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Abstract—Technical debt refers to incomplete or temporary
workarounds that allow us to speed software development in
the short term at the cost of paying a higher price later on.
Recently, studies have shown that technical debt can be detected
from source code comments, referred to as self-admitted technical
debt. Researchers have examined the detection, classification and
removal of self-admitted technical debt. However, to date there
is no empirical evidence on the impact of self-admitted technical
debt on software quality.

Therefore, in this paper, we examine the relation between self-
admitted technical debt and software quality by investigating
whether (i) files with self-admitted technical debt have more
defects compared to files without self-admitted technical debt, (ii)
whether self-admitted technical debt changes introduce future
defects, and (iii) whether self-admitted technical debt-related
changes tend to be more difficult. We measured the difficulty
of a change using well-known measures proposed in prior work
such as the amount of churn, the number of files, the number
of modified modules in a change, as well as the entropy of
a change. An empirical study using five open source projects,
namely Hadoop, Chromium, Cassandra, Spark and Tomcat,
showed that: i) there is no clear trend when it comes to defects
and self-admitted technical debt, although the defectiveness of the
technical debt files increases after the introduction of technical
debt, ii) self-admitted technical debt changes induce less future
defects than none technical debt changes, however, iii) self-
admitted technical debt changes are more difficult to perform,
i.e., they are more complex. Our study indicates that although
technical debt may have negative effects, its impact is not only
related to defects, rather making the system more difficult to
change in the future.

I. INTRODUCTION

Software companies and organizations have a common goal
while developing software projects - to deliver high-quality,
useful software in a timely manner. However, in most practical
settings developers and development companies are rushed
to meet deadlines, rushing them to release. Such situations
are all too common and in many cases force developers to
take shortcuts [1] [2]. Recently, the term technical debt was
coined to represent the phenomena of “doing something that is
beneficial in the short term but will incur a cost later on” [3].
Prior work showed that there are many different reasons why
practitioners take on technical debt. These reasons include: a
rush in delivering a software product given a tight schedule,
deadlines to incorporate with a partner product before release,

time-to-market pressure, as well as meeting customer needs in
a timely fashion [4].

More recently, a study by Potdar and Shihab [5] introduced
a new way to identify technical debt through source code
comments, referred to as self-admitted technical debt (SATD).
SATD is technical debt that developers themselves report
through source code comments. Prior work [6] showed that
SATD is common in software projects and can be used to
identify different types of technical debt (e.g., design, defect,
and requirement debt).

Intuition and general belief indicate that such rushed devel-
opment tasks (also known as technical debt) negatively impact
software maintenance and overall quality [1], [2], [7]–[9].
However, to the best of our knowledge, there is no empirical
study that examines the impact of SATD on software quality.
Such a study is critical since (i) it will help us confirm or refute
intuition and (ii) help us better understand how to manage
SATD.

Therefore, in this paper, we empirically investigate the re-
lation between SATD and software quality in five open-source
projects, namely Chromium, Hadoop, Spark, Cassandra, and
Tomcat. In particular, we examine whether (i) files with
SATD have more defects compared to files without SATD,
(ii) whether SATD changes introduce future defects, and (iii)
whether SATD-related changes tend to be more difficult. We
measured the difficulty of a change in terms of the amount of
churn, the number of files, the number of modified modules
in a change, as well as, entropy of a change. We perform
our study on five open-source projects, namely Chromium,
Hadoop, Spark, Cassandra, and Tomcat. Our findings show
that: i) there is no clear relationship between defects and
SATD. In some of the studied projects however, SATD files
have more bug-fixing changes, while in other projects, files
without SATD have more defects, ii) SATD changes are
associated with less future defects than none technical debt
changes, however, iii) SATD changes (i.e., changes touching
SATD files) are more difficult to perform. Our study indicates
that although technical debt may have negative effects, its
impact is not related to defects, rather its impact is in making
the system more difficult to change in the future.

The rest of the paper is organized as follows. Section II



summaries the related work. In Section III, we describe our
research methodology. Section IV presents and discusses the
results of our empirical evaluation, while Section V shows
some threats to validity related to our study. Finally, Section
VI concludes our paper.

II. RELATED WORK

Since our work focuses on SATD, which analyzes comments
to detect technical debt, we discuss the work related to three
main topics: (i) source code comments, (ii) technical debt, and
(iii) software quality.

A. Research Leveraging Source Code Comments

A number of studies examined the usefulness/quality of
comments and showed that comments are valuable for pro-
gram understanding and software maintenance [10]–[12]. For
example, Storey et al. [13] explored how task annotations
in source code help developers manage personal and team
tasks. Takang et al. [10] empirically investigated the role
of comments and identifiers on source code understanding.
Their main finding showed that commented programs are more
understandable than non-commented programs. Khamis et al.
[14] assessed the quality of source code documentation based
on the analysis of the quality of language and consistency
between source code and its comments. Tan et al. proposed
several approaches to identify inconsistencies between code
and comments. The first called, @iComment, detects lock-
and call-related inconsistencies [11]. The second approach,
@aComment, detects synchronization inconsistencies related
to interrupt context [15]. A third approach, @tComment,
automatically infers properties form Javadoc related to null
values and exceptions; it performs test case generation by
considering violations of the inferred properties [16].

Other studies examined the co-evolution and reasons for
comment updates. Fluri et al. [17] studied the co-evolution of
source code and their associated comments and found that 97%
of the comment changes are consistently co-changed. Malik
et al. [18] performed a large empirical study to understand
the rationale for updating comments along three dimensions:
characteristics of a modified function, characteristics of the
change, as well as the time and code ownership. Their findings
showed that the most relevant attributes associated with com-
ment updates are the percentage of changed call dependencies
and control statements, the age of the modified function and
the number of co-changed functions which depend on it. De
Lucia et al. [19] proposed an approach to help developers
maintain source code identifiers and consistent comments with
high-level artifacts. The main results of their study, based on
controlled experiments, confirms the conjecture that providing
developers with similarity between source code and high-level
software artifacts helps to enhance the quality of comments
and identifiers.

Most relevant to our work is the recent work by Potdar
and Shihab [5] that uses source code comments to detect self-
admitted technical debt. Using the identified technical debt,
they studied how much SATD exists, the rationale for SATD,

as well as the likelihood of its removal after introduction.
Another relevant contribution to our study is the one by
Maldonado and Shihab [6], who have also leveraged source
code comments to detect and quantify different types of SATD.
They classified SATD into five types, i.e., design debt, defect
debt, documentation debt, requirement debt and test debt. They
found that the most common type is design debt, making up
between 42% to 84% of a total of 33K classified comments.

Our study builds on the prior work in [5], [6] since we use
the comment patterns they produced to detect SATD. How-
ever, different from their studies, we examine the relationship
between SATD and software quality.

B. Technical Debt

Other work focused on the identification and examination
of technical debt. It is important to note here that the tech-
nical debt discussed here is not SATD, rather it is technical
debt that is detected through source code analysis tools. For
example, Zazworka et al. [20] attempted to automatically
identify technical debt and then compared their automated
identification with human elicitation. The results of their study
outline potential benefits of developing tools and techniques
for the detection of technical debt. Also, Zazworka et al. [7]
investigated how design debt, in the form of god classes,
affects the software maintainability and correctness of software
products. Their study involved two industrial applications and
showed that god classes are changed more often and contain
more defects than non-god classes. Their findings suggests
that technical debt may negatively influence software quality.
Guo et al. [9] analyzed how and to what extent technical debt
affects software projects by tracking a single delayed task in a
software project throughout its lifecycle. As discussed earlier,
the work by Potdar and Shihab [5] is also related to our work,
however, its main difference compared to prior work is that it
focused on SATD.

Our work differs from past research by Zazworka et al. [7],
[20] since we focus on the relationship between SATD (and
not technical debt related to god files) and software quality.
However, we believe that our study complements prior studies
since it sheds light on the impact of the SATD and software
quality.

C. Software Quality

A plethora of prior work proposed techniques to improve
software quality. The majority of this work focused on un-
derstanding and predicting software quality issues (e.g. [21]).
Several studies examined the metrics that best indicate soft-
ware defects including design and code metrics [22], code
churn metrics [23], and process metrics [24], [25].

Other studies focused on change-level prediction of defects.
Sliwerski et al. suggested a technique called, SZZ, to automat-
ically locate fix-inducing changes by linking a version archive
to a bug database [26]. Kim et al. [27] used identifiers in
added and deleted source code and the words in change logs
to identify changes as defect-prone or not. Similarly, Kamei
[28] proposed a “Just-In-Time Quality Assurance” approach
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Fig. 1: Approach overview.

to identify, in real-time, risky software changes. The findings
of their study reveal that process metrics outperform product
metrics for the purpose of identifying risky changes.

Our study leverages the SZZ algorithm and some of the
techniques presented in the aforementioned change-level work
to study the defect-proneness of SATD-related commits. More-
over, our study complements existing works since it examines
relationship of SATD and software defects.

III. METHODOLOGY

The goal of our study is to investigate the relationship
between SATD and software quality. We measure software
quality in two ways. First, we use the traditional measure,
which is used in most prior studies, defects in a file and defect-
inducing changes [27]–[29]. In particular, we measure the
number of defects in SATD-related files and the percentage of
SATD-related changes that introduce future defects. Second,
since technical debt is meant to represent the phenomena of
taking a short term benefit at a cost of paying a higher price
later on, we also use the difficulty of the changes related to
SATD. In particular, we use the churn, the number of files, the
number of directories and the entropy of a change as a measure
of difficulty. We formalize our study with the following three
research questions:

• RQ1: Do files containing SATD have more defects
than files without SATD? Do the SATD files have more
defects after the introduction of the SATD?

• RQ2: Do SATD-related changes introduce future defects?

• RQ3: Are SATD-related changes more difficult than non-
SATD changes?

To address our research questions we followed the approach
shown in Figure 1, which consists of the following steps. First,
we mined the source code repositories of the studied projects
(step 1). Then, we extracted source code files at the level of
each analyzed project (step 2). Next, we parse the source code
and extract comments from the source code of the analyzed
systems (step 3). We apply the comment patterns proposed by
Potdar and Shihab [5] to identify SATD (step 4). Then, we
analyze the changes to quantify defects in files and use the
SZZ algorithm to determine defect-inducing changes (step 5).

A. Data Extraction

Our study involves the analysis of five large open-source
software systems, namely Chromium, Hadoop, Spark, Cas-
sandra, and Tomcat. We chose these projects because they

represent different domains, they are written in different pro-
gramming languages (i.e., Java, C, C++, Scala, Python, and
Javascript), and they have a large number of contributors.
More importantly, these projects are well-commented (since
our approach for the detection of SATD is based on the source
code comments). Moreover, they are made publicly available
to the research community and practitioners, and they have a
considerable development history.

Our analysis requires the source code as input. We down-
loaded the latest publicly available releases of the considered
systems, i.e., Chromium, Hadoop, Spark, Cassandra and Tom-
cat. Then, we filtered the data to extract the source code
at the level of each project release. Files not consisting of
source code (e.g., CSS, XML, JSON) were excluded from our
analysis as they do not contain source code comments, which
are crucial for our analysis.

Table I summarizes the main characteristics of these
projects. It reports the (i) release considered for each project,
(ii) date of the release, (iii) number of lines of code for each
release, (iv) number of comment lines, (v) number of source
code files, (vi) number of committers, as well as (vii) the
number of commits for each project release.

B. Scanning Code and Extracting Comments

After obtaining the source code of the software projects,
we extracted the comments from the source code files of each
studied project. To this aim, we developed a python-based
tool that identifies comments based on the use of regular
expressions. This tool also indicates the type of a comment
(i.e., single-line or block comments). In addition, the tool
shows, for each comment, the name of the file where the
comment appears, as well as the line number of the comment.
To ensure the accuracy of our tool, we use the Count Lines
of Code (CLOC) tool [30]. CLOC counts the total number of
lines of comments, which was equal to the number provided
by the tool that we developed.

In total, we found 879,142 comments for Chromium, 71,609
for Hadoop, 31,796 for Spark, 20,310 for Cassandra, and
39,024 for Tomcat. Of these comments the number of SATD
comments is, 18,435 comments for Chromium, 2,442 for
Hadoop, 1,205 for Spark, 550 for Cassandra, and 1,543 for
Tomcat. To enable easy processing of our data, we store all
of our processed data in a PostgreSQL database and query the
database to answer our RQs.

C. Identifying Self-Admitted Technical Debt

To perform our analysis, we need to identify SATD at two
levels: (i) file level and (ii) change level.
SATD files: To identify SATD, we followed the methodol-
ogy applied by Potdar and Shihab [5], which uses patterns
indicating the occurrence of SATD. In their work, Potdar and
Shihab [5] came up with a list of 62 different patterns that
indicate SATD. Therefore, in our approach, we determine the
comments that indicate SATD by searching if they contain
any of the 62 patterns that indicate SATD. These patterns are
extracted from several projects and some patterns appear more



TABLE I: Characteristics of the studied projects.

Project Release Release Date # Lines of Code # Comment Lines # Files # Committers # Commits

Chromium 45 Jul 10, 2015 9,388,872 1,760,520 60,476 4,062 283,351

Hadoop 2.7.1 Jul 6, 2015 1,895,873 378,698 7,530 155 11,937

Spark 2.3 Sep 1, 2015 338,741 140,962 2,822 1,056 13,286

Cassandra 2.2.2 Oct 5, 2015 328,022 72,672 1,882 219 18,707

Tomcat 8.0.27 Oct 1, 2015 379,196 165,442 2,747 34 15,914

often than others. Examples of these patterns include “hack,
fixme, is problematic, this isn’t very solid, probably a bug,
hope everything will work, fix this crap”. The complete list of
the patterns considered in this study is made available online1.

Once we identify the comments patterns, we then abstract
up to determine the SATD files. Files containing SATD
comments are then labelled as SATD files, while files that do
not contain any of these SATD comments are referred to as
non-SATD files. We use these SATD files to answer RQ1.
SATD changes: To study the impact of SATD at the change
level, we need to identify SATD changes. To do so, we use
our SATD files to determine the SATD changes. We analyze
the changes and determine all the files that were touched by
that change. If one or more of the files touched by the change
is (are) SATD file(s), then we label that change as an SATD
change. If the change does not touch an SATD file, then we
label it as a non-SATD change. Table II shows the percentage
of SATD comments and files for each of the studied systems.
From the table, we see that SATD comments make up less
than 4% of the total comments and between 10.17 - 20.14%
of the files are SATD files.

TABLE II: Percentage of SATD of the analyzed projects.
Project SATD Comments (%) SATD files (%)
Chromium 2.09 10.43
Hadoop 3.41 18.59
Spark 3.79 20.14
Cassandra 2.70 16.01
Tomcat 3.95 10.17

D. Identifying Defects in SATD Files and SATD Changes
To determine whether a change fixes a defect, we search,

using regular expressions, in change logs from the Git Version
control system for co-occurrences of defect identifiers with
keywords like “fixed issue #ID”, “bug ID”, “fix”, “defect”,
“patch”, “crash”, “freeze”, “breaks”, “wrong”, “glitch”, “prop-
erly”, “proper”. Sliwersky et al. [29] showed that the use
of such key words in the change logs usually refers to the
correction of a mistake or failure. A similar approach was
applied to identify fault-fixing and fault-inducing changes
in prior works [27]–[29]. Once this step is performed, we
identify, for each defect ID, the corresponding defect report
from the corresponding issue tracking system, i.e., Bugzilla2

or JIRA3 and extract relevant information from each report.

1http://users.encs.concordia.ca/˜eshihab/data/ICSME2014/data.zip
2https://www.bugzilla.org
3https://www.atlassian.com/software/jira

Once we identify the SATD files and SATD changes, our
next step is to identify the defects in each. To do so, we
follow the approaches used in past research to determine the
number of defects in a file and to identify defect-inducing
changes [27]–[29].
Defects in files: In order to compare the defectiveness of
SATD and non-SATD files, we need to determine the number
of defects that exist in a file. To do so, we extract all the
changes that touched a file through the entire history of
the system. Then, we search for keywords in the change
logs that are indicative of defect fixing. A subset of these
words that we used involves: “fixed issue #ID”, “bug ID”,
“fix”, “defect”, “patch”, “crash”, “freeze”, “breaks”, “wrong”,
“glitch”, “proper”. In the case where a defect identification
is specified, we extract the defect report to make sure that
the defect corresponds to the system (i.e., product) we are
studying, since some communities (e.g., Apache) use the same
issue tracking system for multiple products. Second, we verify
whether the issue IDs identified in the change logs are true
positives. Once we determine the defect fixing changes, we
use these changes as an indication of the defect fixes that
occur in a file, i.e., we count the number of defects in a file
as the number of defect-fixing changes.
Defect-inducing changes: Similar to the process above, we
first determine whether a change fixes a defect. To do so,
we use regular expressions to search the change logs (i.e.,
commit messages) from the source code control versioning
system specific keywords that indicate a fix. In particular, we
search for the following keywords “fixed issue #ID”, “bug ID”,
“fix”, “defect”, “patch”, “crash”, “freeze”, “breaks”, “wrong”,
“glitch”, “proper”. We also search for the existence of defect
identification numbers in order to determine which defects, if
specified, the changes actually fix.

Once we identify the defect fixing changes, we map back
(using the blame command) to determine all the changes that
changed the fixed code in the past. Then, we determine the
defect-inducing change as the change that is closest and before
the defect report date. In essence, this tells us that this was
the last change before a defect showed up in the code. If no
defect report is specified in the fixing change, then similar to
prior work [28], we assume that the last change before the
fixing change was the change that introduced the defect. This
approach is often referred to as the SZZ [29] or approximate
(ASZZ) algorithm [28] and to-date is the state-of-the-art in
identifying defect-inducing changes.
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Fig. 2: Percentage of defect fixing changes for SATD and NSATD
files.

IV. CASE STUDY RESULTS

This section reports the results of our empirical study that
examines the relationship between self-admitted technical debt
and software quality. For each project, we provide the descrip-
tive statistics and statistical results, as well as a comparison
with the other considered projects.

In the following we present for each RQ, its motivation, the
approach followed to address it, as well as its findings.

RQ1: Do files containing SATD have more defects than files
without SATD? Do the SATD files have more defects after the
introduction of the SATD?

Motivation: Intuitively, technical debt has a negative impact
on software quality. Researchers examined technical debt
and showed that it negatively impacts software quality [7].
However, this study did not focus on SATD, which is prevalent
in software projects according to past research [5].

Empirically examining the impact of SATD on software
quality provides researchers and practitioners with a better
understanding of such SATD, warns them about its future
risks, and makes them aware about the obstacles or challenges
it can pose.

In addition to comparing the defect-proneness of SATD
and non-SATD files, we also compare the defect-proneness
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Fig. 3: Percentage of defect fixing changes for pre-SATD and post
SATD.

of SATD files before (pre-SATD) and after SATD (post-
SATD). This analysis provides us with a different view of
the defect-proneness of SATD files. In essence, it tells us if
the introduction of SATD relates to defects.
Approach: To address RQ1, we perform two types of analy-
ses. First, we compare files in terms of the defect-proneness of
files that contain SATD with files that do not contain SATD.
Second, for the SATD files, we compare their defect-proneness
before and after the SATD is introduced.
Comparing SATD and non-SATD files. To perform this
analysis, we follow the procedure outlined earlier in Section
III-C to identify SATD files. In a nutshell, we determine
files that contain SATD comments and label them as SATD
files. Files that do not contain any SATD are labeled as non-
SATD files. Once we determine these files, we determine the
percentage of defect-fixing changes in each (SATD and non-
SATD) file. We use the percenatages instead of raw numbers
since files can have a different number of changes, hence using
the percentage normalizes our data. To answer the first part of
RQ1, we plot the distribution of defects in each of the SATD
and non-SATD file sets and perform statistical tests to compare
their differences.

To compare the two sets, we use the Mann-Whitney [31]
test to determine if a statistical difference exists and Cliff’s



TABLE III: Cliff’s Delta for SATD versus NSATD and POST versus
PRE fixing changes.

Project SATD vs. NSATD Post- SATD vs. Pre- SATD
Chromium 0.407 0.704
Hadoop -0.562 0.137
Spark -0.221 0.463
Cassandra -0.400 0.283
Tomcat 0.094 0.763

delta [32] to compute the effect-size. We use the Mann-
Whitney test instead of other statistical difference tests because
it is a non-parametric test that does not assume a normal
distribution (and as we will see later, our data is not normally
distributed). We consider the results of the Mann-Whitney test
to be statistically significant if the p-value is below p <= 0.05.
In addition, we computed the effect-size of the difference using
the Cliff’s delta (d) non-parametric effect size measure, which
measures how often values in a distribution are larger than the
values in a second distribution. Cliff’s d ranges in the interval
[−1, 1] and is considered small for 0.148 ≤ d < 0.33, medium
for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.
Comparing files pre- and post- SATD. To compare SATD
files pre- and post- SATD, we determine all the changes that
occurred to a file and identify the change that introduced
the SATD. Then, we measure the percentage of defects (i.e.,
# of fixing changes

total # changes ) in the file before and after the intro-
duction of the SATD. We compare the percentage of defects
instead of the raw numbers since SATD could be introduced at
different times, i.e., we may not have the same total number of
changes before and after the SATD-introducing change. Once
we determine the percentage of defects in a file pre- and post-
SATD, we perform the same statistical test and effect size
measure, i.e., Mann-Whitney and Cliff’s delta.
Results - Defects in SATD and non-SATD files: Figure 2
shows boxplots of the percentage of defect fixing changes in
SATD and non-SATD files for the five projects. We observe
that in all cases, the non-SATD (NSATD) files have a slightly
higher percentage of defect fixing changes in Chromium,
Hadoop, Spark and Cassandra. However, in Tomcat, SATD
files have a slightly higher percentage of defects. For all the
projects, the p-values were < 0.05, indicating that the dif-
ference is statistically significant. However, when we closely
examine the Cliff’s delta values in Table III, we see a different
trend for Chromium. In Chromium and Tomcat, SATD files
often have higher defect percentages than non-SATD files and
the effect size is medium for Chromium and small for Tomcat.
On the other hand in Hadoop, Cassandra and Spark, SATD
files have lower defect percentages than non-SATD files and
this effect is large for Hadoop, medium for Cassandra and
small for Spark.

Our findings here show that there is no clear trend when
it comes to the percentage of defects in SATD vs. non-
SATD files. In some projects, SATD files have more bug-fixing
changes, while in other projects, non-SATD files have a higher
percentage of defects.
Results - Defects in pre- and post- SATD: Figure 3 shows the
boxplots for the percentage of defect-fixing changes in SATD
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Fig. 4: Percentage of defect inducing changes with SATD and
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files, pre- and post- SATD. Not surprisingly, the percentage of
defect-fixing changes in all projects is higher for post-SATD.
Table III shows that the effect size Cliff’s delta values also
confirm our visual observations that there is more defect fixing
post- SATD compared to pre- SATD in the SATD files. For all
the projects except Hadoop and Cassandra, the Cliff’s delta is
large. For Hadoop and Cassandra the Cliff’s delta effect size
is small

This findings shows that although it is not always clear that
SATD files will have a higher percentage of defects compared
to non-SATD files, there is a clear trend that shows that once
the SATD is introduced, there is a higher percentage of defect-
fixing.

RQ2: Do SATD-related changes introduce future defects?

Motivation: After investigating the relationship between
SATD and non-SATD at the file level, we would like to see if
the SATD changes are more likely to introduce future defects.
In contrast to the file-level analysis which looks at files as a
whole, our analysis here is more fine grained since it looks at
the individual changes.

Studying the potential of SATD changes to introduce future
defects is important since it allows us to explore (i) how SATD
changes compare in terms of future introduction of defects to
non-SATD changes and (ii) how quickly the impact of SATD
on quality can be felt. For example, if SATD changes introduce
defects in the immediate next change, then this tells us that
the impact of SATD is felt very quickly. Our conjecture is
that SATD changes tend to be more complex and lead to the
introduction of defects.



TABLE IV: Cliff’s Delta for the change difficulty measures across
the projects.

Project # Modified
Files

Entropy Churn # Modified
Directories

Chromium 0.418 0.418 0.386 0.353
Hadoop 0.602 0.501 0.768 0.572
Spark 0.663 0.645 0.825 0.668
Cassandra 0.796 0.764 0.898 0.827
Tomcat 0.456 0.419 0.750 0.390

Approach: To address RQ2, we applied the SZZ algo-
rithm [29] to find defect-inducing changes. Then, we deter-
mined which of the defect-inducing changes are also SATD
changes. We also count the number of defect-inducing changes
that are non-SATD.

Once the defect-inducing changes are identified, we divided
the data into two groups, i.e., defect-inducing changes that are
also SATD and defect-inducing changes that are non-SATD.
Results: Figure 4 shows that non-SATD changes have a higher
percentage of defect-inducing changes compared to non-SATD
changes. The figure shows that for Chromium for example,
approximately 10% of the SATD changes induce future defect.
On the other hand, approximately 27% of the non-SATD
changes in Chromium induce future defects. Our findings here
show that contrary to our conjecture, SATD changes have a
lower chance of inducing future defects

RQ3: Are SATD-related changes more difficult than non-SATD
changes?

Motivation: Thus far, our analysis has focused on the rela-
tionship between SATD and software defects. However, by
definition, technical debt mentions that it provides a tradeoff
where a short term benefit ends up costing more in the
future. Therefore, we would like to empirically examine this
tradeoff by examining whether changes after the introduction
of technical debt become more difficult to perform.

Answering this question will help us understand the impact
of SATD on future changes and provide us with a different
view on how SATD impacts a software project.
Approach: To answer this question, we classify the changes
into two groups, i.e., SATD and non- SATD changes. Then,
we compare the difficulty of each set of changes. To measure
the difficulty of a change we use four different measures: the
total number of modified lines (i.e., churn) in the change, the
number of modified directories, the number of modified files
and change entropy. The first three measures are motivated
by the earlier work on software decay by Eick et al. [33],
which uses these three measures to measure decay. The change
entropy measure is motivated by the work by Hassan [34],
which used change entropy as a measure of change complexity.

To measure the change churn, number of files and number
of directories, we use data from the change log directly.
The churn is given for each file touched by the change,
we simply aggregate the churn of the individual files to
determine the churn of the change. The list of files is
extacted from the change log to determine the number of
files and directories touched by the change. When measuring
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Fig. 5: Total number of lines modified per change (SATD vs.
NSATD).

the number of modified directories and files we refer to a
directory as ND and a file as NF. Hence, if a change involves
the modification of a file having the path, “net/base/reg-
istry controlled domains/effective tld names.cc“, then the di-
rectory is base/registry controlled domains, and the file is
effective tld names.cc.

To measure the entropy of the change, we use the change
complexity measure proposed by Hassan [34]. Entropy is
defined as: H(P ) = −

∑n
k=1 (pk ∗ log2pk) where k is the

proportion filek is modified in a change and n is the number
of files in the change. Entropy measures the distribution of
a change across different files. Let us consider a change that
involves the modification of three different files named A, B,
and C and let us suppose the number of modified lines in files
A, B, and C is 30, 20, and 10 lines respectively. The Entropy
is equal to: (1.46 = − 30

60 log2
30
60 −

20
60 log2

20
60 −

10
60 log2

10
60 ).

As in Hassan [34], the above Entropy formula has been
normalized by the maximum Entropy log2n to account for
differences in the number of files for different changes. The
higher the normalized entropy is, the more difficult the change
is.
Results: Figures 5, 6, 7, 8 shows that for all difficulty
measures, SATD changes have a higher value than non-
SATD changes. We also find that the difference between the
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Fig. 6: Total number of files modified per change (SATD vs.
NSATD).

SATD and non-SATD changes is statistically significant, with
a p − value < 0.05. Table IV shows the Cliff’s delta effect
size values for all studied projects. We observe that in all
projects and for all measures of difficulty the effect size is
either medium or large (Cf. Table IV), which indicates that
SATD changes are more difficult than non-SATD changes.

In summary, we conclude that SATD changes are more
difficult than changes non-SATD changes, when difficulty
is measured using churn, the number of modified files, the
number of modified directories and change entropy.

V. THREATS TO VALIDITY

Threats to internal validity concern any confounding fac-
tors that could have influenced our study results. To identify
SATD, we use source code comments. In some cases, develop-
ers may not add comments when they introduce technical debt.
Another threat is that developers may introduce technical debt,
remove it and not remove the comment related to that debt,
i.e., the code and comment change inconsistently. However,
Potdar and Shihab [5] examined this phenomena in Eclipse
and found that in the 97% of the cases code and comments
consistently change. To identify the SATD, we use the com-
ments provided by Potdar and Shihab [5]. There is a possibility
that these patterns do not detect all SATD. Additionally, given
that comments are written in natural language, Potdar and
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Fig. 7: Total number of modified directories per SATD and NSATD
change.

Shihab had to manually read and analyze them to determine
those that would indicate SATD. Manual analysis is prone to
subjectivity and errors and therefore we cannot guarantee that
all considered patterns may be perceived as an indicator of
SATD by other developers. To mitigate this threat, the first
author manually examined each comment that we detected
and verified whether it contains patterns from the 62 patterns
investigated in [5]. We performed this step, independently, for
each of the five studied projects. When identifying a change as
SATD change we consider a change to be SATD change when
it contains at least one SATD file. Another way is to classify
a change as an SATD change only when all files have SATD.
The reason we chose to do it this way is because sometimes
even SATD in one file can impact the rest of the change, e.g.,
cause many other files to be changed. When measuring the
percentage of defects for files after SATD was introduced, it is
difficult to observe if the difference was due to the introduction
of SATD or the natural evaluation of the files.

Threats to external validity concern the possibility that our
results may not generalize. To make our results as generaliz-
able as possible, we analyzed five large open-source systems,
i.e., Chromium, Hadoop, Spark, Cassandra, and Tomcat. Our
data comes from well-established, mature codebase of open-
source software projects with well-commented source code.
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Fig. 8: Distribution of the change across the SATD and NSATD files.

These projects belong to different domains, and they are
written in different programming languages.

Furthermore, we focused on SATD only, which means that
we do not cover all technical debt and therefore there may
be other technical debt that is not self-admitted. Studying all
technical debt is out of the scope of this work.

VI. CONCLUSION AND FUTURE WORK

Technical debt is intuitively known as a bad practice by
software companies and organizations. However, there is very
little empirical evidence on the extent to which technical debt
can impact software quality. Therefore, in this paper we per-
form an empirical study, using five large open-source projects,
to determine how technical debt relate to software quality. We
focus on self-admitted technical debt that refers to errors that
might be introduced due to intentional quick or temporary
fixes. As in [5], we identify such debt following a methodology
that leverages source code comments to distinguish it based
on the use of patterns indicating the existence self-admitted
technical debt.

We examined the relation between self-admitted technical
debt and software quality by investigating whether (i) files
with self-admitted technical debt have more defects compared
to files without self-admitted technical debt, (ii) whether self-
admitted technical debt changes introduce future defects, and
(iii) whether self-admitted technical debt-related changes tend

to be more difficult. We measured the difficulty of a change in
terms of the amount of churn, the number of files, the number
of modified modules in a change, as well as the entropy of a
change.

To perform our study, we analyzed five open-source
projects, namely Chromium, Hadoop, Spark, Cassandra, and
Tomcat. Our findings show that there is no clear trend when
it comes to defects and self-admitted technical debt. In some
of the studied projects, self-admitted technical debt files have
more bug-fixing changes, while in other projects, files without
it had more defects. We also found that self-admitted technical
debt changes are less associated with future defects than none
technical debt changes, however, we showed that self-admitted
technical debt changes are more difficult to perform. Our
study indicates that although technical debt may have negative
effects, its impact is not related to defects, rather making the
system more difficult to change in the future.

We bring empirical evidence on the fact that technical
debt may have some negative implications on the software
development process in particular by making it more complex.
Hence, practitioners need to manage it properly to avoid any
consequences. In the future, we plan to further study the nature
of the SATD files after they became defective.
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