
The Evolution of Mobile Apps:
An Exploratory Study

Jack Zhang, Shikhar Sagar, and Emad Shihab
Rochester Institute of Technology

Department of Software Engineering
Rochester, New York, USA, 14623

{jxz8072, fxs1203, emad.shihab}@rit.edu

ABSTRACT
As mobile apps continue to grow in popularity, it is important to
study their evolution. Lehman’s laws of software evolution have
been proposed and used to study the evolution of traditional, large
software systems (also known as desktop apps). However, do
Lehman’s laws of software evolution hold for mobile apps?, espe-
cially since developing mobile apps presents different challenges
compared to the development of desktop apps.

In this paper, we examine the applicability of three of Lehman’s
laws on mobile apps. In particular, we focused on three laws: the
law of continuing change, increasing complexity, and declining
quality. We extracted a number of metrics and performed a case
study on two applications: VLC and ownCloud. Our findings show
that the law of continuing change and declining quality seem to ap-
ply for mobile apps, however, we find different outcomes for the
law of increasing complexity. Then, we compare the mobile app
version to the desktop version and find that the two versions follow
the same trends for the law of continuing change. On the contrary,
the desktop and mobile version have different trends for the law of
increasing complexity and the law of declining quality.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures

General Terms
Software evolution

Keywords
Software evolution, mobile software engineering, mobile applica-
tions

1. INTRODUCTION
The popularity of mobile apps is exponentially growing. These

mobile apps are inherently different than traditional desktop apps.
While previous research has focused on the differences between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DeMobile ’13, August 19, 2013, Saint Petersburg, Russia
Copyright 13 ACM 978-1-4503-2312-3/13/08 ...$15.00.

mobile and desktop apps from a programming point of view, to
the best of our knowledge, there has not been much research that
examines the difference between mobile and desktop apps from an
evolutionary point of view.

In 1974, Lehman and Belady proposed a set of laws pertaining
to software evolution [1]. Lehman’s laws were stated based on em-
pirical observations of commercial software. Much time has passed
since then, but many of Lehman’s laws still apply to this day despite
the evolution of technology in general [2].

With the introduction of smartphones, a new market for software
applications has popped up. These mobile applications are different
from the traditional desktop applications [3]. The development of
these applications is also different. Could the evolution of these
applications be different as well? Do we have to worry about the
increasing complexity of mobile applications? Is it necessary for
mobile applications to continually change in order to survive? Are
mobile applications the special exceptions to these Lehman’s laws?

Much research has been done with Lehman’s laws in terms of
evolution of large desktop applications. Lehman’s laws represent
the dynamics of software development for the lifetime of a piece of
software. However, Lehman’s laws have not been observed in mo-
bile applications. In this paper, we investigate the applicability of
Lehman’s laws of software evolution on mobile apps. In particular,
we focus on following 3 laws:

1. Continuing Change: Software has to continually change if
the software is to remain useful

2. Increasing Complexity: Unless complexity checks are in
place, software will get more complex over releases

3. Declining Quality: As the software evolves, the quality in
software drops

To conduct our study, we use four applications namely - the VLC
desktop application, VLC for Android, the ownCloud desktop ap-
plication, and ownCloud for Android. First, we extracted software
evolution metrics to examine whether Lehman’s laws apply to mo-
bile apps. Second, we compare the evolution metrics for Android
versions of the applications with their Desktop counterparts in or-
der to determine the similarities or differences between the mobile
and desktop apps. In particular, we focus on answering the follow-
ing research questions:

RQ1 Do Lehman’s law of continuing change, increasing complex-
ity, and declining quality apply to mobile apps?

RQ2 Do Lehman’s laws apply to mobile apps and their desktop
version in the same way?

In Section II we review related work. In Section III, we discuss
our case study setup. In Section IV, we present our results. In
Section V, we give an account of our experiences and limitations of
the study. In Section VI, we summarize our work.

2. RELATED WORK
A plethora of previous work focused on the evolution of desktop

applications (e.g., [4–6]). However, to the best of our knowledge,
there have not been any studies that examine the applicability of
Lehman’s laws on mobile applications.

One of the initial studies on Evolution in Open Source Software
was performed by Michael Godfrey et al. [6]. First they defined
the difference in the development process for a commercial system
vs. Open Source Software (OSS). Then, they measured the Linux
kernel at the system and subsystem level. They collected Lines of
Code (LOC) for stable and development releases with respect to
time, and found the increase in growth rate of the Linux kernel,
both at system and subsystem level. In our case study, we also use
LOC as one of our primary metrics to measure different aspects of
the software systems.

Yi Wang et al. [7] provided a set of metrics to evaluate the devel-
opment process of OSS. The study considered specific properties
of the open source community and the essential role played by the
members in the evolution of OSS. They conducted a lightweight
case study on the Ubuntu project. Using their metrics they found
the number of modules, number of developers, number of bugs in a
specific moment, number of fixed bugs, and the ratio of fixed bugs
to existing bugs metric useful in assessing the evolution of OSS.
They also analyzed modules which they considered as the atomic
unit in their analysis. But, their metrics model was limited to mod-
ules and was based on Open Source Communities. In this paper,
we considered the number of bugs, number of fixed bugs, and the
ratio of fixed to exisiting bugs metric used in their study to observe
the laws of software evolution in mobile applications.

Businge et al. [8] study software evolution using Lehman’s laws
on plug-ins in Eclipse. They used metrics such as the number of
changes in lines, classes, and dependency metrics to examine the
applicability of Lehman’s laws. Our work complements the prior
work done in the past by examining whether or not mobile apps
follow Lehman’s Laws. The main focus of our paper is to compare
the desktop and mobile versions of the same OSS in order to find
similarities/differences in the evolution patterns in these applica-
tions.

3. CASE STUDY SETUP

3.1 Data Sources
To perform our study, we selected 4 projects: VLC for Android,

the VLC desktop version, ownCloud client for Android, and the
ownCloud desktop client. VLC is a popular media player that is
well known for supporting a wide variety of media formats. Own-
Cloud is a cloud-storage medium similar to Dropbox. The own-
Cloud projects we are examining are actually client software used
to access cloud storage. We extracted the source code and commit
history for these four projects from their Git repositories.

We picked these four projects for the following three reasons:

1. We looked for applications that are different in terms of their
popularity. VLC is a well-known program used by many
users. The development community is also very active, num-
bering in a total of 511 developers altogether working on it.
ownCloud is a less-known application with a small devel-
opment community, numbering in a total of 31 developers
working on it.

2. Another important factor is the amount of data available for
a project. These projects had a development history of at
least 2 years. In addition, most tools that calculate software
metrics (e.g., the Understand metrics tool [9]) only support
certain languages. This becomes problematic when it comes
to examining the Android applications, in particular because
Android applications commonly use a mix of languages like
Java, Javascript, XML, and PHP. The source code for these
four projects has been examined, and we have determined the
languages the projects used could be covered by the Under-
stand metrics tool (the languages being Java, C, C++, XML,
and JavaScript).

3. Third, we selected projects where both the mobile and the
desktop applications were developed by the same company.
During data selection, we have seen a variety of applications
where the the mobile application was a port of the desktop
application developed by a third party. Even though these
other projects are OSS, we felt that the process would be
too different and cause our data to become unreliable. By
enforcing the criteria that mobile and desktop applications
must be developed by the same company, we found only a
few applications that fit the criteria (and had a long enough
commit history).

3.2 Data and Metric Extraction
To examine each of Lehman’s Laws, we defined a set of metrics

to measure the different aspects of software evolution. To calculate
the metrics, we leveraged the repository data for each of the four
applications. In particular, we obtained the commit history of the
different projects from their respective Git repositories. To get the
commit history, we wrote a script that first gets all the unique com-
mit IDs from the project’s Git repository. Then, for each commit
ID, we obtained the full log of that commit and stored it as a text
file. Next, we filter out the commits so that only commits within a
specified date are considered (the exact dates considered for each
project are stated later). Then, we wrote scripts that calculate the
churn, the number of commits, number of bug-fixing commits (i.e.,
commits that contain words associated with a bug fix), and the num-
ber of feature commits (i.e., commits that are not associated with
bug fixing) and the number of hunks (i.e., different parts of a file
touched) in a commit. To calculate the number of hunks, we wrote a
script that uses the built-in diff tool supplied by Git to compare two
different commits. The output of the diff tool was a text file show-
ing the hunks of code that are different. The script would detect
the number of lines that contained the symbols “@@”, where that
particular symbol indicated the beginning of the hunk. By counting
the number of lines that contained the “@@” symbol, we were able
to calculate the number of hunks between two release dates.

3.3 Evolution Metrics Associated to Lehman’s
Laws

Lehman’s Law for Continuing Change: A program that is used
in a real-world environment must necessarily change, or else be-
come progressively less useful in that environment. This law states
that the existing software needs to keep changing over time, or else
the software will become obsolete. The continuous change in the
software accounts for feature additions, bugs fixing and platform
changes. To stay in the fast growing business world, it is critical
to provide changes and keep the software bug-free. We used three
metrics to measure this law: code churn, feature commits and num-
ber of hunks.

Table 1: Metric Data based on Dates
Data Point A1 A2 A3 A4 A5 A6 A7 A8

VLC Android Lines of Code 160 5,773 18,085 21,256 199,909 415,882 438,442 467,476
Number of Files 35 57 114 138 818 1,630 1,736 1,816

VLC Desktop Lines of Code 719,413 735,205 767,287 778,393 778,393 788,621 790,864 796,357
Number of Files 56,718 56,793 57,069 57,225 57,224 57,243 56,654 56,663

ownCloud Android Lines of Code 11,345 11,995 16,451 41,484 55,346 56,895 N/A N/A
Number of Files 125 145 181 313 393 450

ownCloud Desktop Lines of Code 3,641 10,984 15,050 20,275 23,064 25,017 N/A N/A
Number of Files 60 117 178 258 287 329

Table 2: Metric Data based on Date Ranges
Data Point A1-A2 A2-A3 A3-A4 A4-A5 A5-A6 A6-A7 A7-A8

VLC Android Code Churn 4,189 26,379 22,197 137,286 114,839 29,524 31,121
Total Commits 92 98 115 266 464 557 330

Feature Commits 15 15 30 44 65 87 45
Bug-Fix Commits 77 83 85 222 399 470 285
Number of Hunks 38 99 130 810 1424 1,003 660

VLC Desktop Code Churn 98,286 466,876 3,417,944 638,691 165,702 169,574 101,667
Total Commits 1,096 1,714 2,023 1,944 1,371 1,515 1,256

Feature Commits 258 401 477 542 376 379 366
Bug-Fix Commits 838 1,313 1,546 1,402 995 1136 890
Number of Hunks 2,697 4,820 14,629 1,9821 3,801 5,443 3,823

ownCloud Android Code Churn 9,967 2,5811 63,900 108,600 42,208 N/A N/A
Total Commits 22 63 265 178 130

Feature Commits 5 10 73 42 36
Bug-Fix Commits 17 53 192 136 94
Number of Hunks 55 82 223 433 551

ownCloud Desktop Code Churn 30,227 28,045 198,180 355,950 108,309 N/A N/A
Total Commits 119 193 215 390 273

Feature Commits 36 45 41 51 35
Bug-Fix Commits 83 148 174 339 238
Number of Hunks 44 82 217 294 555

1. Code Churn: Code Churn is the number of lines added, mod-
ified or deleted in a piece of code. Churn provides the de-
gree to which a given source code file has changed over time.
Code churn can be measured by processing revisions in a ver-
sion control system and counting the total number of lines
changed [10]. We used code churn to look at the changes
made in the software. Presence of code churn refers to the
fact that the software system is continuously changing.

2. Feature Commits: Feature commits is measured as the num-
ber of commits made by each developer to the source code
that add features. To calcualte this metric, we used extract the
total number of commits. Then we determined the bug-fix
commits using keywords ’fix’, ’workaround’, ’crash’, ’bug’,
’error’, ’exception’, ’handle’, and ’handling’. Finally, we
filtered the bug-fix commits from the total number of com-
mits to get the feature commits. The feature commits metric
shows the additions being put into the software system, i.e.,
the software system is continuously changing by adding new
features over time.

3. Number of Hunks: The Git repository has a feature which
uses a diff command to provide a chunk of changed code.
The diff command extracts the number of areas, where the
piece of code was changed between two commits. This is
called a hunk. We extracted the total number of hunks be-
tween two dates.

Lehman’s Law of Increasing Complexity: states that unless work
is done to maintain or reduce complexity, the software will become
more complex as the software evolves. The majority of the prior
work use different code complexity metrics to measure complexity,

however, the majority of the complexity metrics are highly corre-
lated with lines of code and other complexity metrics. Therefore,
we came up with different complexity metrics that are not corre-
lated with each other to help us examine the law of increasing com-
plexity.

1. Lines of Code: Prior work showed that lines of code is highly
correlated with code complexity metrics. Therefore, we ex-
tracted the total Lines of Code (LOC) and Source Lines of
Code (SLOC).

2. Commits per File: The total number of commits shows the
changes made in the software system. By calculating the av-
erage commits per file, we are able to normalize the number
of commits, since we expect larger files to have more com-
mits. The higher the average number of commits per file, the
more changes are being made at the file level. This metric
serves as an indicator of software complexity.

Lehman’s Law for Declining Quality: states that the quality of
the system appears to decline unless it is rigorously adapted, as
required, to take into account changes in the operational environ-
ment [11]. The law refers to the state of the software system, where
quality is a function of several aspects. It is difficult to empiri-
cally measure the quality of a software system, as it can be relative.
Therefore, to measure declining quality, we use the number of bug
fixing commits.

1. Bug Fix Commits: A piece of software that is low in quality
will be prone to more bugs and defects. Although counter-
intuitive, for this law to hold true, we should see on average
more Bug Fix Commits. If there’s more bug fixes, then there

Figure 1: Code Churn for ownCloud and VLC

are more bugs identified in the system. To detect bug fix
commits, we used a script to search through all the commits
to a project and keep the files that have the following bug
fix keywords: fix, workaround, crash, bug, error, exception,
handle, and handling.

The results of our data collection are shown in Tables 1 and 2.
Table 1 presents the metrics data that can be captured by a single
date, whereas Table 2 presents the metrics data that can only be cap-
tured by date ranges. In order to improve readability, we replaced
dates with data points in the tables. Data point A1 presents the ini-
tial date of 8/19/2011 for both ownCloud applications, and the date
11/15/2010 for both VLC applications. The subsequent data points
were calculated by adding 4 months to the previous data point. So,
A2 is the date four months after A1, and A3 is the date four month
after A2 and so on. In Table 2, we observe the data that could
only be captured in the interval between two dates. No data exists
for ownCloud on data point A7 and A8 because VLC is older than
ownCloud.

We have deem the use of data points suitable for two reasons.
First, the time between data points are equivalent (which is a pe-
riod of 4 months). Second, the dates captured for both Android and
Desktop versions of the applications are within 10 days of each
other. For both Android and Desktop in VLC, the dates captured
are exactly the same. For both Android and Desktop in ownCloud,
the dates were on average about 7 days apart. The beginning date
was determined by the initial commit date of the mobile applica-
tions. The subsequent dates were determined by the adding four
months to the previous date. The last data point for all applications
represents the most recent commit date (within 4 months) found in
the source code repository.

4. RESULTS
After collecting the data for both research questions, we ana-

lyzed each one of the metrics and answered the research questions.
For each law, we plotted graphs between the metrics and the time
interval. For the scatterplot graphs, we also fit a linear line and cal-
culated R2 values. The linear line represents the general trend of a
relationship, while the R2 values indicate how close the values of
the scatterplot follow the trend. The closer R2 is to one, the better
the fit of the scatterplot points to the line.

Do Lehman’s laws apply to mobile apps and their desktop ver-
sion in the same way
RQ1: Do Lehman’s law of continuing change, increasing com-
plexity, and declining quality apply to mobile apps?

To examine the law of continuing change, we looked at the code
churn, feature commits and number of hunks. From Figures 1 , 2

Figure 2: Feature Commits for ownCloud and VLC

Figure 3: No. of Hunks for ownCloud and VLC

Figure 4: LOC for ownCloud and VLC

and 3, we observed the mobile apps are changing constantly over
time. The code is added, deleted or modified regularly, which is
reflected by the code churn value. The fact that code churn exists
mean the system is changing over time. There is also a constant
increase in the feature commits, which implies that new features
were regularly added in the software. The number of hunks are
also increasing over time for both the apps. All the three metrics
provide evidence that the mobile apps do follow Lehman’s law of
continuing change.

For the law of increasing complexity, we used LOC and the av-
erage number of Commits/File metrics. From the Figures 4 and

Figure 5: Commits per File for ownCloud and VLC

Figure 6: Bug Fix Commits for ownCloud and VLC

5, we observe an increase in LOC for both the applications. Al-
though the rate at which the VLC mobile app increases is more than
the ownCloud app, the complexity is increasing over time in both
the mobile applications. But when we closely observed the com-
mits/file 5, we noted a high correlation between the two metrics.
According to figure, we found the average commits/file is decreas-
ing over time for the VLC mobile app, whereas in the ownCloud
app, there was an increase in complexity initially and a decrease
later on. Since the result of the commits/file metrics is different for
the different apps, we can not analyze the complexity of the sys-
tem. However, the increase in LOC implies that the complexity in
the system is increasing over time.

For the law of declining quality, the number of bug-fix com-
mits is used. In Figure 6, the number of bug-fixing commits for
both mobile apps is increasing. The number of bug-fixing commits
shows a constant rate of bug fix commits, there is a steep increase
in both the apps, followed by a sudden decrease. From this metric,
it is challenging to analyze the quality of the app. Based on this
analysis, we observe that perhaps the law of declining quality does
hold for mobile apps. That said, we believe that using more met-
rics and performing this analysis on more apps is needed to have
stronger confidence in out conclusions.

To answer this research question, we compare the evolution met-
rics for both the desktop and mobile apps. First, we examined the
law of continuing change. For code churn, we take the logarithm
of the actual code churn values so we can compare the trends of
the desktop and mobile apps side-by-side (the logarithm was taken

Figure 7: Code Churn for ownCloud over 24 months

Figure 8: Code Churn for VLC over 32 months

since the mobile values were much lower). From Figures 7 and 8,
we observe that the code churn between the mobile and desktop
versions show the same trend, where the number of code churn
rises and falls. We also observe the same kind of trends for the
number of hunks as illustrated in Figures 9 and 10.

But perhaps the more interesting trends to observe are the num-
ber of feature commits. From Figures 11 and 12 we see differ-
ent trends. The mobile version of these graphs show a peak for
the number of feature commits, while the desktop versions show a
stable trend for the number of feature commits introduced at each
date. From these graphs we can conclude that all applications in-
duce change over time, following the law of continuing changes. In
terms of the hunks and churn, the software system even follows the
same trends. At the commit level, however, mobile versions exhibit
more rapid changes when compared to their desktop counterparts.

When examining the law of increasing complexity for mobile
and desktop applications, we observe some differing relationships.
After observing Figures 13 and 14, we can see that the LOC for
both graphs are showing increasing trends. The rates of increase
are different, but they are increasing nonetheless.
RQ2: Do Lehman’s laws apply to mobile apps and their desk-
top version in the same way?

The relationships observed for both mobile and desktop appli-
cations when observing the average number of commits per file
(shown in Figures 15 and 16) are different. For one, the values
are too sporadic to tell us anything. For the law to hold true, we
should see an increasing trend, the idea being the more commits
are made per file, the more complex the system is getting due to

Figure 9: Number of Hunks for VLC over 32 months

Figure 10: Number of Hunks for ownCloud over 24 months

Figure 11: Number of Feature Commits for ownCloud over 24
months

repeated changes to the system. Instead, we see various spikes.
We believe the fluctuations are caused by the number of files in the
system. The changes in the number of files are not constant trends,
so the randomness of these metrics mixed with the randomness of
the commits themselves will cause great fluctuations in the graph.
Therefore, we cannot conclude whether the mobile and desktop ap-
plications follow the law of increasing complexity.

Instead, we can conclude the development for mobile applica-
tions and the development of desktop applications are different

Figure 12: Number of Feature Commits for VLC over 32
months

Figure 13: Lines of Code for ownCloud over 24 months

Figure 14: Lines of Code for VLC over 32 months

when measured from a complexity perspective. In LOC, the mo-
bile applications show rapidly increasing trends of LOC while the
desktop versions show a trend towards a constant trend of LOC.
Furthermore, despite the unreliability of Figures 15, and 16, we
can still see the trends for mobile applications differing from the
desktop applications.

Also, for the law of declining quality the mobile applications
and desktop applications show different trends. The bug fix com-
mits in Figures 17 and 18 show fluctuations of increasing and de-
creasing number of bug fixes. We believe this is attributed to the
fact that we considered bug fixing at a commit level. We did not
consider a situation where a single bug-fix commit fixed many bugs.

Figure 15: Commits per File for ownCloud over 24 months

Figure 16: Commits per File for VLC over 32 months

As with the metrics used for the law of increasing complexity,
we cannot conclude as to whether the applications follow the law
of decreasing quality. Regardless, whether these metrics are a good
indicator of declining quality does not change the fact that there
is a difference in the evolution of software quality between mobile
application and desktop applications.

5. EXPERIENCES AND LIMITATIONS
When we initially started our research, we planned to use a num-

ber of complexity metrics to measure the effects of Lehman’s Laws
(which is what the majority of prior work did). These metrics
include Coupling Between Objects, Cyclomatic Complexity, Hal-
stead Difficulty, and Halstead Effort. After doing some correla-
tions, we found that these metrics were highly correlated with one
another in our case study projects. That means the metrics we were
going to apply to all laws would have measured the same thing and
we really only needed one complexity metric. In the end, we de-
cided to use LOC to measure complexity, and discarded all other
metrics that were correlated with LOC.

We also considered a number of process metrics, but a problem
we often ran into were the mobile projects are still too young. For
example, we have considered using the Backlog Management In-
dex (BMI) [12] to measure software quality, which takes into ac-
count the number of closed bugs and total number of bugs identified
in a release. The problem we ran into in this metric relied a lot on a
good quality issue tracker. In most mobile projects we observed, an
issue tracker is not created until half-year to a year after the initial

Figure 17: Bug Fix Commits for ownCloud over 24 months

Figure 18: Bug Fix Commits for VLC over 32 months

commit was made. And even then, people do not really post bugs
until much later. It is hard enough to find a mobile project with a
long history, let alone a mobile project with a mature issue tracker.

One of the more interesting challenges we faced when collect-
ing data was tool replacement. We have ran into many situations
where project owners would switch source code repositories (e.g.,
from SVN to Git) and issue trackers in the middle of development.
Because we had difficulties in accessing old repositories, we were
only able to get the commit history of the most recent years despite
the fact that the project has been around for much longer. Fortu-
nately, for ownCloud and VLC, we collected data for at least 6 data
points (at 4 month intervals), which allowed us to see the relation-
ships between applications as indicated by the graphs.

Selecting the time interval and the date placement was a big is-
sue in this research. The fact is mobile applications are recent. We
could not find a sufficient amount of data right in the middle of a
mobile project, so we had to include the beginning stages of mo-
bile app development to get a sufficient amount of data. We initially
wanted to collect data on release dates only, but the release sched-
ules for mobile applications and desktop were different, one offer-
ing releases every two weeks while the other offered releases on
arbitrary dates. This is why we decided to settle on a time interval
of four months. For the desktop applications, it would seem logical
to capture the first couple of months of development, and then map
those time frames to the time frames of the mobile application de-
velopment. The problem was both the VLC and ownCloud desktop
applications recently migrated their source control to Git. While it

is technically possible to gather the legacy code from that time, it
would have been too difficult and time-consuming to obtain. Sur-
prisingly, despite the data collection for desktop applications start-
ing in the middle of software development, we still see both similar
and different trends in software development.

The software metrics we have chosen seem to be giving us mixed
results. While some of the software metrics (i.e. Lines of Code)
gives us predictable trends, other software metrics (i.e. number of
bug fix commits) gave us trends that we did not expect. A possible
explanation for these unexpected trends is the metrics we have cho-
sen were wrong. In the future, we will look into the validity of the
metrics we have chosen for this research as well as come up with a
more appropriate set of metrics to measure the evolution of mobile
applciations.

6. CONCLUSION
The results of this research gives insights to the applicability

of Lehman’s laws in comparison to mobile applications. For the
law of continuing change, we found remarkably similar trends be-
tween mobile applications and desktop applications. For the law of
increasing complexity, we see through the LOC metric that both
mobile and desktop applications show an increase in complexity,
even if the rate in which the system is getting more complex is
different. Unfortunately, we are not able to conclude whether this
law holds true due to the inaccuracies of our other complexity met-
rics. For the law of declining quality, we found that in terms of
the number of bug fixing commits, the mobile apps also continue
to decline in quality over time (i.e., the number is increasing over
time). That said, we did observe a difference in trends between the
desktop and mobile versions of the app. In our future work, we
plan to focus our energies into selecting more appropriate metrics
to re-observe these laws.

Our greatest findings in this research are the relationships in the
evolution of mobile software applications and their desktop coun-
terparts. If we are strictly to look at the evolution of the lines of
code, and the lines of code that has changed, then we will see the
same trends in development. If we were to look at evolution using
process level metrics, we found that the development of the pro-
gram exhibited different trends. For the next steps, we would like
to see why these differences exist despite the similar evolution in
structure to gain a deeper understanding of software evolution in
general.

7. REFERENCES
[1] M. Lehman, “Programs, life cycles, and laws of software

evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp.
1060–1076, 1980.

[2] G. Xie, J. Chen, and I. Neamtiu, “Towards a better
understanding of software evolution: An empirical study on
open source software,” in Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on. IEEE,
2009, pp. 51–60.

[3] R. Minelli and M. Lanza, “Software analytics for mobile
applications–insights and lessons learned,” 2011 15th
European Conference on Software Maintenance and
Reengineering, vol. 0, pp. 144–153, 2013.

[4] K. Johari and A. Kaur, “Effect of software evolution on
software metrics: an open source case study,” SIGSOFT

Softw. Eng. Notes, vol. 36, no. 5, pp. 1–8, Sep. 2011.
[Online]. Available:
http://doi.acm.org/10.1145/2020976.2020987

[5] G. Singh and H. Singh, “Effect of software evolution on
metrics and applicability of lehman’s laws of software
evolution,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 1, pp.
1–7, Jan. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2413038.2413046

[6] M. W. Godfrey and Q. Tu, “Evolution in open source
software: A case study,” in Software Maintenance, 2000.
Proceedings. International Conference on. IEEE, 2000, pp.
131–142.

[7] Y. Wang, D. Guo, and H. Shi, “Measuring the evolution of
open source software systems with their communities,”
SIGSOFT Softw. Eng. Notes, vol. 32, no. 6, Nov. 2007.
[Online]. Available:
http://doi.acm.org/10.1145/1317471.1317479

[8] J. Businge, A. Serebrenik, and M. van den Brand, “An
empirical study of the evolution of eclipse third-party
plug-ins,” in Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International Workshop on
Principles of Software Evolution (IWPSE). ACM, 2010, pp.
63–72.

[9] SciTools, “Understand: Source code analysis and metrics,”
http://www.scitools.com/, June, 2013.

[10] A. Meneely and O. Williams, “Interactive churn metrics:
socio-technical variants of code churn,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 6, pp. 1–6, 2012.

[11] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using
metrics to evaluate software system maintainability,”
Computer, vol. 27, no. 8, pp. 44–49, Aug. 1994. [Online].
Available: http://dx.doi.org/10.1109/2.303623

[12] L. Grammel, H. Schackmann, and H. Lichter,
“Bugzillametrics: an adaptable tool for evaluating metric
specifications on change requests,” in Ninth international
workshop on Principles of software evolution: in conjunction
with the 6th ESEC/FSE joint meeting, ser. IWPSE ’07.
New York, NY, USA: ACM, 2007, pp. 35–38. [Online].
Available: http://doi.acm.org/10.1145/1294904.1294909

[13] S. Apel, O. Lessenich, and C. Lengauer, “Structured merge
with auto-tuning: balancing precision and performance,” in
Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 120–129. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351694

[14] R. Sindhgatta, N. C. Narendra, and B. Sengupta, “Software
evolution in agile development: a case study,” in Proceedings
of the ACM international conference companion on Object
oriented programming systems languages and applications
companion, ser. SPLASH ’10. New York, NY, USA: ACM,
2010, pp. 105–114. [Online]. Available:
http://doi.acm.org/10.1145/1869542.1869560

[15] Owncloud source code repository. [Online]. Available:
https://github.com/owncloud

[16] Vlc source code repository. [Online]. Available:
http://wiki.videolan.org/Git

