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Abstract As software systems continue to play an important role in our daily lives, their
quality is of paramount importance. Therefore, a plethora of prior research has focused
on predicting components of software that are defect-prone. One aspect of this research
focuses on predicting software changes that are fix-inducing. Although the prior research
on fix-inducing changes has many advantages in terms of highly accurate results, it has one
main drawback: It gives the same level of impact to all fix-inducing changes. We argue that
treating all fix-inducing changes the same is not ideal, since a small typo in a change is
easier to address by a developer than a thread synchronization issue.

Therefore, in this paper, we study high impact fix-inducing changes (HIFCs). Since the
impact of a change can be measured in different ways, we first propose a measure of impact
of the fix-inducing changes, which takes into account the implementation work that needs
to be done by developers in later (fixing) changes. Our measure of impact for a fix-inducing
change uses the amount of churn, the number of files and the number of subsystems modified
by developers during an associated fix of the fix-inducing change. We perform our study us-
ing six large open source projects to build specialized models that identify HIFCs, determine
the best indicators of HIFCs and examine the benefits of prioritizing HIFCs. Using change
factors, we are able to predict 56% to 77% of HIFCs with an average false alarm (misclas-
sification) rate of 16%. We find that the lines of code added, the number of developers who
worked on a change, and the number of prior modifications on the files modified during
a change are the best indicators of HIFCs. Lastly, we observe that a specialized model for
HIFCs can provide inspection effort savings of 34% over the state-of-the-art models. We be-
lieve our results would help practitioners prioritize their efforts towards the most impactful
fix-inducing changes and save inspection effort.
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1 Introduction

Software quality is of paramount importance to software organizations. However, there al-
ways exists a trade-off between cost (including time to release) and quality. Therefore, a
large amount of software engineering research has focused on helping software organiza-
tions improve the prioritization of their quality assurance efforts. The majority of this prior
research has focused on building bug prediction models at different code granularities (i.e.,
method, file, package) (e.g., [20,46,49, 64,67]). These models are extended by increasing
the information content of predictions [9], while some of them are also built for specific
types of bugs, e.g., reopened bugs [8,57], or breakage bugs [59].

Recent work has argued that the usefulness of file- and package-level bug predictions are
of limited use [18]. These limitations are mainly due to the fact that the recommendations are
too coarse grained (i.e., addressing an entire file or package requires too much effort) [18,
29]. They are also not easily assignable to developers, since many developers may work on
the same files or packages [32,55], or testers, since recommended code parts are not always
linked to test interfaces [43]. Therefore, change-level prediction models are proposed, which
predict code changes that are more likely to induce bugs, namely fix-inducing changes, at the
change/commit level (e.g., [29,32,56,61]). The advantages of change-level predictions are
that 1) the predictions are made at a fine granularity, since changes can be mapped to a small
area of the code, 2) the predictions can be easily and swiftly assigned, since each change has
a specific committer that can address the change immediately after it is committed.

However, one drawback of prior change-level prediction work is the fact that it does
not take into consideration the impact of fix-inducing changes. In other words, the prior
work treats all fix-inducing changes the same. We argue that all fix-inducing changes do
not have the same impact, and that distinguishing the high impact changes will improve
the prioritization of implementation activities. For example, a change that fixes a wrong or
missing link in the help files is much less impactful than a change that fixes a bug due to
incorrect synchronization of threads.

In change-impact analysis research, the impact of a bug can mean different things to
different stakeholders. For example, a high impact change to a developer may be the one
that requires more time and work to debug and find the root cause, to fix the issue or to run
associated tests [34]. The impact of a change done during a debugging, testing or refactoring
activity could also be different than that spent during a bug fix depending on the problem
(e.g. synchronization problem). On the other hand, a high impact change to a customer
may be the one that distorts the core functionality that they depend on. In this paper, we
focus on high impact fix-inducing changes (HIFCs) as seen from a developer’s perspective.
In particular, we define impact in terms of the amount of churn, the number of modified
files and the number of subsystems where the modified files span affected during a fix, and
quantify the most impactful (high impact) fix-inducing changes for developers.

We define our research questions (RQs) as follows:

— RQ1: Can we accurately identify high impact fix-inducing changes?

— RQ2: What are the best indicators of high impact fix-inducing changes?

— RQ3: How much inspection effort does predicting high impact fix-inducing changes
reduce?
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To address our RQs, we perform our study on six large open source projects, namely
GIMP, Maven 2, Perl, PostgreSQL, Ruby on Rails and Rhino. For each project, we iden-
tify fix-inducing changes and their corresponding fixes (i.e., fixing changes). We use churn,
the number of files, and the number of subsystems as a proxy for impact and classify fix-
inducing changes as high- and low-impact using an unsupervised clustering technique. Then,
we build a specialized prediction model to identify HIFCs in RQ1, determine the factors are
the best indicators of HIFCs in RQ2 and quantify the inspection effort savings (i.e., reduc-
tion in false positives) of focusing on these HIFCs in RQ3. We summarize the contributions
of this study as follows:

— Propose a way to determine high impact fix-inducing changes. We use the churn, the
number of files and the number of subsystems modified during bug-fixing changes in
order to determine the impact of those changes. To the best of our knowledge, this is the
first work that studies high impact fix-inducing changes.

— Predict high impact fix-inducing changes. Using a number of code and process factors
extracted at change level, our specialized prediction model is able to identify up to 77%
HIFCs with an average false alarm rate (misclassification) of 16%.

— Identify the best indicators of high impact fix-inducing changes. Using the Mean-
DecreaseAccuracy measure computed in a random forest model, we find that the lines
of code added, the number of developers worked on a change and the number of prior
modifications on the files associated with a change are the best indicators of HIFCs,
whereas the latter two metrics are unique to HIFCs, compared to best indicators of low
impact fix-inducing changes (LIFCs).

— Measure the inspection effort savings of a specialized prediction model. We inves-
tigate the usefulness of building a specialized model by measuring the savings in the
inspection effort, i.e., number of code changes that need to be inspected, and find that
building a specialized model to identify HIFCs provides an average savings of 37% over
state-of-the-art models which simply predict fix-inducing changes.

The remainder of the paper is organized as follows. Section 2 provides a motivating ex-
ample from one project supporting our approach of prioritizing HIFCs. Section 3 discusses
related work on bug prediction at source code and change levels, change impact analysis
techniques and emphasizes the novelty in this study. Section 4 describes the characteriza-
tion of HIFCs. Section 5 presents the experimental setup. Section 6 presents our results.
Section 7 provides a discussion on the techniques used. Section 8 highlights threats to the
validity of our findings, and Section 9 summarizes our work.

2 Motivating Example

To motivate our work on HIFCs, we use two examples of changes taken from the Perl
project. (Figures 1,3). We also use their corresponding (bug) fixing changes (Figures 2,4)
in order to show the differences in terms of impact. In Figure 1, a change is made to merge a
duplicated code. This change was actually buggy, and it needed to be fixed later on, during
the fixing change shown in Figure 2. The fix is a simple pointer error, which modified only
one file and required four lines to be modified.

On the other hand, another change that causes a later fix, i.e., fix-inducing change, is
shown in Figure 3. The change in Figure 3 performs renaming of some variables. However,
this change introduces a bug, and later on, the change in Figure 4 was made to fix it. The
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commit a41cc44e8f73bd00013181fc01efa2336fcb557e
Author: Nicholas Clark <nick@ccl4.org>
Date: Sat Apr 8 15:14:13 2006 +0000

Description:

As av_dup, gv_dup and hv_dup are the same as sv_dup, code in
various branches of Perl_ss_dup() is actually duplicated, so can be
merged.

diff --git a/sv.c b/sv.c

Total churn: 33

commit 337d28f50abb1285c55ea2649c039a2a0083b442
Author: Nicholas Clark <nick@ccl4.org>

Date: Sun Apr 9 21:07:48 2006 +0000

Description:

Fix pointer error in change 27741, spotted by John E. Malmberg.
diff --git a/sv.c b/sv.c

Total churn: 4

Fig. 1: Low inducing

commit 53c4c00cd908b83921217¢c52fa633bcfdd89f0fb
Author: Jarkko Hietaniemi <jhi@iki.fi>
Date: Sun Sep 2 10:02:20 2001 +0000

Description:

Rename the variable: it *used* to be (wrongly) that the code related
to PL_reg_sv (so PL_reg_sv_utf8 was logical) but that is no more
the case: PL_reg_match_utf8 is better.

Fig. 2: Low fixing

commit 46ab32892be40c66fb42b377ee5ee1e8921e1db5
Author: Nicholas Clark <nick@ccl4.org>
Date: Thu Apr 6 15:52:37 2006 +0000

Description:
Move all the regexp state variables into a single structure. This
allows it to be saved, restored and cloned with a single Copy() (but

inevitably still some fixup)
diff --git a/lembedvar.h b/embedvar.h
diff --git a/mg.c b/mg.c

diff --git a/perlapi.h b/perlapi.h

diff --git a/pp.c b/pp.c

diff --git a/pp_hot.c b/pp_hot.c

diff --git a/regcomp.c b/regcomp.c
diff --git a/regexec.c b/regexec.c

diff --git a/sv.c b/sv.c

diff --git a/thrdvar.h b/thrdvar.h

diff --git a/lembedvar.h b/embedvar.h
diff --git a/perl.c b/perl.c

diff --git a/perlapi.h b/perlapi.h

diff --git a/regcomp.c b/regcomp.c
diff --git a/regexp.h b/regexp.h

diff --git a/scope.c b/scope.c

diff --git a/sv.c b/sv.c

diff --git a/thrdvar.h b/thrdvar.h

| Total churn: 52 Total churn: 329

Fig. 3: High inducing Fig. 4: High fixing

fixing change in Figure 4, on the other hand, requires 329 lines to be modified in eight
different files.

Clearly, the fix for the change in Figure 3 has a higher impact than the fix for the change
in Figure 1. This is mainly due to the fact that the developer needs to change many more lines
in different files. Moreover, the number of subsystems that need to be touched to address
each change is different. Similar to prior work [29], we use the root directory name to repre-
sent a subsystem. For example, if a change touches a file with the path, “org.eclipse.
jdt.core/jdom/org/eclipse/jdt/core/dom/Node. java”, then the subsys-
tem is considered to be anything at the level of org.eclipse. jdt.core. The fix for
the change in Figure 1 requires only one subsystem to be modified (which is obvious since
only one file is changed). However, the fix for the change in Figure 3 requires nine different
subsystems to be modified.

Prior work on change-level prediction (e.g. [29], [33]) would classify both changes in
Figures 1 and 3 as fix-inducing with the same level of impact, since both of these changes
required future fixes. However, in our work, we distinguish these two changes by ranking
the change in Figure 3 as more impactful (i.e., high-impact) than the change in Figure 1
depending on the churn, the number of modified files and the number of subsystems where
the modified files span in their corresponding bug fixing changes.
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3 Related Work

We consider three areas of research that are most closely related to our research, and summa-
rize recent advancements in each area: file- and method-level bug prediction, change-level
bug prediction and change impact analysis techniques.

File- and method-level bug prediction. Boehm and Basili [5] present a software defect re-
duction top 10 list. They argue that prediction techniques, such as the one presented here and
in much of the referenced work, can significantly reduce the cost of software defects. There-
fore, a plethora of work has focused on file-level bug prediction. In general, researchers
train prediction models to predict buggy locations (e.g., files or directories). Complexity
metrics (e.g., McCabe’s cyclomatic complexity metric [40]), Halstead operator-operand
counts [22], Chidamber and Kemerer (CK) metrics suite [10]), size (measured in lines of
code) [20, 25, 35], the number of prior changes and bugs are found as good predictors of
bug-prone/buggy locations in software systems [1,3,23,35,46,47,50,67]. Other studies aim
to predict bugs at the method level. Giger et al. [18] use change and code metrics to predict
bug-prone methods. Hata et al. [24] also show that method level predictions perform better
than file level predictions when the effort is taken into consideration.

Some researchers narrow down the scope of bugs that are predicted based on the type
or category of bugs. For example, Shin er al. [60] and Zimmermann et al. [66] focus on
predicting security vulnerabilities which are very few in number and distributed sparsely
into the code. They found that classical software measures (complexity, churn, etc.) predict
security vulnerabilities with low recall values, whereas the code dependencies predict those
with a substantially higher recall [66]. Other studies by Caglayan et al. [9], Misirli et al. [44]
and Shihab er al. [59] build specialized models that aim to predict the scope of the bugs,
e.g., the phase they are reported. These specialized models have shown some improvements
in terms of effort savings, i.e., reducing false alarms compared to traditional models, and
increasing the information content of the prediction outcomes. Guo et al. [21] perform a
study at Microsoft to characterize which bugs get fixed. Their findings showed that bug
reported by reputable personnel and bugs that are likely to be fixed by the same team have a
better chance of getting fixed. They also build a prediction model that can accurately predict
which bugs will get fixed. Kim et al. [31] examine the problem of which warnings should
be fixed first. They propose an algorithm that recommends warnings based on the project
history, which significantly improve the prioritization of warnings.

There are some key differences between the file- and method-level bug prediction re-
search and our study. First, we perform our modelling at the change level instead of the
file- or method-level. This difference is important - performing our predictions at change
level (e.g., after every commit) makes it easier to address these issues since changes can be
flagged while they are still fresh in the developer’s mind, and fixed before they are integrated
with the rest of the code base. Furthermore, changes can be easily assigned to its owner, i.e.,
the developer who made the change, in contrast to files in bug prediction, which may be
changed by many developers, making it harder to decide to whom files must be assigned.
Finally, changes provide a narrower context to address the flagged issue, whereas in bug
prediction, in some cases, a bug spans many files that are changed together. Moreover, our
work complements prior work that builds specialized prediction models since we also build
specialized models that predict fix-inducing changes based on their impact.

Change-level prediction. In addition to file-level bug prediction, there have been studies
that focus on predicting fix-inducing changes.

Sliwerski et al. [61] study fix-inducing changes in Mozilla and Eclipse, and find that
fix-inducing changes tend to be part of large transactions, and that bug fixing changes and
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changes done on Fridays have a higher chance of inducing bugs. Kim ez al. [33] present an
approach to accurately identify fix-inducing changes using annotation graphs. They show
that their approach can improve the accuracy (i.e., lead to less false positives and false nega-
tives) over the SZZ algorithm. Similarly, Eyolfson et al. [14] observe a correlation between
a change’s bugginess and the time of the day the change was committed, and the experience
of the developer making the change in the Linux and PostgreSql projects. Kim et al. [32]
use change features like the terms in added and deleted deltas, terms in directory/file names,
terms in change logs, terms in source code, change metadata and complexity metrics to clas-
sify changes as being buggy (i.e., fix-inducing) or clean (i.e, not fix-inducing). Yin et al. [65]
performed a study that characterizes incorrect bug-fixes in Linux, OpenSolaris, FreeBSD
and a commercial operating system. They find that concurrency bugs are the most difficult
to correctly fix. Giger et al. [19] use social network and object-oriented metrics to predict
the type of code changes, such as condition changes, interface modifications and inserts or
deletions of methods. Shihab et al. [56] study risky (fix-inducing) changes - as deemed by
the developers who committed them. They find that lines of code added, bugginess of the
touched files, the number of bug reports linked to a commit and the developer experience are
the top indicators of risky changes. Herzig et al. [26] investigate change genealogies, i.e.,
graphs of changes that have mutual dependencies. They show that they are able to effec-
tively predict change genealogies using metrics that capture temporal and spatial influences.
Madhavan et al. [38] present a tool that predicts fix-inducing changes in the IDE. The tool
uses change and code metrics extracted from the changes to make its prediction.

There are some key differences between our work and the aforementioned work. First,
all of the prior work, including our prior work [56], treated all fix-inducing or risky changes
equally. In contrast, this study is based on the fact that all fix-inducing changes are not equal,
and hence, the changes that require the highest amount of work to fix are given a higher pri-
ority. Furthermore, we perform our study on a number of large open source projects, whereas
the most prior work was done on a few open source or commercial projects. This fact is only
good for generalizing our results, even though they all are open source. In addition to simply
predicting high impact fix-inducing changes, we also investigate what factors are significant
indicators of high impact fix-inducing changes, and compare those with the factors of a
general model for fix-inducing changes.

There are other studies that focus more on the risk of larger changes (e.g., entire fea-
tures or service pack updates). Mockus and Weiss [45] assess the risk of Initial Modification
Requests, called IMRs, which are groups of code changes, of the SESS commercial project.
They predict the potential of an IMR to cause a failure (i.e., induce a bug) using IMR dif-
fusion, size, interval, purpose and experience metrics. Czerwonka et al. [11] present their
experiences with CRANE, a tool used within Microsoft for failure prediction, change risk
analysis and test prioritization. The main difference between our work and the work by
Mockus and Weiss [45] and Czerwonka et al. [11] is that we provide recommendations at
a finer granularity (i.e., at the individual change level), whereas the aforementioned work
performs their analysis at the IMR or binary level, which is generally made up of hundreds
or thousands of files.

Our study is closely related to our prior work by Kamei et al. [29], which reported a large
scale study on the effectiveness of predicting fix-inducing changes. In the prior work [29], a
variety of factors extracted from the commits and bug reports were found as good indicators
of fix-inducing changes. This work complements the work in [29] in a number of ways.
Our work is similar to [29] in that we use the same set of code and change metrics metrics
to perform our prediction. Our work differs from [29] in that 1) we propose metrics to
quantify the impact of a fix-inducing change and consider this impact to classify fix-inducing
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changes as ‘high impact’ and ‘low impact’, 2) we build a specialized model that classifies
each change as a HIFC, LIFC or not fix-inducing change, 3) we use the Random Forest
algorithm, which is inherently suited for a multi-class prediction problem [7], 4) we perform
our study on six different projects, 5) we determine the metrics that best indicate HIFCs and
compare them to those metrics listed for LIFCs, and finally, 6) we estimate the inspection
effort savings of focusing on HIFCs compared to the state-of-the-art models, which simply
predicts all fix-inducing changes.

Change impact analysis. Over twenty years, change impact analysis (CIA) techniques are
studied for identifying the effects of a change or estimating what needs to be modified to
accomplish a change [36]. This type of analysis is necessary when changing or maintain-
ing evolving software systems, since it allows to a) judge the amount of work required to
implement a change, b) propose the artifacts that should be changed or c) to identify test
cases that should be re-executed to ensure that the change was implemented properly [34].
According to a literature review, most of the CIA literature focus on identifying the impact
of a change on the final product - source code [34].

Over 30 papers on code-based CIA techniques, another survey reports that mining soft-
ware repositories is often preferred over other approaches (e.g. dependency analysis, ex-
ecution information) in order to identify the impact of a change in terms of its size or
scale [36]. In summary, the impact set of a change can be determined using prior code
changes (e.g. [53]) or using dynamic call graphs obtained from execution of the tests (e.g. [17]).
Given the impact set, the analysis estimates other changes that are linked to the selected
change [53] or a subset of tests that should be re-run after the selected change [17].

Recent work by Kawrykow and Robillard [30] argues that important code changes are
sometimes accompanied with non-essential modifications, such as type updates, local vari-
able renaming or refactoring, and those changes are unlikely to provide information about
the development effort. The authors implemented a tool to discover those non-essential
changes and found that up to 15% of a system’s method updates were solely due to non-
essential differences. They also stated that these non-essential method updates have a sig-
nificant impact on the recommendations done by change-based analysis tools.

Our study complements the CIA research in a number of ways. First, we also distin-
guish a specific type of changes, as it is done by Kawrykow and Robillard [30], and focus
on fix-inducing changes rather than observing all changes stored in software repositories.
Second, using the definition in [53], we define the impact of a fix-inducing change in terms
of the amount of churn, the number of modified files and the number of subsystems where
the modified files span. Third, we use a set of metrics extracted from prior fix-inducing
code changes to quantify the impact of fix-inducing changes. Finally, we aim to improve
programmer productivity by providing an accurate estimation of high impact changes re-
sponsible for a potential failure and, in turn, reducing the inspection effort during a fixing
activity [17].

4 High Impact Fix-Inducing Changes

In this section, we first define our approach to identify fix-inducing changes, then we present
the criteria used to quantify the impact of a fix-inducing change, and our approach to further
identify HIFCs over all fix-inducing changes. Finally we present the characterization of
these HIFCs.
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4.1 Identifying Fix-Inducing Changes

To determine whether or not a change induces a fix, we use the SZZ algorithm [61]. The
algorithm links each bug fix to the original change, which induced the bug. To do so, the
algorithm first identifies a “fixing change” that makes a fix by searching the change com-
ments for keywords (such as “Fixed” or “Bug”) and bug identifiers. Second, it searches for
a prior change that induces this fix, which is defined as “fix-inducing change”, using Git’s
diff command. This command helps to locate the lines that were changed by the associated
fixing change. Once the changed lines are identified, we use Git’s blame command to trace
back to the last revision that changed those lines. This way, we have a mapping of each fix-
ing change to a fix-inducing change. Please note that, a fixing change can be mapped to one
or more fix-inducing changes depending on the number of changes made on the associated
lines. For example, 11940 fix-inducing changes in an open source project (Gimp) were later
fixed in a total of 4394 code changes.

The SZZ algorithm assumes the fixing change occurs where a bug is located, i.e., bug
was injected into the lines that were modified during a fix-inducing change [61]. It is difficult
to define the exact location of a bug since a bug may be located in a file (say A), but it may
cause failures in other files (say B, C, D) that are dependent on that file. During its bug
fix, developers need to fix all files (A, B, C, D) and commit changes using the associated
bug ID. The SZZ algorithm would trace back the last changes done on these files and mark
them as fix-inducing if there is no other bug report created between these activities. This
procedure is slightly biased, since fix-inducing changes do not really address where the bug
is actually injected into the system. However, we do not claim that fix-inducing changes are
where bugs were first injected. Our aim is to determine where the earlier changes caused
later fixes, and hence it is important to mark both A and the dependent files (B, C, D) that
need to be modified during a fix activity.

4.2 How to Quantify the Impact of a Fix-Inducing Change?

Using the SZZ algorithm, we obtain a list of changes that induced a later fix, i.e., fix-inducing
changes, and others that did not for the six projects. However, we are still left with the task
of determining which of those fix-inducing changes are the most impactful.

We define the impact of a fix-inducing change in terms of the amount of churn, the
number of modified files and the number of subsystems where the modified files span. As
mentioned earlier in Section 3, we focus on the change impact in terms of the amount of
churn, the number of modified files and the number of subsystems where the modified files
span to fix an issue, rather than the change impact in terms of the work done to debug and
refactor a code, or to run associated tests. The amount of work done during a debugging,
testing or refactoring activity could be higher than that spent during a fix depending on the
problem (e.g. synchronization issue); however defining the amount of work for each activity
and comparing those is not the focus of this study

There are many factors that can be used to quantify the impact of a fixing change. Prior
work has used different size measures (e.g., lines of code (LOC), number of revisions [41,
58,62]) and complexity measures (e.g., number of files, modified code chunks

Accordingly, we use three metrics to quantify the impact of a fix-inducing change: 1)
the total churn, i.e., number of modified lines of code to fix an issue, 2) the total number
of files (modified to fix an issue), and 3) the total number of subsystems (affected during a
fix). Using (1) is analogous to LOC, i.e., it accounts for the size of a fixing change, whereas
using (2) and (3) are analogous to complexity, i.e., it accounts for how scattered a fixing
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change is in terms of the number of touched files and subsystems inside the source code.
It is important to note that we do not aim to categorize fix-inducing changes that are more
difficult to fix, since the difficulty of a fix cannot be justified by only using the three metrics
we use.

Our approach is unique in the sense that we address the impact of fix-inducing changes
by measuring the three aforementioned metrics associated with the fixing changes. More
specifically, we consider a fix-inducing change as of “higher impact” than other fix-inducing
changes, if more lines of code (i.e., churn), more files and more subsystems are modified to
fix that issue (i.e., in the fixing change). It is important to note that we chose to classify the
changes into two classes, i.e., high- and low-impact since we wanted to balance the trade off
between effectiveness and complexity of our approach.

The total churn, number of modified files and number of modified subsystems have been
previously used to indicate the risk of a change(e.g., [23, 29]). However, the use of these
metrics computed from a fixing change in order to measure the impact of a fix-inducing
change is, to the best of our knowledge, a novel contribution of our study. More specifically,
we look into the future, i.e., fixing changes, and the amount churn, the number of files
modified and the total number of subsystems affected of those changes; then we generate two
clusters of current (fix-inducing) changes. The predictions, on the other hand, are performed
by extracting a set of factors from current (fix-inducing) changes. Therefore, the clustering
metrics to define the impact of fix-inducing changes are not also used as the independent
variables of the prediction models.

How to measure more, i.e., the quantity of impact, still remains as a question, which we
present next.

4.3 High Impact Fix-Inducing Changes

High impact fix-inducing changes cannot be traced manually over thousands of code changes
in software projects, e.g., there are 2,955 code changes in Rhino project, and 50,485 code
changes in Perl project. We need to use a heuristic or a statistical technique that would au-
tomatically categorize fix-inducing changes into ‘high impact’ and ‘low impact’ based on
the aforementioned metrics (i.e., churn, number of modified files, and number of modified
subsystems). An “ad-hoc” approach can be setting a threshold for one of three metrics (e.g.
churn above 1,000 lines of code) and classify high impact fix-inducing changes as those
exceeding the threshold. This approach is biased since it depends on human judgement in
setting the thresholds for each metric and adjusting these thresholds for each project. Thus,
we prefer to use an unsupervised clustering technique, Expectation Maximization (EM) [6],
that would identify two clusters among fix-inducing changes (high impact and low impact)
using three metrics.

EM is an effective clustering technique that assumes the data consists of a mixture of
populations (in our case, two clusters) with unknown parameters. The algorithm initially
assigns parameters to distributions of these clusters (i.e., Gaussian), and calculates the prob-
ability of each data instance belonging to a cluster (E-step). Next (M-step), it re-calculates
the parameters that has the maximum log likelihood (locally), based on assignment proba-
bilities calculated in E-step. The algorithm converges when the difference between the old
and new parameter estimates are below a certain threshold, or when maximum number of
iterations have reached [6]. We set the initial number of populations as two, and ran EM
on each project’s data (IDs of fix-inducing changes, and their associated metrics) using the
mclust library in R [15]. We set the initial number of populations as two since we are
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Table 1: Statistics of the studied projects

Domain Period Total no. Median churn No. of modified  No. of changes

of chang of chang files per change per day

GIMP Graphics 01/1997 32,875 25.0 6.7 5.5
©) application - 06/2013 (36.3%)

Maven 2 Build 09/2003 5,399 8.5 44 1.7
(Java) manager - 05/2012 (10.2%)

Perl Programming | 01/1988 50,485 6.5 3.4 5.7
(Perl, C) language -06/2013 (24.1%)

PostgreSQL DBMS 07/1996 35,005 10.5 4.7 5.7
©) - 06/2013 (38.6%)

Ruby on Rails | Web app. 11/2004 32,866 6.0 2.8 10.5
(Ruby) framework -06/2013 (18.9%)

Rhino JavaScript 04/1999 2,955 13.5 3.6 0.6
(Java) engine -02/2013 (43.7%)

Median - - 32,871 9.5 4.0 5.6
(30.2%)

tThe percentage in parentheses shows the percentage of fix-inducing changes to all changes.

interested in splitting the group of fix-inducing changes into high-impact and low-impact
fix-inducing changes. Typically, two groups of changes is used in prior work (e.g., [23,29]),
however, and number of populations can be specified if the application arises.

After two clusters are formed, we classify a cluster as a “high impact fix-inducing
changes” if the medians for the churn, the number of files and the number of subsystems
are higher than the medians of the other cluster, which naturally becomes the “low impact”
cluster. The final statistics about the projects used in this study, before and after the cluster-
ing approach, are reported in Section 5.

5 Study Setup

In this section, we explain our study setup to answer the following research questions:

— RQ1: Can we accurately identify high impact fix-inducing changes?

— RQ2: What are the best indicators of high impact fix-inducing changes?

— RQ3: How much inspection effort does predicting high impact fix-inducing changes
reduce?

First, we present the projects used in this study, and report the statistics about HIFCs and
LIFCs in these projects. Second, we discuss the set of factors used in our study. Third, we
provide the details of our study setup such as the sampling technique, and the algorithm used
for predicting HIFCs, the performance measures used to evaluate our model, and the tech-
niques used to compare with binary change-level prediction models. Finally, we describe the
technique used to determine which factors, i.e., metrics, are the best indicators of HIFCs.
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Table 2: Multi-class statistics of studied projects

Total no. of HIFCs | Total no. of LIFCs NFCs Total no. of changes
GIMP 7,354 (22.4%) | 4,586 (13.9%) | 20,935 (63.7%) 32,875
Maven 2 368 (6.8%) 183 (3.4%) 4,848  (89.8%) 5,399
Perl 4,735 9.4%) | 7,437 (14.7%) | 38,313  (75.9%) 50,485
PostgreSQL 5,160 (14.7%) | 8,351 (23.9%) | 21,494 (61.4%) 35,005
Ruby on Rails | 2,386 (7.3%) | 3,838 (11.7%) | 26,642 (81.1%) 32,866
Rhino 321 (10.9%) 970 (32.8%) 1,664  (56.3%) 2,955
Median 3,561 (10.8%) | 4,212 (12.8%) | 21,215 (64.4%) 32,871

The percentage in parentheses shows the ratio of corresponding changes to all changes.

5.1 Study Context

In order to study HIFCs, we perform our case study on six open source projects (i.e.,
GIMP!, Maven 22, Perl’, PostgreSQL4, Ruby on Rails>, Rhin06). The projects were cho-
sen to achieve diversity in terms of their domain, the language they are mainly written in
(C, Java, Ruby, and/or Perl), their size in terms of the number of files and activity (average
number of changes per day).

Table 1 shows the statistics of our dataset. For each project, we present the total number
of changes of each project and the percentage of these changes that are fix-inducing, shown
in parentheses. In addition, to shed light on the activity of these projects, we also present the
median over the total number of lines churned per change (which ranges between 6-25 lines),
the average number of files touched (which ranges between 2.8-6.7 files) by a change and the
average number of changes per day (which ranges between 0.6-10.5 changes). The statistics
show that the projects are actively being maintained in terms of LOC being changed, files
and number of changes.

We applied the clustering approach on the six projects, and built a dataset containing
three classes for all changes in eacn of the six projects: a class of “high impact” (also known
as HIFCs), “low impact” fix-inducing changes (LIFCs), and “non-" fix-inducing changes
(NFCs), i.e., changes that do not induce a later fix. Table 2 shows the new statistics with
three classes on all projects. We see that HIFC is the minority class (on average, 12% of
total changes) in all projects except GIMP and Maven 2. These two projects are different
than others, as LIFC is the minority class which accounts for nearly half of the total number
of HIFCs (14% versus 22%, and 3% versus 7%, respectively).

Figure 5 shows box-plots of Ruby project in terms of the total lines of code churned
(total churn), total number of modified files and total number of modified subsystems in two,
i.e., high impact and low impact, clusters. The first two box-plots for each clustering metric
shows HIFCs and LIFCs, whereas the third one shows both classes for a better comparison.
In the figure, we did not draw the outliers as points on the box plots to make the plot easier to
interpret. We see that the cluster generated for HIFCs has a greater variance in terms of the
metrics used for clustering compared to the cluster generated for LIFCs. We also confirmed

git clone git://git.gnome.org/gimp

git clone git://git.apache.org/maven-2.git

git clone git://perl5.git.perl.org/perl.git

git clone git:/git.postgresql.org/git/postgresql.git
git clone https://github.com/rails/rails.git

git clone https://github.com/mozilla/rhino.git
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Fig. 5: Box plots depicting the spread of HIFCs and LIFCs in terms of three metrics for
Ruby project
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Fig. 6: Three-dimensional scatter diagram presenting the clusters for HIFCs (red) and LIFCs
(black) in Ruby project.

using the Mann Whitney U-test that the differences in medians of HIFCs and LIFCs, shown
in Figure 5 are statistically significant (p-value < 0.01) for all projects.
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Figure 6 also presents a three-dimensional scatter diagram of Ruby project in terms of
three metrics used for clustering fix-inducing changes (X-axis: total churn, Y-axis: number
of modified subsystems, Z-axis: number of modified files). The cluster depicting HIFC is
colored as red, whereas the cluster for LIFC is colored as black in the scatter diagram. The
figure is zoomed to the region where LIFCs are highly concentrated and redrawn to show the
differences between two clusters. From this figure, it is clear that LIFCs are concentrated on
a smaller region in the graph (up to 300 churn, 5 modified subsystems and 25 modified files)
even though they constitute the majority of the fix-inducing changes (63%). This finding also
holds for the other projects whose box plots and scatter diagrams are presented in Appendix.
Table 12 in Appendix also reports the minimum, 25% quartile, median, 75% quartile and
maximum values of three metrics for HIFCs and LIFCs respectively in all projects.

It is important to note here, that we do not aim to create a global model for HIFCs;
rather our goal is to examine HIFCs per project. In fact, since all projects are different in
terms of size, application domain, user base, process, etc., we expect that the definition of a
HIFC will vary from one project to another. Table 12 shows the metric values for HIFCs and
LIFCs for each project, and we see that each project has very different values for HIFCs and
LIFCs. For example, for Gimp, the median churn for a HIFC is 11,459, whereas, for Maven
it is 643.5. Given such results, we do not believe a global definition of HIFCs is possible,
hence, we perform our analysis and define HIFCs (and LIFCs) on per project basis.

5.2 Factors Used to Predict HIFCs

In order to predict HIFCs, we use a number of factors extracted from the changes and the
code being changed, i.e., change metrics. A number of prior studies that focused on fix-
inducing changes proposed different factors that can be used to identify them (e.g., [29, 32,
45,56]). Since coming up with a new set of factors will make it more difficult to compare our
results with the prior work, and in order to facilitate replication studies, we decided to use
a set of factors there were defined in an earlier study [29]. It is important to note, however,
that although we use the same factors, we use data from different projects.

Table 3 shows the change metrics, which we call change factors, used in our study. In

total, there are 13 factors that make up five different dimensions. Next, we provide a brief
description of each dimension and its factors. A more detailed description of each factor can
be found in [29].
Diffusion dimension: Prior work has shown that a highly distributed change can be more
complex and harder to understand [45]. For example, Mockus and Weiss [45] show that
the number of subsystems touched by a change is correlated with its riskiness, whereas
Hassan [23] shows that scattered changes in files are good indicators of bugs in these files.
We use four different factors to represent the diffusion dimension, as shown in Table 3.

As stated earlier in Section 2, we use the root directory name as the subsystem name
(i.e., to measure NS), the directory name to identify directories (i.e., ND) and the file name
to identify files (i.e., NF). To illustrate, if a change modifies a file with the path, “org.
eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom/Node. java”, then the
subsystem is org.eclipse. jdt.core, the directory is org.eclipse. jdt .core/
jdom/ . . ./dom and the file name is Node . java.

Size dimension: In addition to the diffusion of a change, the size of a change can be a good
indicator of its potential to induce a bug. For example, Nagappan and Ball [48] and Moser et
al. [46] show that the size of a change (e.g., the number of lines of code added in a revision)
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Table 3: Summary of change metrics [29]
Dim. | Name Definition Rationale Related Work
NS Number of modified | Changes modifying many subsys- | The probability of a buggy
subsystems tems are more likely to be buggy. change increases with the
number of modified subsys-
tems [45].
= ND Number of modified | Changes that modify many directo- | The higher the number of mod-
Z directories ries are more likely to be buggy. ified directories, the higher the
= chance that a change will in-
[a) duce a bug [45].
NF Number of modified | Changes touching many files are | The number of classes in a
files more likely to be buggy. module is a good feature of
post-release bugs of a mod-
ule [49]
Entropy | Distribution of mod- | Changes with high entropy are | Scattered changes are more
ified code across | more likely to be buggy, because | likely to introduce bugs [12,
each file a developer will have to recall and | 23].
track large numbers of scattered
changes across each file.
LA Lines of code added | The more lines of code added, the | Relative code churn measures
more likely a bug is introduced. are good indicators of buggy
Q LD Lines of code | The more lines of code deleted, the | modules [46,48].
2 deleted higher the chance of a bug.
® FIX Whether or not the | Fixing a bug means that an error | Changes that fix bugs are more
é change is a bug fix was made in an earlier implemen- | likely to introduce bugs than
E tation, therefore it may indicate an | changes that implement new
area where errors are more likely. functionality [21] [52].
NDEV | The number of | The larger the NDEV, the more | Files previously touched by
developers that | likely a bug is introduced, be- | more developers contain more
changed the modi- | cause files revised by many devel- | bugs [39].
o fied files opers often contain different design
IS thoughts and coding styles.
é’ AGE The average time in- | The lower the AGE (i.e., the more | More recent changes con-
terval between the | recent the last change), the more | tribute more bugs than older
last and the current | likely a bug will be introduced. changes [20].
change
NPC The number of prior | The higher the NPC, the more likely | The number of prior changes
changes to the mod- | a bug is introduced, because a de- | on modified files contributes
ified files veloper will have to recall and track | to  predicting fix-inducing
many previous changes. changes [20].
EXP Developer experi- | More experienced developers are | Programmer experience
8 ence less likely to introduce a bug. significantly decreases the bug
5 REXP Recent  developer | A developer that has often modi- | probability [45].
5 experience fied the files in recent months is less
= likely to introduce a bug, because
= she will be more familiar with the
recent developments in the system.
SEXP Developer experi- | Developers that are familiar with
ence on a subsystem | the subsystems modified by a
change are less likely to introduce
abug.

is a good indicator of bug-prone modules. The size dimension contains two factors, as shown

in Table 3.

Purpose dimension: We also consider the purpose of a change since prior work shows that a
change that fixes a bug is more likely to induce a future bug [21] [52]. Similar to prior work,
to determine whether or not a change fixes a bug, we look for keywords such as “bug”, “fix”,
“defect” or “patch” and bug IDs in the commit logs [32]. The purpose dimension has only

one factor.



Studying High Impact Fix-Inducing Changes 15

History dimension: Prior work also shows that the history of changes contain valuable
information in determining buggy files [20,39]. Therefore, we use the history of changes to
help us determine high impact fix-inducing changes. The history dimension contains three
factors, related to the number of developers, the number of changes and the age of changes.
Experience dimension: Prior work also show conflicting results about the usefulness of
using developer information. For example, some work suggests that using information about
developers does not help bug prediction [51], whereas other work [45,56] shows that higher
programmer experience significantly decreases a change’s bug-proneness. Therefore, we use
three factors related to developer’s general experience, relevant experience and subsystem
experience in our work.

5.3 Sampling Approach

Prior work studying fix-inducing changes has shown that, in general, this type of changes
form the minority class in software datasets (i.e., they make up 10-20% of the total changes) [29,
32, 56]. This imbalanced class distribution affects most learners, i.e., classification algo-
rithms, since the algorithm learns the most about the majority class (e.g., not fix-inducing
changes), and the least about the minority class (e.g., fix-inducing changes). Researchers
proposed sampling techniques, i.e., over- or under-sampling, on software data in order to
improve the performance of prediction models [13,42]. For example, one study conducted
on public datasets [42] present that under-sampling works best in software engineering prob-
lems. On the other hand, Estabrooks and Japkowicz [13] recommend performing both under-
and over-sampling, since under-sampling may lead to useful data being discarded, and over-
sampling may lead to over-fitted models.

In our study, the imbalanced data problem is exacerbated due to the fact that we focus
on high impact fix-inducing changes (HIFCs). Table 2 shows the distribution of HIFCs such
that in three out of six datasets, the ratio of HIFC are below 10%. Therefore, we perform
sampling on the training data before building the prediction models. We perform both over-
and under-sampling on the training data, and predict HIFCs in the test data. It is important to
mention that we do not apply any transformation on the ratio of HIFC in test data, because
the test dataset represents an actual real-life scenario of software engineering datasets. We
find that using under-sampling achieves better prediction results, and hence, we report under-
sampling in the results.

During under-sampling, the number of instances which corresponds to the minority class
(K) in training data is kept, and other classes are under-sampled by randomly selecting K
instances. Thus, the resulting training data consists of 3K instances, i.e., K instances from
each class. The test data was not re-sampled and hence, it maintains the same ratio of HIFCs
as in the original dataset.

5.4 Classification Approach

The goal of this study is to prioritize fix-inducing changes which have a higher impact than
the other changes in terms of the churn, the number of files and the number of subsystems
touched in later fixes. To accomplish this, our approach can be defined as a multi-class
prediction problem, with the objective of predicting fix-inducing changes, as well as, their
impact (i.e., as "high’ or ’low’ impact). In a binary classification of changes (i.e., outputs are
fix-inducing or not), many algorithms have been utilized, e.g., logistic regression, decision
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trees, and random forests [32,46,57,67]. Among these, random forests are found as advan-
tageous with their ability to deal with noisy data, and to adjust few parameters, and hence,
they produce robust, highly accurate and stable models [27].

The random forest algorithm is an ensemble of decision trees. It builds a large number
of decision trees, where each node in the decision tree is split using a random subset of all
the attributes. Doing this random split ensures that all trees have low correlation between
them [7]. The dataset is then split into two parts. The first part is used to build the trees (this
part of the data is 90% of the dataset) and the remaining data (i.e., 10%), which is called
the Out Of Bag (OOB) data, is used to test the prediction accuracy of the created forest.
Since there are many decision trees (which may indicate different outcomes), each sample
in the OOB is pushed down all the trees in the forest and the final class of the sample is
decided by aggregating the votes from all the trees. This ensemble of decision trees is found
as inherently suited for multi-class problems [7].

We perform two types of experiments. First, we build a multi-class prediction model,
which aims to predict changes as being a HIFC, a LIFC or a non fix-inducing change
(NFC). Second, for the sake of comparison, we build a binary model, which simply pre-
dicts changes as fix-inducing or not. In each experiment, we randomly divide the dataset
into 10-90% stratified (i.e., keeping the class distributions the same) splits as test and train-
ing data, respectively. Then, we run our models 20 times, and report the median values over
20 runs.

5.5 Performance Measures

To determine the effectiveness of our models, we use a confusion matrix to store the classifi-
cation results. For the binary prediction, we use a 2X2 confusion matrix as shown in Table 4.
For the multi-class prediction (i.e., HIFC, LIFC and NFC), we use a 3X3 confusion matrix,
as shown in Table 5.

For the binary classification, it is straight forward to calculate the true positive rate (TP),
the false positive rate (FP), true negative rate (TN) and false negative rate (FN). A change
can be classified as fix-inducing when it truly is fix-inducing (TP); it can be classified as
fix-inducing when actually it is not fix-inducing (FP); it can be classified as not fix-inducing
when it is actually fix-inducing (FN); or it can be classified as not fix-inducing when it is
truly not fix-inducing (TN).

For the multi-class prediction, we calculate TP, FP, TN and FN rates per each class (i.e.,
one for each of HIFC and LIFC). The measures for HIFC class are defined as TPy = HH,
FPy = HL+ HN, TNy = LL+ NN and FNy = LH + NH. In these formulas, H
corresponds to HIFC class, L corresponds to LIFC class, and in turn, HH corresponds to
a situation where an instance actually belongs to HIFC class and it is predicted as HIFC
(see the leftmost cell in Table 5). For LIFC class,the measures are defined as TPy, = LL,
FP,=LH+ LN, TN, = HH + NN and FN;, = HL + NL.

Using the values of TP, FP, TN, FN, we calculate widely used performance measures,
namely precision, recall f-measure, and false positive rate (e.g., in [1,44,56]), to evaluate
the performance of our models.

The aforementioned measures are defined as follows:
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Table 4: 2X2 Confusion Matrix

True class

Classified as | Yes No
Yes TP FpP

No FN TN

Table 5: 3X3 Confusion Matrix

True class
Classified as | High Low No Bug
High HH HL HN
Low LH LL LN
No Bug NH NL NN

1. Precision: Measures the percentage of correctly classified (high impact) fix-inducing
changes over all of the changes classified as fix-inducing. The higher precision is, the
better the model classifies true class; and hence the ideal value for precision is 1 (i.e.,
100%). It is calculated as PR = TPT+PFP

2. Recall: Measures the percentage of correctly classified (high impact) fix-inducing changes
over the actual (high impact) number of fix-inducing changes. Similar to precision, the
higher the recall rate is, the better the model is at predicting true class. Ideal value for
recall is 1 (i.e., 100%). It is calculated as RE = TPE_%.

3. F-measure: Is a composite measure that measures the weighted harmonic mean of pre-
cision and recall. It is measured as F' — measure = W

4. False alarms: Measures the percentage of wrongly classified (high impact) fix-inducing
changes. The lower false alarm rate is, the better the model is at reducing the inspection
effort due to misclassification of safe (bug free) changes. Hence, the ideal value is O (i.e.,
0%). It is calculated as PF' = 4 PIZZ“ ~-

5.6 Determining the Best Indicators of HIFCs

In addition to evaluating the performance of the prediction models, we are interested in
determining the factors that are good indicators of high impact fix-inducing changes. To
accomplish this, we examine the importance of each change factor during prediction using
the mean decrease in accuracy measure (MeanDecreaseAccuracy), as outputted in the R
randomForest library [37]. This measure is similar to coefficients in a logistic regression
model such that it indicates how important each variable is for improving the performance
of a prediction model. The mean decrease in accuracy of a variable is determined during the
Out Of Bag error calculation phase. If the accuracy of the random forest decreases during
the addition of a single variable, then that variable is considered as being important [37]. The
amount of decrease in accuracy indicates the degree of importance of a variable: the more
the accuracy decreases, the more important the variable becomes for the model. Therefore,
we run the random forest model on the six projects, and identify the factors with the largest
mean decrease in accuracy during the classification of HIFCs.

To accumulate all results, and determine the best indicators of HIFCs in all projects, we
sort the change factors based on MeanDecrease Accuracy (in decreasing order) in classifying
HIFCs. Then, we use this ranking, and count how many times each factor is listed among



18 Misirli et al.

top five as the best indicators. The final list of change factors that are selected in at least four
projects are determined as the best indicators of HIFCs.

5.7 Inspection Effort Savings with a Specialized Model

In this study, we investigate the benefits of building a specialized model for predicting HIFCs
in two ways: First, we compare the performance measures of our proposed model (special-
ized model) with those of the state-of-the-art model (general model), in terms of recall, f-
measure, false alarms. We conduct this first analysis by following the proposed study setup
in Section 5.4. Then, following the approach proposed by [1], we compute the estimated
inspection effort, i.e., number of code changes that need to be inspected, to catch HIFCs
with a specialized model, and calculate how much inspection effort could be saved in terms
of false positives, compared to a general model. To accomplish this, we adopt a similar ap-
proach as Shihab et al. [59], and examine the confusion matrices of our specialized model
and the general model. To facilitate a fair comparison, we make sure to hold the recall of
both models to be the same.

An overview of our comparison approach is shown in Figure 7. The approach works as
follows; to simulate the use of the state-of-the-art model, which simply predicts fix-inducing
changes (without taking the impact into consideration), we train a model using fix-inducing
and other changes. Then, we use the trained model to predict HIFCs, and report how many
HIFCs are identified. We also build another model, the specialized model, that is trained
with HIFCs, LIFCs and NFCs, and is tested on HIFCs. Lastly, as mentioned above, we hold
the recall of both models to be the same (by fixing the recall of the specialized model) and
compare the false positives of the two models. Lower rates of false positives means less
wasted inspection effort. If the general model performs the same or better than the spe-
cialized model, then there is no need for the specialized model. If however, the specialized
model performs better, then clearly the specialized model is needed and improves over the
state-of-the-art models.

This comparison does not imply that we under-estimate the performance of the binary
model, but it is an analysis on a ROC curve (e.g. in [63]): We get recall-false positive pairs
for each probability threshold and base the comparison on a fixed recall that both models
could achieve. Since there is a direct inverse relationship between precision and recall, i.e.,
the higher the precision, the lower the recall and vice versa, we need to have both models
with the same recall so that we can have a fair comparison of false positives (Remember that
precision = TP/(TP+FP)). Having same recall means that both models have the same number
of TPs and FNs. TPs need to be the same since that directly impacts the precision, whereas
FNs need to be the same since that is related to FPs. One thing we could do is compare
F1-scores, which is the harmonic mean of precision and recall, however, the F1-score would
not tell us if the improvement is due to a reduction in FP or FN. Since we are interested in
effort savings, it is most accurate to compare the FPs.

6 Results

In this section, we present the classification performance of a multi-class random forest
model on six projects, using the performance measures described in Section 5.5. Then, we
compare the performance of our proposed approach with a binary model, in which changes
are classified as fix-inducing or not. To present the best indicators of HIFCs, we list all
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Fig. 7: Overview of the comparison approach used to estimate inspection effort savings

factors, and report the number of their occurrences in the top 5 factors based on the Mean-
DecreaseAccuracy measure. Finally, we analyze the effort savings of building a specialized
model for HIFC.

Table 6: Prediction performance of multi-class prediction model

HIFC LIFC

RE PR F-Meas. PF Base. RE PR F-Meas. PF Base.
GIMP 0.77 | 0.78 0.78 0.08 0.28 0.61 | 0.29 0.39 0.26 0.15
Maven-2 0.56 | 0.25 0.34 0.16 0.09 0.44 | 0.06 0.11 0.25 0.04
Perl 0.57 | 0.31 0.40 0.18 0.12 0.44 | 0.23 0.30 0.29 0.16
PostgreSQL | 0.67 | 0.47 0.55 0.17 0.19 0.50 | 0.39 0.44 0.27 0.26
Ruby 0.62 | 0.27 0.37 0.18 0.09 0.42 | 0.18 0.25 0.28 0.13
Rhino 0.70 | 0.34 0.45 0.20 0.13 0.50 | 0.56 0.53 0.22 0.36

RE=Recall, PR=Precision, PF=False alarms, F-Meas=F-Measure, Base=Baseline model.

RQ1: Can we accurately identify high impact fix-inducing changes?

We build a multi-class model that uses random forest as its prediction algorithm in order to
identify HIFCs, LIFCs and NFCs in six open source projects. We use the factors presented
in Table 3 and follow the experimental setup explained in Section 5.4 to conduct our ex-
periments. We report performance measures, namely recall, precision, f-measure and false
alarms.

Table 6 shows the performance of our multi-class random forest (i.e., specialized) model
in predicting HIFC and LIFC classes, separately. Our results show that a multi-class predic-
tion model is able to catch 56% to 77% high-impact fix-inducing changes with a false alarm
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Table 7: Predictions from a binary model

RE PR F-Meas. PF Baseline
GIMP 0.79 | 0.59 0.67 0.36 0.39
Maven-2 0.92 | 0.12 0.21 0.69 0.09
Perl 0.75 | 0.35 0.48 0.50 0.26
PostgreSQL | 0.74 | 0.58 0.65 0.38 041
Ruby 0.70 | 0.25 0.37 0.56 0.21
Rhino 0.74 | 0.72 0.73 0.25 0.47

RE=Recall, PR=Precision, PF=False alarms, F-Meas=F-Measure.

rate between 8% and 20% over all datasets. In datasets (Maven-2,Ruby,Perl) where the ratio
of HIFCs is less than 10%, the model achieves lower performance measures (F-measure is
between 34% and 40%) even though we apply under-sampling to balance the class distribu-
tions. Furthermore, the proposed model is better at distinguishing the HIFC than the LIFC
class.

We also compare the performance of our proposed model (HIFC) with a baseline model
that randomly predicts X% of changes as HIFCs if X% of changes in training set are as-
sociated with HIFCs. This comparison shows us whether the specialized model is at least
better than a random predictor. The comparisons between our proposed model and a base-
line model (the column Baseline) also show that the model is, on average, 170% better (from
147% gain in PostgreSQL to 200% in Ruby) in terms of the number of changes that should
be inspected for predicting the HIFC class (gain= (precision — baseline)/(baseline)).

For the sake of comparison, we also present the performance of a binary random forest
(i.e., general) model that predicts fix-inducing changes only. Table 7 shows that this general
change-level model is better at predicting fix-inducing changes in terms of recall (from
70% in Ruby to 92% in Maven-2), however considering the trade-off between recall and
precision, F-measure is better in only three out of six projects, namely in Perl (from 40% to
48%), PostGreSQL (from 55% to 65%) and Rhino (from 45% to 73%). Besides, the general
model also produces high false alarms (between 25% and 69% as reported in Table 7),
which increases the cost even though the objective of such models is just the opposite. We
discuss the effects of improving false alarms in the next sections by comparing two models
(specialized versus general) on a confusion matrix.

Using our approach, we see that the specialized prediction models can provide more use-
ful and accurate information to developers by prioritizing high impact fix-inducing changes,
and reducing false alarms significantly. Mann-Whitney U-tests also confirm that differences
in performance measures between the specialized and general model are statistically signif-
icant (p-value < 0.05).

6.1 Comparison with Another Change Impact Analysis

In addition to a comparison with a baseline model (i.e., a random predictor), we plan to com-
pare our approach with another change impact analysis using association rule mining [68]
and discuss the differences in terms of predicting HIFCs.

In association rule mining, we predict whether or not a change is HIFC based on a rule:
If a change modifies all files of an antecedent of a rule and does not modify a file of a
consequent of the rule, it is classified as HIFC, because it misses the file that should be
modified together. For example, there is one extracted rule (if File A, B and C are modified
together, then File D is often modified at same time). If File A, B, C and D are modified in
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change 1 of testing set, the change impact analysis predicts that the change 1 is not HIFC,
because the change 1 modified all files in antecedent (A, B, C) and consequent (D) in one
rule. On the other hand, if File A, B, C and E are modified in change 2 of testing set, the
change impact analysis predicts that the change 2 is HIFC. Association rule mining generally
extracts more than one rule. In our experiments, if there is at least one rule that classifies
a change as HIFC, the change is classified as HIFC. Note that we use 0.01 as minimum
support value and 0.5 as minimum confidence value for association rule mining, as it is
inspired by previous studies [28, 68]

Table 8 shows the prediction performance of the change impact analysis. The results
show that our specialized prediction model provides better F-measures for all datasets com-
pared to the association rule mining. While the minimum F-measure of our prediction model
is 0.34 for Maven-2 (in Table 6), the maximum F-measure of the association rule mining is
0.21 for Rhino (in Table 8). Furthermore, we can not find any co-changed patterns for Ruby.
Therefore, we conclude that our prediction model outperforms another type of a change
impact analysis technique.

Table 8: Prediction performance of change impact analysis for HIFCs

RE PR | F-Meas. PF
GIMP 0.02 | 0.14 0.03 0.03
Maven-2 0.14 | 0.20 0.17 0.04
Perl 0.08 | 0.31 0.13 0.02
PostgreSQL | 0.09 | 0.42 0.15 0.02
Ruby 0.00 | 0.00 0.00 0.00
Rhino 0.31 | 0.15 0.21 0.21

RE=Recall, PR=Precision, PF=False alarms, F-Meas=F-Measure

RQ2: What are the best indicators of HIFCs?

We use the MeanDecreaseAccuracy measure (as described in Section 5.6) computed by ran-
dom forest for each class in order to decide on the most important factors classifying HIFC,
and LIFC. We rank all factors according to the MeanDecreaseAccuracy measure, and list the
best indicators of HIFCs by calculating top five factors with the highest MeanDecreaseAc-
curacy values in all projects. We do the same for LIFCs, and make comparison among their
best indicators.

Table 9 shows the average rank of each factor (column name: avg. rank) accumulated
over six projects for HIFC and LIFC, respectively. Factors are sorted in an increasing order
based on their ranking for the HIFC class. The second column of Table 9 shows how many
times (j indicates the project) a factor (z) is listed among the top five important indicators
when predicting HIFCs and LIFCs. We define a factor as a good indicator (marked in bold)
if it is listed in the top five list for more than 3 out of 6 projects.

Our results show that the lines of code added (LA), the number of prior changes to files
(NPC), and the number of developers that changed the modified files (NDEV) are the best
indicators of HIFCs. The list changes for LIFCs even though LA is still the most important
indicator of fix-inducing changes. LA is followed by FIX with an average rank of 4.5, as
being among top five metrics in five out of six projects. That is, if a change has been made
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Table 9: Importance of change factors

Avg. Rank Elerankij >5
HIFC | LIFC HIFC LIFC
LA 1.2 1.7 6 6
NDEV 5.3 6.3 4 3
NPC 5.7 6.2 4 2
NF 7.2 8.2 3 0
LD 7.7 9.2 2 0
ND 7.7 8.2 1 2
SEXP 7.7 7.7 1 2
EXP 8.3 11.7 2 0
REXP 8.5 10 2 1
AGE 9.3 6.3 0 3
NS 9.5 6.7 2 3
Entropy 9.8 9 0 1
FIX 12.2 4.5 0 5

due to a bug fix, then it is more likely that it injects another bug into the code, but that change
is more likely to be a LIFC.

Our analysis shows that the number of lines of code added (LA) during a change is,
overall, the best indicator of fix-inducing changes. However, as more developers modify the
files associated with a change (NDEV), and the higher the number of prior changes on these
files (NPC), the more impactful a fix-inducing change becomes.

RQ3: How much inspection effort does predicting high impact fix-inducing changes reduce?

Following the approach in Section 5.7, we build a general model that is trained to predict
fix-inducing changes, but it is tested to predict HIFCs. Such a model represents using the
state-of-the-art models, which simply predict whether a change is fix-inducing or not. Then,
we build our specialized model that is trained and tested to predict HIFCs. To make a fair
comparison, we fix the recall rate of both models and compare the number of false positives.
Ideally, we want to estimate inspection effort savings (i.e., less false positives) using the spe-
cialized models, otherwise, using the simple models would suffice. Notice that we compare
the estimated inspection effort savings to identify HIFCs only because it is our main focus in
this work; if we would like to observe LIFCs, we should have trained and tested the models
for LIFCs in a separate analysis.

We generate a 2x2 confusion matrix of our specialized model (as seen in Table 10 on
the left), and a confusion matrix of a general model (on the right) both of which are built
using the same training-test splits. The confusion matrix on the left is computed from a 3x3
confusion matrix, which is the original output of our multi-class random forest model. We
calculate TPy, TNy, F Py, and F Ny values from the 3x3 confusion matrix by prioritizing
HIFC, as explained in Section 5.5.

As seen in Table 10, we fix the recall rates (78%) of both models so that the difference
between two models, in terms of the number of changes inspected to predict HIFCs, be-
comes more visible. In Table 10, the number of false positives (129 vs. 300) produced on
the GIMP project shows that the specialized model predicting HIFCs is better at reducing
the inspection efforts by 57% ((300 — 129)/300). This means, assuming that both models
are equally good at predicting HIFCs (same recall), our specialized model manages to de-
crease the number of changes that should be inspected by 57% (in GIMP) in order to catch
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Table 10: Confusion Matrices for GIMP project

(HIFC — HIFC) (Fix-inducing — HIFC)
Actual Actual
HIFC No HIFC No
Predicted | HIFC 512 129 HIFC 512 300
No 148 2169 No 148 1998

Table 11: Estimated Inspection Effort Savings for All Projects

Project Savings (%)
Gimp 57
Maven-2 36
Perl 8
PostgreSQL 20
Ruby 20
Rhino 62
Avg. 34

the same amount of HIFCs. We also performed the same analysis on the other five projects
and report the percentage of inspection effort savings in Table 11. We estimate that the spe-
cialized model is able to reduce the inspection effort, on average, by 34% compared to the
general model.

Thus, we conclude that using the specialized models is advantageous for catching HIFCs
since it reduces the amount of inspection effort (i.e., the number of changes that need to be
inspected), compared to the state-of-the-art models.

7 Discussion on Co-Factors Affecting Our Study

Throughout our experiments, we made certain decisions regarding the clustering technique,
the metrics used for clustering fix-inducing changes into HIFCs and LIFCs, the factors used
to predict HIFCs, and the prediction algorithm. In this section, we examine the impact of
these choices on our results.

7.1 Impact of the Clustering Technique Used

During our analysis, we used the EM unsupervised clustering technique to distinguish HIFCs
from LIFCs. Another widely used unsupervised clustering technique, is the k-Means algo-
rithm. K-Means clustering starts with k (k=2 in our case) random centers for two clusters,
and assigns changes to these clusters using a distance-based similarity measure. As more
changes are assigned to clusters, centers, i.e., medians of the clusters, would gradually con-
verge to near-optimal places.

We want to examine whether using k-Means instead of EM impacts our results. Thus,
we ran both techniques on the datasets of six projects, and saved two different multi-class
datasets, each of which has a different number of HIFC, LIFC, and NFC instances. For
example, in the GIMP project, the EM algorithm produces a multi-class dataset with 22.4%
HIFCs, and 13.9% LIFCs, while k-Means produces a dataset with 26% HIFCs, and 10%
LIFCs.

It is difficult to choose between these two algorithms, since the actual high impact
changes are not available. However, we can determine which of these clustering algorithms
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achieves better performance for the specialized models. We re-ran our experiments on two
different multi-class datasets produced by each of these two clustering techniques. Results
show that the model trained with HIFC and LIFC clusters generated by ‘EM’ achieves lower
false alarm rates (16% on average), compared to the model trained with the dataset gener-
ated after k-Means is used (23% on average). However, the latter model performs better in
predicting LIFC class in terms of recall (73% versus 48% on average) and false alarms (13%
versus 26% on average). Since our focus is prioritizing HIFCs over LIFCs, we conclude that
using EM was the right choice for us.

7.2 Impact of the Clustering Metrics Used

The three metrics used for clustering fix-inducing changes into HIFCs and LIFCs are total
churn, number of modified files and number of modified subsystems. We ran correlation
analyses on these metrics to see whether they are related, and how that would bias the
clustering process, as well as the prediction model. Kendall’s tau (non-parametric) test were
run between the three metrics used to find clusters of HIFC and LIFC ones.

We have found that there are moderate correlations between total churn and the num-
ber of modified files (coefficient is less than 0.7) in some datasets, namely Maven-2 and
PostGreSQL, and high correlations between the number of modified files and modified sub-
systems (0.7 to 0.76) in some datasets, namely Gimp, Rhino, Perl. Therefore, we removed
the metric, number of modified files, and re-ran the analysis using total churn and the num-
ber of modified subsystems. The results show that the model does not perform any better
with the new clusters. For example in maven-2 project, the previous prediction model (from
Table 6) achieves 58% recall, 24% precision, 34% f-measure and 16% false alarms, whereas
the new model (using two metrics for clustering the HIFCs and LIFCs) produces 61% re-
call, 23% precision, 33% f-measure and 14% false alarms. We see that even though there
is a slight improvement in recall, f-measure stays the same (differences are not significant
according to Mann-Whitney U-test). So even though in some datasets, we observe high cor-
relations between three clustering metrics, we think it is worth keeping all to have a more
accurate prediction model.

7.3 Impact of the Factors Used for Predicting HIFCs

Table 9 shows the top three factors (LA, NDEV, NPC) as the best indicators of fix-inducing
changes. We would like to study the prediction capability of LA only, as it is overall the best
factor for predicting HIFCs, and compare its prediction performance with a baseline model
and our specialized model (using a set of factors listed in Table 3). To accomplish this, we
built a multi-class prediction model using the same setup explained in Section 5, but with
a single metric (Lines of Code Added). The results of the new specialized model with LA
metric only show that 28% to 54% of HIFCs could be successfully identified with a precision
rate between 16% and 39%, and a false alarm rate between 17% and 23%. In terms of LIFCs,
the new model using LA only could achieve 31% to 48% recall rates with a precision rate
between 17% and 49%, and a false alarm rate between 24% and 37%. Compared to the
performance of our proposed model (Table 6), we see that a specialized model using LA
only is much better than a baseline model in terms of identifying HIFCs. However, only LA
metric does not suffice to identify majority of HIFCs in the context of our study. Therefore,
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we conclude that using all factors would help to characterize more HIFCs in a specialized
model though some factors are major drivers in the model.

7.4 Impact of the Prediction Algorithm Used

As discussed earlier in Section 5.4, we use a random forest algorithm due to its robustness
and its ability to handle noise [16,27]. However, the majority of bug prediction studies
employed logistic regression models. Therefore, we would like to examine the effectiveness
of logistic regression models on predicting HIFCs.

Experiments using a multi-class regression model show that we can detect, on average,
58% of HIFCs (recall) with 30% precision, 38% F-measure and 23% false alarms for six
projects. Performance measures for predicting LIFCs are even worse (32% recall, 25% pre-
cision, 27% f-measure and 22% false alarms on average) compared to Table 6. These results
are not as good as the random forest algorithm, therefore, for our purpose, we conclude
that random forest is better at predicting HIFCs and in turn, more suitable for a specialized
model.

8 Threats to Validity

Construct validity. We use the amount of churn, the number of files and the number of sub-
systems of the bug-fixing change as a proxy of the impact of a fix-inducing change. Clearly,
this is a proxy of the impact, and more factors such as the complexity of the modified code,
and the type of problem reported for that change, may help to better indicate impact. Our
future work will focus on improving this definition of impact. That said, we believe that our
current approximation of the impacts a good one, especially since prior work on change-
level bug prediction (e.g. [23], [48], [56], [62]) has shown that churn and the number of
modified files are good indicators of fix-inducing changes. Prior research on change im-
pact analysis techniques (e.g. [17], [36]) also confirmed that the impact of a change can
be defined in terms of the amount of work to debug a code, fix an issue or to run only the
associated tests.

Furthermore, using multiple metrics during clustering as a proxy for the impact helps us
avoid mono-method bias [54]. We have already discussed the effect of a potential statistical
relationship between clustering metrics 7 and mentioned that though there are some datasets
in which we observe moderate to high correlations, it is worth keeping all three metrics and
preserve a higher accuracy in the prediction models.

Since we focus on the amount of churn, the number of files and the number of subsys-
tems to determine HIFCs, there is a potential bias towards specific types of large changes
(e.g., refactoring changes). However, it is important to note that we only focus on fix-
inducing changes, hence, even if our approach was more likely to flag refactorings, it would
flag fix-inducing refactorings. In the future, we would like to perform more qualitative anal-
ysis on HIFCs to determine their types.

In our analysis, we use the number of false positives (code changes that are flagged as
high-impact although the actual is the opposite) to estimate the inspection effort savings.
Our analysis makes the assumption that each false positive requires equal effort, which may
not be the case for all false positives. However, we only compare HIFC false positives. In
the future, we would like to develop a method to quantify the cost of each false positive and
use this cost in our effort savings analysis.
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Internal validity. The link between fix-inducing and bug-fixing changes is formed using
the SZZ algorithm [61]. Even though the algorithm has been popularly used in numerous bug
prediction research (e.g., [29]), the algorithm is only able to link a fix-inducing change with
its fix, if there is a unique keyword in comment logs of fixing changes. In some cases, this
approximate linking method may introduce bias, and therefore, impact our findings [2,4].
Furthermore, the SZZ algorithm also assumes that the previous code change touching a
fixed line is the fix-inducing one. Thus, we are also limited with the capabilities of SZZ
during identification of fix-inducing changes in this study. As future work, this study can
be improved by extending SZZ algorithm, or by investigating commercial projects in which
there are clear links between bugs and commits.

External validity. We use six open source projects, each of which has different char-
acteristics in terms of development period, programming language, domain, as well as ratio
of HIFCs over LIFCs. The reason is that we would like to observe how specialized mod-
els for predicting HIFCs perform in different settings. Results show that specialized models
are worth the effort to prioritize high impact changes and to reduce false alarms of general
models. However, our study should be replicated on commercial settings in which actual
HIFCs can be used to evaluate the prediction accuracy of and to make generalizations on the
benefits of specialized models. Thus, as a future work our plan is to extend this study with
commercial projects, for repeating/refuting our findings.

Conclusion validity. During our experimental setup, we compare different classifiers
(random forest versus logistic regression), clustering techniques (kMeans versus EM), and
prediction models (binary versus multi-class) with non-parametric significance tests, i.e.,
Mann Whitney U-Test, and report significantly better results. We also avoid sampling effects
by generating multiple runs of the algorithm on different training-test splits.

9 Conclusion

In this study, we consider one drawback of change-level prediction models: All fix-inducing
changes are treated equally in terms of their impact. We define the impact of a change in
terms of the amount of churn, the number of files and the number of subsystems required to
address a fix-inducing change. We conduct a study on six open source projects, and prioritize
high impact fix-inducing changes using a specialized model. Results accumulated over six
projects show that a specialized model for predicting HIFCs performs better than a typical
binary model in terms of false alarms, and in turn, the specialized model saves the inspection
efforts by 34%. We have also observed that there are unique factors characterizing HIFCs,
namely number of developers, number of prior changes in the associated files, and unique
factors characterizing LIFCs, namely whether the change is a fix for a prior bug.
In the future, we plan to extend this study in a number of ways:

1. Knowing whether a fixing change is actually high impact according to developers would
be great to prove the accuracy of such prediction models. Hence, we would like to extend
this work by adding commercial projects, and by getting feedback from practitioners on
the benefits of these specialized models.

2. Defining the impact of a change for different activities, such as debugging, re-factoring,
and bug fixing, and for different stakeholders, such as developers or customers, and
compare the amount of implementation work done for each of the activities.

We believe one possible way to improve these specialized models is to train them for
each team/developer, and to provide instant feedback during their commit activities. Thus, a
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future research direction may be to build developer-specific models which would give a rec-
ommended list of (high impact) fix-inducing changes on their latest development activities.

10 Appendix

Table 12 presents the minimum, 25% quartile, median, 75% quartile and maximum values
of three metrics for HIFCs and LIFCs respectively in all projects. Figure 8 presents three-
dimensional scatter diagrams of all projects in terms of the total churn, total number of
modified files and total number of modified subsystems used for clustering fix-inducing
changes. The clusters depicting HIFC are colored as red, whereas the clusters for LIFC are
colored as black in the scatter diagrams. The figures are zoomed to the region where LIFCs
are highly concentrated and redrawn to show the differences between two clusters. Figure 9
also shows box-plots of all projects in terms of the total churn, total number of modified files
and total number of modified subsystems in two, i.e., high impact and low impact, clusters.

Table 12: Descriptive statistics for two data clusters (HIFCs and LIFCs) in the studied

projects
Project Metric” Minimum 1%t quartile (25%) Median 374 quartile (75%) Maximum
HIFC | LIFC HIFC LIFC HIFC LIFC HIFC LIFC HIFC LIFC
Churn 28 1 3864 23 11459 105 36045 321 186379 1408
Gimp NF 1 1 1 2 5 3 39 7 3017 26
NS 1 1 1 1 3 2 7 3 818 9
Churn 26 1 210.5 6 643.5 20 1073.25 48.5 10545 108
Maven NF 1 1 9 1 17.5 1 25 2 217 5
NS 1 1 1 1 3 1 6.25 2 46 3
Churn 20 1 526 13 1080 47 3491 156 197923 814
Perl NF 1 1 12 1 23 2 46 4 2479 17
NS 1 1 3 1 9 2 28 3 1609 15
Churn 94 1 2466.25 34 4490 171 8036.25 544 256245 2560
PostgreSQL | NF 1 1 42 2 70 5 125 13 5373 48
NS 1 1 3 1 5 1 10 2 641 7
Churn 12 1 306 8 530 25 1036 62 47635 271
Ruby NF 1 1 9 1 18 2 43 4 294 12
NS 1 1 1 1 3 1 5 2 42 3
Churn 243 1 5462 88.5 12603 399 20047 957.5 102727 3483
Rhino NF 2 1 33 3 93 6 436 15 1965 67
NS 1 1 5 1 12 2 20 4 409 10

“Churn: LA+LD, NF

: Number of modified files, NS: Number of modified subsystems
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Fig. 9: Box plots of all projects in terms of three metrics used for identifying the clusters,
HIFCs and LIFCs.



