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Abstract—Stack Overflow is a popular community-based
Q&A website that caters to technical needs of software devel-
opers. As of February 2015 – Stack Overflow has more than
3.9M registered users, 8.8M questions, and 41M comments. Stack
Overflow provides explicit and detailed guidelines on how to post
questions but, some questions are very poor in quality. Such
questions are deleted by the experienced community members
and moderators. Deleted questions increase maintenance cost
and have an adverse impact on the user experience. Therefore,
predicting deleted questions is an important task.

In this study, we propose a two stage hybrid approach –
DelPredictor – which combines text processing and classification
techniques to predict deleted questions. In the first stage, Del-
Predictor converts text in the title, body, and tag fields of
questions into numerical textual features via text processing
and classification techniques. In the second stage, it extracts
meta features that can be categorized into: profile, community,
content, and syntactic features. Next, it learns and combines two
independent classifiers built on the textual and meta features.
We evaluate DelPredictor on 5 years (2008–2013) of deleted
questions from Stack Overflow. Our experimental results show
that DelPredictor improves the F1-scores over baseline prediction,
a prior approach [12] and a text-based approach by 29.50%,
9.34%, and 28.11%, respectively.

Keywords—Deleted Question, Stack Overflow, Text Processing,
Classification

I. INTRODUCTION

Software engineers frequently make use of online media,
referred to as software information sites [39], to assist them
in solving problems in the process of software development
and maintenance. Software information sites have changed the
way software engineers communicate, collaborate, and share
information [8], [31]. Among these software information sites,
community-based Q&A websites are very popular. Stack Over-
flow [2] is one of the most popular and important community-
based Q&A websites where software engineers ask and answer
technical questions about programming. As of February 2015,
Stack Overflow has more than 3.9M registered users, 8.8M
questions, and 41M comments, and it would receive more
than 3,700 new posted questions per day. The maintenance
of Stack Overflow is difficult due to the large number of users
and questions [11], [12].

To help software engineers post good questions, Stack
Overflow has established explicit and detailed guidelines [1].

However, a number of questions are off topic or of very low
quality, hence they get deleted by moderators or reputable
users. For example, Figure 11 presents a question about
whether repetitive strain injury (RSI) affect legs, the question
was deemed off-topic since it is not related to programming
or software engineering activities.

These deleted questions add extra work for Stack Overflow
moderators, and the presence of poor quality questions nega-
tively affects user experience. These deleted question make
good quality questions less observable to potential answerers
and users searching Stack Overflow, since these questions
can be buried among poor quality ones. Prior studies showed
that poor quality contents on question and answer (Q&A)
websites (e.g., Stack Overflow) drive users away and result
in user attrition [12], [20]. Currently, poor quality questions
are manually deleted in Stack Overflow, but considering the
large number of questions posted daily on Stack Overflow, the
manual effort involved is high. A prior work found there are
293,289 deleted questions from the years of 2008–2013 on
Stack Overflow [12]. Thus, an automated approach that assists
in predicting whether a question would be deleted will greatly
help. Deleted question prediction is not only an important and
practically useful problem, but also technically challenging,
due to the wide variety of user-generated contents on Stack
Overflow [11], [12].

In this paper, we propose an approach named DelPredictor
that employs both text processing and a two-stage ensemble
classification for deleted question prediction. In the first stage,
we first collect textual contents in the title, body, and tags of
questions. Next, we apply text processing and classification
techniques to convert these textual contents into numerical
textual features. In total, we extract 4 kinds of textual features,
namely title, body, mixed, and tags, which correspond to the
textual contents extracted from the title, body, both the title
and body, and tag fields of the questions. In the second stage,
we extract 47 meta-features that were proposed by Correa and
Sureka [12] and can be grouped into 4 categories: profile,
community, content, and syntactic. For example, considering
the user who posts a question, we extract the number of days
the user’s account exists, the number of questions that the user
has posted before, and the average score that the user received

1Note, the question is no longer available in the current Stack Overflow
website (since it has been deleted). It is available in the Stack Overflow data
dump [4].



Title: Does RSI affect legs?
Body: Wikipedia says that RSI is also called ’work
related upper limb disorder’, but I’m getting serious
knee pain when I’m sat working for long periods (18+
hours). Has anyone else experienced this, and have
you found a solution?
Tags: ergonomics, rsi
User: Peter Coulton

Fig. 1. Question 4452 on Stack Overflow.

for his/her previous answers; considering the textual content
of a question, we extract the number of URLs in the question,
the length of the question, and the length of code snippets
in the question. Next, we build two independent classifiers
based on the textual features and the meta features respectively,
and combine them by assigning different weights to the two
classifiers. The weights are automatically tuned to achieve the
best F1-score [16] in a set of training data.

Prior to our work, Correa and Sureka proposed the first
approach that can predict deleted questions; their approach
extracts 47 features from questions and uses AdaBoost to
learn a prediction model [12]. Different from their work, our
work considers thousands of new features (i.e., the various
words in the questions), and we group them into four advanced
textual features. Also, we utilize the advantages of text mining
and classification techniques to predict deleted questions more
effectively.

We evaluate DelPredictor on a large dataset which contains
a total of 417,685 questions from Stack Overflow. We compare
our approach with 3 baseline approaches, i.e., the state-of-
the-art approach proposed by Correa and Sureka [12], random
prediction that randomly predicts a question to be deleted or
not according to the ratio of deleted questions to total ques-
tions, and an approach which only uses raw textual contents of
questions (denoted as text-only). The experiment results show
that DelPredictor achieves a F1-score of 0.597, which improves
over the approach proposed by Correa and Sureka, random
prediction, and text-only approaches by 9.34%, 29.50%, and
28.11%, respectively.

The main contributions of this paper are:

1) We propose a new deleted question prediction ap-
proach DelPredictor, which extends the prior work
by Correa and Sureka [12] by (1) the consideration
of additional textual features (see Section IV-A), (2)
the incorporation of an automated tuning step to
optimize classifier performance (see Section IV-B2),
and (3) the usage of a composition of classifiers (see
Section IV-B3).

2) We evaluate our approach with other approaches,
such as Correa and Sureka’s approach [12], on a large
dataset which contains a total of 417,685 questions
from Stack Overflow. The experimental results show
that our approach can achieve a substantial improve-
ment over the baseline approaches.

The remainder of the paper is organized as follows. Sec-
tion II contrasts an example deleted question with a frequently
asked question and highlights their differences. Section III

Fig. 2. An example question 218384 in Stack Overflow.

Title: Calling RJava function in dbApply?
Body: out < − dbApply (sa data, INDEX = ”len diff”,
FUN = J(”myclassname”) & getNumberOfRevisions
({text before column}, {text after column})
Tags: java, mysql, r, rjava, rmysql
User: saigafreak

Fig. 3. Question 6357962 on Stack Overflow.

describes an overview of DelPredictor’s architecture. Sec-
tion IV elaborates on the details of each stage of DelPredictor.
Section V presents the results of our comparative evaluation
of DelPredictor. Section VI discusses additional points on the
benefits and limitations of our approach. Section VII surveys
the related work. Finally, Section VIII concludes the paper.

II. DELETED QUESTIONS

A typical question in Stack Overflow contains a number
of fields including a title, a body, one or more tags, and a
user. The title and body fields provide a brief and detailed
description of the question. The tag field contains a set of
tags, where a tag is a keyword or label that categorizes a
question and links it to other similar questions. The user field
indicates the user who posted the question. Figure 2 presents an
example question, with identifier 218384, which asked about
the root cause of null pointer exception and the way to fix
it. The question is one of the frequently asked questions for
Java programmers, and it has more than 490,000 views, and
received 12 answers. To make a comparison, Figure 3 presents
a deleted question, with identifier 6357962. The question asked
whether we can call RJava function in dbApply. In the body
field, the user only provided a code snippet, and no further
description was provided.

A. Observations and Implications

From these 2 questions, and also the previous question
shown in Figures 1, we make the following observations:

1) The textual contents in the title and body fields are
good indicators to identify whether a question will be
deleted. For example, the question in Figure 2 is well
written and easy to understand, while the question in
Figure 3 is hard to understand. Also, for the question
in Figure 1, we can easily decide that it is off-topic
after reading it.

2) The tags can help to predict whether a question will
be deleted. Questions attached with some particular
tags are more likely to be deleted than others. For
example, the tag “rmysql” in Figure 3 only appears
in 5 questions in our collected data, and 3 out of
the 5 questions are deleted questions. Similarly, the



tag “ergonomics” in Figure 1 only appears in 40
questions in our collected data, and 39 out of the
40 questions are deleted questions.

3) Experienced users are likely to post good questions,
and new users are likely to post poor quality ques-
tions that are eventually deleted. For example, Ziggy
that posted the question shown in Figure 2 has a
reputation of 5,359, while saigafreak that posted the
question in Figure 3 only has a reputation of 94 and
31 respectively.

The above observations tell us that the textual content in
the title, body, and tag fields provide some useful and yet
hidden information that can help us identify deleted questions.
Text mining techniques that mine hidden information from a
large text corpus, can potentially be used to solve the problem.
Moreover, by considering the importance of users who posted
the questions, the performance of a text-mining-based deleted
question prediction approach can be further improved. In the
following sections, we describe the details of DelPredictor,
which is based on the above observations.

B. Relevance to Software Engineering

Notice our proposed DelPredictor not only help moderators
to better organize the community based Q&A site by deleting
the low quality questions, but also help developers to improve
their productivity by increasing their search efficiency. Con-
sider the following scenarios:

Without DelPredictor. Xin is a junior developer in a IT
company. One day he wants to solve a programming problem,
for example, how to use RJava in the dbApply class. He
searches solutions on Stack Overflow which has a number
of low quality questions, and he finds a questions shown in
Figure 3 which is quite similar to his query. However, it is a
low quality question, after reading the question and answer,
Xin is still puzzled. Thus, Xin has to spend more time to
search for the solution to the programming problem, and due
to a number of low quality questions in Stack Overflow, he
wastes much time to find the answer.

With DelPredictor. Xin is a junior developer in a IT company.
One day he wants to solve a programming problem, for
example, how to use RJava in the dbApply class. He searches
solutions on Stack Overflow. Stack Overflow moderators have
deleted many low quality questions using DelPredictor. Since
the quality of the remaining questions in StackOveflow is high,
Xin finds the answer very fast and can solve the programming
problem well.

III. DELPREDICTOR ARCHITECTURE

Figure 4 presents the overall architecture of DelPredictor,
which contains two phases: a model building phase and a
prediction phase. In the model building phase, our goal is
to build a model from historical questions with known labels
(deleted or not). The model building phase consists of two
stages: a text mining stage (Stage 1), and a composition stage
(Stage 2). In the prediction phase, this model is used to predict
if an unknown question will be deleted or not.

In the text mining stage, our goal is to convert textual
contents of questions into numerical textual features. We first

extract textual contents from questions (Step 1). We consider
4 types of textual contents, i.e., textual contents from the title,
body, title and body, and tags of questions. For each of the
4 types, we extract term features from it (Step 2)2, and build
a classifier based on the term features (Step 3). Next, we use
the classifiers to output the confidence score of each of the
questions to be a deleted question (Step 4). These confidence
scores are the numerical textual features (or textual features for
short). In total, we have 4 textual features, Texttitle, Textbody ,
Textmixed, and Texttags, corresponding to the confidence
scores computed by the text mining classifiers built on the
textual contents of the title, body, title and body, and tags, of
questions in our training data respectively3.

In the composition stage, our goal is to build a composite
classifier based on the (numerical) textual features and meta
features. We first build a classifier based on the 4 textual
features extracted in the text mining stage (Step 5). Next,
we extract meta features from the training set of questions
(Step 6). We extract the same 47 meta features proposed
and tested by Correa and Sureka [12], which are grouped
into 4 categories: profile, community, content, and syntactic4.
Next, we build a meta classifier based on the extracted meta
features (Step 7). We then combine the 2 classifiers together
to construct a composite classifier (Step 8)5.

After the composite classifier is constructed, in the predic-
tion phase it is then used to predict whether a question with
an unknown label will be deleted or not. For each of such
questions, we first extract the values of its textual features
and meta features (Step 9). We extract the textual features
following the process performed in the model building phase.
For each type of textual content, we compute the value of the
(numerical) textual feature by leveraging the 4 classifiers that
we have built in the first stage of the model building phase.
We then input the feature values to the composite classifier
(Step 10) that outputs the prediction result, which is one of
the following labels: deleted or non-deleted (Step 11).

IV. OUR PROPOSED APPROACH

In this section, we present the details of DelPredictor. We
presents the details of the text mining and composition stage.

A. Text Mining Stage

1) Term Feature Extraction: We process the textual con-
tents in the title and body of questions to extract the term
features in 3 steps [5] – tokenization, stop-word removal, and
stemming.

Tokenization. In the process of tokenization, a stream of text is
split into words, symbols, or other meaningful elements called
tokens.

Stop-word Removal. Stop words are words that are used very
frequently and thus can not help to distinguish between deleted
and non-deleted questions. For example, words such as “the”,

2For more details of the term features, please refer to Section IV-A1.
3For more details of the numerical textual features, please refer to Sec-

tion IV-A2.
4For more details of the meta features, please refer to Section IV-B1.
5For more details of the composite classifier, please refer to Section IV-B3.
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Fig. 4. Overall architecture of DelPredictor.

“a”, “she”, “I” are stop words. In this paper, we use a set of
standard English stop words that come with WVTool6. These
stop words are removed from the extracted word tokens. We
also remove all numbers, punctuation marks, and HTML tags
(e.g., <code>, <p>).

Stemming. In this step, the inflected or derived words are
reduced to their stem, base or root form. For example, “read”
and “reading” are all reduced to “read”. In this paper, we use
the Porter stemmer7 to reduce a word token to its representative
root form.

We extract 3 types of term features from the title and body
of questions. They are processed word tokens taken from the
textual contents in the title, body, and both title and body
of questions. We denote them as Termtitle, Termbody , and
Termmixed respectively. For each question, the value of each
feature is the number of times the corresponding word token
appears in it.

For textual contents in the tag field, to keep the original
semantic meanings of the tags, we do not perform any of
the above text processing steps. For example, for the 3 tags
“C#”, “C++”, and “C”, we do not run the text precessing steps,
otherwise all of them would become “C”. This would change
the semantic meanings of 2 out of the 3 tags, and potentially
reduce the effectiveness of a prediction technique that learns
from the tags. We use each of the tags as a term feature,
and denote the set of term features extracted from the tags
as Termtags. For each question, the value of each feature is
one if the corresponding tag appears in the question, and zero
otherwise.

2) Textual Feature Extraction: The number of term features
are often too many, in this step, we want to reduce them
into a few numerical values, which we refer to as (numerical)
textual features. In the model building phase, we first divide
the training data set into two subsets using stratified random
sampling. Using stratified random sampling, the distribution
and number of deleted and non-deleted questions in both
training subsets are kept the same. We train a text mining
classifier from the first training subset, and use it to assign a
confidence score (i.e., likelihood of a question to be deleted)
to each question in the second training subset. Similarly, we
also train a classifier with the second training subset, and use
it to obtain the confidence scores of questions in the first
training subset. These confidence scores are used as the values
of the textual features. By this way, we convert the term

6http://sourceforge.net/projects/wvtool/
7http://tartarus.org/Xmartin/PorterStemmer/

features Termtitle, Termbody , Termmixed, and Termtags

into 4 simple numerical textual features Texttitle, Textbody ,
Textmixed, and Texttags.

In the prediction phase, for a new question, we leverage
the text mining classifiers that are built on all of the training
questions to compute the values of the textual features. By
default, we build the text mining classifiers using the Naive
Bayes multinomial algorithm [21], since it is a fast and
effective classification algorithm. We also use complement
naive Bayes proposed by Rennie et al. [29] to build the
text mining classifiers in research question 3 (RQ3)8. Both
naive Bayes multinomial and complement naive Bayes are
suitable for datasets with a large number of features (in our
case, processed words in raw text data). For many other
classification algorithms, such as decision tree, random forest,
and AdaBoosting, they would take a long time to be run on a
raw text dataset.9

B. Composition Stage

1) Meta Feature Extraction: We extract the 47 meta fea-
tures that were proposed by Correa and Sureka [12]. The 47
meta features are grouped into 4 categories: profile, communi-
ty, content, and syntactic. In the profile category, the features
are defined based on the historical statistics of the user who
posted the question. In the community category, the features
are defined based on the crowdsourced information generated
by the Stack Overflow community. In the content category,
the features are defined based on the textual content of the
question. In the syntactic category, the features are defined
based on the writing style of the textual contents. Table I
summarizes the meta features used in the paper – for more
details, please refer to [12].

Note that the features in the content and syntactic cate-
gories are different from our term and textual features. They
are counts of various things (e.g., number of words in the title
field, number of special characters, etc.) and do not capture
individual words used in questions and their semantics. Two
documents can have the same values of the meta features but
do not share any word in common. Similarly, two documents
can be very similar in their word contents, however are very
different in their meta feature values.

2) Threshold Learning Classifier: After we extract the
textual features and meta features, we build two indepen-
dent classifiers. By default, we use random forest [9], which

8For more details of RQ3, please refer to Section V-C.
9Our preliminary study shows that they can even take days to complete.



TABLE I. META FEATURES PROPOSED BY CORREA AND SUREKA [12].
# DENOTES “NUMBER OF”.

Category Features
Profile Age of account, # previous questions with negative

scores, # previous questions with positive scores,
# previous questions with 0 scores, # previous
answers with negative scores, # previous answers
with positive scores, # previous answers with 0
scores, # previous questions, # previous answers,
# previous badges, (# previous questions)/(age of
account), (# previous answers)/(age of account)

Community Average score for previous answers, Average score
for previous questions, Average view counts for
previous questions, Average number of comments
received, Average number of accepted answers,
Average favorite votes

Content # URLs, # tags, length of code snippet, # personal
pronouns, # pronouns, # space words, # relativity
words, # inclusive words, # cognitive process word-
s, # social words, # first person singular pronouns

Syntactic # function words, # conjunctions, # prepositions, #
characters in body field, # alphabetical characters
in body field, # upper case characters in body
field, # lower case characters in body field, # digit
characters in body field, # white case characters
in body field, # special characters in body field,
# punctuation marks in body field, # words in body
field, # short words in body field, # unique words in
body field, Average length of words in body field,
# characters in title field, # words in title field,
Average length of words in body field

has been widely used in past software engineering studies,
e.g., [22], [34], [37], to construct the two classifiers. For this
step, we use random forest instead of naive Bayes multinomial
since we only have 4 and 47 features to build each of the
classifiers, and previous studies have shown that the random
forest algorithm can complete training quickly and is more
accurate than naive Bayes for datasets with a small number of
features (e.g., ≤ 200) [10].

In the model building phase, random forest constructs a
number of decision trees [16]. In the prediction phase, random
forest processes each new instance (in our case, each new
question) into the decision trees, and predicts the label of
the instance by considering the outputs of the decision trees.
Random forest will output a confidence score based on the
number of trees that predict that the new instance will be
deleted. If this score is beyond a threshold TH , then the new
instance is predicted to be deleted. By default, TH is set to
0.5. However, the optimal threshold value might not be 0.5,
and it can differ for different datasets. A suitable setting of
this threshold affects the classification performance.

In this paper, we propose an approach that automatically
estimates a good threshold in the model building phase. The
pseudo-code of our approach is shown in Algorithm 1. It
takes as input a training set of questions Train. It then
randomly divides Train into two subsets, T1 and T2 (Line
6). T1 contains 80% of the questions in Train, T2 contains
the remaining 20%. Next, we build a classifier using T1
(Line 7), and for each question ques in T2, we also compute
its confidence score (i.e., likelihood for it to be a deleted
question), denoted as Scoredel(ques) (Line 8). Finally, to tune

Algorithm 1 EstimateThreshold: Estimation of Threshold
1: EstimateThreshold(Train)
2: Input:
3: Train: Training Historical Questions
4: Output: TH
5: Method:
6: Randomly divide Train into 2 subsets T1 and T2 where
T1 contains 80% of the questions and T2 contains the
remaining 20%;

7: Built a classifier C on T1;
8: for all Question ques in T2 do
9: Compute the confidence score of ques (i.e., its likeli-

hood to be a deleted question) by using C;
10: end for
11: for all TH from 0 to 1, every time increase TH by 0.01

do
12: Predict the labels for questions in T2 according to

Equation (1);
13: Compute the F1-score on T2;
14: end for
15: Return TH which maximizes the F1-score for questions

in T2

the threshold value, we gradually increase the threshold from
0 to 1 (we increase the threshold by 0.01 each time), and for
each question ques in T2, we predict its label Predict(ques)
using the following equation:

Predict(rele) =

{
Deleted,

Non-deleted,
if Scoredel(ques) ≥ TH

Otherwise
(1)

We output the threshold that maximizes the F1-score for the
questions in T2 (Lines 11 - 15).

3) Composite Classifier: We denote the classifiers built on
textual features and meta features as Ctext and Cmeta. Given
a new question, Ctext and Cmeta output the following textual
score and meta score, respectively:

Definition 1: (Textual Score.) Consider a text classifier
Ctext built from the textual features of questions in the training
set, and a threshold TH estimated using Algorithm 1. For
a new question ques, we use Ctext to get its confidence
score (i.e., its likelihood to be a deleted question) – denoted
as Scoretextdel (ques). The textual score of ques, denoted as
Text(ques), is computed as:

Text(ques) =
Scoretextdel (ques)

Scoretextdel (ques) + TH
(2)

Definition 2: (Meta Scores.) Consider a meta classifier
Cmeta built on the meta features of questions in the training
set, and a threshold TH estimated using Algorithm 1. For a
new question ques, we use Cmeta to get its confidence score –
denoted as Scoremetadel (ques). The meta score of ques, denoted
as Meta(ques), is computed as:

Meta(ques) =
Scoremetadel (ques)

Scoremetadel (ques) + TH
(3)

The composite classifier combines the textual classifier and
meta classifier by assigning different weights to them. We



define the composite score that is output by the composite
classifier as follows:

Definition 3: (Composite Score.) Consider a text classifier
Ctext, and a meta classifier Cmeta built on the textual features
and meta features of questions in the training data. For a new
question ques, its composite score Comp(ques) is a linear
combinations of its textual score Text(ques) and meta score
Meta(ques):

Comp(ques) = α×Text(ques)+(1−α)×Meta(ques) (4)

In the above equation, α ∈ [0, 1]. α = 0 implies that only
the meta classifier is used, while α = 1 implies that only the
textual classifier is used. If Comp(ques) ≥ 0.5, we predict
that the question is a deleted question, else it is a non-deleted
question.

To automatically produce good α value for the compos-
ite classifier, we propose a greedy algorithm as shown in
Algorithm 2. Similar to the threshold estimation process in
Algorithm 1, we input the training data Train, and randomly
divide Train into two subsets, T1 and T2 (Line 6). Next, we
build the text classifier Ctext and meta classifier Cmeta on T1
(Line 7), and for each question ques in T2, we compute its
textual score and meta score (Line 8). Finally, to tune α, we
gradually increase α from 0 to 1 (increasing α by 0.01 each
time). For each α value, we predict the label of each question
ques in T2 (i.e., deleted or not) according to Definition 3. We
output the α value that maximizes the F1-score for questions
in T2 (Lines 11 - 15).

Algorithm 2 Estimateα: Estimation of α value.
1: Estimateα(Train)
2: Input:
3: Train: Training Historical Questions
4: Output: α
5: Method:
6: Randomly divide Train into 2 subsets T1 and T2 where
T1 contains 80% of the questions and T2 contains the
remaining 20%;

7: Build the text classifier and meta classifier Ctext and
Cmeta on T1;

8: for all Question ques in T2 do
9: Compute the textual score and meta score of ques by

using Ctext and Cmeta;
10: end for
11: for all α from 0 to 1, every time increase α by 0.01 do
12: Predict the labels of questions in T2 according to

Definition 3;
13: Compute the F1-score on T2;
14: end for
15: Return α which maximizes the F1-score for questions in

T2

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of DelPredic-
tor. The experimental environment is a Windows Server 2008,
64-bit, Intel Xeon 2.00GHz server with 80GB RAM.

TABLE II. STATISTICS OF THE COLLECTED DATASET.

Time Period 2008. 08 – 2013. 06
Num. of questions 471,685 questions

Num. of deleted questions 194,130 questions
Num. of non-deleted questions 223,555 questions

A. Experiment Setup

We use the same dataset as Correa and Sureka [12] which
contains a total of 470,096 questions. We further pre-process
the dataset by removing questions which have only 1 tag
and the tag only appear 1 time to reduce noise due to rare
tags. Table II presents the statistics of the dataset. In total,
we analyze 417,685 questions in Stack Overflow, and among
these questions, 194,130 questions are deleted questions, which
accounts for 46.5% of the total number of questions. To
determine whether a question is a deleted question, all of the 24
database dumps [4] provided by Stack Overflow from August
2008 to June 2013 are downloaded, and if a question appeared
in at least one of the previous database dumps, but not in the
database dump from June 2013, the question is considered a
deleted question. We intentionally choose questions that have
been published for a long time to ensure that the contents of the
questions have stabilized (i.e., no edits are likely to be done any
more), the questions are answered and closed, and sufficient
time has elapsed to allow more chance for deleted questions
to be identified by Stack Overflow users and moderators.

To investigate whether DelPredictor can be used to identify
deleted questions in the same setting as the one in practice, we
performed an experiment using a longitudinal data setup. We
sort the questions in the order they are posted (i.e., temporally)
and split them into 11 non-overlapping time windows of equal
sizes, numbered 0 to 10. The process then proceeds as follows:
First, in fold 1, we train using questions in window 0, and test
the trained model using questions in window 1. Then, in fold
2, we train using questions in window 1, and test the trained
model using questions in window 2. We proceed in a similar
manner for the next folds. In the final fold (i.e., fold 10), we
train using questions in window 9, and test using questions in
window 10. We record the average performance across the 10
folds.

By default, DelPredictor uses naive Bayes multinomial to
build the 4 classifiers in the text mining stage, and random
forest to build the text and meta classifiers in the composition
stage. We use the implementation of naive Bayes multinomial
and random forest in Weka [15], and set the parameters of
these two approaches as the default setting in Weka.

We compare our DelPredictor with the approach proposed
by Correa and Sureka [12], random prediction, and variants
of an approach that only uses textual contents of questions.
Correa and Sureka propose the usage of AdaBoosting [13] to
predict deleted questions; we use the same setting of Correa
and Sureka, i.e., we use decision tree as the base classifier, and
set the number of iterations as 100. For random prediction, a
question is randomly predicted to be deleted or not according
to the ratio of the number of deleted questions to the total
number of questions. The precision of random prediction is the
percentage of deleted questions in the data set. Since random
prediction is a random classifier with two possible outcomes
(e.g., deleted/non-deleted), its recall is 0.5. In the text only
approach, we predict whether a question would be deleted or



TABLE III. AVERAGE PRECISION, RECALL AND F1-SCORE OF
DELPREDICTOR COMPARED WITH THE BASELINE APPROACHES.

Approaches Precision Recall F1-score
DelPredictor 0.507 0.832 0.597

Correa and Sureka’s 0.535 0.604 0.546
Random Prediction 0.464 0.500 0.461

TOtitle 0.452 0.492 0.458
TObody 0.452 0.502 0.466
TOmixed 0.451 0.500 0.465
TOtags 0.452 0.488 0.454

Text Classifier 0.456 0.451 0.442
Meta Classifier 0.597 0.518 0.526
Single+ TH 0.521 0.668 0.546

Single 0.545 0.493 0.496

not by using only the textual contents in the question. Naive
Bayes multinomial is used to build the text only classifier.
Considering that we can build the text-only classifier based on
the textual content in the title, body, both title and body, and
tags, we have four variants of the text-only approach, and we
denote them as TOtitle, TObody , TOmixed, and TOtags.

B. Evaluation Metrics

There are four possible outcomes for a question in the
test data: a question can be classified as a deleted question
when it truly is a deleted question (true positive, TP); it can
be classified as a deleted question when it is actually a non-
deleted question (false positive, FP); it can be classified as
a non-deleted question when it is actually a deleted question
(false negative, FN); or it can be classified as a non-deleted
question and it truly is a non-deleted question (true negative,
TN). Based on these possible outcomes, precision, recall and
F1-score are defined as:

Precision: the proportion of questions that are correctly la-
beled as deleted questions among those labeled as deleted
questions, i.e., P = TP

TP+FP .

Recall: the proportion of deleted questions that are correctly
labeled, i.e., R = TP

TP+FN .

F1-score: a summary measure that combines both precision
and recall - it evaluates if an increase in precision (recall)
outweighs a reduction in recall (precision), i.e., F = 2×P×R

P+R .

There is a trade-off between precision and recall. One can
increase precision by sacrificing recall (and vice versa). In
DelPredictor, we can sacrifice precision (recall) to increase
recall (precision), by manually lowering (increasing) the value
of the threshold TH parameter in Equation (1). This trade-
off causes difficulties in comparing the performance of several
prediction models by using precision or recall alone [16]. For
this reason, we compare the prediction results using the F1-
score, which is the harmonic mean of precision and recall. This
follows the setting used in numerous other software analytics
studies [22], [23], [30], [34], [37], [38], [40]. In general,
the higher the F1-score is, the better the performance of an
approach is.

C. Research Questions

We are interested in the following three research questions:

RQ1: How effective is DelPredictor at predicting deleted
questions? How much improvement can it achieve over
other state-of-the-art approaches?

Motivation. Moderators in Stack Overflow can use DelPredic-
tor to identify deleted questions. The more accurate DelPre-
dictor is, the more benefit DelPredictor would give to its users.
Hence, we first set out to evaluate the accuracy of DelPredictor
with respect to other state-of-the-art approaches.

Approach. To address RQ1, we compare DelPredictor with
the approach proposed by Correa and Sureka [12], random
prediction, and the text-only approaches, i.e., TOtitle, TObody ,
TOmixed, and TOtags. Since DelPredictor has two sub-
classifiers (text classifier and meta classifier), we also in-
vestigate the performance of each of them. We want to see
whether the combination of the two classifiers can achieve
better result than the individual classifier. Additionally, we
build a single classifier trained using all of the 51 features
(4 textual features and 47 meta features), and compare the
performance of the single classifier with DelPredictor. We
use random forest to build the single classifier and denote it
as Single. Furthermore, we also enhance Single with our
threshold learning step presented in Section IV-B2. We use
this enhanced single classifier, denoted as Single + TH , as
another baseline. We evaluate them by using the longitudinal
data setup, and record the average precision, recall, and F1-
scores across the 10 folds.

Results. Tables III presents the average precision, recall, and
F1-scores for DelPredictor compared with those of Correa
and Sureka’s approach, random prediction, TOtitle, TObody ,
TOmixed, and TOtags, respectively. On average across the
10 folds, DelPredictor achieves precision and recall values of
0.507 and 0.832, respectively. Precision and recall are both
important metrics for deleted question prediction since they
measure quality in two aspects. Low precision means a high
number of false positives. On the other hand, low recall means
that most deleted questions are not identified as such. Since
there is a trade off between precision and recall [16], we use
the F1-score, which is the harmonic mean of precision and
recall, to compare the performance of the different approaches.

From Table III, on average across the 10 folds, DelPre-
dictor can achieve F1-scores of 0.597. The improvement of
DelPredictor over the baseline approaches are substantial in
terms of F1-score. On average across the 10 folds, DelPredictor
improves the F1-scores of Correa and Sureka’s approach,
random prediction, TOtitle, TObody , TOmixed, TOtags, text
classifier, meta classifier, Single+TH , and Single by 9.34%,
29.50%, 30.35%, 28.11%, 28.39%, 31.50%, 35.07%, 13.50%,
9.34%, and 20.36%, respectively.

RQ2: How effective is DelPredictor when different under-
lying classifiers are used?

Motivation. By default, in the text mining stage, we set the
underlying classification algorithm of DelPredictor as naive
Bayes multinomial; in the composition stage, we set the
underlying classification algorithm as random forest. There are
various classifiers which can also be used by the two stages
of DelPredictor. We would like to investigate the effectiveness
of our approach using different underlying classifiers.

Approach. To address RQ2, in the first stage, we set the under-
lying classification algorithm as naive Bayes multinomial, and
complement naive Bayes proposed by Rennie et al. [29]. In the
composition stage, we use random forest, naive Bayes [16],
decision tree [16], ADTree [15], and AdaBoosting [13] as



TABLE IV. AVERAGE PRECISION, RECALL, AND F1-SCORES OF
DELPREDICTOR WITH DIFFERENT UNDERLYING CLASSIFIERS. NBM =
NAIVE BAYES MULTINOMIAL, FOREST = RANDOM FOREST, NAIVE =

NAIVE BAYES, TREE = DECISION TREE, ADA = ADABOOSTING, COMPNB
= COMPLEMENT NAIVE BAYES.

Approaches Precision Recall F1-score

DelPredictorForest
NBM (Default) 0.507 0.832 0.597

DelPredictorNaive
NBM 0.463 0.749 0.543

DelPredictorTree
NBM 0.491 0.743 0.550

DelPredictorADTree
NBM 0.483 0.806 0.575

DelPredictorAda
NBM 0.508 0.794 0.580

DelPredictorForest
CompNB 0.506 0.786 0.579

DelPredictorNaive
CompNB 0.464 0.709 0.522

DelPredictorTree
CompNB 0.499 0.660 0.528

DelPredictorADTree
CompNB 0.509 0.800 0.587

DelPredictorAda
CompNB 0.504 0.784 0.572

TABLE V. TOP-20 MOST DISCRIMINATIVE FEATURES.

1 # tags 0.032
2 Length of code snippet 0.029
3 Texttags 0.021
4 Average number of accepted answers 0.017
5 # previous badges 0.017
6 Average score for previous answers 0.017
7 previous questions with positive scores 0.015
8 # previous questions 0.014
9 # punctuation marks characters in body field 0.014
10 # special characters in body field 0.014
11 Age of account 0.013
12 Texttitle 0.013
13 Average score for previous questions 0.013
14 Textmixed 0.012
15 Textbody 0.010
16 # previous answers 0.010
17 Average number of comments received 0.010
18 # previous answers with positive scores 0.010
19 # white case characters in body field 0.009
20 ( # previous questions)/(age of account) 0.009

the underlying classifiers of DelPredictor. In total we have 10
different compositions of different underlying classifiers in the
two stages of DelPredictor. We denote the DelPredictor with
the algorithm a in the text mining stage, and the algorithm
b in the composition stage as DelPredictorba. For example,
if we choose complement naive Bayes and naive Bayes as
the two underlying classifiers, we denote our approach as
DelPredictornaivecompNB . We evaluate them using the longitudinal
data setup, and record the average precision, recall, and F1-
scores across the 10 folds.

Results. Table IV presents the average precision, recall, and
F1-scores of DelPredictor with different underlying classifier-
s. We notice for different underlying classifiers in the two
stages, the performance of DelPredictor would be varied.
Comparing the two text mining algorithms in the text mining
stage, we notice the naive Bayes multinomial achieves a
better performance than complement naive Bayes. For ex-
ample, the F1-score of DelPredictorForestNBM is 0.597, while
the F1-score of DelPredictorForestCompNB is only 0.579. Also,
comparing the five classification algorithms in the composi-
tion stage, we notice DelPredictor with ADTree, AdaBoost-
ing and random forest achieve much better performance
than those with naive Bayes and decision tree. For exam-
ple, the F1-scores of DelPredictorForestNBM , DelPredictorADTreeNBM ,
and DelPredictorAdaNBM are 0.597, 0.575, and 0.580 re-
spectively, while the F1-scores of DelPredictorNaiveNBM and
DelPredictorTreeNBM are 0.543 and 0.550 respectively.

TABLE VI. αS AND THRESHOLDS FOR THE TEXT CLASSIFIER
(THTEXT ) AND THE META CLASSIFIER THMETA ACROSS THE TEN

FOLDS.

Folds α THTEXT THMETA

Fold 1 0.42 0.50 0.37
Fold 2 0.70 0.30 0.39
Fold 3 0.67 0.20 0.37
Fold 4 0.68 0.30 0.40
Fold 5 0.55 0.40 0.42
Fold 6 0.74 0.30 0.42
Fold 7 0.55 0.40 0.42
Fold 8 0.76 0.30 0.46
Fold 9 1.00 0.30 0.25
Fold 10 0.00 0.30 0.35

Avg. 0.61 0.33 0.39

RQ3: What are the best features for discriminating
whether a question would be deleted or not?

Motivation. Aside from producing a model that can predict
deleted questions, we are also interested in finding discrimina-
tive features that could help in distinguishing deleted questions
from non-deleted ones. Also, in this paper, we extend the
features proposed by Correa and Sureka by adding four numer-
ical textual features, thus we are also interested to investigate
whether these newly introduced features are important to
predict deleted questions or not.

Approach. For each fold, we compute the information gain
scores [16] of all the features in the fold. Information gain
is often used as a discriminativeness measure in many past
software engineering studies [19], [25], [32], [33], [36], [40].
We compute the average information gain scores for the 51
features across the 10 folds, and rank them.

Results. Table V presents the top-20 most discriminative
features based on information gain scores. We notice that the
information gain score is low (the highest possible value would
be 1), which represents that one feature alone is not sufficient
to discriminate deleted questions from non-deleted ones. We
notice that among the top-3 most discriminative features, two
of them are related to the tags of the questions, i.e., number of
tags, and the numerical textual feature Texttags. We manually
check some questions and we find that many of the deleted
questions have less tags than non-deleted questions. Also, all of
the four textual features we proposed appear in the top-20 most
discriminative features. Texttags, Texttitle, Textmixed, and
Textbody are listed in position 3, 12, 14, and 15, respectively.
Thus, our proposed numerical textual features can further help
to discriminate deleted questions from non-deleted ones.

VI. DISCUSSION

Thresholds Learned: Table VI presents the αs, and thresholds
for the text classifier and the meta classifier across the 10 folds.
We notice that for different folds, the α and thresholds are
different, thus it is not optimal to use the αs and thresholds
calculated in the previous folds. This is due to the phenomenon
of concept drift, where the conditional distribution of the
output (in our case, deleted or non-deleted) is changed as
time passes while the distribution of input features may stay
unchanged [14].

Recall vs. Precision: Our approach is meant to be a recom-
mendation tool. The goal is to highlight bad cases to improve
the quality of StackOverflow. For such setting, recall (its ability
to find bad cases) is more important than precision. In terms



TABLE VII. AVERAGE MODEL BUILDING AND PREDICTION TIME OF
DELPREDICTOR COMPARED WITH THE BASELINE APPROACHES (IN

SECONDS).

Approaches Model Building Time Prediction Time
DelPredictor 32.64 0.51

Correa and Sureka’s 9.46 0.14
Random Prediction 0.00 0.05

TOtitle 0.15 0.32
TObody 0.22 0.69
TOmixed 0.22 0.61
TOtags 0.12 0.35

Text Classifier 3.11 0.43
Meta Classifier 9.76 0.38
Single+ TH 14.74 0.38

Single 0.54 0.31

of precision, our DelPredictor does not perform as well as
Correa and Sureka’s approach, however in terms of recall,
DelPredictor shows much better performance compared to
the baseline approaches. Neither our approach nor Correa et
al.’s approach is ready for full automation yet (i.e., automatic
deletion of questions without human intervention) since the
precisions of these approaches are still relatively low.

On average across the 10 folds, the thresholds for the text
classifier and the meta classifier are 0.33 and 0.39, respectively.
If we set the thresholds to be less than 0.5, our approach is
more likely to predict a question as a deleted question, which
would increase recall and decrease precision. In our approach,
the target of the threshold learning step is to learn a threshold
which maximizes F1-score on the training data. By using the
thresholds, DelPredictor sacrifices some precision (from 0.535
to 0.507 as compared with Correa and Sureka’s approach) to
largely increase recall (from 0.604 to 0.832).

Efficiency: Table VII presents the average model build time
and prediction time of DelPredictor compared with the baseline
approaches. We notice that the model building and prediction
time of DelPredictor are reasonable, e.g., on average, we need
about 32.64 seconds to build a model, and 0.51 seconds to
predict the labels of questions in a test set. Note that the model
building phase can be done offline (e.g., overnight). Also, a
learned model can be used to predict the labels of many new
questions.

Threats to Validity: Threats to internal validity relates to
errors in our code and experiment bias. We have double-
checked our code, still there could be errors that we did not
notice. Also, in this paper, we use a longitudinal data setup
to simulate the actual usage of DelPredictor. In practice, we
can only use the questions posted before to build a model, and
we can not use future questions to build a model. Threats to
external validity relate to the generalizability of our results.
We have analyzed 417,685 questions in Stack Overflow. In
the future, we plan to reduce this threat further by analyzing
even more questions from Stack Overflow. Threats to construct
validity refer to the suitability of our evaluation measures. We
use F1-score which is also used by past studies to evaluate
the effectiveness of various automated software engineering
techniques [22], [23], [30], [34], [37], [38], [40]. Thus, we
believe there is little threat to construct validity.

VII. RELATED WORK

Studies on Stack Overflow: Correa and Sureka perform a
large-scale empirical study on Stack Overflow [12]. They find
that there is an increasing number of deleted questions in

Stack Overflow over the last 2 years, and deleted questions
are significantly low in quality than “closed” questions. To
help people detect deleted questions, they extract 47 features
and propose the usage of AdaBoosting to solve the problem.
Our work extend their work by:

1) Considering the textual content in the questions, we
leverage text mining techniques to convert the textual
content to numerical textual features. By this way, we
extend the features proposed by Correa and Sureka.

2) We build a composite classifier which utilizes the
advantages of both the textual and meta features to
achieve a better performance. The approach proposed
by Correa and Sureka only builds a single classifier.

Nasehi et al. study the quality of code examples on Stack
Overflow [24]. They find nine attributes of good questions,
e.g., concise code, using question context, and step-by-step
solutions. Asaduzzaman et al. study the unanswered questions
on Stack Overflow, and they find around 7.5% of the questions
are unanswered [3]. They further build a prediction model to
predict the amount of time that a question will remain unan-
swered. Correa and Sureka analyze and predict the “closed”
questions on Stack Overflow [11]. Different from deleted
questions, “closed” questions are questions that are duplicate,
off-topic, subjective, not a real question, or too localized, and
a question only can be deleted after it is marked as “closed”.
Ponzanelli et al. propose an automated approach to predict
the quality of questions [27], [28]. They categorize a question
into one of four classes, i.e., very good, good, bad, and
very bad, according to whether the question gets an accepted
answer and its score. Our work is related to but different
from the above studies: we predict deleted questions on Stack
Overflow. Deleted questions are questions with extremely low
quality [12].

Barua et al. analyze the topics and trends on Stack
Overflow by leveraging latent Dirichlet allocation (LDA) [7].
They find mobile development attract more attention than
web development. Xia et al. propose a composite approach
which combine multiple components to recommend the tags
to the questions [39]. Wang et al. extend their work using two
separate models: a Bayesian inference model and a Frequentist
inference model [35]. Ponzanelli et al. propose an approach to
automatically retrieve related discussions from Stack Overflow
given context in the IDE [26]. Bajaj et al. perform an empirical
study on the questions posted by web developers, and they
find the overall ratio of web development related questions is
increasing, and there are more and more discussion on mobile
development [6]. Kavaler et al. study the API usage of Andriod
platform in Google Play, and the API usage questions in Stack
Overflow [17]. Our work is orthogonal to the above studies: we
focus on the deleted question prediction, which is a different
problem from the above studies.
Text Classification in Software Engineering: Xia et al.
propose a fuzzy set based feature selection approach which
selects important terms from the natural language description
of bug reports to categorize bugs based on their fault triggering
conditions [40]. Menzies and Marcus propose SEVERIS which
apply a text mining and machine learning technique to predict
the severity of bug reports [23]. Menzies and Marcus evaluate
their proposed approach on bug reports from NASA and
predict fine-grained bug severity levels. Lamkanfi et al. extend



Menzies and Marcus work by proposing another text mining
approach for bug severity prediction that can predict coarse-
grained bug severity levels with more accuracy [18]. They
evaluate their proposed approach on many bug reports from
multiple open source projects.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a hybrid approach named DelPre-
dictor which combines both text processing and classification
techniques for deleted question prediction. DelPredictor has
two stages: a text mining stage, and a composition stage. In the
text mining stage, we apply text processing and classification
techniques to convert the textual contents of questions into
numerical textual features. In the composition stage, we extract
meta features, and construct two classifiers, i.e., text classifier
and meta classifier, that are trained using numerical textual
features and meta features respectively. We perform experi-
ments on a large dataset which contains a total of 417,685
questions from Stack Overflow. The experiment results show
that DelPredictor can achieve an F1-score to 0.597, which
improves the F1-scores of the approach proposed by Correa
and Sureka, random prediction, and an approach that only
analyzes textual contents by 9.34%, 29.50%, and 28.11%,
respectively. In the future, we plan to evaluate DelPredictor
with more questions from Stack Overflow, and develop a better
technique that further improves the prediction performance.

Acknowledgment. This research was supported by the NSFC
Program (No.61572426), and National Key Technology R&D
Program of the Ministry of Science and Technology of China
under grant 2015BAH17F01.

REFERENCES

[1] How to ask a question on stack overflow.
http://stackoverflow.com/help/how-to-ask.

[2] Stack overflow. http://stackoverflow.com/.
[3] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider.

Answering questions about unanswered questions of stack overflow. In
MSR, 2013.

[4] J. Atwood. Stack overflow creative commons data dump.
http://blog.stackoverflow.com/2009/06/stack-overflow-creative-
commons-data-dump/, 2009.

[5] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval.
1999.

[6] K. Bajaj, K. Pattabiraman, and A. Mesbah. Mining questions asked by
web developers. In MSR, 2014.

[7] A. Barua, S. W. Thomas, and A. E. Hassan. What are developers talking
about? an analysis of topics and trends in stack overflow. EMSE, 2014.

[8] A. Begel, R. DeLine, and T. Zimmermann. Social media for software
engineering. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, 2010.

[9] L. Breiman. Random forests. Machine learning, 2001.
[10] R. Caruana and A. Niculescu-Mizil. An empirical comparison of

supervised learning algorithms. In ICML, 2006.
[11] D. Correa and A. Sureka. Fit or unfit: analysis and prediction of’closed

questions’ on stack overflow. In Proceedings of the first ACM conference
on Online social networks, 2013.

[12] D. Correa and A. Sureka. Chaff from the wheat: characterization and
modeling of deleted questions on stack overflow. In WWW, 2014.

[13] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer
and system sciences, 1997.
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