
Information and Software Technology 61 (2015) 93–106
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
ELBlocker: Predicting blocking bugs with ensemble imbalance learning
http://dx.doi.org/10.1016/j.infsof.2014.12.006
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: xxkidd@zju.edu.cn (X. Xia), davidlo@smu.edu.sg (D. Lo),

eshihab@cse.concordia.ca (E. Shihab), wangxinyu@zju.edu.cn (X. Wang), yangxh@
zju.edu.cn (X. Yang).

1 In this paper, we use the terms ‘‘bug’’ or ‘‘bug report’’ interchangeabl
refer to an issue report stored in a bug tracking system that is marked as a
Xin Xia a, David Lo b, Emad Shihab c, Xinyu Wang a,⇑, Xiaohu Yang a

a College of Computer Science and Technology, Zhejiang University, Hangzhou, China
b School of Information Systems, Singapore Management University, Singapore
c Department of Computer Science and Software Engineering, Concordia University, Montreal, QC, Canada

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 July 2014
Received in revised form 28 December 2014
Accepted 28 December 2014
Available online 14 January 2015

Keywords:
Blocking bug
Ensemble learning
Imbalance learning
Context: Blocking bugs are bugs that prevent other bugs from being fixed. Previous studies show that
blocking bugs take approximately two to three times longer to be fixed compared to non-blocking bugs.
Objective: Thus, automatically predicting blocking bugs early on so that developers are aware of them,
can help reduce the impact of or avoid blocking bugs. However, a major challenge when predicting block-
ing bugs is that only a small proportion of bugs are blocking bugs, i.e., there is an unequal distribution
between blocking and non-blocking bugs. For example, in Eclipse and OpenOffice, only 2.8% and 3.0%
bugs are blocking bugs, respectively. We refer to this as the class imbalance phenomenon.
Method: In this paper, we propose ELBlocker to identify blocking bugs given a training data. ELBlocker first
randomly divides the training data into multiple disjoint sets, and for each disjoint set, it builds a classi-
fier. Next, it combines these multiple classifiers, and automatically determines an appropriate imbalance
decision boundary to differentiate blocking bugs from non-blocking bugs. With the imbalance decision
boundary, a bug report will be classified to be a blocking bug when its likelihood score is larger than
the decision boundary, even if its likelihood score is low.
Results: To examine the benefits of ELBlocker, we perform experiments on 6 large open source projects –
namely Freedesktop, Chromium, Mozilla, Netbeans, OpenOffice, and Eclipse containing a total of 402,962
bugs. We find that ELBlocker achieves F1 and EffectivenessRatio@20% scores of up to 0.482 and 0.831,
respectively. On average across the 6 projects, ELBlocker improves the F1 and EffectivenessRatio@20%
scores over the state-of-the-art method proposed by Garcia and Shihab by 14.69% and 8.99%, respectively.
Statistical tests show that the improvements are significant and the effect sizes are large.
Conclusion: ELBlocker can help deal with the class imbalance phenomenon and improve the prediction of
blocking bugs. ELBlocker achieves a substantial and statistically significant improvement over the state-
of-the-art methods, i.e., Garcia and Shihab’s method, SMOTE, OSS, and Bagging.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Software bugs are prevalent in all stages of the software devel-
opment and maintenance lifecycle. To manage the reporting of
software bugs, most software projects use bug tracking systems,
such as Bugzilla. Prior studies showed that the cost of bug fixing
in a software system consumed 50–80% of the development and
maintenance cost [1]. In 2002, a report from the National Institute
of Standards and Technology (NIST) found that software bugs cost
$59 billions of the US economy annually [2].

Due to the importance of software bugs, a large number of
automated techniques have been proposed to manage and reduce
the impact of software bugs. These techniques include bug triaging
and developer recommendation [3–6], bug severity/priority
assignment [7–9], duplicate bug report detection [10,11], bug fix-
ing time prediction [12–14], and reopened bug prediction
[15,16]. In general, the above techniques extract data from bug
reports in bug tracking systems to build their prediction models.

In a typical bug fixing process, a tester or a user detects a bug,
and submits a bug report1 to describe the bug in bug tracking sys-
tems. Then, the bug is assigned to a corresponding developer to
fix. Once the bug is fixed, another developer would verify the fixes,
and finally close the bug report. However, in certain cases, the whole
fixing process is stalled due to the existence of a blocking bug [17].
Blocking bugs refer to bugs that prevent other bugs from being fixed.
y, which
bug.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.12.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.12.006
mailto:xxkidd@zju.edu.cn
mailto:davidlo@smu.edu.sg
mailto:eshihab@cse.concordia.ca
mailto:wangxinyu@zju.edu.cn
mailto:yangxh@ zju.edu.cn
mailto:yangxh@ zju.edu.cn
http://dx.doi.org/10.1016/j.infsof.2014.12.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 https://bugzilla.mozilla.org/show_bug.cgi?id=148810.

94 X. Xia et al. / Information and Software Technology 61 (2015) 93–106
This means that developers cannot fix their bugs, not because they
do not have the ability or resources required to do so, but because
the modules they need to fix depend on other modules which still
have unresolved (blocking) bugs.

Garcia and Shihab study blocking bugs and find that blocking
bugs need 15–40 more days to be fixed compared with non-block-
ing bugs, i.e., the time to fix blocking bugs is approximately two to
three times longer than these of non-blocking bugs [17]. Thus, an
automated tool which predicts blocking bugs can help reduce the
impact of blocking bugs. Garcia and Shihab further leverage
machine learning techniques to predict blocking bugs. They pre-
process the training bug reports by using re-sampling strategy
[18], and build various classifiers based using the pre-processed
bug reports by leveraging various machine learning techniques
(e.g., decision trees (C4.5) [19], Naive Bayes [20], kNN [20], and
Random Forests [21]). They find random forest achieves the best
performance compared to the other techniques. However, the
overall performance of all the classifiers were not optimal.

A major challenge in blocking bug prediction is the fact that
only a small proportion of bug reports are actually blocking bugs.
There is an unequal distribution between blocking and non-block-
ing bug reports. Only 8.9%, 2.3%, 12.5%, 3.2%, 3.0%, and 2.8% of the
bug reports in the whole bug report repository of Freedesktop,
Chromium, Mozilla, Netbeans, OpenOffice, and Eclipse projects
respectively are blocking bugs. We refer to this as the class imbal-
ance phenomenon [22]. Due to the class imbalance phenomenon,
predicting blocking bugs with high accuracy is a difficult task.

In this paper we propose ELBlocker to predict blocking bugs.
ELBlocker combines multiple prediction models built on a subset
of training bug reports. More specifically, we first divide the train-
ing data into multiple disjoint sets, and in each disjoint set, we
build a separate classifier (i.e., a prediction model). Next, we com-
bine these multiple classifiers, and automatically determine an
appropriate imbalanced decision boundary (or threshold) to differ-
entiate blocking bugs from non-blocking bugs. Traditional machine
learning techniques will classify a bug report to be a blocking bug if
its likelihood score to be a blocking bug is higher than its likelihood
to be a non-blocking bug. With the imbalanced decision boundary,
a bug report will be classified to be a blocking bug when its likeli-
hood score is larger than the decision boundary, no matter if its
likelihood score to be blocking is low or lower than its likelihood
score to be a non-blocking bug. This imbalanced decision boundary
is needed since imbalanced data causes a classifier to favor the
majority class. Also, since imbalanced data tends to cause poor per-
formance, to boost the performance further, we combine multiple
classifiers instead of using a single one following the ensemble
learning paradigm [23] that has often been shown effective [22].

To evaluate ELBlocker, we use two metrics: F1-score [17,7,15,9]
and cost effectiveness [24–27]. F1-score is a summary measure
that combines both precision and recall. F1-score is a good evalu-
ation metric when there is enough resources to manually check
all the predicted blocking bugs. A higher F1-score means that a
method can detect more blocking bugs (true positives) and reduce
the time wasted checking non-blocking bugs. Cost effectiveness
evaluates prediction performance given a limited resource, e.g.,
percentage of bug reports to check. In this paper, we use Effective-
nessRatio@20% (ER@20%) as the default cost effectiveness metric.
The ER@K% score of a technique is the ratio of the number of block-
ing bugs detected by the technique to the number detected by the
perfect technique that ranks all blocking bugs first followed by non-
blocking ones, considering the first K% of the bugs appearing in the
ranking list of our proposed technique and the perfect technique.

To evaluate the effectiveness of ELBlocker, we perform experi-
ments on 6 large open source projects: Freedesktop, Chromium,
Mozilla, Netbeans, OpenOffice, and Eclipse containing a total of
402,962 bugs. On average across the 6 projects, ELBlocker achieves
F1 and ER@20% scores of 0.345 and 0.668, respectively. These
results correspond to improvements in the F1 and ER@20% scores
over the method proposed in the prior work of Garcia and Shihab
by 14.69% and 8.99%, respectively. Statistical tests show that the
improvements are significant and the effect sizes are large. We also
compare ELBlocker with other imbalanced learning algorithms (e.g.,
SMOTE [28] and one-sided selection (OSS) [29]) and an ensemble
learning algorithm (i.e., Bagging [30]), and the results show that
our ELBlocker achieves the best performance.

The main contributions of this paper are:

1. We consider the class imbalance phenomenon and propose a
novel method, named ELBlocker, to predict blocking bugs, which
utilizes the advantages of ensemble learning to combine multi-
ple prediction models and learn an appropriate decision
boundary.

2. We compare our method with Garcia and Shihab’s method,
SMOTE, OSS, and Bagging on 6 large software projects. The
experiment results show that our method achieves substantial
and statistically significant improvements over these methods.

The remainder of the paper is organized as follows. We describe
some preliminary materials on blocking bug prediction and a moti-
vating example in Section 2. We describe the high-level architec-
ture of ELBlocker in Section 3. We elaborate on ELBlocker and
detail our approach in Section 4. We present our experiment
results in Section 5. We present the threats to validity in Section
6. We discuss related work in Section 7. We conclude and mention
future work in Section 8.
2. Preliminaries & motivation

In this section, we first introduce some preliminaries about
blocking bugs. Next, we provide the technical motivation as to
why we need an ensemble of prediction models and why we need
to consider the decision boundary.
2.1. Blocking bugs

Blocking bugs refer to bugs that prevent other bugs from being
fixed. Garcia and Shihab find that blocking bugs take approxi-
mately two to three times longer to be fixed compared to non-
blocking bugs [17]. Fig. 1 presents an example of a report of a
blocking bug of Mozilla.2 This bug report specifies that ‘‘when con-
tent is appended or inserted, the existing implementation of con-
structing pseudo frames does not work correctly’’.

Observations and implications. From the blocking bug in
Fig. 1, we can observe the following:

1. Blocking bugs need a long time to be fixed. For example, the bug
in Fig. 1 took a long time to be fixed. It was created on 2002-06-
03, but on 2009-03-26 it was fixed; it took nearly 7 years to fix
this bug.

2. Blocking bugs also prevent a number of other bugs from being
fixed, and the bugs which depend on the blocking bugs also
need a long time to be fixed. The bug in Fig. 1 blocked a number
of others bugs in Mozilla, such as bugs 30378, 208305, and
294065, which also delayed the fixing of these bugs. For exam-
ple, bug 208305 was created on 2003-06-04, but only until
2009-03-26 this bug was finally fixed.

http://https://bugzilla.mozilla.org/show_bug.cgi?id=148810

Fig. 1. An example of a blocking bug in Mozilla with BugID = 148810.

Table 1
The precision, recall, and F1-score for various classifiers built on an ensemble of
different number of classifiers built on subsets of training bug reports in Freedesktop.

Classifiers Precision Recall F1-score

Baseline 0.628 0.203 0.307
Random 0.023 0.500 0.045
K = 2 0.489 0.269 0.347
K = 3 0.420 0.274 0.331
K = 4 0.409 0.302 0.347

X. Xia et al. / Information and Software Technology 61 (2015) 93–106 95
2.2. Technical motivation

The effectiveness of our ELBlocker technique relies on the
answers of the following 2 research investigations:

Investigation 1: Does a prediction model built on an ensemble of
classifiers that are built on subsets of the training bug reports
achieve better performance compared to a model that is built using
all of the bug reports?
K = 5 0.417 0.344 0.377
K = 6 0.389 0.351 0.369
K = 7 0.367 0.387 0.377
K = 8 0.342 0.361 0.351
K = 9 0.327 0.436 0.374
K = 10 0.318 0.420 0.362

Table 2
The precision, recall, and F1-score for classifiers with different threshold values in
Freedesktop.

Classifiers Precision Recall F1-score

Baseline 0.628 0.203 0.307
Threshold = 0.1 0.248 0.724 0.37
Threshold = 0.2 0.352 0.524 0.421
Threshold = 0.3 0.446 0.377 0.409
Threshold = 0.4 0.563 0.276 0.370
Threshold = 0.5 0.628 0.203 0.307
Threshold = 0.6 0.718 0.120 0.206
Threshold = 0.7 0.806 0.059 0.110
Threshold = 0.8 0.857 0.028 0.055
Threshold = 0.9 0.667 0.005 0.009
Investigation 2: Do different decision boundaries (i.e., thresholds)
result in significantly different prediction performances?

To answer Investigation 1, we divide the training bug reports
from Freedesktop into K (i.e., K 2 ð2; . . . ;10Þ) equal-sized disjoint
sets. Then, we build a classifier for each of the K subsets. Thus, in
total we have K classifiers. For an unlabeled bug report, we input
it into each of the K classifiers, and we pick the prediction that
has the highest confidence (or likelihood) score. For comparison
purposes, we build a classifier (referred to as the baseline classifier)
based on all bug reports in the training set, and evaluate it using
the same testing set as we do for the K classifiers. In addition, we
also build a random prediction classifier (referred to as the random
classifier), which randomly predicts a bug to be blocking or not. We
use the random forest algorithm [21] to build these classifiers and
measure the quality of these two approaches (ensemble vs. single
classifier) using precision, recall, and F1-scores using 10-fold cross
validation. More specifically, we divide all the bug reports in Free-
desktop into 10 equal-sized folds, and we choose 9 folds of the data
for training, and evaluate the performance of an approach in the
remaining fold; the above process iterates 10 times and the aggre-
gate score across the 10 iterations is reported. Table 1 presents the
precision, recall, and F1-score of various approaches (ensemble vs.
single classifier). For the ensemble approach, we vary K from 2 to
10. We observe that an ensemble of different classifiers can
improve the performance of blocking bug prediction. For example,
when we choose K ¼ 5 or 7, the F1-score would be 0.377 while this
score for the baseline is only 0.307. We also notice that randomly
predicting whether a bug report is a blocking bug or not achieves
low precision and F1-score values. Thus, a prediction model built
on an ensemble of classifiers, which are built on subsets of training
bug reports can achieve better performance compared to the
model built using all of the bug reports.

To answer Investigation 2, we build a classifier using all training
bug reports and predict the label for a new bug report by compar-
ing its likelihood score with a decision boundary (or threshold). If
the likelihood score is larger than the threshold, we predict it as a
blocking bug; else it is predicted as a non-blocking bug. We vary
the threshold from 0.1 to 0.9. We also use random forest to train

96 X. Xia et al. / Information and Software Technology 61 (2015) 93–106
the classifier, and perform 10-fold cross-validation. Table 2 pre-
sents precision, recall, and F1-score for different threshold values.
We observe that using different threshold values, the performance
is different. For example, if we choose a threshold of 0.2, the F1-
score is 0.421 while the F1-score for the baseline is only 0.307;
however, if we choose a threshold of 0.9, the F1-score is only
0.009. Thus, a prediction model with different decision boundaries
(or thresholds) will result in different performance, and in practice
it is necessary for us to determine a good decision boundary.

With the above preliminary experiments, we find that using an
ensemble of classifiers built on subsets of a training data, and
learning a good decision boundary (or threshold) can improve
the performance of blocking bug prediction. Thus, in this paper,
we propose ELBlocker which combines multiple classifiers, and
learns a good threshold, to achieve a good performance.
3. ELBlocker architecture

Fig. 2 presents the architecture of the ELBlocker framework.
ELBlocker contains two phases: a model building phase and a pre-
diction phase. In the model building phase, ELBlocker builds a com-
posite model from historical bug reports that have known labels
(blocking or non-blocking). In the prediction phase, we apply this
model to predict whether an unknown bug report is a blocking
bug or not.

Our framework takes as input historical training bug reports
with known labels (blocking or non-blocking). Next, it extracts
the values of various features from these bug reports (Step 1). In
this paper, we use the features that are listed in Table 3. To enable
easy comparison with the state-of-the-art, we use the same fea-
tures that were previously proposed by Garcia and Shihab for
blocking bug prediction [17]. For a blocking bug report in the train-
ing set, the values of its features are obtained from the contents of
its fields right before it is assigned as a blocking bug by the devel-
oper. For example, for the feature ‘‘priority increase’’ which
denotes whether the priority of this bug has increased, we set
the value of this feature as true when the priority really increases
before the bug is identified as a blocking bug, else we set the value
of this feature as false. Similarly, for features ‘‘comment text’’ and
‘‘comment size’’, we only consider comments that a bug report
receives before it is identified as a blocking bug. For a non-blocking
bug report in the training set, the values of its features are obtained
from the last contents of its fields when we extract them from the
bug tracking systems.
Model Building Phase

Features
Extrac�on

1

Training Bug
Reports & Bug

Labels (Blocking
or Not)

C1

C2

...

Cn

Sub1

Sub2

...

Subn

2
3

Subsets Classifiers

Fig. 2. Overall architec
Then, ELBlocker randomly divides the collection of training bug
reports into multiple equal-sized disjoint subsets (Sub1; Sub2; . . . ;

Subn) (Step 2), and for each subset Subi, ELBlocker builds a classifier
Ci (Step 3). In total, we end up with n classifiers built using n sub-
sets of the training set. Next, these n classifiers are combined to
form ELComposer, and we search for the optimal decision bound-
ary (i.e., threshold value) that provides the best F1-scores in the
training set (Step 4). ELComposer is a machine learning classifier
which assigns labels (in our case: blocking or non-blocking) to a
bug report based on its feature values.

After the ELComposer model is constructed, it is then used to
predict whether a bug report with an unknown label is a blocking
bug or not. For each new bug report, we first extract the values of
the same set of features as those considered in the model building
step (Step 5). We then input the values of these features into the
learned model (Step 6). It will output a prediction result, which
is one of the following labels: blocking or non-blocking (Step 7).

4. ELBlocker approach

ELBlocker is a composite approach that combines multiple clas-
sifiers built on the disjoint subsets of the collection of training bug
reports. In this section, we first present the definition of subset
scores in Section 4.1. Next, we detail the procedure of ELBlocker
in Section 4.2.

4.1. Subset scores

We denote the n classifiers that are built on the n equal-sized
disjoint sets as C1;C2; . . . ;Cn. Given an unknown bug report, Ci will
output its likelihood scores that this bug is a blocking bug.

Definition 1 (Subset scores). Consider a subset of training bug
report collection Subi, we build a classifier Ci trained on Subi. For a
new bug report br, we use Ci to get the likelihood that br is a
blocking bug. We refer to this likelihood score as the subset score
for br, and denote it as SubiðbrÞ.

There are many classification algorithms that can be used to
build a classifier; most of them assign weights to the features
and use the presence and absence of each of these features in a
new bug report, along with the weights of the features to compute
the likelihood of the new bug report to be assigned a particular
label (i.e., blocking or non-blocking). By default, we use random
forest [21] as the classification algorithms. Random forest is one
of the ensemble learning approaches that constructs a number of
Predic�on Phase

Threshold

ELComposer

Features
Extrac�on

Predicted Labels
(Blocking or Not)

New Bug
Reports

4

5

6

7

ture of ELBlocker.

Table 3
Features for blocking bug prediction used by Garcia and Shihab [17].

Name Description

Product Product affected by the bug
Component Component affected by the bug
Platform Platform affected by the bug
Severity The severity of the bug as assigned by the bug reporter. Severity is used as a measure of how much of an impact the bug has
Priority Indicates how fast the bug should be addressed. In many cases, priority is related to severity
No. CC list The number of developers that appear in the CC list of the bug report
Description size Number of words in the description of the bug report
Description text Textual content appearing in the description field of the bug report. Similar to prior work [17], we convert the description text into a Bayesian score

that represents how related the description text is to a blocking bug
Comment size Number of words in the comments of the bug report
Comment text Textual content appearing in the comments of the bug report. Similar to prior work [17], we convert the comment text into a Bayesian score that

represents how related the comment text is to a blocking bug
Priority increase Whether the priority of this bug has increased since the time it was reported
Reporter name Name of the developer who reports this bug
Reporter exp. Number of previous bug reports filed by the reporter
Reporter block.

exp.
Number of previous blocking bug reports filed by the reporter

X. Xia et al. / Information and Software Technology 61 (2015) 93–106 97
decision trees [20] by using historical data in the model building
phase. In the prediction phase, random forest inputs instances (in
our case, bug reports) into the sets of decision trees, and predicts
the label of the instances based on the majority voting of the out-
puts of the set of decision trees.

4.2. ELComposer classifier

Given n classifiers C1;C2; . . . ;Cn, for a new bug report br, we
have n subset scores, i.e., Sub1ðbrÞ; Sub2ðbrÞ; . . . ; SubnðbrÞ. An
ELComposer classifier computes an average sum of all likelihood
scores assigned by the n classifiers and predicts whether a new
bug report br is a blocking bug or not based on a threshold score.
Definition 2 provides a more mathematical definition of the
ELComposer classifier.

Definition 2 (ELComposer classifier). Consider n subset classifiers
fC1;C2; . . . ;Cng. A ELComposer classifier composes these n classi-
fiers and assigns a label to a bug report br, denoted as LabelðbrÞ, as
follows:

LabelðbrÞ ¼
Blocking; if CompðbrÞP threshold

Non-Blocking; Otherwise

�
ð1Þ

where,

CompðbrÞ ¼
Pn

i¼1SubiðbrÞ
n

ð2Þ

In the above equation, SubiðbrÞ is the likelihood score outputted
by the ith subset classifier for bug report br. Bug report br is clas-
sified as a blocking bug if its composite confidence score
CompðbrÞ is larger or equal than threshold (threshold is the decision
boundary); otherwise it is classified as non-blocking.

To deal with the imbalanced data, ELComposer introduces a
threshold. The value of the threshold varies between 0 and 1. To
automatically produce a good threshold value for ELComposer, we
propose a greedy algorithm.

Algorithm 1 presents the training phase of ELBlocker, which will
fine tune the threshold. We input a bug report collection BR, num-
ber of disjoint sets n, and sample size Sample. We first divide the
training bug reports into n equal-sized disjoint sets, and built sub-
set classifiers C1;C2; . . . ;Cn on the n disjoint sets (Lines 8 and 9).
Then, we sample a small bug report collection SampBR according
to the sample size Sample (Line 10). By default, we randomly select
10% of the bug reports in BR. Next, for each bug report in SampBR,
we compute its subset scores SubiðbrÞ for each subset classifier
according to Definition 1, and we compute the composite confi-
dence score CompðbrÞ according to Eq. (2) (Lines 11–14). Finally,
to tune the best threshold value, we gradually increase threshold
from 0 to 1 (every time we increase threshold by 0.01), and for each
sampled bug report br, we predict its label according to Eq. (1); we
output threshold which maximizes the F1-score for bug reports in
SampBR (Lines 15–19).

Algorithm 1. EstimateThreshold: Estimation of Threshold.

1: EstimateThreshold(BR;n; Sample)
2: Input:
3: BR: Training Bug Report Collection and Their Labels
4: n: Number of Disjoint Sets
5: Sample: Sample Size (10% in default)
6: Output: threshold
7: Method:
8: Divide the training bug reports into n equal-sized disjoint

sets;
9: Built subset classifiers C1;C2; . . . ;Cn on the n disjoint sets;

10: Sample a bug report collection SampBR of size Sample from
BR;

11: for all Bug Report br 2 SampBR, and Label l 2 L do
12: Compute subset scores SubiðbrÞ for each subset

classifiers according to Definition 1;
13: Compute CompðbrÞ according to Eq. (2);
14: end for
15: for all threshold from 0 to 1, every time increase threshold

by 0.01 do
16: Predict the labels for bug reports in SampBR according to

Eq. (1);
17: Compute the F1-score on SampBR;
18: end for
19: Return threshold which maximizes the F1-score for bug

reports in SampBR
5. Experiments and results

In this section, we evaluate ELBlocker. The experimental envi-
ronment is a Windows 7, 64-bit, Intel(R) Xeon(R) 2.53 GHz server
with 32 GB RAM. We present our experiment setup, evaluation
metrics, and four research questions in Sections 5.1–5.3, respec-
tively. We then present our experiment results that answer the
four research questions.

Fig. 3. An example of a blocking bug in OpenOffice with BugID = 124947.

98 X. Xia et al. / Information and Software Technology 61 (2015) 93–106
5.1. Experiment setup

To facilitate a fair comparison with the state-of-the-art, we use
the same datasets as Garcia and Shihab [17], which contain bug
reports from 6 open source software projects: Freedesktop,
Chromium, Mozilla, NetBeans, OpenOffice, and Eclipse. In total
we analyze 402,962 bug reports, and among these bug reports,
only 18,422 are blocking bugs, which accounts for 4.6% of the total
number of bug reports. Table 4 presents the statistics of Garcia and
Shihab’s data. The columns correspond to the name of projects
(Project), number of bug reports (# Bug Reports), number of
blocking bugs (# Blocking Bugs), and the percentage of blocking
bugs (% Blocking Bugs).

To determine whether a bug is a blocking, we use the following
strategies:

� Mozilla, Eclipse, Freedesktop and NetBeans use Bugzilla as their
issue tracking system. In Bugzilla, there is a field named
‘‘Blocks’’ in the bug reports (as shown in Fig. 1). Hence, we
use the ‘‘Blocks’’ field in the bug report to identify whether a
bug is blocking or not.
� OpenOffice uses a modified version of Bugzilla called IssueTrac-

ker. However, similar to Bugzilla, IssueTracker has a field named
‘‘Blocks’’. We also use this field to identify whether or not a bug
is blocking. For example, Fig. 3 presents a blocking bug report of
OpenOffice. We notice this bug blocks another bug, i.e., bug
124985.
� Chromium has its own issue tracking system in Google code,

and it also has a field named ‘‘Blocking’’. We also use this field
to identify whether a bug is a blocking bug. For example,
Fig. 4 presents a blocking bug report in Chromium. We notice
this bug blocks another bug, i.e., bug 365701.

To validate ELBlocker and to reduce the training set selection
bias, we perform 10-fold cross-validation 100 times and take the
average performance. For each 10-fold cross validation we
randomly split the data into ten subsets. The random splitting is
performed differently for each of the 10-fold cross validations.
Cross validation is a standard evaluation setting, which is widely
used in software engineering studies, c.f., [15,31–33,7,34,17].

For ELBlocker, we set the number of disjoint sets as 10 by
default, i.e., we build 10 subset classifiers and combine them. In
a previous study, Garcia and Shihab propose the use of re-sampling
to address the imbalance class phenomenon, and they find re-sam-
pling with random forest achieves the best performance. In this
paper, we use their approach as one of the baselines. There are also
other imbalance learning algorithms; in this paper, we also choose
two state-of-the-art algorithms, SMOTE [28] and one-sided
selection (OSS) [29]. SMOTE is an over-sampling algorithm, which
produces a number of new synthetic minority data by extrapolat-
ing values from the K nearest neighbors of each of the original
minority class instances (in our case: blocking bugs) [28]. We set
the number of neighbors for SMOTE as 5 which is also used in
[28], and we increase the number of minority class by 10 times
Table 4
Statistics of collected data.

Project # Bug reports # Blocking bugs % Blocking bugs

Freedesktop 4785 424 8.9
Chromium 39,619 924 2.3
Mozilla 67,597 8476 12.5
NetBeans 76,731 2424 3.2
OpenOffice 83,536 2520 3.0
Eclipse 127,040 3654 2.8

All projects 402,962 18,422 4.6
(i.e., we create new synthetic blocking bugs 9 times the number
of the original blocking bugs). One-sided selection (OSS) is an
under-sampling algorithm, which removes noisy and redundant
instances of the majority class (in our case: non-blocking bugs),
using the one-nearest-neighbor method [29]. Since our ELBlocker
uses the idea of ensemble learning, we also select Bagging [30],
which is the most similar ensemble learning algorithm to our
approach, as a baseline. Bagging samples a subset of a training
set by using bootstrap sampling method, and then builds a classi-
fier on the subset. This process iterates n times, and in total, Bag-
ging builds n classifiers. To determine the label of an instance,
Bagging uses a majority voting mechanism. In total, we chose 4
baselines, Garcia and Shihab’s method, SMOTE, OSS, and Bagging.
Notice all of the above approaches could use a different underlying
classifier, to make a fair comparison, we use random forest as the
underlying classifier for all approaches. For Garcia and Shihab’s
method, we use the original implementation obtained from the
authors. For SMOTE, OSS, Bagging, and random forest, we use their
implementations in Weka [35], and we implement ELBlocker on
top of Weka [35].

5.2. Evaluation metrics

We use two evaluation metrics: F1-score and cost effectiveness
[17,7,15,9,24–27]. These two measures are useful in different situ-
ations. F1-score is useful when there is sufficient resource to check
all of the predicted blocking bugs. Cost effectiveness is useful when
there are limited resources to check a limited amount of bug
reports due to a hectic schedule of development, e.g., top 20% num-
ber of bugs with highest likelihood scores.

5.2.1. F1-score
There are four possible outcomes for a bug report in the test

data: A bug can be classified as a blocking bug when it truly is a
blocking bug (true positive, TP); it can be classified as a blocking
bug when it is actually a non-blocking bug (false positive, FP); it
can be classified as a non-blocking bug when it is actually a block-
ing bug (false negative, FN); or it can be classified as a non-blocking
bug and it truly is a non-blocking bug (true negative, TN). Based on
these possible outcomes, precision, recall and F1-score are defined
as:

Precision: the proportion of bug reports that are correctly
labeled as blocking bugs among those labeled as blocking bugs.

P ¼ TP=ðTP þ FPÞ ð3Þ

Recall: the proportion of blocking bugs that are correctly
labeled.

Table 5
Cliff’s delta and the effectiveness level [37].

Cliff’s delta (jdj) Effectiveness level

jdj < 0:147 Negligible
0:147 6 jdj < 0:33 Small
0:33 6 jdj < 0:474 Medium
jdjP 0:474 Large

Fig. 4. An example of a blocking bug in Chromium with BugID = 366101.

X. Xia et al. / Information and Software Technology 61 (2015) 93–106 99
R ¼ TP=ðTP þ FNÞ ð4Þ

F1-score: a summary measure that combines both precision
and recall – it evaluates if an increase in precision (recall) out-
weighs a reduction in recall (precision).

F ¼ ð2� P � RÞ=ðP þ RÞ ð5Þ

There is a trade-off between precision and recall. One can
increase precision by sacrificing recall (and vice versa). In our
framework, we can sacrifice precision (recall) to increase recall
(precision), by manually lowering (increasing) the value of the
threshold parameter in Eq. (1). The trade-off causes difficulties to
compare the performance of several prediction models by using
only precision or recall alone [20]. For this reason, we compare
the prediction results using F1-score, which is a harmonic mean
of precision and recall. This follows the setting used in many soft-
ware analytics studies [33,17,7,15,9].
5.2.2. Cost effectiveness
Cost effectiveness is a widely used evaluation metric for soft-

ware engineering studies [24–27], which evaluates prediction per-
formance given a cost limit. In our setting, the cost is the number of
bug reports to check. By default, we set the number of bugs to
check as 20% of the total number of bugs. In this paper, we use
EffectivenessRatio@20% (ER@20%) as the default cost effectiveness
metric. The ER@20% score of a technique is the ratio of the number
of blocking bugs detected by the technique to the number detected
by the perfect technique that ranks all blocking bugs first, consider-
ing the top 20% bugs.

To compute ER@20% we sort bug reports in the test data that are
predicted as blocking bugs based on the confidence level that a pre-
diction technique outputs for each of them. Aside from outputting
labels (in our case: blocking or not), ELBlocker, Garcia and Shihab’s
approach [17], and many other classifiers can also output confi-
dence levels. A bug report with a higher confidence level is deemed
to be more likely to be a blocking bug by a prediction technique. We
then count the number of blocking bugs that appear in the top 20%
of the sorted bug reports. We also count the number of bugs that can
be identified by a hypothetical perfect technique that ranks all
blocking bugs first, when only the top 20% of the bug reports are
checked. Based on these two numbers, ER@20% is computed as:
Number of blocking bugs in the first 20% of the ranking produced by ELBlocker
Number of blocking bugs in the first 20% of the ranking produced by the perfect technique

ð6Þ
5.3. Research questions

We are interested in answering the following research
questions:
RQ1. How effective is ELBlocker? How much improvement can it
achieve over other state-of-the-art methods?

We need to compare ELBlocker with the state-of-the-art meth-
ods. Answer to this research question shows how much ELBlocker
advances the state-of-the-art. In a recent study, Garcia and Shihab
propose the use of re-sampling with random forest to improve the
performance of blocking bug prediction [17]. There are also other
imbalance learning and ensemble learning algorithms in the
machine learning literature, such as SMOTE, OSS, and Bagging.
Thus, to answer this research question, we compare ELBlocker with
Garcia and Shihab’s method, SMOTE, OSS, and Bagging. We com-
pute F1 and ER@20% scores to evaluate the performance of the 5
approaches on the 6 projects. Also, since we use 100 times 10-fold
cross-validation to evaluate each of the methods, we apply the
Wilcoxon signed-rank test [36] on the 100 paired data to test
whether the improvement of ELBlocker over the baselines are sta-
tistically significant.

We also use Cliff’s delta (d) [37], which is a non-parametric
effect size measure that quantifies the amount of difference
between two groups. In our context, we use Cliff’s delta to compare
ELBlocker to the baseline approaches. The delta values range from
�1 to 1, where d ¼ �1 or 1 indicates the absence of overlap
between two approaches (i.e., all values of one group are higher
than the values of the other group, and vice versa), while d ¼ 0
indicates the two approaches are completely overlapping. Table 5
describes the meaning of different Cliff’s delta values and their cor-
responding effectiveness level [37].

RQ2. How effective are ELBlocker and the baseline methods when
different percentages and numbers of bug reports predicted as
blocking bugs are checked?
By default, we evaluate the performance of the techniques
when only the top 20% of the bugs are checked which follows pre-
vious studies [27,26,25]. In this RQ, we also investigate the perfor-
mance of ELBlocker and the baseline methods when different

Table 7
Experiment results of ELBlocker compared with Garcia and Shihab’s method (Gar.),
SMOTE, one-sided selection (OSS), and Bagging in Chromium.

Project Method Precision Recall F1-score ER@20%

Chromium ELBlocker 0.108 0.184 0.136 0.473
Gar. 0.437 0.145 0.112 0.444
Improv.Gar. 21.43% 6.49%
SMOTE 0.111 0.082 0.111 0.361
Improv.SMO. 22.52% 30.74%
OSS 0.061 0.189 0.092 0.343
Improv.OSS 47.83% 37.77%
Bagging 0.000 0.000 0.000 0.016
Improv.Bag. 1 2798.58%

Table 8
Experiment results of ELBlocker compared with Garcia and Shihab’s method (Gar.),
SMOTE, one-sided selection (OSS), and Bagging in Mozilla.

Project Method Precision Recall F1-score ER@20%

Mozilla ELBlocker 0.437 0.538 0.482 0.628
Gar. 0.354 0.571 0.437 0.561
Improv.Gar. 10.30% 11.97%
SMOTE 0.417 0.393 0.405 0.551
Improv.SMO. 19.01% 14.15%
OSS 0.335 0.559 0.419 0.534
Improv.OSS 15.04% 17.60%
Bagging 0.536 0.148 0.232 0.543
Improv.Bag. 107.76% 15.66%

Table 9
Experiment results of ELBlocker compared with Garcia and Shihab’s method (Gar.),
SMOTE, one-sided selection (OSS), and Bagging in NetBeans.

100 X. Xia et al. / Information and Software Technology 61 (2015) 93–106
percentages of bug reports are checked. Additionally, we also
investigate the effectiveness of ELBlocker and the baseline meth-
ods when a fixed budget, i.e., an absolute number of bug reports
to check, is specified. Answering this research question can verify
whether ELBlocker still improves the baseline methods in different
settings. To answer this research question, we plot the ER@K%
graphs that show the percentages of blocking bugs that can be
detected by checking different percentages of bug reports. We also
show a table that shows the number of bugs that can be detected
by inspecting different numbers of bug reports.

RQ3. How effective are ELBlocker with different number of subset
classifiers?

By default, we build 10 subset classifiers. In this RQ, we also
investigate the performance of ELBlocker with a different number
of subset classifiers. Answering this research question can verify
the suitable parameter setting range for ELBlocker. To answer this
research question, we vary the number of subset classifiers n from
2 to 20.

RQ4. How much time does it take for ELBlocker to run?

The efficiency of ELBlocker will affect its practical use. Thus, in
this research question, we investigate the time efficiency of ELB-
locker. We report the model building and prediction time. Model
building time refers to the time it takes to convert the training data
into an ELBlocker classifier (aka. ELComposer). Prediction time
refers to the time it takes for an ELBlocker classifier to predict
the label of a bug report. We compare the model building and pre-
diction time of ELBlocker with those of the baseline methods.
Project Method Precision Recall F1-score ER@20%

NetBeans ELBlocker 0.347 0.361 0.354 0.746
Gar. 0.250 0.392 0.305 0.691
Improv.Gar. 16.07% 7.92%
SMOTE 0.386 0.229 0.287 0.656
Improv.SMO. 23.34% 13.66%
OSS 0.210 0.339 0.259 0.584
Improv.OSS 36.68% 27.70%
Bagging 0.739 0.120 0.207 0.714
Improv.Bag. 71.01% 4.47%

Table 10
Experiment results of ELBlocker compared with Garcia and Shihab’s method (Gar.),
SMOTE, one-sided selection (OSS), and Bagging in OpenOffice.

Project Method Precision Recall F1-score ER@20%

OpenOffice ELBlocker 0.453 0.447 0.450 0.831
Gar. 0.322 0.490 0.389 0.794
Improv.Gar. 15.68% 4.60%
5.4. RQ1: performance of ELBlocker

Tables 6–12 presents the experiment results of ELBlocker
compared with Garcia and Shihab’s method, SMOTE, one-sided
selection (OSS), and Bagging, respectively. The statistically signifi-
cant improvements are marked in bold. The experiment results for
Garcia and Shihab’s method are a little different than what were
reported in their paper [17]. This is the case since the 10-fold cross
validation used in our experiments randomly partitions the dataset
into 10 sets. Due to the randomness in the process, the resultant
sets are different than those produced by the random partitioning
performed in Garcia and Shihab’s experiments. Also, different from
Garcia and Shihab’s experiment setup, we run 10-fold cross-valida-
tion 100 times, and record the average experiment results.

The F1 and ER@20% scores of ELBlocker vary from 0.136 to
0.482 and 0.473 to 0.831 respectively. On average, across the 6
Table 6
Experiment results of ELBlocker compared with Garcia and Shihab’s method (Gar.),
SMOTE, one-sided selection (OSS), and Bagging in Freedesktop.
Improv.Gar. = Improvement of ELBlocker over Garcia and Shihab’s method.
Improv.SMO. = Improvement of ELBlocker Over SMOTE. Improv.OSS = Improvement
of ELBlocker Over OSS. Improv.Bag. = Improvement of ELBlocker Over Bagging.
Statistically significant improvements are highlighted in bold.

Project Method Precision Recall F1-score ER@20%

Freedesktop ELBlocker 0.417 0.430 0.422 0.658
Gar. 0.268 0.629 0.376 0.608
Improv.Gar. 12.23% 8.23%
SMOTE 0.309 0.477 0.375 0.616
Improv.SMO. 12.53% 6.85%
OSS 0.276 0.488 0.353 0.583
Improv.OSS 19.55% 12.95%
Bagging 0.714 0.012 0.023 0.521
Improv.Bag. 1734.78% 26.25%

SMOTE 0.425 0.375 0.398 0.770
Improv.SMO. 13.07% 7.88%
OSS 0.240 0.467 0.317 0.679
Improv.OSS 41.96% 22.39%
Bagging 0.782 0.185 0.299 0.761
Improv.Bag. 50.50% 9.18%
projects, ELBlocker can achieve F1 and ER@20% scores of 0.345
and 0.668, respectively. The improvement of ELBlocker over Garcia
and Shihab’s method, SMOTE, OSS, and Bagging are statistically sig-
nificant. All the p-values are less than 2:2e�16 showing that the
improvement is significant. Furthermore, Tables 13 and 14 pre-
sents the Cliff’s delta values (d) for ELBlocker compared with Garcia
and Shihab’s method, SMOTE, OSS, and Bagging in terms of F1-
score and ER@20 values. We observe that in all cases the Cliff’s
delta d values are greater than 0.474, which shows that the effect
size for ELBlocker compared with other approaches is large. This

Table 11
Experiment results of ELBlocker compared with Garcia and Shihab’s method (Gar.),
SMOTE, one-sided selection (OSS), and Bagging in Eclipse.

Project Method Precision Recall F1-score ER@20%

Eclipse ELBlocker 0.199 0.262 0.226 0.672
Gar. 0.159 0.274 0.201 0.586
Improv.Gar. 12.44% 14.71%
SMOTE 0.205 0.120 0.151 0.554
Improv.SMO. 49.67% 21.25%
OSS 0.140 0.257 0.181 0.573
Improv.OSS 24.86% 17.42%
Bagging 0.000 0.000 0.000 0.000
Improv.Bag. 1 1

Table 12
Overall experiment results of ELBlocker compared with Garcia and Shihab’s method
(Gar.), SMOTE, one-sided selection (OSS), and Bagging across the 6 projects.

Method Precision Recall F1-score ER@20%

ELBlocker 0.327 0.370 0.345 0.668
Gar. 0.241 0.417 0.303 0.614
(Improv.Gar.) 14.69% 8.99%
SMOTE 0.309 0.279 0.288 0.585
(Improv.SMO.) 23.36% 15.76%
OSS 0.211 0.383 0.270 0.549
(Improv.OSS) 30.98% 22.64%
Bagging 0.462 0.077 0.127 0.426
(Improv.Bag.) 171.65% 56.82%

Table 13
Cliff’s delta d in terms of F1-score between ELBlocker and prior approaches.

Project Gar. SMOTE OSS Bagging

Freedesktop 0.995 0.996 1.000 1.000
Chromium 0.999 1.000 1.000 1.000
Mozilla 0.990 1.000 1.000 1.000
Netbeans 1.000 1.000 1.000 1.000
OpenOffice 1.000 1.000 1.000 1.000
Eclipse 1.000 1.000 1.000 1.000

Table 14
Cliff’s delta d in terms of ER@20 between ELBlocker and prior approaches.

Project Gar. SMOTE OSS Bagging

Freedesktop 0.979 0.990 0.990 0.990
Chromium 0.900 0.990 0.990 1.000
Mozilla 0.990 0.990 0.990 1.000
Netbeans 0.990 0.990 0.990 1.000
OpenOffice 0.990 0.990 0.990 1.000
Eclipse 1.000 1.000 1.000 1.000

X. Xia et al. / Information and Software Technology 61 (2015) 93–106 101
indicates that the improvement of ELBlocker over the baseline
methods are substantial.

To summarize, on average ELBlocker improves the F1-scores
over Garcia and Shihab’s method, SMOTE, OSS, and Bagging by
14.69%, 23.36%, 30.98%, and 171.65%, respectively. Also, on average
ELBlocker improves the ER@20% over Garcia and Shihab’s method,
SMOTE, OSS, and Bagging by 8.99%, 15.76%, 22.64%, and 56.82%,
respectively. Using the Wilcoxon signed-rank test, we find that
the improvements provided by ELBlocker are statistically signifi-
cantly and have a large effect size.
Fig. 5. EffectivenessRatio@K% (ER@K%) of ELBlocking, Garcia and Shihab’s method,
and SMOTE for various K in Freedesktop.
5.5. RQ2: effectiveness at different K

We investigate the effectiveness of ELBlocker, Garcia and
Shihab’s method, SMOTE, OSS, and Bagging when different per-
centages (K%) of bug reports are checked (i.e., K varies from 5 to
100). Figs. 5–16 presents the ER@K% scores of ELBlocker and the
baseline methods for various K in Freedesktop, Chromium, Mozilla,
Netbeans, OpenOffice, and Eclipse, respectively. We notice ELB-
locker is better than the baseline methods for a wide range K val-
ues (i.e., a wide range of the number of bug reports to check). For
example, in NetBeans, when we set K% as 25%, the ER@25% scores
for ELBlocker, Garcia and Shihab’s method, SMOTE, OSS, and Bag-
ging are 0.790, 0.746, 0.741, 0.653, and 0.714 respectively; when
we set K% to 60%, the ER@60% scores for ELBlocking, Garcia and
Shihab’s method, SMOTE, OSS, and Bagging are 0.943, 0.916,
0.848, 0.870, and 0.714, respectively.

Table 15 presents the results of ELBlocker and the baseline
methods when only 100, 200, and 500 bug reports are inspected.
The results show that ELBlocker achieves a substantial improve-
ment over the baseline methods. For example, with a budget of
100 bug reports, on average across the 6 projects, the ER@100 for
ELBlocker is 0.520, the ER@100 scores for Garcia and Shihab’s
method, SMOTE, OSS, and Bagging are 0.466, 0.449, 0.431, and
0.387, respectively. Statistical tests show that the improvements
of ELBlocker over the baseline methods are statistically significant.

5.6. RQ3: effectiveness of ELBlocker with different number of subset
classifiers

Figs. 17 and 18 presents the F1 and ER@20% scores of ELBlocker
with the number of subset classifiers is varying from 2 to 20. The
results show that the performance of ELBlocker is generally stable
across various numbers of subset classifiers. For example, in Open-
Office, its F1 and ER@20% scores vary from 0.432 to 0.457, and
0.761 to 0.840 when the number of subset classifiers is varied from
2 to 20.

5.7. RQ4: time efficiency

Table 16 presents the model building and prediction time for
each of the 6 projects. We notice that the model building and pre-
diction time of ELBlocker are reasonable, e.g., on average, we need
about 6.04 s to train a model, and 0.50 s to predict the labels of the
instances in the testing set using the model. Notice that the model
does not need to be updated all the time. A trained model can be
used to label many changes. Compared to other models, ELBlocker
has the fastest model building time; this is the case since ELBlocker
will build subset classifiers using the disjoint sets of the training
data (which are smaller in size), while the remaining methods
build a classifier using all the training data. Also, some of them
(e.g., Garcia and Shihab’s method, SMOTE, and OSS) need to pre-
process all of the training data. The prediction time of ELBlocker
is longer than the other methods but we believe it is still accept-
able (it can label thousands of bug reports in seconds).

Fig. 6. EffectivenessRatio@K% (ER@K%) of ELBlocking, OSS, and Bagging for various
K in Freedesktop.

Fig. 7. EffectivenessRatio@K% (ER@K%) of ELBlocking, Garcia and Shihab’s method,
and SMOTE for various K in Chromium.

Fig. 8. EffectivenessRatio@K% (ER@K%) of ELBlocking, OSS, and Bagging for various
K in Chromium.

Fig. 9. EffectivenessRatio@K% (ER@K%) of ELBlocking, Garcia and Shihab’s method,
and SMOTE for various K in Mozilla.

Fig. 10. EffectivenessRatio@K% (ER@K%) of ELBlocking, OSS, and Bagging for various
K in Mozilla.

Fig. 11. EffectivenessRatio@K% (ER@K%) of ELBlocking, Garcia and Shihab’s method,
and SMOTE for various K in Netbeans.

102 X. Xia et al. / Information and Software Technology 61 (2015) 93–106
6. Discussion

6.1. Usefulness of ELBlocker

In practice, if developers do not have a tool to help identify
blocking bugs, they would determine whether a bug is blocking
in an almost random way. To show the usefulness of our proposed
approach, we also compare ELBlocker with random prediction [17].
In random prediction, we randomly predict a bug to be a blocking
or a non-blocking bug according to the ratio of blocking bugs to
total bugs in the bug report collections. The precision for random
prediction is the percentage of blocking bugs in the data set. Since
random prediction is a random classifier with two possible out-
comes (e.g., blocking or non-blocking), its recall is 0.5.

Table 17 presents the experimental results for ELBlocker com-
pared with random prediction. The precision values achieved by
ELBlocker are better than the precision values of random predictor
for all the projects. ELBlocker precision values range from 0.108 to

Fig. 12. EffectivenessRatio@K% (ER@K%) of ELBlocking, OSS, and Bagging for various
K in Netbeans.

Fig. 13. EffectivenessRatio@K% (ER@K%) of ELBlocking, Garcia and Shihab’s method,
and SMOTE for various K in OpenOffice.

Fig. 14. EffectivenessRatio@K% (ER@K%) of ELBlocking, OSS, and Bagging for various
K in OpenOffice.

Fig. 15. EffectivenessRatio@K% (ER@K%) of ELBlocking, Garcia and Shihab’s method,
and SMOTE for various K in Eclipse.

Fig. 16. EffectivenessRatio@K% (ER@K%) of ELBlocking, OSS, and Bagging for various
K in Eclipse.

X. Xia et al. / Information and Software Technology 61 (2015) 93–106 103
0.453. Comparing these results with those of random prediction
(0.023–0.125), we observe that ELBlocker provides a �4 to �18
fold improvement over random prediction in terms of precision.

We notice the recall values for ELBlocker are lower than the val-
ues of random prediction. In practice, there is a trade-off between
precision and recall. One can increase precision by sacrificing recall
(and vice versa). In ELBlocker, we can sacrifice precision (recall) to
increase recall (precision), by manually lowering (increasing) the
value of the threshold parameter in Eq. (1). The trade-off causes dif-
ficulties to compare the performance of several prediction models
by using only precision or recall alone [20]. Thus, F1-score which is
a trade-off between precision and recall, is used as the main metric
to evaluate the performance of ELBlocker and random prediction.
The F1-score values of ELBlocker are better than the F1-score val-
ues of random prediction. Our F1-score values range from 0.136
to 0.450, whereas the F1-score values of random prediction range
from 0.045 to 0.201. The improvement ratios of our F1-score values
vary from �3 to �10 folds.

Similar to the previous metrics, the ER@20 values achieved by
the decision trees of five of the six projects are better than the
ER@20 values of random prediction. The only one exception is
Chromium with ER@20 values (i.e., 0.473) slightly below the
ER@20 of random prediction (i.e., 0.5). We notice that ELBlocker
provides a �0.9 to �1.7 fold improvement over random prediction
in terms of ER@20 values.

To summarize, in most cases (except for Chromium) ELBlocker
achieves a much better performance compared to random predic-
tion, which improves the F1-score and ER@20 values by �2 to �9,
and �0.9 to �1.7 folds, respectively. In practice, developers could
deploy our proposed tool to help identify blocking bugs. Although
the prediction accuracy of our proposed approach is not perfect, it
shows much better performance than random prediction.
6.2. ELBlocker vs. Bagging + Random Forest

In our previous section, we use decision trees as the default
underlying classifier for Bagging. In this section, we use random

Table 15
Cost effectiveness of ELBlocker and the baseline methods with different numbers of bug reports to check (100, 200, and 500 bug reports, respectively). EL. = ELBlocker,
Gar. = Garcia and Shihab’s method, SMO. = SMOTE, Bag. = Bagging.

Project ER@100 ER@200

EL. Gar. SMO. OSS Bag. EL. Gar. SMO. OSS Bag.

Freedesktop 0.674 0.623 0.621 0.594 0.542 0.852 0.820 0.781 0.783 0.762
Chromium 0.142 0.109 0.101 0.092 0.003 0.217 0.168 0.150 0.155 0.003
Mozilla 0.807 0.739 0.712 0.668 0.628 0.693 0.640 0.617 0.612 0.551
NetBeans 0.516 0.437 0.455 0.398 0.479 0.389 0.332 0.338 0.291 0.308
OpenOffice 0.688 0.627 0.587 0.587 0.669 0.508 0.463 0.437 0.414 0.461
Eclipse 0.297 0.261 0.216 0.244 0.000 0.256 0.219 0.188 0.206 0.000

Average 0.520 0.466 0.449 0.431 0.387 0.486 0.440 0.419 0.410 0.347

Project ER@500

EL. Gar. SMO. OSS Bag.

Freedesktop 1.000 1.000 1.000 1.000 1.000
Chromium 0.368 0.325 0.316 0.230 0.016
Mozilla 0.550 0.508 0.470 0.464 0.468
NetBeans 0.506 0.449 0.439 0.380 0.262
OpenOffice 0.602 0.543 0.519 0.465 0.550
Eclipse 0.271 0.231 0.210 0.215 0.000

Average 0.550 0.510 0.492 0.459 0.383

Fig. 17. F1-scores of ELBlocking with number of subset classifiers varied from 2 to
20.

Fig. 18. EffectivenessRatio@20% (ER@20%) of ELBlocking with number of subset
classifiers varied from 2 to 20.

Table 16
Model building time, and prediction time for ELBlocker, Garcia and Shihab’s method,
SMOTE, OSS, and Bagging (in seconds).

Project ELBlocker Garcia and Shihab’s SMOTE OSS Bagging

Prediction time
Freedesktop 1.18 1.01 2.50 1.78 1.65
Chromium 2.10 2.25 5.52 24.76 14.52
Mozilla 9.24 9.30 169.39 335.03 86.30
NetBeans 4.66 5.85 21.93 119.06 43.88
OpenOffice 6.46 6.32 28.35 106.04 49.62
Eclipse 12.62 16.76 53.40 342.51 151.60

Average 6.04 6.92 46.85 154.86 57.93

Model build time
Freedesktop 0.02 0.01 0.02 0.02 0.05
Chromium 0.28 0.02 0.02 0.02 0.01
Mozilla 0.69 0.05 0.05 0.03 0.02
NetBeans 0.63 0.05 0.08 0.03 0.01
OpenOffice 0.48 0.03 0.05 0.05 0.02
Eclipse 0.89 0.05 0.06 0.06 0.02

Average 0.50 0.04 0.05 0.04 0.02

104 X. Xia et al. / Information and Software Technology 61 (2015) 93–106
forest as the underlying classifier for Bagging, we denote it as Bag-
ging + RA. Table 18 presents the experimental results for ELBlocker
compared with Bagging + RA. Once again, we notice that ELBlokcer
achieves a better performance than Bagging + RA. On average,
across the 6 projects, ELBlocker improves the F1-score and
ER@20 of Bagging + RA by 175.05% and 12.83%, respectively.
6.3. Threats to validity

Threats to internal validity relates to errors in our code and
experiment bias. We have double checked our code, still there
could be errors that we did not notice. To reduce training set selec-
tion bias, we run 10-fold cross-validation 100 times, and record the
average performance.

Threats to external validity relates to the generalizability of
our results. We have analyzed 402,962 bug reports from 6 pro-
jects. In the future, we plan to reduce this threat further by
analyzing even more bug reports from additional software
projects.

Threats to construct validity refers to the suitability of our
evaluation measures. We use F1-score and cost effectiveness
which are also used by past studies to evaluate the effectiveness
of various automated software engineering techniques

Table 17
Experiment results for ELBlocker compared with random prediction.

Project ELBlocker Random prediction

Precision Recall F1-score ER@20 Precision Recall F1-score ER@20

Freedesktop 0.417 0.430 0.422 0.658 0.023 0.500 0.045 0.500
Chromium 0.108 0.184 0.136 0.473 0.028 0.500 0.053 0.500
Mozilla 0.437 0.538 0.432 0.628 0.086 0.500 0.150 0.500
NetBeans 0.347 0.361 0.354 0.746 0.125 0.500 0.201 0.500
OpenOffice 0.453 0.447 0.450 0.831 0.032 0.500 0.059 0.500
Eclipse 0.199 0.262 0.226 0.672 0.030 0.500 0.057 0.500

Table 18
Experiment results for ELBlocker compared with Bagging + RA.

Project ELBlocker Bagging + RA

Precision Recall F1-score ER@20 Precision Recall F1-score ER@20

Freedesktop 0.417 0.430 0.422 0.658 0.702 0.140 0.233 0.597
Chromium 0.108 0.184 0.136 0.473 0.393 0.013 0.025 0.396
Mozilla 0.437 0.538 0.432 0.628 0.701 0.206 0.319 0.527
NetBeans 0.347 0.361 0.354 0.746 0.803 0.093 0.172 0.694
OpenOffice 0.453 0.447 0.450 0.831 0.854 0.213 0.341 0.774
Eclipse 0.199 0.262 0.226 0.672 0.544 0.024 0.050 0.593

X. Xia et al. / Information and Software Technology 61 (2015) 93–106 105
[33,17,7,15,9,15,24–27]. Thus, we believe there is little threat to
construct validity

7. Related work

7.1. Blocking bug prediction

Garcia and Shihab are the first to propose the problem of block-
ing bug prediction [17]. They analyze 402,962 bug reports from 6
different open source software communities, and they find that
blocking bugs take approximately two to three times longer to
be fixed compared to non-blocking bugs. To predict the blocking
bugs, they first re-sample the training set to make the number of
blocking bugs and non-blocking bugs the same, next a machine
learning technique (e.g., random forest) is used to predict whether
a new bug is a blocking bug. Our work extends their work by pro-
posing a novel ensemble learning based approach named ELBlock-
er, which combines multiple classifiers built on different subsets of
the training set. The experiment results show ELBlockers achieves
a substantial and statistically significant improvement over Garcia
and Shihab’s method.

7.2. Other studies on bug report management

There have been a number of studies on re-opened bug predic-
tion [15,38,16]. Shihab et al. study re-opened bugs on Eclipse,
Apache HTTP, and OpenOffice, and propose prediction models
based on decision trees [15]. They also use re-sampling methods
to pre-process the training data. Xia et al. investigate the perfor-
mance of different machine learning methods to predict re-opened
bugs, and they find Bagging with decision tree achieves the best
performance [38]. In later work, Xia et al. extract more textual fea-
tures from the bug reports, and propose ReopenPredictor, which
combines different classifiers to further improve the performance
of reopened bug prediction [39]. Zimmermann et al. also investi-
gate re-opened bugs in Windows [16]. They perform a survey to
identify possible root causes of re-opened bugs, and build a logistic
regression model to determine the impact of various metrics. Our
work is different from the prior work since we focus on different
types of bugs, blocking bugs. Since the level of class imbalance in
blocking bug prediction is more serious than re-opened bug pre-
diction, blocking bug prediction is a more difficult problem.

Also, there have been a number of studies on bug triaging and
developer recommendation [3–6], bug severity/priority assign-
ment [7–9,40], duplicated bug report detection [10,11,41–43],
and bug fixing time prediction [12–14]. Our work is orthogonal
to the above studies; in this paper, we solve a different problem,
blocking bug prediction.

7.3. Imbalanced learning and ensemble learning

There have been a number of imbalanced learning techniques in
the machine learning literatures [22,29,28]. Some techniques use
majority under-sampling, which addresses the phenomenon of class
imbalance by reducing the number of majority instances. One-sided
selection (OSS), which removes noisy and redundant instances of
the majority class by using the one-nearest-neighbor method, which
is one of the state-of-the-art methods [29]. Other techniques use
minority over-sampling, which addresses the phenomenon of class
imbalance by increasing the number of minority instances. SMOTE
which produces new synthetic minority data by extrapolating val-
ues from the K nearest neighbors of each of the original minority
class instances is one of the state-of-the-art technique [28].

There are a number of ensemble learning techniques in the
machine learning literature [30,21,44]. Bagging, which also builds
classifiers on subsets of a training data, is one of the ensemble
learning techniques which is most similar to our approach.
Bagging first samples a subset of training set by using bootstrap
sampling method, and builds a classifier on the subset. This pro-
cess repeats n times, and in total, Bagging builds n classifiers. To
determine the label of an instance, Bagging uses a majority vot-
ing mechanism. Our ELBlocker is different from Bagging since
we do not use bootstrap sampling to select the subsets, rather
we randomly divide the training set into multiple disjoint sub-
sets, and we build a classifier on each of these subsets. Moreover,
after we build multiple classifiers, we automatically detect an
appropriate imbalanced decision threshold; Bagging does not
consider a threshold.

In this paper, we choose OSS, SMOTE, and Bagging as baseline
methods, and we compare ELBlocker with them. The experiment
results show that ELBlocker achieves a substantial and statistically
significant improvement over OSS, SMOTE, and Bagging.

8. Conclusion and future work

In this paper, we propose a novel blocking bug prediction
approach named ELBlocker, which leverages ensemble learning

106 X. Xia et al. / Information and Software Technology 61 (2015) 93–106
techniques. Considering the class imbalance phenomenon, we first
divide the training set into multiple disjoint sets, and in each dis-
joint set, we build a classifier. Next, we combine these multiple
classifiers, and automatically determine an appropriate decision
boundary to separate blocking bugs from non-blocking bugs. Our
experiment on 6 large projects containing a total of 402,962 bug
reports show that ELBlocker achieves a substantial and statistically
significant improvement over the baseline methods, i.e., Garcia and
Shihab’s method, SMOTE, OSS, and Bagging. On average ELBlocker
improves the F1-scores of Garcia and Shihab’s method, SMOTE,
OSS, and Bagging by 14.69%, 23.36%, 30.98%, and 171.65%, respec-
tively; and ELBlocker improves the ER@20% of these methods by
8.99%, 15.76%, 22.64%, and 56.82%, respectively.

Considering the class imbalance phenomenon in the bug report
collections, predicting blocking bugs is a difficult problem. Our
work is one of the first works on identifying blocking bugs.
Although the performance of our ELBlocker is not perfect, we hope
our work will inspire other researchers to develop more advanced
techniques to identify blocking bugs. In the future, we plan to eval-
uate ELBlocker on datasets from more software projects, and apply
some information retrieval and text mining techniques such as
topic modeling [45], and extract more features (e.g., code features)
to improve the prediction performance further. We also plan to
develop an automated tool to tell developers not only whether a
bug is a blocking bug, but also the other bugs which are blocked
by the blocking bug.

Acknowledgments

This research was supported by the National Basic Research
Program of China (the 973 Program) under Grant 2015CB352201,
and National Key Technology R&D Program of the Ministry of Sci-
ence and Technology of China under Grant 2014BAH24F02, and the
Fundamental Research Funds for the Central Universities.

References

[1] J.S. Collofello, S.N. Woodfield, Evaluating the effectiveness of reliability-
assurance techniques, J. Syst. Softw. 9 (3) (1989) 191–195.

[2] G. Tassey, The economic impacts of inadequate infrastructure for software
testing, National Institute of Standards and Technology, RTI Project 7007 (011).

[3] J. Anvik, L. Hiew, G.C. Murphy, Who should fix this bug?, in: Proceedings of the
28th International Conference on Software Engineering, ACM, 2006, pp 361–
370.

[4] X. Xia, D. Lo, X. Wang, B. Zhou, Accurate developer recommendation for bug
resolution, in: 20th Working Conference on Reverse Engineering (WCRE), IEEE,
2013, pp. 72–81.

[5] G. Jeong, S. Kim, T. Zimmermann, Improving bug triage with bug tossing
graphs, in: Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ACM, 2009, pp. 111–120.

[6] W. Wu, W. Zhang, Y. Yang, Q. Wang, Drex: developer recommendation with k-
nearest-neighbor search and expertise ranking, in: 18th Asia Pacific Software
Engineering Conference (APSEC), IEEE, 2011, pp. 389–396.

[7] T. Menzies, A. Marcus, Automated severity assessment of software defect
reports, in: IEEE International Conference on Software Maintenance. ICSM
2008, IEEE, 2008, pp. 346–355.

[8] A. Lamkanfi, S. Demeyer, E. Giger, B. Goethals, Predicting the severity of a
reported bug, in: 7th IEEE Working Conference on Mining Software
Repositories (MSR), IEEE, 2010, pp. 1–10.

[9] Y. Tian, D. Lo, C. Sun, Drone: predicting priority of reported bugs by multi-
factor analysis, in: 29th IEEE International Conference on Software
Maintenance (ICSM), IEEE, 2013, pp. 200–209.

[10] C. Sun, D. Lo, S.-C. Khoo, J. Jiang, Towards more accurate retrieval of duplicate
bug reports, in: Proceedings of the 26th IEEE/ACM International Conference on
Automated Software Engineering, IEEE Computer Society, 2011, pp. 253–262.

[11] N. Jalbert, W. Weimer, Automated duplicate detection for bug tracking
systems, in: IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC. DSN 2008, IEEE, 2008, pp. 52–61.

[12] L. Marks, Y. Zou, A.E. Hassan, Studying the fix-time for bugs in large open
source projects, in: Proceedings of the 7th International Conference on
Predictive Models in Software Engineering, ACM, 2011, p. 11.

[13] C. Weiss, R. Premraj, T. Zimmermann, A. Zeller, How long will it take to fix this
bug?, in: Proceedings of the Fourth International Workshop on Mining
Software Repositories, IEEE Computer Society, 2007, p 1.
[14] L.D. Panjer, Predicting eclipse bug lifetimes, in: Proceedings of the Fourth
International Workshop on Mining Software Repositories, IEEE Computer
Society, 2007, p. 29.

[15] E. Shihab, A. Ihara, Y. Kamei, W.M. Ibrahim, M. Ohira, B. Adams, A.E. Hassan, K.-
i. Matsumoto, Studying re-opened bugs in open source software, Empirical
Softw. Eng. 18 (5) (2013) 1005–1042.

[16] T. Zimmermann, N. Nagappan, P.J. Guo, B. Murphy, Characterizing and
predicting which bugs get reopened, in: 34th International Conference on
Software Engineering (ICSE), IEEE, 2012, pp. 1074–1083.

[17] H.V. Garcia, E. Shihab, Characterizing and predicting blocking bugs in open
source projects, in: Proceedings of the Eleventh International Workshop on
Mining Software Repositories, IEEE Computer Society, 2014.

[18] R. Barandela, R.M. Valdovinos, J.S. Sánchez, F.J. Ferri, The imbalanced training
sample problem: Under or over sampling?, in: Structural, Syntactic, and
Statistical Pattern Recognition, Springer, 2004, pp 806–814.

[19] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106.
[20] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, Morgan

Kaufmann, 2006.
[21] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[22] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng.

21 (9) (2009) 1263–1284.
[23] T.G. Dietterich, Ensemble methods in machine learning, in: Multiple Classifier

Systems, Springer, 2000, pp. 1–15.
[24] E. Arisholm, L.C. Briand, M. Fuglerud, Data mining techniques for building

fault-proneness models in telecom java software, in: The 18th IEEE
International Symposium on Software Reliability. ISSRE’07, IEEE, 2007, pp.
215–224.

[25] F. Rahman, D. Posnett, P. Devanbu, Recalling the imprecision of cross-project
defect prediction, in: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ACM, 2012, p. 61.

[26] F. Rahman, D. Posnett, I. Herraiz, P. Devanbu, Sample size vs. bias in defect
prediction, in: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ACM, 2013, pp. 147–157.

[27] T. Jiang, L. Tan, S. Kim, Personalized defect prediction, in: IEEE/ACM 28th
International Conference on Automated Software Engineering (ASE), IEEE,
2013, pp. 279–289.

[28] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, Smote: synthetic
minority over-sampling technique, J. Artif. Intell. Res. 16 (1) (2002) 321–357.

[29] M. Kubat, S. Matwin, et al., Addressing the curse of imbalanced training sets:
one-sided selection, in: Proceedings of the Fourteenth International
Conference on Machine Learning (ICML), vol. 97, 1997, pp. 179–186.

[30] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[31] X. Xia, Y. Feng, D. Lo, Z. Chen, X. Wang, Towards more accurate multi-label

software behavior learning, in: Software Evolution Week-IEEE Conference on
Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
2014, IEEE, 2014, pp. 134–143.

[32] X. Xia, D. Lo, X. Wang, B. Zhou, Tag recommendation in software information
sites, in: Proceedings of the Tenth International Working Conference on
Mining Software Repositories, IEEE Press, 2013, pp. 287–296.

[33] Y. Tian, J. Lawall, D. Lo, Identifying linux bug fixing patches, in: 34th
International Conference on Software Engineering (ICSE), IEEE, 2012, pp.
386–396.

[34] F. Thung, D. Lo, J. Lawall, Automated library recommendation, in: 20th
Working Conference on Reverse Engineering (WCRE), IEEE, 2013, pp. 182–191.

[35] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka
data mining software: an update, ACM SIGKDD Explor. Newslett. 11 (1) (2009)
10–18.

[36] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics 1 (6)
(1945) 80–83.

[37] N. Cliff, Ordinal Methods for Behavioral Data Analysis, Psychology Press, 2014.
[38] X. Xia, D. Lo, X. Wang, X. Yang, S. Li, J. Sun, A comparative study of supervised

learning algorithms for re-opened bug prediction, in: 17th European
Conference on Software Maintenance and Reengineering (CSMR), IEEE, 2013,
pp. 331–334.

[39] X. Xia, D. Lo, E. Shihab, X. Wang, B. Zhou, Automatic, high accuracy prediction
of reopened bugs, Autom. Softw. Eng. (2014) 1–35

[40] Y. Tian, D. Lo, X. Xia, C. Sun, Automated prediction of bug report priority using
multi-factor analysis, Empirical Softw. Eng. (2014) 1–30

[41] X. Wang, L. Zhang, T. Xie, J. Anvik, J. Sun, An approach to detecting duplicate
bug reports using natural language and execution information, in: Proceedings
of the 30th International Conference on Software Engineering, ACM, 2008, pp.
461–470.

[42] C. Sun, D. Lo, X. Wang, J. Jiang, S.-C. Khoo, A discriminative model approach for
accurate duplicate bug report retrieval, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, vol. 1, ACM, 2010, pp. 45–
54.

[43] A.T. Nguyen, T.T. Nguyen, T.N. Nguyen, D. Lo, C. Sun, Duplicate bug report
detection with a combination of information retrieval and topic modeling, in:
Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2012, pp. 70–79.

[44] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, J. Comput. Syst. Sci. 55 (1) (1997) 119–139.

[45] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res. 3
(2003) 993–1022.

http://refhub.elsevier.com/S0950-5849(14)00260-2/h0005
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0005
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0015
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0015
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0015
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0015
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0020
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0020
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0020
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0020
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0025
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0025
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0025
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0025
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0025
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0030
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0030
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0030
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0030
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0035
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0035
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0035
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0035
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0040
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0040
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0040
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0040
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0045
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0045
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0045
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0045
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0050
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0050
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0050
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0050
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0055
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0055
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0055
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0055
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0060
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0060
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0060
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0060
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0065
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0065
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0065
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0065
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0070
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0070
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0070
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0070
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0075
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0075
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0075
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0080
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0080
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0080
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0080
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0085
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0085
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0085
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0085
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0090
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0090
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0090
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0090
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0095
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0100
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0100
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0100
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0105
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0110
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0110
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0115
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0115
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0115
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0120
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0120
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0120
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0120
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0120
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0125
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0125
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0125
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0125
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0130
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0130
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0130
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0130
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0135
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0135
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0135
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0135
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0140
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0140
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0150
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0155
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0155
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0155
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0155
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0155
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0160
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0160
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0160
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0160
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0165
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0165
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0165
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0165
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0170
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0170
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0170
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0175
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0175
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0175
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0180
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0180
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0190
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0190
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0190
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0190
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0190
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0195
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0195
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0200
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0200
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0205
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0205
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0205
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0205
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0205
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0210
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0210
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0210
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0210
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0210
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0215
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0215
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0215
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0215
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0215
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0220
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0220
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0225
http://refhub.elsevier.com/S0950-5849(14)00260-2/h0225

	ELBlocker: Predicting blocking bugs with ensemble imbalance learning
	1 Introduction
	2 Preliminaries & motivation
	2.1 Blocking bugs
	2.2 Technical motivation

	3 ELBlocker architecture
	4 ELBlocker approach
	4.1 Subset scores
	4.2 ELComposer classifier

	5 Experiments and results
	5.1 Experiment setup
	5.2 Evaluation metrics
	5.2.1 F1-score
	5.2.2 Cost effectiveness

	5.3 Research questions
	5.4 RQ1: performance of ELBlocker
	5.5 RQ2: effectiveness at different K
	5.6 RQ3: effectiveness of ELBlocker with different number of subset classifiers
	5.7 RQ4: time efficiency

	6 Discussion
	6.1 Usefulness of ELBlocker
	6.2 ELBlocker vs. Bagging+Random Forest
	6.3 Threats to validity

	7 Related work
	7.1 Blocking bug prediction
	7.2 Other studies on bug report management
	7.3 Imbalanced learning and ensemble learning

	8 Conclusion and future work
	Acknowledgments
	References

