
How Are Discussions Associated with Bug Reworking?
An Empirical Study on Open Source Projects

Yu Zhao1, Feng Zhang2, Emad Shihab3, Ying Zou1 and Ahmed E. Hassan2

1Department of Electrical and Computer Engineering, Queen’s University, Canada
2School of Computing, Queen’s University, Canada

3Department of Computer Science and Software Engineering, Concordia University, Canada
1{yu.zhao, ying.zou}@queensu.ca, 2{feng, ahmed}@cs.queensu.ca, 3eshihab@cse.concordia.ca

ABSTRACT
Background: Bug fixing is one major activity in software
maintenance to solve unexpected errors or crashes of soft-
ware systems. However, a bug fix can also be incomplete
and even introduce new bugs. In such cases, extra effort is
needed to rework the bug fix. The reworking requires to in-
spect the problem again, and perform the code change and
verification when necessary. Discussions throughout the bug
fixing process are important to clarify the reported problem
and reach a solution. Aims: In this paper, we explore how
discussions during the initial bug fix period (i.e., before the
bug reworking occurs) associate with future bug reworking.
We focus on two types of “reworked bug fixes”: 1) the ini-
tial bug fix made in a re-opened bug report; and 2) the
initially submitted patch if multiple patches are submitted
for a single bug report. Method: We perform a case study
using five open source projects (i.e., Linux, Firefox, PDE,
Ant and HTTP). The discussions are studied from six per-
spectives (i.e., duration, number of comments, dispersion,
frequency, number of developers and experience of develop-
ers). Furthermore, we extract topics of discussions using
Latent Dirichlet Allocation (LDA). Results: We find that
the occurrence of bug reworking is associated with various
perspectives of discussions. Moreover, discussions on some
topics (e.g., code inspection and code testing) can decrease
the frequency of bug reworking. Conclusions: The discus-
sions during the initial bug fix period may serve as an early
indicator of what bug fixes are more likely to be reworked.

Keywords
bug reworking; re-patch; re-open; discussions; Latent Dirich-
let Allocation

1. INTRODUCTION
It is estimated that 80% of software development effort

is spent on software maintenance [27]. One major activity
in software maintenance is to fix bugs. In general, bugs are
reported, investigated, fixed and verified. However, a bug fix
may partially solve the reported problems, or even introduce
new bugs [26]. In such cases, bug fixes need to be reworked.
Reworking a bug fix requires re-analysis of the root cause,
re-implementation of the bug fix, and re-verification on the
changes. As a result, the overall development process can be
delayed [24, 26]. We focus on two types of reworked bugs:

1) re-opened bugs, whose bug fix passes the verification,
then the bug report is marked as “Resolved” initially but

later is re-opened due to problems in the bug fix;
2) re-patched bugs that have multiple patches submit-

ted for resolving a single bug report.
Previous studies have shown that a software project can have
up to 35% of re-opened bugs [24], and 60% of re-patched
bugs [28].

After problems are reported to an issue tracking system
(e.g., Bugzilla1), the process of bug fixing starts. Shihab
et al. [24] and Zimmermann et al. [32] find that the key rea-
sons for bug re-opening include the misinterpretation of bug
descriptions and the insufficient information provided in bug
reports. Tao et al. [26] report that the problematic imple-
mentation and the lack of communication can lead to bug
re-patching. Therefore, the discussions among developers
may impact the occurrences of bug reworking.

In this paper, we perform an in-depth analysis to enrich
the view on the association between discussions and the oc-
currences of bug reworking. We analyze the discussions
occurring only in the initial bug fix period, i.e., from the
creation of the bug report to the time when the bug is ini-
tially marked as “Resolved” (for re-opened bugs) or when
the first patch is submitted (for re-patched bugs). As such,
all analyzed discussions happened before the bug reworking
activity (e.g., bug re-opening and bug re-patching). The dis-
cussions are analyzed from the following six perspectives:
• Duration captures the time period over which the

discussion is performed.
• Number of comments measures the size of the dis-

cussion in terms of the number of comments.
• Dispersion quantifies how the discussion is spread

over time in terms of the amount of variation in the
interval of comments.
• Frequency describes how frequently a comment is

posted.
• Number of Developers shows how many developers

are involved in the discussion.
• Experience of Developers represents the average

number of bugs fixed by the involved developers.
Furthermore, to understand the topics appearing in discus-
sions, we apply Latent Dirichlet Allocation (LDA) [16] to
extract topics of discussions, and identify the topics that
are associated with bug reworking.

We perform case studies using five open source projects:
Linux kernel2, Firefox3, Eclipse Plug-in Development Envi-
1http://www.bugzilla.org
2https://www.kernel.org
3http://www.firefox.com

1

ronment (PDE)4, Ant5, and Apache HTTP Server6. These
projects are the popular projects of four influential organiza-
tions (i.e., Linux, Mozilla, Eclipse and Apache), have varied
size (i.e., from 136K to 17.6M lines of code) and domains
(e.g., operating system and web server). The diverse devel-
opment cultures and conventions offer a large variability in
the developers’ behaviours and discussions. In this study,
we examine the following two research questions.

RQ1: How do the initial-fix discussions impact the
likelihood of experiencing bug reworking? We find
that the initial-fix discussions have a significant association
with bug reworking. If the discussions experiencing a shorter
duration, a higher frequency, a larger number of comments,
a larger number of developers or the less experienced devel-
opers, respectively, the initial bug fixes are more likely to be
reworked (for re-opened bugs). Regarding re-patched bugs,
the initial fixes have a higher chance to be reworked, if the
discussions last longer or there are more comments.

RQ2: Do initial-fix discussions raise different top-
ics in the reworked bug fixes as compared to the
bug fixes without reworking? We observe that several
topics have significantly different distributions between the
reworked bugs and bugs without reworking. For instance,
during the initial bug fix period, code inspection is gener-
ally less discussed in re-opened bugs, and code testing is
mentioned less in the discussions of re-patched bugs.

In summary, it is worth for developers examining the dis-
cussions (with our studied metrics and topics) when they
consider a bug fix is complete and ready for submission.
Developers should be more cautious if the discussion dur-
ing the initial bug fixing period indicates a higher chance to
rework the bug fix.
Paper organization. Section 2 shows typical scenarios of
bug reworking. Section 3 presents the motivating examples
and our metrics of discussions. Case study setup and results
are discussed in Sections 4 and 5, respectively. We summa-
rize related work in Section 6. We discuss threats to validity
of our work in Section 7, and conclude in Section 8.

2. BACKGROUND
In this section, we describe the process of bug fixing and

a typical scenario of bug reworking, as shown in Figure 1.
The common bug fixing process is briefly described as fol-

lows: 1) a bug is reported (status: New); 2) a developer
is assigned to fix the bug (status: Assigned); 3) the devel-
oper fixes the bug (status: Resolved); 4) the bug fix passes
verification (status: V erified); 5) the bug report is closed
(status: Closed); and 6) the bug fix is re-opened if problems
still exist (status : Reopen).

During the bug fixing process, a developer may discuss
with others on bug descriptions, solutions to problems or
the structure of source code. Once a bug is considered to
be resolved, the bug status is changed to Resolved in the
issue tracking system, with a particular type of resolution,
such as CODE FIX, FIXED, WORKFORME, INVALID,
WONTFIX and DUPLICATE. If errors are found in a bug
fix after the bug is marked as Resolved, the corresponding
bug report needs to be re-opened and the status is changed
to Reopen.

4http://www.eclipse.org/pde/
5http://ant.apache.org
6http://httpd.apache.org

Figure 1: A typical scenario of bug reworking.

Sometimes, developers may submit a patch while resolving
a bug, so that other developers can review the code changes
and testers can verify the code changes. If the patch has
errors, developers need to fix the bug again and resubmit a
patch. We refer to such activity as re-patching the bug fix.

3. DISCUSSION METRICS
In this section, we present motivating examples and six

metrics of discussions.

3.1 Motivating Examples
To motivate our study, we randomly sample several re-

worked bug fixes and inspect their comments to understand
the reasons for the reworking. For example,

• (#1053434) After a bug is re-opened, a developer from
the Firefox project says: “Re-reading all the comments
a third time.” This example shows that the discussion
in the bug report is ambiguous for the developer. The
ambiguity might be a reason for bug re-opening.
• (#114161) Developers from the PDE project discuss

with each other and get a solution to the problem.
However, after the close of the bug, a developer says:
“Reopening. Unfortunately, the current implementa-
tion isn’t quite right”. Then the developer explains the
correct way to solve the bug. This example indicates
that the earlier discussed solution is incorrect, which
is another possible reason for bug re-opening.
• (#222945) A developer from the PDE project submits

the initial patch, and later realizes that: “the steps in
comment #11 did not work for me”. The developer de-
scribes the failure reason that he “can’t install things
while self hosting” and submits another patch. In this
case, the wrong information provided by another de-
veloper leads to the re-patching.
• (#9487) A developer from the Linux project realizes

that a previous submitted patch is incomplete. The de-
veloper creates a new patch later and says “This patch
provides a more complete fix to the problem.” The in-
completeness of a patch can cause re-patching.

Inspired by the aforementioned examples and the earlier
work (e.g., [24, 32]), we conjecture that the actual initial-fix
discussions may play an important role in avoiding future
bug reworkings. However, it is unclear how such discussions
influence the likelihood of a bug being reworked. There-
fore, we perform an in-depth analysis on how initial-fix dis-
cussions are associated with the occurrences of future bug
reworking.

3.2 Discussion Metrics
To measure various metrics of initial-fix discussions, we

apply the Goal/Question/Metric (QGM) measurement pro-
cess [4]. As shown in Table 1, we first define the goal of our
empirical study and then propose six questions towards our
goal. Each question aims to capture a unique perspective of

2

Table 1: Goal, questions, and metrics (GQM).

Goal: Study the association between initial-fix discussions and the
occurrences of future bug reworking (re-opening and re-patching).

Questions Metrics

Q1 - How long do developers discuss during an initial
bug fix?

Duration

Q2 - How many interactions between developers oc-
cur during an initial bug fix?

#Comments

Q3 - How are the posted comments distributed dur-
ing an initial bug fix?

Dispersion

Q4 - How often do developers post comments during
an initial bug fix?

Frequency

Q5 - How many developers are involved in the dis-
cussion during an initial bug fix?

#Developers

Q6 - How much experience of fixing bugs do involved
developers have?

Experience

the initial bug-fix discussions with a metric. The detailed
description of each metric is described as follows.

1) Duration. The duration of discussions is defined as
the period of the initial bug fix. The initial bug fix period
starts from the creation of the bug report until the time when
the bug is initially fixed (i.e., before the bug reworking).

2) Number of comments. The number of comments
represents the number of comments posted during the initial
bug fix period. A larger number of comments indicate that
developers discuss more during bug fixing.

Shihab et al. [24] show that the duration and the number
of comments are two important predictors of bug re-opening
likelihood. We are interested to study if the duration and
the number of comments are associated with bug reworking.

3) Dispersion. The dispersion denotes the amount of
variation of the interval of the comments posted during the
initial bug fix period. A dispersion close to 0 means the
intervals between each two consecutive comments are close
to each other, and a large dispersion value indicates the dis-
crepancy among the intervals is high. There can be a large
dispersion among comments for a bug report. For instance,
the resolution of the bug #5948 (never re-opened) from the
Linux project takes around 1 year and 6 months. There are
in total 23 comments during the initial-fix discusison. The
first 12 comments occur within 11 days. However, the next
comment comes around 1 year later. The calculated disper-
sion value for the bug #5948 is 80.1 days. When fixing the
re-opened bug #8791 in the Linux project, comments are
equally distributed across 2 days before the initial fix. The
dispersion value for the bug #8791 is 0.2 days.

4) Frequency. The frequency represents the average fre-
quency for posting the comments. We sum the posting fre-
quency of each comment and compute the average. In a re-
opened bug report of the Apache HTTP project (#21523),
a developer says that: “Looks like I spoke too soon. I’m at-
taching the complete log file of my most recent loop test” .
This example indicates that the high frequency of discus-
sions may negatively influence the quality of bug fixes.

5) Number of Developers. We count the commenter in
a bug report as a developer. A higher number of developers
indicate that more developers are involved in the discussion.

6) Experience. The experience of a developer is defined
as the number of bug reports that the developer is involved
in the history of the project. A higher experience value
possibly suggests that the developer fixed more bugs. A
bug fix made by more experienced developers may have a
lower chance to get reworked. For each initial bug fix, we
calculate the average experience of involved developers.

7) Other Metrics. In addition to the aforementioned six

Figure 2: Overview of our approach

metrics, we are also interested in the interval of discussions
and the extent of inequality of the distribution of comments.
The interval denotes the average interval of two consecutive
comments during the period of the initial bug fix. A lower
interval reveals that the initial bug fix is discussed more
intensively. We use the Gini coefficient [1] to measure the
inequality. A Gini coefficient value of 0 means that the com-
ments are spread equally over the discussion period. A larger
Gini coefficient value indicates the comments are scattered
unevenly among the discussion period.

Correlation Analysis. We compute Spearman’s rank
correlation to determine which discussion metrics are highly
correlated with each other. A correlation higher than 0.8
(i.e., |ρ| ≥ 0.8) is considered as a high correlation [25]. If
the correlation value of two metrics is higher than 0.8, only
one metric of discussions is chosen. The interval and the
Gini coefficient are highly correlated with the duration and
the number of comments, respectively, in both studies for
re-opening and re-patching. We choose to examine the du-
ration and the number of comments, since they are much
simpler and straightforward metrics.

4. CASE STUDY SETUP
In this section, we show our case study setup, such as the

subject projects, the extraction of reworked bug fixes, the
computation of our discussion metrics and the LDA topics.

4.1 Overview of Our Approach
Figure 2 presents an overview of our approach. First,

we collect bug reports and their change history from the
issue tracking system (i.e., Bugzilla). Second, we identify
re-opened bugs using the change history of bug reports, and
locate re-patched bugs based on the patches recorded in bug
reports. Then, we compute our metrics from comments of
bug reports to characterize the different perspectives of bug
discussions. To understand the content of discussions, we
further extract topics of discussions and examine if bug re-
working is associated with particular topics. To extract top-
ics, we apply the Latent Dirichlet Allocation (LDA) algo-
rithm [16]. The discussion metrics and topics are extracted
only from the discussions that happen during the initial bug
fix period (i.e., before the bug reworking). In the following
subsections, we describe the details of each step.

4.2 Subject Projects
We select five open source projects of varying sizes, i.e.,

Linux kernel, Mozilla Firefox, Eclipse PDE, Ant and Apache
HTTP server. The five subject projects are from various ap-
plication domains: 1) Linux kernel is an operating system
(OS) kernel that handles interactions between hardware and
software; 2) Mozilla Firefox is a popular cross-platform web
browser; 3) PDE is an Eclipse plug-in development envi-
ronment; 4) Ant is a build system for applications; and 5)
Apache HTTP server is a widely adopted web server. The
five projects are developed in different programming lan-
guages (i.e., Java and C/C++).

3

Table 2: The descriptive statistics on the number of bug
reports, developers and comments in our subject projects.

Project LOC
Re- # Re- #

Fixed opened patched Dev. Comments

Linux 17.6M 8,410 382 848 7,411 86.1K
Firefox 7.0M 27,759 1,844 6,890 10,537 464.1K
PDE 472K 8,510 524 417 1,284 46.4K
Ant 136K 2,704 137 38 2,073 10.5K
HTTP 510K 2,333 177 76 2,498 12.6K

Table 2 describes the statistics of the five subject projects.
The lines of code written in the main programming lan-
guages are calculated on the code snapshot taken on Septem-
ber 1, 2015. The third column reports the number of fixed
bug reports (i.e., resolution type as FIXED or CODE FIX).
We count the number of developers for a project by record-
ing the total number of commenters. In our study, the first
comment is excluded, since it is the description of a bug re-
port in Bugzilla. The number of comments for the fixed bug
reports is shown in the last column.

4.3 Extracting Reworked Bugs
All the five subject projects use Bugzilla as their issue

tracking system. For each project, we download bug reports
and their change history from Bugzilla. We select all fixed
bug reports to the date of February 23, 2016. The fixed bug
reports are marked as Resolved, V erified or Closed with
resolution type as FIXED or CODE FIX [21]. Moreover,
we filter out bug reports with less than two comments, since
any meaningful discussion can only be formed with at least
two comments. In total, we filter out 14.5% of fixed bug
reports (7,231 out of 49,716). Our discussion metrics and
topics are computed from the initial bug fix period, as shown
in Figure 3. The detailed steps to identify the period are
described as follows.

1) We extract the time when a bug report is created
(Topened). Topened is always the start date of the initial fix.
We choose Topened as the start date because developers may
discuss anytime after the creation of bug reports.

2) We extract the time when a bug is initially resolved
(TinitialResolve). The end date of the initial fix (i.e., TinitialF ix)
is TinitialResolve in the study of bug re-opening. Treworked

is the time when the bug report is re-opened when studying
re-opened bugs.

3) We extract the time when the patch is initially sub-
mitted (TfirstPatch). TinitialF ix is TfirstPatch in the study
of bug re-patching. Treworked is the time when a patch is
resubmitted when studying re-patched bugs.

4) We identify re-opened and re-patched bug fixes. Table 2
shows the statistics of re-opened bug reports and re-patched
bug reports. The detailed steps are described as follows:

Re-opened bugs. For each bug report, we extract all
statuses appearing from the creation time to the final reso-
lution time. We consider a bug report as a re-opened bug
report, if one of its historical statuses is Reopen. We use
TinitialResolve to represent the time when the status is ini-
tially changed to Resolved or Closed. The interval from the
time when a bug report is opened (Topened) to the time when
the bug is initially resolved (TinitialResolve) is the period of
the initial bug fixing in the study of bug re-opening. We
further mine the comments and their timestamps from bug
reports before the initial resolution.

Re-patched bugs. To characterize different perspectives
of discussions, we extract the comments and their times-

Topened TinitialFix TreworkedDiscussion
Metrics/Topics

Initial Bug Fix Period

Figure 3: Illustration on how to determine the initial bug
fix period for computing discussion metrics and topics.

tamps before the initial patch is submitted. We count the
total number of patches for each bug report to determine if
the bug fixing is re-patched or not. Patches containing only
test cases are filtered out, since test cases are not for bug
fixes but are used for verifying bug fixes. If the patch name
matches “test”, or names of all files match “test”, we remove
it from our case study. To ensure that all the studied bug
reports are patched at least once, we filter out bug reports
that do not have patches.

4.4 Computing Discussion Metrics
We compute six metrics to measure the varied perspec-

tives of discussions for the study of bug re-opening and re-
patching, separately. For each bug report, we mine the com-
ments and compute the intervals between two consecutive
comments during the initial bug fix period. We detail our
computation method for each metric as follows.

1) Duration. The duration is defined as TinitialResolve−
Topened when studying re-opened bugs. When studying re-
patched bugs, the duration is defined as TfirstPatch−Topened.

2) Number of comments. We simply count the number
of comments during the period of the initial bug fix.

3) Dispersion. We extract the timestamp of each com-
ment and compute the interval of any two consecutive com-
ments. Ti is used to represent the timestamp of the ith
comment. Then the interval between the ith comment and
the (i + 1)th comment is defined as Ii = Ti+1 − Ti (i ≥ 1).
We calculate the standard deviation of Ii to measure the
dispersion of discussions.

4) Frequency. For each comment, the frequency Fi is
computed as the inverse of the interval Ii (i.e., Fi = 1/Ii).

Then the average frequency is computed as
∑m

i=1 Fi

m
, where

m is the total number of intervals.
5) Number of developers. The number of developers is

defined as the total number of unique commenters involved
in the discussion before the bug is initially fixed.

6) Experience. We define Ei as the total number of
bug reports that a developer involved throughout the entire
development of the project. The developer’s experience for

a particular bug report is
∑n

i=1 Ei

n
, where n is the number of

the involved developers during the initial bug fix period.

4.5 Extracting Discussion Topics
To understand what developers discuss during the initial

bug fix period, we extract topics from the initial-fix discus-
sions using Latent Dirichlet Allocation (LDA) [16]. LDA
is a popular generative topic model that can discover rela-
tionships between words and unstructured documents. It
assumes that documents consist of different probabilistic
combinations of topics. In LDA, each textual document is
modelled as a distribution of latent topics, and each topic is
considered as a probabilistic distribution over words.

For each type of bug reworking (i.e., re-opening and re-
patching), we formulate the corpus for LDA using the com-
ments posted during the initial fix, respectively. We treat

4

the comments of a bug report during the initial fix period as
a document for LDA. Before applying LDA, we normalize
words in documents. Non-english characters in a word such
as punctuation and numbers are removed. We use an En-
glish dictionary to remove non-English words. Moreover, we
stem words (e.g., “fixes” to “fix”) and remove all stop words
(e.g., “a” and “the”) [3]. We set the same configurations of
hyper-parameters (i.e., α = 0.1, β=0.1) and the same num-
ber of iterations (i.e., 1,000) as the work by Hindle et al.
[10] who apply LDA on SE data. LDA generates a specified
number of topics for each document, and assigns a score of
each topic in each document. The sum of the scores is 1.
As we only consider the major topics in each bug report, we
choose the topics with the scores higher than the average
(i.e., 1

number of topics
) as the topics of the bug report.

5. CASE STUDY RESULTS
In this section, we present our approach to investigate the

association between discussions and the occurrences of bug
reworking, and discuss our findings.

5.1 Discussion Metrics
Bug reworking requires additional human effort, thus is

expensive. To help developers locate the bug fixes that are
likely to reworked, we aim to understand how the initial-fix
discussions impact bug reworking. Previous studies find that
insufficient discussions can increase the likelihood of bug re-
opening [32] or re-patching [26]. However, discussions have
only been investigated from a very limited perspective.

In this paper, we study the association between bug re-
working and discussions along with six metrics (i.e., dura-
tion, number of comments, dispersion, frequency, number
of developers and developer experience). To investigate the
two types of bug reworking, we study the two subquestions:

RQ1.1 How do the initial-fix discussions impact the likeli-
hood of experiencing bug re-opening?

RQ1.2 How do the initial-fix discussions impact the likeli-
hood of experiencing bug re-patching?

5.1.1 Approach
To address each question, we separate bug reports into two

groups along a single metric. For each metric, 1) one group
is the control group that contains bug reports with smaller
values (i.e., less than a threshold) of the corresponding mea-
surement; and 2) the other group is the experimental group
that contains the remaining bug reports. We choose the
median value of each metric of discussions as the threshold.

To answer RQ1.1 and RQ1.2, we test the following null
hypotheses for each discussion metric, respectively:
H011: the proportion of re-opened bug fixes in the experi-
mental group and the control group has no difference.
H012: the proportion of re-patched bug fixes in the experi-
mental group and the control group has no difference.

HypothesisH011 andH012 are evaluated using the Fisher’s
exact test [23] with 95% confidence level (i.e., p-value <
0.05). The Fisher’s exact test examines if there exists non-
random association between the occurrences of bug rework-
ing and the measurement of each discussion metric. Since
we investigate five projects for each metric of discussions, we
apply Bonferroni correction to adjust the p-value by divid-
ing the number of tests (i.e., 5 tests). If there is statistical
significance (i.e., p value is less than 0.05/5=0.01), we reject
the null hypothesis.

We further compute the odds ratio [23] that measures
the likelihood of experiencing the reworking of bug fixes
in the experimental group. We calculate the odds p and
q of reworked bug fixes in the experimental and control
groups, respectively. Then the odds ratio is computed as

OR = p/(1−p)
q/(1−q)

. If OR = 1, reworked bug fixes and non-

reworked bug fixes are equally distributed in the two groups.
Otherwise, the chances to experience reworked bug fixes are
different in the two groups. If OR > 1, bug fixes belonging
to the experimental group are more likely to be reworked,
and vice versa.

5.1.2 Findings
The association between the discussions and the bug re-

working is significant in various projects. In the following
paragraphs, we report the detailed findings in the bug re-
opening and re-patching studies.
RQ1.1 (Bug re-opening). Discussions with a shorter
duration, more comments, a higher frequency, more
developers or less experienced developers increase
the chance of re-opening resolved bugs, respectively.
Table 3 presents the thresholds of the measurement and the
detailed odds ratios for each metric in the study of bug re-
opening. We describe the association between each metric
of discussions with bug re-opening as follows.

1) Duration. Shorter duration of discussions before the
initial fix is more likely to increase the likelihood of bug
re-opening overall (except for the Firefox project). The p-
values of the Fisher’s exact test in all the five projects are
lower than the corrected threshold p-value (i.e., 0.01). In
such cases, we reject the null hypothesis H011. The rejec-
tion shows that re-opened bug fixes have significant different
distributions in bug reports with short period of initial-fix
discussions compared to the remaining bug reports. In addi-
tion, the odds ratios of the four projects (i.e., Linux, PDE,
Ant and HTTP) are all less than one, indicating that the
longer duration of the initial-fix discussions reduces the like-
lihood to experience bug re-opening. However, the Firefox
project shows a different trend with an odds ratio larger
than one; and this is discussed in Section 5.1.3.

2) Number of comments. Bug reports with a larger
number of comments are more likely to be re-opened. We
observe a significant association between number of com-
ments and bug re-opening in the Linux, Firefox and PDE
projects. In particular, discussions with a larger number of
comments before the initial fix increase the likelihood of ex-
periencing bug re-opening by 2.49, 1.35 and 1.31 times for
the Linux, Firefox and PDE projects, respectively.

3) Dispersion. The dispersion overall does not show a
significant association with bug re-opening. We only observe
the significant p-value in the Firefox project. Thus regarding
dispersion, we can reject the null hypothesis H011 only for
the Firefox project.

4) Frequency. Bug fixes with a higher frequency of com-
ment postings tend to increase the likelihood of re-opening.
Among all five projects, the frequency has a significant as-
sociation in four projects (i.e., except for the PDE project).
Bug reports with discussions of high frequency are 2.16, 1.24,
2.33 and 1.69 times more likely to be re-opened in the Linux,
Firefox, Ant and HTTP projects, respectively.

5) Number of developers. The number of develop-
ers has a significant association with bug re-opening in the
Linux, Firefox and PDE projects. The odds ratios of the

5

Table 3: The result of Fisher’s exact test in the study of bug
re-opening. (τ denotes the threshold value of the measure-
ment. OR is the odds ratio and “-” represents not statisti-
cally significant, the same below)

Project Linux Firefox PDE Ant HTTP

Duration
τ 48.1 days 16.2 days 6.9 days 34.6 days 149.6 days

OR 0.69 1.15 0.78 0.60 0.60

Comments
τ 6 8 4 3 4

OR 2.49 1.35 1.31 - -

Dispersion
τ 3.8 days 1.5 days 0.3 days 0.7 days 8.1 days

OR - 1.15 - - -

Frequency
τ 5.6e-04 8.9e-04 8.5e-04 9.9e-05 7.4e-05

OR 2.16 1.24 - 2.33 1.69

Developer
τ 3 4 2 2 2

OR 2.03 1.41 1.33 - -

Experience
τ 129.5 1222.3 891.0 316.0 130.0

OR 1.32 0.48 0.77 0.52 -

three projects are larger than one, showing that larger num-
ber of developers involved in the initial-fix discussion in-
crease the likelihood of bug re-opening generally.

6) Experience. A bug report fixed with less experi-
enced developers is more likely to be re-opened overall. Four
projects (except for the HTTP project) exhibit a significant
association between the developer experience and the bug
reworking. Moreover, in the Firefox, PDE and Ant projects,
the odds ratios are all lower than one, indicating that bug
fixes with more experienced developers have lower chances to
be re-opened. However, different from the three projects, we
observe that in the Linux project, the odds ratio is larger
than one and the threshold is 129.5. The threshold value
means that on average, developers in 50% of bug reports
are involved in less than 2% of fixed bug reports. Such a
low number (i.e., 2% of fixed bug reports) reflects the char-
acteristics of the Linux project that developers may have
expertise in the specific subsystem, such as file systems and
networking. The number (i.e., 2%) is not sufficient to rep-
resent the experience. When setting the threshold value as
841 (i.e., 10% of fixed bug reports) for the Linux project,
the odds ratio is consistent as other projects (i.e., lower than
one).
RQ1.2 (Bug re-patching). Discussions with a longer
duration, more comments, a larger dispersion and
more developers are more likely to get the initial
bug fix re-patched. Table 4 shows the Fisher’s exact
test result and the thresholds for the measurements of each
metric in the study of bug re-patching. Similar to bug re-
opening, a bug fix with more comments and more developers
before submitting an initial patch has higher chances of re-
patching. To be more specific, three projects (i.e., Linux,
Firefox and PDE) show a significant association (i.e., p-
value < 0.01) between the number of comments and bug
re-patching. Discussions with more comments are 1.60, 1.31
and 1.81 times more likely to get the initial fix re-patched in
the Linux, Firefox and PDE projects. We observe that the
metric of the number of developers has a significant associa-
tion with bug re-patching in the Linux and Firefox projects.
Moreover, both of the odds ratios are larger than one, in-
dicating that a larger number of developers involved in the
discussion increase the likelihood of re-patching.

Different from bug re-opening, the longer duration of dis-
cussions before submitting an initial patch has a higher chance

Table 4: The result of Fisher’s exact test in the study of bug
re-patching.

Project Linux Firefox PDE Ant HTTP

Duration
τ 9.7 days 11.4 days 11.1 days 18.2 days 72.0 days

OR - 1.75 1.76 - 2.21

Comments
τ 7 5 4 3 4

OR 1.60 1.31 1.81 - -

Dispersion
τ 0.8 days 1.0 days 0.30 days 0.2 days 2.0 days

OR - 1.55 2.02 - -

Frequency
τ 1.3e-03 5.4e-04 7.2e-04 2.2e-04 2.6e-04

OR 1.59 0.81 - - -

Developer
τ 3 3 2 2 3

OR 1.51 1.24 - - -

Experience
τ 87.5 696.0 1007.5 158.5 103.3

OR - 0.73 - - -

to re-patch a bug fix. The duration of the initial-fix discus-
sions in the Firefox, PDE and HTTP projects has a sig-
nificant association with bug re-patching. In particular, a
longer duration of discussions increases the likelihood to re-
patch a bug fix by 1.75, 1.76, 2.21 times in the Firefox,
PDE and HTTP projects, respectively. The dispersion has
a significant association with bug re-patching in two projects
(i.e., Firefox and PDE). The odds ratios of the two projects
are larger than one. In particular, discussions with a larger
dispersion are 1.55 and 2.02 times more likely to get the
initial bug fix re-patched in the Firefox and PDE projects,
respectively.�

�

	

Discussions performed before the initial fix have a sig-
nificant association with bug reworking from various
perspectives. Indeed, initial-fix discussions with fewer
comments, fewer developers are less likely to experi-
ence bug re-opening and re-patching.

5.1.3 Discussions
To better understand the possible causes of bug rework-

ing (i.e., bug re-opening and bug re-patching), we randomly
sampled 341 reworked bug reports with 95% confidence level
and 5% confidence interval7. The first author manually ana-
lyzes the sampled bug reports, and the detailed findings are
presented as follows.

1) Duration. A shorter duration of discussions has two
major reasons for re-opening bugs: a) Defective fixes. The
approaches to fix the bug may not be fully discussed so that
there are still errors which remain, such as Linux #8791,
#9475 and HTTP #21371; and b) Incorrect categorization
of duplicated bugs. From the bug description, developers
may think of it as a duplicate bug and mark the status
as resolved. Further analysis reveals that such reports are
misclassified, thus the bug reports are re-opened. Example
cases are Linux #8709, PDE #463822 and HTTP #13991.

We have an opposite observation in the Firefox project
that a longer duration of discussions increases the chance to
get bugs re-opened. Firefox is a large project designed for a
web browser. Developers may have a long discussion about
complex issues, such as customization settings (no unique
solution can be easily reached due to varying preferences

7http://www.surveysystem.com/sscalc.htm

6

of different users) and URL autocomplete (implementation
of complex machine learning algorithms may be involved).
When resolving a bug, the fix can conflict with the existing
code or incur unexpected issues, such as Firefox #179666
and #400061.

A longer duration of discussions before submitting an ini-
tial patch has a higher chance to get the initial patch re-
jected. There can be multiple alternative solutions to fix
a bug, thus developers need spend efforts to find the best
one. However, our manual analysis reveals that a patch cre-
ator may be unaware of the correct way to fix the bug when
creating a patch. As a result, incomplete or unnecessary
changes can occur. Example cases can be found in the bug
reports PDE #434303, #462288 and HTTP #44736.

2) Number of comments and developers. More com-
ments and more developers involved in discussions before
resolving a bug are more likely to get the bug fix re-opened.
One possible reason is that developers do not reach a con-
sensus about the solution. After closing the bug, a better
approach is found or the discussed solution needs to be im-
proved. Example cases are bug reports Linux #5832, Firefox
#396816 and PDE #115484.

3) Frequency. The higher frequency of discussions is as-
sociated with bug re-opening. We find that the high average
frequency of discussions can be classified into two types, i.e.,
a) one or more burst of comment postings; and b) high den-
sity of comment postings throughout the initial bug fixing
period. Example bug reports with a burst of comment post-
ings are Linux #2884, Ant #5907 and HTTP #16137. We
conjecture that the burst of comment postings may address a
particular problem but does not necessarily result in a thor-
ough solution. Example bug reports with comment postings
of high density are Linux #5889, Firefox #1078539 and Ant
#32300. One possible reason of reworking these bugs is that
their comment postings mainly focus on finding a solution
other than code review and testing.

5.2 Discussion Topics
Manually inspecting topics of bug reports can help us un-

derstand specific reasons behind the reworking of bug fixes.
However, there are in total 3,064 re-opened bugs in our sub-
ject projects (see Table 2). Even for one project, it is tedious
to manually inspect all bug reports. Hence, it is necessary to
automatically abstract detailed comments to a higher level
so that the content of discussions is more understandable. In
this section, we aim to investigate if it is possible to identify
specific topics that are associated with bug reworking.

To study the association between discussion topics and
the two types of bug reworking, we propose the following
two questions:

RQ2.1 Do initial-fix discussions raise different topics in the
re-opened bug fixes as compared to the bug fixes with-
out re-opening?

RQ2.2 Do initial-fix discussions raise different topics in the
re-patched bug fixes as compared to the bug fixes with-
out re-patching?

5.2.1 Approach
To address the two research questions, we first extract top-

ics of the initial-fix discussions from bug reports and then in-
vestigate the association between each individual topic with
bug reworking.

In our corpus, there are in total 42,203 and 14,273 doc-
uments for the bug re-opening and re-patching studies, re-
spectively. We set the number of topics for LDA to be 50,
and the number of keywords for each topic to be 10. To
better understand each topic, we manually assign labels to
each topic based on the 10 keywords produced by LDA. Hin-
dle et al. [10] report that the topics generalized from LDA
match the perception of developers and managers. To verify
if the topics extracted by LDA are representative, the first
author conducted a qualitative study to manually extract
topics from the previously sampled bug reports without any
knowledge of the LDA results.

To investigate the association between specific topics and
the occurrences of bug reworking, we separate bug reports
into two groups. One group contains bug reports that are
never re-opened (respectively never re-patched), and the
other group contains bug reports that experiences re-opening
(respectively re-patching). For each topic, we investigate if
the distribution of the topic across the two groups is similar
by testing the following null hypothesis:
H02: There is no difference in the distribution of topics be-
tween bugs that are never reworked and ones that are re-
worked.

We perform Wilcoxon rank-sum test [23] to examine the
null hypothesis H02, using the 95% confidence level (i.e., p-
value < 0.05). Wilcoxon rank-sum test is a non-parametric
statistically test to assess whether the population of two
sampled groups are the same against the null hypothesis.
The Wilcoxon test makes no assumption about the distribu-
tion of samples. Since we perform five tests on each topic,
we apply the Bonferroni correction to control for family-wise
errors. We reject the null hypothesis if there is a statistically
significant difference (i.e., p-value < 0.01).

5.2.2 Findings
Some topics of discussions experience statistically signifi-

cantly different distributions between reworked and not re-
worked bug reports. For instance, the topic A4 (i.e., code
inspection) occurs less frequently in re-opened bugs than
the remaining bug reports in two projects (i.e., Linux and
HTTP). The topic B4 (i.e., code testing) has lower percent-
age in re-patched bugs than the remaining bug reports in
two projects (i.e., Linux and Firefox).

Furthermore, our manual verification shows that the top-
ics produced by LDA with our configuration (e.g., 50 topics)
are similar to the manually extracted topics.
RQ2.1 (Re-opened bugs) Seven topics exhibit statis-
tically significant different distributions (i.e., p-value
< 0.01) in at least two projects. We reject the null hy-
pothesis H02 for these topics in the corresponding projects.
Table 5 summarizes the topics that have significantly dif-
ferent distributions in at least two projects in the study of
re-opened bugs. Table 5 (a) presents the percentage of bug
reports that contain the topic in each of the two groups
(i.e., bug reports with and without re-opening). Table 5 (b)
shows the keywords of the significant topics. Overall, no
topics are consistently associated with the chance of bug re-
opening in all five projects. However, in particular projects,
some topics do have an association with the likelihood of
bug re-opening.

Among the 7 topics, we have consistent observations. The
topics A1 (i.e., commit verification), A4 (i.e., code inspec-
tion) and A5 (i.e., patch creation) tend to appear more often

7

Table 5: Topics which have significant p-values in at least two projects in our study of bug re-opening

(a) The percentage of the topics in bug reports that are
re-opened (Yes) and are never re-opened (No).

Topics
Linux Firefox PDE Ant HTTP

Yes No Yes No Yes No Yes No Yes No

A1 53% 60% - - - - - - 32% 41%

A2 - - 33% 27% - - 51% 40% - -

A3 - - 29% 25% - - - - 35% 24%

A4 12% 20% - - - - - - 31% 43%

A5 - - 38% 46% 29% 38% - - 37% 48%

A6 28% 19% - - 34% 27% - - 35% 24%

A7 - - - - 26% 19% - - 31% 20%

(b) Keywords of the topics

Topics Keywords

A1 commit,fix,write,report,date,regress,bad,tree,bisect,git

A2 build,version,install,update,release,extension,mac,os,night,run

A3 page, link, content, site, show, user, secure, bug, click, document

A4 check,fix,revise,attach,previous,patch,create,trunk,branch,comment

A5 patch,attach,create,apply,propose,fix,please,top,submit,include

A6 set,default,opinion,change,prefer,add,support,custom,override,ad

A7 size,width,screen,height,drag,position,font,move,animation,space

A1: commit verification, A2: build system, A3: web page design, A4: code
inspection, A5: patch creation, A6: customization settings, A7: UI related.

Table 6: Topics which have significant p-values in at least two projects in our study of bug re-patching

(a) The percentage of the topics in bug reports that
are re-patched (Yes) and are never re-patched (No).

Topics
Linux Firefox PDE Ant HTTP

Yes No Yes No Yes No Yes No Yes No

B1 21% 15% 40% 36% - - - - - -

B2 - - 19% 15% - - - - 93% 79%

B3 - - 37% 29% 39% 31% - - - -

B4 9% 14% 9% 11% - - - - - -

B5 - - 38% 28% 44% 32% - - - -

(b) Keywords of the topics

Topics Keywords

B1 comment,reply,guess,understand,mention,case,does,maybe,why,affect

B2 request,connect,server,cache,send,client,sync,network,response,header

B3 work,code,bug,start,assign,fine,make,interest,broken,made

B4 test,slave,expect,warn,revise,debug,option,code,uncaught,return

B5 implement,code,make,service,provide,require,support,case,solution,part

B1: content misunderstanding, B2: client-server model, B3: bug assignment,
B4: code testing, B5: solution implementation.

in bug reports without re-opening in at least two projects.
The other four topics consistently appear more frequently in
re-opened bug reports than bug reports without re-opening.
The topic A5 (i.e., patch creation) has a higher discussion
rate in the bug reports that are never re-opened in the Fire-
fox, PDE and HTTP projects. It shows that fixing bugs by
revising codes can have a higher chance to get bugs not re-
opened. When talking about the topic A6 (i.e., customiza-
tion settings), there are no universal solutions to the prob-
lem. It is possible that developers find a better approach to
satisfy user’s preferences after resolving a bug. Another in-
teresting topic is A4 (i.e., code inspection). The Linux and
HTTP projects have a significant lower percentage on dis-
cussing code inspection in re-opened bugs. Code inspection
can improve code readability and discover software defects.
Although its nature (i.e., time-consuming and complex) re-
strains its wide adoption in practice [2], developers should
increase the discussion of code review. Otherwise, as Shihab
et al. [24] show, the chance of bug re-opening increases, and
possibly leads to lengthening the bug fixing time.
RQ2.2 (Re-patched bugs) Initial-fix discussions have
five topics experiencing significant different distri-
butions in re-patched bug reports and bug reports
without re-patching in two projects. Table 6 concludes
the topics with a significant p-value (i.e., p-value < 0.01) for
the Wilcoxon rank sum test in at least two projects in our
study of bug re-patching. We do not observe topics with con-
sistent associations with bug re-patching in the five projects.
However, in the Firefox project, all the five topics in Table 6
have significant different distributions in re-patched bug re-
ports and bug reports without re-patching.

To be more specific, the topic B4 (i.e., code testing) ap-
pears more often in the bug reports without re-patching
compared to re-patched bug reports in the Linux and Fire-
fox projects. All the other four topics have a higher percent-
age in the re-patched bug reports. The Linux and Firefox

projects are long-lived (more than 10 years development his-
tory) and are developed by a large community of developers.
The topics B1 (i.e., content misunderstanding) and B4 (i.e.,
code testing) have significant different distributions in the
two projects. We looked into our sampled re-patched bug
reports with the topic B1 (i.e., content misunderstanding)
and investigated possible reasons for re-patching. We find
that developers are uncertain about the solutions or have
misunderstandings before submitting a patch in our sam-
pled bug reports. Examples are Firefox #815847, #1123309
and #950399. Code testing is an essential step to validate
the code and expose the defects [9]. Before submitting a
patch, a developer is encouraged to conduct testing. Oth-
erwise, the patch could be rejected and requires reworking.
As a result, it increases the workload of patch creators and
reviewers [26].�

�

�

Among all the 50 extracted topics, there are several
topics showing a consistent association with bug re-
opening and bug re-patching in at least two projects. In
particular, re-opened bugs have less discussions on the
topic code inspection. If developers are unclear about
the solution and conduct less code testing, the chance
of bug re-patching increases.

6. RELATED WORK
In this section, we present the related studies on bug re-

working, and discussion analysis.

6.1 Bug Reworking
Re-opened and re-patched bugs are reworked bug fixes.

Shihab et al. [24] are the first to examine re-opened bugs.
They built models to predict re-opened bugs using four groups
of metrics i.e., work habits, bug report, bug fix and team,
and find that comment text is the most important indicator
of re-opened bugs in the Eclipse and OpenOffice projects.

8

Zimmermann et al. [32] investigate the reasons for bug re-
opening and find that bugs identified by code analysis tools
or code review processes are less likely to be re-opened.
Caglayan et al. [6] report that developers’ activities are im-
portant factors that cause bugs to be re-opened.

Tao et al. [26] systematically investigate the reasons for
rejecting patches and find that problematic implementation
and the lack of communication are two major reasons. Rigby
and Storey [22] report that the reasons for re-patching not
only include technical issues but also contain feature, scope
and political issues. Nurolahzade et al. [19] find that am-
biguous information in the discussions during code review
may affect the newly submitted patches. Other studies about
patches are related to the acceptance of patches and the pre-
diction of review time using features that are extracted from
patches and bug reports [12] [13].

Our study complements the previous studies since we fo-
cus on the association between the discussions and the bug
reworking. We study two types of bug reworking, i.e., bug
re-opening and bug re-patching. The association is studied
in terms of six unique perspectives and discussion topics.

6.2 Discussion Analysis
The impact of discussions on software quality has been in-

vestigated in many prior studies. For example, Ohira et al.
[20] conclude that discussions before bug assignment can
help prevent bug reassignment and therefore reduce bug
fixing time. McIntosh et al. [17] suggest that discussions
should be conducted during the code review process to re-
duce the post-release defects. Rigby and Storey [22] report
that unproductive discussions such as the “bike shed” prob-
lems (e.g., developers intensively express multiple opinions
and response during bug fixing activities) slow down the de-
cision process. Zhang et al. [30] find that discussions impact
the bug fixing time. Discussions are also widely used to mine
social networks among developers [5, 11, 14].

A number of researches use text mining techniques to un-
derstand discussions among developers. For instance, Zhou
et al. [31] analyze text and code snippets extracted from API
discussions to categorize the contents of discussions. Dit and
Marcus [7] mine previous discussions and bug description
to build a recommendation system for comments related to
bugs. Topic modeling approaches such as Latent Semantic
Indexing (LSI) and Latent Dirichlet Allocation (LDA) are
also widely used in the discussion analysis [8, 15, 18].

Different from the previous studies, we analyze the impact
of discussions on the likelihood of experiencing bug rework-
ing. In addition, we apply LDA to find topics of discussions
that are associated with the likelihood of bug reworking.

7. THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our

study, following Yin’s guidelines for case study research [29].
Threats to conclusion validity are concerned with the

relationship between the treatment and the outcome. We
divide bug reports into two groups to study the association
between each discussion metric and the bug reworking. We
choose the median value of each metric of discussions as the
threshold to equally separate bug reports into two groups.
Although applying other thresholds may result in different
values of odds ratio, the direction of odds ratios (i.e., either
OR < 1 or OR > 1) can be still the same.

Threats to internal validity are concerned with our se-

lection of subject projects and analysis methods. In this
study, our six metrics of discussions may not capture all
aspects of discussions, although they are indeed associated
with the likelihood of the occurrences of bug reworking.
Exploring more aspects of discussions is encouraged. Our
heuristic for filtering patches with only test cases is based
on the keyword “test”, possibly introducing false positives
and false negatives. However, our manual analysis shows
that the impact of our heuristic is trivial.

Threats to external validity are concerned with the
generalizability of our results. To obtain a more general
finding, we choose well-known subject projects in various
domains and developed in widely used programming lan-
guages (i.e., Java and C/C++). However, some findings
might relate to specific projects. Therefore, we believe that
each project which wishes to leverage our results should con-
duct our analysis on their historical data.

Threats to reliability validity are concerned with the
possibility of replicating this study. Our subject projects
are open source projects, and are publicly accessible. In
addition, we attempt to provide all details in this paper.

8. CONCLUSION
Through discussions, developers can clarify bug descrip-

tions and brainstorm solutions. Effective discussions can
help developers avoid the reworking of bug fixes. In this
paper, we investigate two types of bug reworking (i.e., re-
opening and re-patching). We investigate the association
between initial-fix discussions and the occurrences of fu-
ture bug reworking from six perspectives (i.e., the duration,
the number of comments, the dispersion, the frequency, the
number of developers and the developer experience). In ad-
dition, we apply LDA to extract topics of discussions and
then examine the association between different topics and
the occurrences of bug reworking.

We perform an empirical study using five open source
projects (i.e., Linux, Firefox, Eclispe PDE, Ant and HTTP),
and find that various metrics of initial-fix discussions have
different associations with the occurrence of bug reworking.
We summarize our major findings as follows.

• Re-opened bug fixes. A shorter duration, more
comments and a higher frequency of discussion before
the initial fix increase the likelihood of bug re-opening.
Bug fixes with a larger number of developers and less
experienced ones have a higher likelihood to get re-
opened. Different topics of discussions are associated
with the likelihood of bug re-opening. For instance,
if developers discuss less about code inspection, the
chance of a bug report getting re-opened increases.
• Re-patched bug fixes. Discussions before submit-

ting the initial patch with a longer duration, more
comments, a higher dispersion and more developers
are more likely to get bug fix re-patched. Re-patched
bug fixes tend to discuss less about code testing before
an initial patch is submitted compared to bug reports
without re-patching.

As a summary, our observed effect of discussions on bug
reworking can provide an early warning to developers about
bug reworking. Practitioners can develop tools that moni-
tor the discussions. When developers are about to resolve a
bug or submit a patch, the discussion metrics and topics can

9

indicate whether the bug is likely to be reworked. In the fu-
ture, we plan to investigate the occurrences of bug reworking
from more social aspects (e.g., developers’ activities).

Acknowledgement
We would like to thank Dr. Iman Keivanloo for his feedback
on the early version of this work.

References
[1] Anthony Barnes Atkinson and Francois Bourguignon. Hand-

book of income distribution, volume 1. Elsevier, 2000.

[2] Alberto Bacchelli and Christian Bird. Expectations, out-
comes, and challenges of modern code review. In ICSE, pages
712–721. IEEE Press, 2013.

[3] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern
information retrieval, volume 463. ACM press New York,
1999.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach.
The goal question metric approach. In Encyclopedia of Soft-
ware Engineering. Wiley, 1994.

[5] Nicolas Bettenburg and Ahmed E Hassan. Studying the im-
pact of social interactions on software quality. Empirical
Software Engineering, 18(2):375–431, 2013.

[6] Bora Caglayan, Ayse Tosun Misirli, Andriy Miranskyy, Bu-
rak Turhan, and Ayse Bener. Factors reopened issues: a
case study. In Proceedings of the 8th International Confer-
ence on Predictive Models in Software Engineering, pages
1–10. ACM, 2012.

[7] Bogdan Dit and Andrian Marcus. Improving the readabil-
ity of defect reports. In Proceedings of the 2008 interna-
tional workshop on Recommendation systems for software
engineering, pages 47–49. ACM, 2008.

[8] Bogdan Dit, Denys Poshyvanyk, and Andrian Marcus. Mea-
suring the semantic similarity of comments in bug reports.
Proc. of 1st STSM, 8, 2008.

[9] Brent Hailpern and Padmanabhan Santhanam. Software de-
bugging, testing, and verification. IBM Systems Journal, 41
(1):4–12, 2002.

[10] Abram Hindle, Christian Bird, Thomas Zimmermann, and
Nachiappan Nagappan. Do topics make sense to managers
and developers? Empirical Software Engineering, pages 1–
37, 2014.

[11] Qiaona Hong, Sunghun Kim, SC Cheung, and Christian
Bird. Understanding a developer social network and its evo-
lution. In Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, pages 323–332. IEEE, 2011.

[12] Gaeul Jeong, Sunghun Kim, Thomas Zimmermann, and
Kwangkeun Yi. Improving code review by predicting review-
ers and acceptance of patches. Research on Software Analy-
sis for Error-free Computing Center Tech-Memo (ROSAEC
MEMO 2009-006), 2009.

[13] Yujuan Jiang, Bram Adams, and Daniel M German. Will
my patch make it? and how fast?: case study on the linux
kernel. In Proceedings of the 10th Working Conference on
Mining Software Repositories, pages 101–110. IEEE Press,
2013.

[14] Amit Kumar and Avdhesh Gupta. Evolution of developer
social network and its impact on bug fixing process. In Pro-
ceedings of the 6th India Software Engineering Conference,
pages 63–72, 2013.

[15] Erik Linstead and Pierre Baldi. Mining the coherence of
gnome bug reports with statistical topic models. In Mining
Software Repositories, 2009. MSR’09. 6th IEEE Interna-
tional Working Conference on, pages 99–102. IEEE, 2009.

[16] David M.Blei, Andrw Y.Ng, and Michael I.Jordan. Latent
dirichlet allocation. Journal of Machine Learning Research,
2003.

[17] Shane McIntosh, Yasutaka Kamei, Bram Adams, and
Ahmed E Hassan. The impact of code review coverage and
code review participation on software quality: A case study
of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages
192–201. ACM, 2014.

[18] Laura Moreno, Wathsala Bandara, Sonia Haiduc, and An-
drian Marcus. On the relationship between the vocabu-
lary of bug reports and source code. In Software Mainte-
nance (ICSM), 2013 29th IEEE International Conference
on, pages 452–455. IEEE, 2013.

[19] Mehrdad Nurolahzade, Seyed Mehdi Nasehi, Shahedul Huq
Khandkar, and Shreya Rawal. The role of patch review in
software evolution: an analysis of the mozilla firefox. In Pro-
ceedings of the joint international and annual ERCIM work-
shops on Principles of software evolution (IWPSE) and soft-
ware evolution (Evol) workshops, pages 9–18. ACM, 2009.

[20] Masao Ohira, Ahmed E Hassan, Naoya Osawa, and Ken-ichi
Matsumoto. The impact of bug management patterns on bug
fixing: A case study of eclipse projects. In Software Main-
tenance (ICSM), 2012 28th IEEE International Conference
on, pages 264–273, 2012.

[21] Lucas D. Panjer. Predicting eclipse bug lifetimes. In Proceed-
ings of the Fourth International Workshop on Mining Soft-
ware Repositories, MSR ’07, pages 29–, Washington, DC,
USA, 2007. IEEE Computer Society. ISBN 0-7695-2950-X. .

[22] Peter C Rigby and Margaret-Anne Storey. Understand-
ing broadcast based peer review on open source software
projects. In Proceedings of the 33rd International Confer-
ence on Software Engineering, pages 541–550. ACM, 2011.

[23] David J. Sheskin. Handbook of Parametric and Nonpara-
metric Statistical Procedures, Fourth Edition. Chapman &
Hall/CRC, January 2007. ISBN 1584888148.

[24] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid
M.Ibrahim, Masao Ohira, Bram Adams, Ahmed E.Hassan,
and Ken ichi Matsumoto. Studying re-opened bugs in open
source software. Empirical Software Engineering, pages 1–
38, 2012.

[25] Giancarlo Succi, Witold Pedrycz, Snezana Djokic, Paolo Zu-
liani, and Barbara Russo. An empirical exploration of the
distributions of the chidamber and kemerer object-oriented
metrics suite. Empirical Software Engineering, 10(1):81–104,
2005.

[26] Yida Tao, DongGyun Han, and Sunghun Kim. Writing ac-
ceptable patches: an empirical study of open source project
patches. In Proceedings of 2014 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME),
pages 271–280. IEEE, 2014.

[27] G. Tassey. The economic impacts of inadequate infrastruc-
ture for software testing. Technical Report Planning Report
02-3, National Institute of Standards and Technology, May
2002.

[28] Peter Weißgerber, Daniel Neu, and Stephan Diehl. Small
patches get in! In Proceedings of the 2008 international
working conference on Mining software repositories, pages
67–76. ACM, 2008.

[29] Robert K. Yin. Case Study Research: Design and Methods
- Third Edition. SAGE Publications, 3 edition, 2002.

[30] Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Has-
san. An empirical study on factors impacting bug fixing time.
In Proceedings of the 19th Working Conference on Reverse
Engineering, WCRE ’12, pages 225 – 234, oct. 2012.

[31] Bo Zhou, Xin Xia, David Lo, Cong Tian, and Xinyu Wang.
Towards more accurate content categorization of api discus-
sions. In Proceedings of the 22nd International Conference
on Program Comprehension, pages 95–105. ACM, 2014.

[32] Thomas Zimmermann, Nachiappan Nagappan, Philip J.
Guo, and Brendan Murphy. Characterizing and predicting
which bugs get reopened. In Software Engineering (ICSE),
2012, pages 1074 –1083, june 2012. .

10

	Introduction
	Background
	Discussion Metrics
	Motivating Examples
	Discussion Metrics

	Case Study Setup
	Overview of Our Approach
	Subject Projects
	Extracting Reworked Bugs
	Computing Discussion Metrics
	Extracting Discussion Topics

	Case Study Results
	Discussion Metrics
	Approach
	Findings
	Discussions

	Discussion Topics
	Approach
	Findings

	Related Work
	Bug Reworking
	Discussion Analysis

	Threats to Validity
	Conclusion

