
Reasons and Drawbacks of using Trivial npm Packages:
The Developers’ Perspective

Rabe Abdalkareem
Data-driven Analysis of So�ware (DAS) Lab

Department of Computer Science and So�ware Engineering
Concordia University, Montreal, Canada

rab abdu@encs.concordia.ca

ABSTRACT
Code reuse is traditionally seen as good practice. Recent trends have
pushed the idea of code reuse to an extreme, by using packages that
implement simple and trivial tasks, which we call ‘trivial packages’.
A recent incident where a trivial package led to the breakdown
of some of the most popular web applications such as Facebook
and Net�ix, put the spotlight on whether using trivial packages
should be encouraged. �erefore, in this research, we mine more
than 230,000 npm packages and 38,000 JavaScript projects in order
to study the prevalence of trivial packages. We found that trivial
packages are common, making up 16.8% of the studied npm pack-
ages. We performed a survey with 88 Node.js developers who use
trivial packages to understand the reasons for and drawbacks of
their use. We found that trivial packages are used because they are
perceived to be well-implemented and tested pieces of code. How-
ever, developers are concerned about maintaining and the risks of
breakages due to the extra dependencies trivial packages introduce.

CCS CONCEPTS
•So�ware and its engineering→ So�ware libraries and repos-
itories; So�ware maintenance tools;

KEYWORDS
JavaScript; Node.js; Code Reuse; Empirical Studies
ACM Reference format:
Rabe Abdalkareem

. 2017. Reasons and Drawbacks of using Trivial npm Packages:
�e Developers’ Perspective. In Proceedings of 2017 11th Joint Meeting of the
European So�ware Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of So�ware Engineering, Paderborn, Germany, September
4–8, 2017 (ESEC/FSE’17), 3 pages.
DOI: 10.1145/3106237.3121278

1 INTRODUCTION
Code reuse has been widely accepted to be an essential approach
to achieve high-quality so�ware in a timely and cost-e�cient man-
ner [3, 15, 20]. �erefore, it is no surprise that emerging platforms
such as Node.js encourage reuse and do everything possible to fa-
cilitate the sharing of code, o�en delivered as packages or modules
that are available on package management platforms, such as the
Node Package Manager (npm) [6, 21]. However, there are many
cases where code reuse has had negative e�ects, causing increased

ESEC/FSE’17, Paderborn, Germany
2017. 978-1-4503-5105-8/17/09. . .$15.00
DOI: 10.1145/3106237.3121278

maintenance costs and even legal action[2, 14, 18, 23]. For example,
in a recent incident code reuse of a Node.js package called le�-
pad, which was used by Babel, caused interruptions to some of the
biggest Internet sites, e.g., Facebook and Net�ix. Many referred to
the incident as the case that ‘almost broke the Internet’ [16, 24, 26].

Although the real reason behind the le�-pad incident was about
npm allowing authors to unpublish packages (which has been re-
solved now [22]), it raised awareness to the bigger issue of taking on
dependencies for trivial tasks that can be easily implemented [12].
Since then, there have been many discussions about the use of triv-
ial packages [13]. Loosely de�ned, a trivial package is a package that
a developer can easily code him/herself and hence, is not worth taking
on an extra dependency for. Many developers agreed that developers
should implement such functions themselves rather than taking
on dependencies for trivial tasks. Other work showed that npm
packages tend to have a large number of dependencies [7, 8] and
highlighted that developers need to take care when taking on extra
dependencies since some dependencies can grow exponentially [4].

So, the question is “why do developers resort to using a package
for trivial tasks, such as checking if a variable is an array?” At the
same time, other questions regarding how prevalent trivial packages
are and what the potential drawbacks of using these trivial packages
remain unanswered. �is research performs an empirical study
involving more than 230,000 npm packages and 38,000 JavaScript
projects to examine how prevalent trivial packages are in npm and
how widely they are used in Node.js projects. Our empirical study is
qualitative in nature and is based on survey results from 88 Node.js
developers to be�er understand why developers resort to using
trivial packages.

Our �ndings indicate that of the 231,092 npm packages in our
dataset, 16.8% of them are trivial packages. Moreover, of the 38,807
Node.js projects on GitHub, 10.9% of them depend directly on
one or more trivial packages. Our survey results showed that
developers use trivial packages since they provide them with well-
implemented/tested code and increase productivity. At the same
time, the increase in dependency overhead and the risk of breakage
of their projects are the two most cited drawbacks. In addition to
this student research competition paper, we provide more details
about our study of using trivial npm packages in [1].

2 METHODOLOGY
To understand the usage of trivial package in npm, we performed a
quantitative analysis, and conduct a user survey, to gain a qualita-
tive insight into the developers’ perceptions about trivial packages.
Data Set: We obtained Node.js packages from npm platform and
projects that use npm packages from GitHub. We mined the latest

ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany R. Abdalkareem

version of all the Node.js packages from npm as of May 5, 2016. We
downloaded the source code of 252,996 packages. We also mined
all the Node.js projects on GitHub. We determine that a project
uses npm packages by looking for the packages.json �le, which
speci�es (among other) the npm package dependencies used by the
project. To eliminate dummy projects that may exist in GitHub,
we choose non-forked applications with more than 100 commits
and more than 2 developers. At the end, we were le� with 38,807
projects using npm packages.
De�nition of Trivial Packages: To determine what constitutes
a trivial package, we conducted a survey, where we ask JavaScript
developers what considered to be a trivial package. We devised an
online survey that presented the source code of 16 randomly se-
lected Node.js packages that range in size between 4 - 250 JavaScript
lines of code. Participants were mainly asked to 1) indicate if they
thought the npm package was a trivial package or not and 2) spec-
ify what indicators they use to determine a trivial package. We
provided the survey participants with a loose de�nition of what a
trivial package is, i.e., a package that contains code that they can
easily code themselves, and is not worth taking on an extra depen-
dency for. Based on the survey responses, we �nd that 79% of the
marked as trivial packages have less than or equal 35 lines of code
and �nd that 84% of the votes marked packages that have a total
complexity value of 10 or lower to be trivial packages. Hence, we
de�ne trivial packages as

{
XLOC ≤ 35∩XComplexity ≤ 10

}
, where

XLOC represents the JavaScript LOC and XComplexity represents
the McCabe’s cyclomatic complexity of package X .
User Survey: To be�er understand the developers’ perceptions of
using trivial packages (i.e. the reasons and drawbacks). We �rst
applied the de�nition of trivial packages on all npm packages in our
dataset, and then we identi�ed developers who use trivial packages
in JavaScript projects. We sent an online survey to 1,055 develop-
ers who use trivial packages. We asked participants about their
so�ware development experience; and two open-ended questions
about the advantage and disadvantage of using trivial packages.
We received 88 responses (8.3% response rate). We performed a
qualitative analysis, where we manually examined the answers for
the open-ended questions to identify the main reasons for and draw-
backs of using trivial packages. �e survey participants reported
that 83 of them work in industry (68) or as independent developers
(15). �e remaining 5 work as casual developers. �e majority (67)
of the participants have more than 5 year of experience, 14 have
between 3-5 years and 7 have 1-3 years of experience.

3 RESULTS
3.1 How Prevalent are Trivial Packages?
We examined prevalence from two aspects: the �rst aspect is from
npm’s perspective, where we are interested in knowing how many
of the packages on npm are trivial. �e second aspect considers the
use of trivial packages in JavaScript projects.

For each package (252,996 npm packages), we calculated the
number of JavaScript code lines and removed packages that had
zero LOC, which le� us with a �nal number of 231,092 packages.
�en, we applied the our de�nition of trivial packages on 231,092
packages and count the number of npm packages that satisfy our

de�nition of trivial packages. Out of the total 231,092 npm packages
we mind, 38,845 (16.8%) packages are trivial packages.

We also examined the number of projects on GitHub that use
trivial packages. To do so, we examined the package.json �le,
which contains all the dependencies that a project installs from npm.
For each JavaScript project in our dataset (38,807), we parsed the
JavaScript code and use regular expressions to detect the required
dependency statements, which indicates that the project actually
uses the package in its code. Finally, we measured the number of
packages that are trivial in the set of packages used by the project.
We found that of the 30,807 projects in our dataset, 4,256 (10.9%)
use at least one trivial package.

3.2 Reasons of Using Trivial Packages
We found �ve reasons for using trivial packages. However, due to
space limitations, we only present the top three reasons.
R1. Well-implemented & tested (54.6%): �e most cited reason
for using trivial packages is that they provide well-implemented
and tested code. For example, participants P68 state: “Tests already
wri�en, a lot edge cases captured […]”.
R2. Increased productivity (47.7%): �e second most cited rea-
son is the improved productivity that using trivial packages enables.
For example, participants P13 state: “[…] and it does save time to not
have to think about how best to implement even the simple things.”
R3. Well-maintained code (9.1%): A less common, but cited
reason for using trivial packages is the fact that the maintenance
of the code need not to be performed by the developers themselves.
For example, participant P45 states: “ a highly used trivial package
is probable to be well maintained.”.

3.3 Drawbacks of Using Trivial Packages
We identi�ed seven drawback of using trivial packages. However,
due to space limitations, we only present the top three drawbacks.
I1. Dependency overhead (55.7%): �e most cited drawback of
using trivial packages is the increased dependency overhead, e.g.,
keeping all dependencies up to date and dealing with complex
dependency chains, that developers need to bear [6]. For example,
P41 states: “[…] people who don’t actively manage their dependency
versions could [be] exposed to serious problems […]”.
I2. Breakage of applications (18.2%) Developers concern about
the potential breakage of their application due to a speci�c package
or version becoming unavailable. For example, in the le�-pad issue,
the main reason for the breakage was the removal of le�-pad, P4
states: “Obviously the whole ’le�-pad crash’ exposed an issue.”.
I3. Decreased performance (15.9%) Developers mentioned that
incurring the additional dependencies slowed down the build and
increased application installation times. For example, P34 states
“[…], slow installs; can make project noisy and unintuitive by at-
tempting to cobble together too many disparate pieces instead of more
targeted code.”.

4 RELATEDWORK
Studies of Code Reuse. Much of prior research on code reuse has
highlighted its multiple bene�ts, which include improving quality,
development speed, and reducing development and maintenance
costs [3, 15, 19, 20, 25]. On the other hand, the practice of reusing

Reasons and Drawbacks of using Trivial npm Packages:
The Developers’ Perspective ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

source code has some challenging drawbacks including the e�ort
and resource required to integrate reused code [10]. Furthermore,
a bug in the reused component could propagate to the target sys-
tem [11].
Studies of Other Ecosystems. Analyzing the characteristics of ecosys-
tems in so�ware engineering has been a�racting more and more
a�ention [4, 5, 7, 9, 17]. For example, Wi�er et al. [27] investi-
gated the evolution of the npm ecosystem in an extensive study
that covered the dependencies between npm packages, download
metrics and the usage of npm packages in real applications. One
of their �ndings is that npm packages and updates of these pack-
ages is steadily growing. Also, more than 80% of packages have
at least one direct dependency. While our research corroborates
some of these �ndings, the main goal is to empirically investigate
the phenomenon of using trivial packages, in particular in Node.js
projects.

5 CONCLUSION
�e goal of this research is to examine the prevalence, reasons for
and drawbacks of using trivial packages. Our �ndings indicate that
trivial packages are widely used in Node.js projects. We also �nd
that the majority of developers do not oppose the use of trivial
packages and the main reasons developers use trivial packages is
because they are considered to be well-implemented and tested.
However, they do cite the fact that the additional dependencies’
overhead as a drawback of using these trivial packages.

REFERENCES
[1] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why Do Developers Use Trivial Packages? An Empirical Case
Study on npm. In Proceedings of the 11th Joint Meeting of the European So�ware
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
So�ware Engineering (ESEC/FSE’17). ACM.

[2] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. 2017. On Code Reuse
from StackOver�ow: An exploratory study on Android apps. Information and
So�ware Technology 88 (2017), 148–158.

[3] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. 1996. How Reuse In�u-
ences Productivity in Object-oriented Systems. Commun. ACM 39, 10 (October
1996), 104–116.

[4] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2013. �e Evolution of Project Inter-dependencies in
a So�ware Ecosystem: �e Case of Apache. In Proceedings of the 2013 IEEE
International Conference on So�ware Maintenance (ICSM ’13). IEEE Computer
Society, 280–289.

[5] Remco Bloemen, Chintan Amrit, Stefan Kuhlmann, and Gonzalo Ordóñez Mata-
moros. 2014. Gentoo Package Dependencies over Time. In Proceedings of the 11th
Working Conference on Mining So�ware Repositories (MSR ’14). ACM, 404–407.

[6] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian �ung.
2016. How to Break an API: Cost Negotiation and Community Values in �ree
So�ware Ecosystems. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of So�ware Engineering (FSE ’16). ACM, 109–120.

[7] Alexandre Decan, Tom Mens, and Maelick Claes. 2016. On the Topology of
Package Dependency Networks: A Comparison of �ree Programming Lan-
guage Ecosystems. In Proccedings of the 10th European Conference on So�ware
Architecture Workshops (ECSAW ’16). ACM, Article 21, 4 pages.

[8] Alexandre Decan, Tom Mens, and Maëlick Claes. 2017. An Empirical Compari-
son of Dependency Issues in OSS Packaging Ecosystems. In Proccedings of the
24th International Conference on So�ware Analysis, Evolution, and Reengineering
(SANER ’17). IEEE.

[9] Alexandre Decan, Tom Mens, Philippe Grosjean, and others. 2016. When GitHub
Meets CRAN: An Analysis of Inter-Repository Package Dependency Problems.
In Proceedings of the 23rd IEEE International Conference on So�ware Analysis,
Evolution, and Reengineering (SANER ’16), Vol. 1. IEEE, 493–504.

[10] Roberto Di Cosmo, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio,
and Stefano Zacchiroli. 2011. Supporting so�ware evolution in component-based
FOSS systems. Science of Computer Programming 76, 12 (2011), 1144–1160.

[11] Mehdi Dogguy, Stephane Glondu, Sylvain Le Gall, and Stefano Zacchiroli. 2011.
Enforcing Type-Safe Linking using Inter-Package Relationships. Studia Infor-
matica Universalis. 9, 1 (2011), 129–157.

[12] David Haney. 2016. NPM & le�-pad: Have We Forgo�en How To Program? h�p:
//www.haneycodes.net/npm-le�-pad-have-we-forgo�en-how-to-program/.
(March 2016). (accessed on 08/10/2016).

[13] Hemanth.HM. 2015. One-line node modules -Issue#10- sindresorhus/ama. h�ps:
//github.com/sindresorhus/ama/issues/10. (2015). (accessed on 08/10/2016).

[14] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. 2012. Where Does �is
Code Come from and Where Does It Go? - Integrated Code History Tracker for
Open Source Systems -. In Proceedings of the 34th International Conference on
So�ware Engineering (ICSE ’12). IEEE Press, 331–341.

[15] Wayne C. Lim. 1994. E�ects of Reuse on �ality, Productivity, and Economics.
IEEE So�ware 11, 5 (1994), 23–30.

[16] Fiona Macdonald. 2016. A programmer almost broke the Internet last week by
deleting 11 lines of code. &+#h�p://www.sciencealert.com/how-a-programmer-
almost-broke-the-internet-by-deleting-11-lines-of-code. (March 2016). (accessed
on 08/24/2016).

[17] Konstantinos Manikas. 2016. Revisiting so�ware ecosystems research: a longitu-
dinal literature study. Journal of Systems and So�ware 117 (2016), 84–103.

[18] Stephen McCamant and Michael D. Ernst. 2003. Predicting Problems Caused by
Component Upgrades. In Proceedings of the 9th European So�ware Engineering
Conference Held Jointly with 11th ACM SIGSOFT International Symposium on
Foundations of So�ware Engineering (ESEC/FSE ’03). ACM, 287–296.

[19] Audris Mockus. 2007. Large-Scale Code Reuse in Open Source So�ware. In
Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development (FLOSS ’07). IEEE Computer Society, 7–.

[20] Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz. 2004.
An Empirical Study of So�ware Reuse vs. Defect-Density and Stability. In Pro-
ceedings of the 26th International Conference on So�ware Engineering (ICSE ’04).
IEEE Computer Society, 282–292.

[21] npm. 2016. What is npm? — Node Package Managment Documentation.
h�ps://docs.npmjs.com/ge�ing-started/what-is-npm. (July 2016). (accessed
on 08/14/2016).

[22] �e npm Blog. 2016. �e npm Blog changes to npm’s unpublish policy. h�p://
blog.npmjs.org/post/141905368000/changes-to--unpublish-policy. (March 2016).
(accessed on 08/11/2016).

[23] Heikki Orsila, Jaco Geldenhuys, Anna Ruokonen, and Imed Hammouda. 2008.
Update propagation practices in highly reusable open source components. In
Proceedings of the 4th IFIP WG 2.13 International Conference on Open Source
Systems (OSS ’08). 159–170.

[24] Brian Rinaldi, TJ VanToll, and Cody Lindley. 2016. Is le�-pad Indicative
of a Fragile JavaScript Ecosystem? h�p://developer.telerik.com/featured/
le�-pad-indicative-fragile-javascript-ecosystem/. (March 2016). (accessed on
08/24/2016).

[25] Manuel Sojer and Joachim Henkel. 2010. Code Reuse in Open Source So�ware
Development: �antitative Evidence, Drivers, and Impediments. Journal of the
Association for Information Systems 11, 12 (2010), 868–901.

[26] Chris Williams. 2016. How one developer just broke Node, Babel and thousands
of projects in 11 lines of JavaScript. h�p://www.theregister.co.uk/2016/03/23/
npm le� pad chaos. (March 2016). (accessed on 08/24/2016).

[27] Erik Wi�ern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In Proceedings of the 13th Inter-
national Conference on Mining So�ware Repositories (MSR ’16). ACM, 351–361.

http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
http://www.haneycodes.net/npm-left-pad-have-we-forgotten-how-to-program/
https://github.com/sindresorhus/ama/issues/10
https://github.com/sindresorhus/ama/issues/10
https://docs.npmjs.com/getting-started/what-is-npm
http://blog.npmjs.org/post/141905368000/changes-to--unpublish-policy
http://blog.npmjs.org/post/141905368000/changes-to--unpublish-policy
http://developer.telerik.com/featured/left-pad-indicative-fragile-javascript-ecosystem/
http://developer.telerik.com/featured/left-pad-indicative-fragile-javascript-ecosystem/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	3.1 How Prevalent are Trivial Packages?
	3.2 Reasons of Using Trivial Packages
	3.3 Drawbacks of Using Trivial Packages

	4 Related Work
	5 Conclusion
	References

