indicate that mailing list activity is driven by a dominant
group of participants, that it is greatly connected to development activity, yet in-
fluenced by external factors like market competition. Our results provide a broad
picture of the central role played by mailing lists in open source projects.

1 Introduction

Most open source developers communicate through mailing lists. This style of commu-
nication makes mailing lists a rich source of information which researchers can use to
understand software processes and improve development practices. Mailing lists have
been used to infer social structure [4,5,11], identify architectural changes [1], and most
recently to study the code review process [3, 14, 18].

However, understanding the generality of the results derived from mailing lists re-
quires that we first understand how mailing lists are used in practice and the impact
of their usage patterns on the information in the lists. For example, previous studies
(e.g. [4, 5]) studied the social structure of developers using mailing lists, however, does
this social structure change over time? How fast does the structure change?.

The central role played by mailing lists is depicted in Figure 1. Developers use mail-
ing lists to discuss a variety of issues and project decisions [1,10]. Many of these issues
and decisions are related to and affect the source code. These issues are often driven by
external factors such as the introduction of new features in competing products.

In this paper, we perform an exploratory study on the role played by mailing lists.
Performing an exploratory study on mailing lists provides a holistic view of their role.
This holistic view enhances the understanding of the findings of in-depth studies, un-
veils details which may not be apparent through in-depth studies and helps identify
interesting directions for future research.

To perform our study, we use the mailing lists from 22 GNOME projects. The study
centers around the following aspects, shown in Figure 1, in an open source project:



Fig. 1. The central role of Mailing lists in open source projects

Number of

Project name Start date Messages Participants Age (months) Threads Application Domain

Deskbar Applet Oct-05 1,098 106 39 340 Search interface
Ekiga Aug-06 5,389 690 29 1,200 Teleconferencing
Eog Mar-01 458 106 93 233 Image viewer
Epiphany Dec-02 5,735 905 73 1,608 Web browser
Evince Jan-05 1,358 415 48 566 Document viewer
Evolution Jan-00 53,927 6,026 96 15,718 Email client
Games Feb-03 1,590 190 71 531 Computer games
Gdm Mar-00 2,578 675 105 1,040 Display manager
Gedit Apr-00 2,237 530 104 919 Text editor
Multimedia Oct-00 1,646 273 98 507 Multimedia library
Network Aug-03 673 105 65 267 Network tools
Power Manager Jan-06 1,059 199 36 305 Power management
Themes Jan-98 1,310 221 132 447 Window manager
Utils Oct-04 358 106 51 279 Utility applications
Control Center Dec-99 1,478 168 97 311 Configuration
Libsoup May-06 83 24 32 41 HTTP library
Metacity Sep-05 262 48 40 59 Window manager
Nautilus Apr-00 22,488 2,384 105 5,582 File manager
Orca Jan-06 11,930 516 36 3,598 Screen reader
Screensaver Oct-05 139 25 39 30 Screensaver
Seahorse Jun-07 252 34 19 116 Encryption management
System tools Nov-99 1,832 327 98 792 System admin tools

Table 1. General overview of the GNOME mailing lists studied



– Developers: We characterized the communication style of mailing list’s partici-
pants, i.e., the developers from the development mailing lists.

We found that a small number of developers play a central role in driving
the mailing list activity. We also found that these developers remain stable
throughout the lifetime of a project.

– Source code: We explored the impact of mailing list activity on the source code
activity, i.e., changes.

We found that there is a high correlation between mailing list activity and
source code activity.

– External Factors: We examined the effect of external factors, such as competing
products on mailing list activity.

We found that competing products shape and drive many of the discussions
on mailing lists.

Overview of Paper. The rest of the paper is organized as follows: Section 2 dis-
cusses the motivation for using the GNOME project as a case study and presents statis-
tics about the project. We present and analyze our findings in Section 3. The threats
to validity are discussed in Section 4 and the related work is presented in Section 5.
Section 6 concludes the paper.

2 GNOME as a Case Study

In this section, we detail the case study project used in our study. The GNOME project
is composed of approximately two million lines of code and has more than 500 differ-
ent contributors from all over the world [9]. The GNOME project is composed of many
small projects that cover a wide range of applications, e.g., email client, text editor,
and file manager. The main source of communication for GNOME developers is the
developer mailing list for each project. These projects vary in size, age, user and devel-
oper base. We expect these differences in size, age, and domain to have an impact on
the mailing lists of these projects. Therefore, studying the mailing lists of the different
projects can lead to interesting and generalizable findings and open new directions for
future research.

Table 1 presents a general overview of the mailing lists used for this study. The
Project name column lists the name of the GNOME module. The Start date,
Number of Messages, Number of Participants, Age and Number of
Threads columns list the month and year of the first commit to the project’s trunk
(derived by examining the source control repository for the project), the total number
of messages, the number of participants, the age, and the number of threads of the
GNOME projects, respectively. In addition, the Application Domain column lists
the application of the project. All calculations are based on the participation from the
start date listed till the end of 2008, inclusive.



3 Results and Analysis

We now study the three aspects outlined in Figure 1 using the GNOME mailing list
data. Subsections 3.1 and 3.2 cover the developers aspect, subsection 3.3 covers the
source code aspect and subsection 3.4 covers the external factors aspect. We start each
subsection by presenting our motivation to explore the aspect. We then describe the
approach that we used to perform our exploration. Finally, we present our results and
outline our main findings.

Since most of the GNOME mailing lists have low activity, we will often use the
Evolution and Nautilus projects to more closely explore many of our findings since the
two projects account for more than 65% of the total messages. We highlight the results
that generalize for the rest of the 20 projects, where applicable.

3.1 Communication Style in Mailing Lists

Is mailing list activity mostly driven by a few participants (a dominant group) or is the
participation evenly distributed? Does the dominant group engage in discussions with
others or is it mostly involved in internal discussions?

Motivation. The Pareto principle (also known as the 80-20 rule), which states that
the majority of the effects come from a minority of the causes, has applications in many
fields. For instance, research shows that 20% of the code contains 80% of the bugs [8].
We hypothesize that there exist a few key participants (who we call the dominant group)
in mailing lists, that are responsible for most of the messages posted on the mailing list.
Most likely, they are members who are very knowledgeable about the project and use
their knowledge to support newcomers and casual participants (who we call the casual
group). It is important for us to investigate whether these experts exist on mailing lists
for two reasons: 1) one can address his/her questions directly to such experts to receive
a more accurate and speedy response and 2) the discussions of these experts can be used
for future reference by others who are less knowledgeable about the project.

In addition, if such a group exists, we would like to know if they actively engage in
discussions with others who are outside of the dominant group. If in fact they do engage
with others then we can safely assume that newcomers and less experienced developers
will benefit from these experts. If we determine otherwise, i.e. that the dominant group
is a closed group, then newcomers and other participants may be better off reading
previous discussions and learning from them rather than attempting to establish direct
contact with the dominant group members.

Approach. We measured the number of messages contributed by the top 10% most
active participants, who we call the dominant group. We found evidence that in fact
there does exist a dominant group for each of the 22 GNOME mailing lists. The domi-
nant group contributes a large amount of the messages posted.

Then, we examined the active discussion threads and classified these active threads
into threads with:

– Dominant group members only: A high number of such threads implies that the
dominant group is a closed group that does not engage with others.



Fig. 2. Distribution of discussion types in the Evolution project

– Dominant and casual members together: A high number of such threads is a
good indicator of a stimulating mailing list where expert and casual participants
actively engaging in discussions.

– Casual group members only: A high number of this type of discussion would
indicate that the casual members are not integrated into the mailing list.

Results. In addition to finding out that there exists a dominant group in each mailing
list, we quantified their contribution. We found that on average the dominant group
accounts for approximately 60% of the messages. This finding is consistent across all
of the 22 GNOME projects. We did not observe a consistent finding when we considered
the top 20% of the participants (i.e. we did not find evidence of the Pareto principle).

We plot the number of threads for the Evolution and Nautilus projects in Figures 2
and 3, respectively. In both projects, we found that the majority of the active discussions
involve dominant and casual group members. On average, in 82% of the discussions
dominant and casual group members were present. In 16% of the discussions, dominant
group members were discussing exclusively and in the remaining 2% of the discussions
the casual members discussing exclusively. We believe that it is a sign of a productive
mailing list when the two groups actively engage in discussions, with the dominant
group members most likely playing a supporting role for the casual group members.

However, in some cases a high percentage in discussions that involve dominant and
casual members may not be desired. For example, some dominant group members may
be overwhelmed by a high number of questions from casual members (since casual
members may make unreasonable requests from more knowledgeable dominant group
members). Whether a high number of discussions between casual and dominant group
members is indicative of a productive mailing list depends on the product domain and
the mailing list’s members’ knowledge.



Fig. 3. Distribution of discussion types in the Nautilus project

�




�

	
10% of mailing list participants (the dominant group)
contribute 60% of the messages in a mailing list. The
dominant group is very active and is engaging with
outside-members, i.e. casual members.

3.2 Stability of Mailing List Participants

Do dominant group members change over time? If so, how much are they changing by?
How is their stability compared to rest of the mailing list participants?

Motivation. As we have seen in the previous subsection, the dominant group plays
an important role in the mailing list. They contribute the majority of messages posted
and are involved in approximately 96% of active discussions. For this reason, it is quite
important that dominant group members do not change frequently. We study the stabil-
ity of the dominant group. In particular, we measure the variation in the dominant group
over time. A relatively stable dominant group (i.e. one that does not change frequently)
is desirable because it means that dominant group members spend enough time in the
project and achieve a higher level of expertise to better support casual group members.

Approach. To measure the stability of members in the dominant group, we per-
formed two studies:

– Dominant group change over time: We measured the change between two con-
secutive years. This gives us a measure of how much a dominant group changes by
from one year to the next.

– Dominant group change compared to casual group change: We measured the
change of the casual group for two consecutive years and compared it to the change
in the dominant group.



Evolution Nautilus

Year Dominant Casual Dominant Casual

2000 - 01 0.68 0.11 0.73 0.20
2001 - 02 0.74 0.11 0.55 0.20
2002 - 03 0.63 0.16 0.40 0.21
2003 - 04 0.74 0.16 0.85 0.23
2004 - 05 0.84 0.16 0.76 0.24
2005 - 06 0.70 0.19 0.95 0.24
2006 - 07 0.35 0.17 0.88 0.19
2007 - 08 0.80 0.15 0.77 0.16

Average 0.69 0.15 0.73 0.21
Table 2. Cosine distance of dominant and casual groups of the Evolution and Nautilus projects

We used the Cosine Distance (CD) similarity metric to measure the similarity be-
tween the groups in two consecutive years. The CD metric outperforms other simple
measures such as intersection or proportion which only measure the existence of a par-
ticipant but not their level of contribution. The CD similarity is defined as:

CD(P,Q) =

∑
x P (X)Q(X)√∑

x P (X)2
√∑

xQ(X)2
, (1)

where P (X) and Q(X) represent the two input distributions to be compared. A
value of 0 for the CD metric means that the group has changed drastically across two
years with no members in common. A value of 1 for the CD metric indicates that the
group is the exact same (i.e. is it a very stable group).

The Cosine Distance metric takes as input two participation distributions – one for
each of the years under study. Each distribution has the contribution of each of the
participants for that year. So when comparing the dominant group for the year 2000
and year 2001, the 2000 and 2001 participation distribution for the dominant group is
used. One major challenge we faced when conducting this study was the use of multiple
aliases by developers [4]. We used heuristics based on regular expressions to address
this challenge as detailed in our previous work [2].

Results. The calculated CD values for the Evolution and Nautilus projects are
shown in Table 2. It is observed that the dominant group is more stable than the casual
group. On average, the dominant group is 3 times more stable than the casual group.
These two findings are observed across all of the 22 GNOME projects. The same sta-
bility of social structures were also observed with the FLOSS projects [22]. This is a
positive sign about the health of the dominant groups of many of these projects. Dom-
inant group members, who are critically important to the mailing list of the project are
stable enough to pass their knowledge to newcomers and casual group members.



Type of change

Project Add Remove Modify

Evolution 0.83 0.60 0.61

Nautilus 0.32 0.53 0.85
Table 3. Correlation between the number of messages per year and the type of source code change

�
�

�
�

The participants in the dominant group are very stable
over time. On average, they are about 3 times as stable
as casual participants.

3.3 Source Code Activity and Mailing List Activity

Can mailing list activity be used to infer information about source code activity (amount
of work done on the source code)?

Motivation. Since mailing lists are the main source for developer communica-
tion [10], we expect that mailing lists contain useful information about the source code
of a project. We want to explore if we can infer the types of source code changes and the
level of activity done on the source code through the mailing list activity. Because devel-
opers often use the mailing list to discuss their source code changes and get assistance
or feedback on these changes [14], we hypothesize that there will be high correlation
between the mailing list activity and the code activity. Or in other words, the more work
done on the source code, the more it will be discussed on the mailing list and vice-versa.

Approach. We mined the SVN source control repository and extracted the number
of lines added, removed and modified per year for each project. We defined a Code
Activity (CA) metric, defined as:

CA(Y ) = AY +RY +MY , (2)

whereAY ,RY andMY refers to the number of lines of source code added, removed
and modified in year Y , respectively. We used this metric and measured the correlation
between it and the mailing list activity, i.e., the number of messages per year. Further-
more, we examine the correlation between the number of messages and the type of the
performed change (add, delete, modify).

Results. The number of messages per year and the Code Activity for the Evolution
and Nautilus projects are plotted in Figures 4 and 5, respectively. It can be observed
that there is a high correlation between the number of messages on the mailing list and
the Code Activity metric. This finding shows that developers do rely heavily on the
mailing list to discuss source code changes. As for the correlation between the level
of mailing list activity and the type of change, we present the results in Table 3. We
found that in the Evolution project, the highest correlation was between the number of



Fig. 4. Number of messages and Code Activity for the Evolution project

messages and the lines of code added (ρ = 0.83). On the other hand, in the case of the
Nautilus project, we found that the highest correlation is between the number of mes-
sages and the lines of code modified (ρ = 0.85). It seems that in the Evolution project,
participants are discussing code additions more than they are discussing code removal
or modifications, while for the Nautilus project, code modifications are being discussed
more than code additions and removals. We believe that further investigation is needed
here to better understand the rationale for this discrepancy between both projects and
whether it indicates different development and communication styles.

To verify, we measured the occurrence of terms that indicate code additions and
code modifications in the mailing lists of the two projects. Since most commonly, code
additions involve the introduction of new features, we classified the terms “new fea-
tures” and “feature request” as indicators of code additions. Code modifications are
usually carried out to fix bugs which are found during the testing phase and applied via
patches. For this reason, we associate the terms “bug”, “patch”, “testing”, and “main-
tain” to code modifications. We observed that in the Evolution mailing list, the terms
associated with the addition of new features were mentioned in 57% more messages
than on the Nautilus mailing list. On the other hand, the terms associated with code
modifications were mentioned in 75% more messages in the Nautilus mailing list com-
pared to the Evolution mailing list. The findings are consistent with our correlation
results shown in Table 3.�




�

	
Mailing list activity is closely related to source code

activity. In addition, mailing list discussions are good
indicators of the types of source code changes being
carried out on the project



Fig. 5. Number of messages and Code Activity for the Nautilus project

3.4 Effect of External Factors on Mailing List Activity

Can we observe the effect of external factors on mailing list activity?

Motivation. One of the benefits of studying mailing lists is that they can provide
us with knowledge about issues that indirectly affect a project, i.e., external factors.
Market competition and management changes are examples of external factors. Such
knowledge about external factors is often hard to uncover as it is not recorded in the
source code or documentation. However, this knowledge is very important since it helps
explain certain observed behaviors, such as an increase in bugs or the lack of interest in
a project (and maybe its eventual death). We attempt to observe the effect of external
factors on mailing list activity.

Approach. Due to space limitation, we perform the study of external factors on
the Evolution project only. However, we note that our approach can be applied to any
other project. We study the mailing list activity trend and perform two types of analysis:
quantitative and qualitative analysis. In the quantitative analysis study, we treat the bod-
ies of all email messages as a bag-of-words and compare the occurrence of the names
of competing mail clients (“gmail”, “outlook”, and “thunderbird”) to the occurrence of
the terms: “evolution” and “evo” (a short hand form often used to refer to the evolution
project). A rise in the number of times a term occurs indicates that it is being discussed
more, hence it has a greater impact. In the qualitative study, we read through several
email postings to better understand and clarify our quantitative findings.

Results.
Quantitative analysis: Looking at Figure 6, we observe that the activity on the Evo-

lution mailing list is increasing from 2000 to 2001. This increase can be attributed to the
creation of Ximian at the end of 1999, which was created to continue the development



Fig. 6. Messages per year on the Evolution mailing list

of the Evolution project [9]. This acquisition increased the attention and support for the
Evolution project, hence the continuing increase in mailing list activity.

Then, from the year 2001 on, we observe a steady decline in mailing list activity
(except for a small increase in activity in the year 2003). Market competition, along with
organizational changes may have caused this decline. The results of the quantitative
study (which measures the frequency of occurrence of terms in the message bodies
per year) are shown in Figure 7. We observe a steady decrease in the use of the terms
“evolution” and “evo”, suggesting that the Evolution project is being discussed less
frequently. At the same time, there is a steady increase in the number of times its market
competitors “gmail”, “outlook” and “thunderbird” are being mentioned.

Qualitative analysis: We read through several mailing list posting to better under-
stand our aforementioned quantitative findings. The following quotations are excerpts
from discussions that took place when a declining level of activity was observed:

“...Furthermore, I can’t find where in the Tools menu to change this: the option
is no longer present on any of the dialog boxes. Which is why I’m sending this
with Thunderbird...”
“...Unless Ximian implements some features that aren’t important to Ximian but
are important to its users, evo will be relegated to ”toy” status. I’m currently
struggling to remain with my current distro of SuSE+Ximian in my business,
but the lack of meaningful support in both components is forcing my hand to
look around for another solution...”

We believe that these excerpts show that the Evolution mail client was and is losing
market share due to competition from other competing mail clients, such as Thunder-
bird, with many of the postings pointing people to competing products.



Fig. 7. Frequency of terms in the Evolution mailing list

As for the spike in activity on the Evolution mailing list in the year 2003, we believe
this can be attributed to Novell’s acquisition of Ximian in late 2003 [9]. We counted the
occurrence of the term “novell” in the mailing list and found that the number of times
the term “novell” was mentioned on the Evolution mailing list spiked from 13 in 2003 to
574 in 2004 (as depicted in Figure 7). This spike is most likely due to hype surrounding
Novell’s acquisition, which quickly dies off in the coming years.

This study on external factors suggests that mailing lists can be leveraged to study
the effect of external factors on a project. Furthermore, such information can be used to
explain design decisions that happened in the past.�

�
�
�External factors affect mailing list activity.

4 Threats to Validity

In our stability analysis, we used the names of developers as identifiers. Although we
used heuristics to resolve multiple aliases [2] (i.e. participants who use multiple email
address and names), we were not able to deal with some rare cases. Additionally, in our
study we assume that all mailing list participants are developers. This assumption is true
for the vast majority of the cases (especially since we are considering developer mailing
lists), but in some cases, it is possible that a participant on the developer mailing list is
not engaged in any developmental effort.

In our studies on source code activity and external factors, we measure the frequency
of key terms that we associate with specific topics (i.e. the term “maintain” with the
topic maintenance). Although our list is not exhaustive and does not contain all the
terms that may be associated with the respective topic, we believe that the terms used in



our study are the most common and cover the majority of the terms that would be used
to refer to the topic.

Finally, our findings may not generalize to all open source projects.

5 Related Work

Previous work used mailing lists to study the social structure of developers. Bird et
al. [4, 5] used mailing lists to study the social networks created by developers and non-
developers. In their follow-on work [7], they extracted the sub-community structure
from these social network and studied their evolution over time. Ogawa et al. [12] used
Sankey diagrams to visualize evolving networks in mailing lists and concluded that
social behavior can be related to events in a project’s development.

In addition, several studies used mailing lists to study developer morale, work times
and the code review process. Rigby and Hassan [15] performed a psychometric study
on the Apache httpd mailing list to identify the personality types of open-source soft-
ware developers and gain insight on the level of optimism in pre- and post release
phases. Tsunoda et al. [17] used mailing lists to analyze developer work times and
found that the ratio of committer messages sent during overtime periods is increasing
every year. Weissgerber, Neu and Diehl [18] used mailing lists to study the likelihood
of a patch getting accepted.

Furthermore, other studies used mailing lists to study developer coordination, mo-
tivation and knowledge sharing. Yamauchi et al. [19] studied the coordination mecha-
nisms used by OSS developers to achieve smooth coordination. They found that spon-
taneous work coordinated afterward is effective, rational organizational culture helps
achieve agreement among OSS members and communications media, such as CVS and
mailing lists, moderately support spontaneous work. Lakhani and von Hippel [21] used
mailing lists to study the motivating factors of OSS participants to perform mundane
tasks. They found that direct learning benefits is one of the main motivators for these
participants to conduct such tasks. Sowe et al. [20] studied knowledge sharing between
developers in mailing lists. They found that developers share knowledge a lot.

Other work combined the information extracted from mailing lists with informa-
tion from other repositories (e.g. the source code repository). Robles and Gonzalez-
Barahona [16] used information from multiple historical archives to assist in accurately
identifying actors. Baysal and Malton [1] used the similarity between mailing list and
source code archives to identify architectural changes. Bird et al. [6] combined the use
of mailing lists and the source code repository to study the time it takes for developers
to be invited into the core group of a project.

Our work recognizes the central role played by mailing lists and, to the best of our
knowledge, is the first to perform an exploratory study using a large number of mail-
ing lists. The study on the communication style of participants and their stability is
novel and complements previous work. For example, previous work on social network
analysis, developer morale, work times and evolution could have treated dominant and
casual group differently and put more emphasis on the dominant group findings. Do-
ing so would enhance the impact of their findings and provide a better understanding
of the phenomena being observed. The findings from our source code activity and ex-



ternal factors studies can assist researchers who use mailing lists in combination with
source code repositories (e.g. [1, 13]) better understand the relationship between the
two. Further, taking into account the effect of external factors may help explain some
unexpected observations.

6 Conclusions

In this paper, the central role of mailing lists was studied through an exploratory study.
The study centered around three aspects: developers, source code and external factors.

Our findings indicate that a small number of participants (dominant group) account
for the majority of the messages posted on mailing lists. The dominant group is very
active and engaging with others and its composition is very stable (3 times more stable
than casual members). In addition, we found that mailing list activity is closely related
to source code activity and mailing list discussions are good indicators of the types of
source code changes being carried out on the project. Lastly, we showed that external
factors affect mailing list activity.

References

1. O. Baysal and A. J. Malton. Correlating social interactions to release history during software
evolution. In MSR ’07: Proceedings of the Fourth International Workshop on Mining Software
Repositories, page 7, 2007.

2. N. Bettenburg, E. Shihab, and A. E. Hassan. An empirical study on the risks of using of
off-the-shelf techniques to process mailing list data. In ICSM’09: Proceedings of the 25th
International Conference on Software Maintainance, 2009.

3. C. Bird, A. Gourley, and P. Devanbu. Detecting patch submission and acceptance in oss
projects. In MSR ’07: Proceedings of the Fourth International Workshop on Mining Software
Repositories, 2007.

4. C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social net-
works. In MSR ’06: Proceedings of the 2006 international workshop on Mining software
repositories, pages 137–143, 2006.

5. C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining email social net-
works in postgres. In MSR ’06: Proceedings of the 2006 international workshop on Mining
software repositories, pages 185–186. ACM, 2006.

6. C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu. Open borders? immigration
in open source projects. In MSR ’07: Proceedings of the Fourth International Workshop on
Mining Software Repositories, page 6, 2007.

7. C. Bird, D. Pattison, R. D’Souza, V. Folkiv, and P. Devanbu. Latent Social Structure in Open
Source Projects. In FSE ’08: Proceedings of the 2008 ACM SIGSOFT symposium on the
Foundations of Software Engineering, pages 24–35, 2008.

8. B. Boehm and V. R. Basili. Software defect reduction top 10 list. Computer, 34(1):135–137,
2001.

9. D. M. German. The gnome project: a case study of open source, global software development.
Software Process: Improvement and Practice, 8(4):201–215, September 2004.

10. D. M. German. Using software trails to reconstruct the evolution of software: Research arti-
cles. J. Softw. Maint. Evol., 16(6):367–384, 2004.



11. L. Hossain, A. Wu, and K. K. S. Chung. Actor centrality correlates to project based coor-
dination. In CSCW ’06: Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, pages 363–372, 2006.

12. M. Ogawa, K.-L. Ma, C. Bird, P. Devanbu, and A. Gourley. Visualizing social interaction in
open source software projects. Asia-Pacific Symposium on Visualization, 0:25–32, 2007.

13. D. Pattison, C. Bird, and P. Devanbu. Talk and work: a preliminary report. In MSR ’08:
Proceedings of the 2008 international workshop on Mining software repositories, pages 113–
116, 2008.

14. P. C. Rigby, D. M. German, and M.-A. Storey. Open source software peer review practices: A
case study of the apache server. In ICSE ’08: Proceedings of the 30th international conference
on Software engineering, pages 541–550, 2008.

15. P. C. Rigby and A. E. Hassan. What Can OSS Mailing Lists Tell Us? A Preliminary Psycho-
metric Text Analysis of the Apache Developer Mailing List. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software Repositories, page 23, 2007.

16. G. Robles and J. M. Gonzalez-Barahona. Developer identification methods for integrated
data from various sources. SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

17. M. Tsunoda, A. Monden, T. Kakimoto, Y. Kamei, and K.-i. Matsumoto. Analyzing oss de-
velopers’ working time using mailing lists archives. In MSR ’06: Proceedings of the 2006
international workshop on Mining software repositories, pages 181–182, 2006.

18. P. Weissgerber, D. Neu, and S. Diehl. Small patches get in! In MSR ’08: Proceedings of the
2008 international working conference on Mining software repositories, pages 67–76, 2008.

19. Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida. Collaboration with lean media:
how open-source software succeeds. In CSCW ’00: Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 329–338, 2000.

20. S. K. Sowe, I. Stamelos, and L. Angelis. Understanding knowledge sharing activities in
free/open source software projects: An empirical study. J. Syst. Softw., 81(3):431–446, 2008.

21. K. R. Lakhani, E. von Hippel, and K. R. Lakhani. How open source software works: Free
user-to-user assistance. Research Policy, 32:923–943, 2003.

22. J. Howison, K. Inoue, and K. Crowston. Social dynamics of free and open source team
communications. In Second Intl Conf on Open Source Systems, pages 319–330, June 2006.


