
A Transformer-based Approach for Augmenting Software
Engineering Chatbots Datasets

Ahmad Abdellatif
University of Calgary

Calgary, Canada
ahmad.abdellatif@ucalgary.ca

Khaled Badran
Concordia University
Montreal, Canada

k_badran@encs.concordia.ca

Diego Elias Costa
Concordia University
Montreal, Canada

diego.costa@concordia.ca

Emad Shihab
Concordia University
Montreal, Canada

emad.shihab@concordia.ca

ABSTRACT
Background: The adoption of chatbots into software development
tasks has become increasingly popular among practitioners, driven
by the advantages of cost reduction and acceleration of the software
development process. Chatbots understand users’ queries through
the Natural Language Understanding component (NLU). To yield
reasonable performance, NLUs have to be trained with extensive,
high-quality datasets, that express a multitude of ways users may in-
teract with chatbots. However, previous studies show that creating
a high-quality training dataset for software engineering chatbots is
expensive in terms of both resources and time. Aims: Therefore, in
this paper, we present an automated transformer-based approach
to augment software engineering chatbot datasets. Method: Our
approach combines traditional natural language processing tech-
niques with the BART transformer to augment a dataset by gen-
erating queries through synonym replacement and paraphrasing.
We evaluate the impact of using the augmentation approach on the
Rasa NLU’s performance using three software engineering datasets.
Results: Overall, the augmentation approach shows promising re-
sults in improving the Rasa’s performance, augmenting queries
with varying sentence structures while preserving their original
semantics. Furthermore, it increases Rasa’s confidence in its intent
classification for the correctly classified intents. Conclusions:We be-
lieve that our study helps practitioners improve the performance of
their chatbots and guides future research to propose augmentation
techniques for SE chatbots.

ACM Reference Format:
Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab.
2024. A Transformer-based Approach for Augmenting Software Engineering
Chatbots Datasets. In . ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Chatbots have proven themselves to be a game changer in a variety
of domains from personal assistant to customer services. With their
benefits in saving time and cost, chatbots have made significant ad-
vances in various fields [40]. The increased popularity and proven
benefits of chatbots are driving software engineering (SE) practi-
tioners to develop chatbots to help developers in various SE tasks.
For example, Lin et al. [30] developed the MSABot, a chatbot that
assists developers in building and managing microservices projects
(e.g., setting microservices project parameters). Abdellatif et al. [2]
developed the MSRBot to answer questions related to software
projects (e.g., “Who fixed bug 5?”).

Through natural language, chatbots enable users to communi-
cate with different services intuitively. To understand users’ queries
(i.e., messages), chatbots leverage a Natural Language Understand-
ing (NLU) component [1, 2, 30]. In essence, NLUs use AI and natural
language processing techniques to extract structured information
(the intent of the user’s query and related entities) from unstruc-
tured input text. To use NLUs effectively, chatbot developers need
to obtain or craft high-quality datasets containing a variety of user
queries to train the NLU in extracting the intention behind the user’s
questions. Prior work shows that the performance of the NLU is
directly related to the quality and diversity of the dataset used in
its training [1]. Indeed, including syntactically diverse queries with
the same semantics in their training datasets to train the NLU in
the different ways users may ask for the same information. [13, 41].
For example, the queries “List the developers who resolved issue 5”,
“Who fixed bug 5?”, and “Which developer fixed issue 5?” have the
same semantics (identify the developer who fixed a specific bug)
but different sentence structures.

Crafting a diverse and high-quality dataset is one of the most
costly and time-consuming tasks in chatbot development [2, 3,
14]. Chatbot developers need to brainstorm a variety of training
queries in order to familiarize the NLU with new terms (synonyms
replacement) and diverse sentence structures (paraphrasing) [2, 33].
Previous studies show that the lack of high-quality datasets is a
limiting factor for the efficiency of chatbots [2, 14]. For example,
Dominic et al. [14] reported that the absence of training queries
limited their chatbot performance. Likewise, Abdellatif et al. [2]
stated that the MSRBot failed to classify some user queries correctly
because of the scarcity of training data. Consequently, this data
problem hinders the practitioners’ ability to develop more efficient

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab

SE chatbots, as the training dataset would need to be crafted and
augmented manually. Moreover, there is a number of posts on Stack
Overflow where chatbot developers ask for more data to enhance
the NLUs’ performance [23, 38].

When practitioners create the initial set of training queries, Aug-
mentation techniques are often used to create and incorporate new
training queries into the dataset [3]. This process is key for many
machine learning applications where data scarcity is a major limit-
ing factor for model’s performance. A number of studies have fo-
cused on evaluating different augmentation approaches to improve
different machine learning applications in the field of sentiment
analysis [22, 32] and hate-speech detection [36].

Inspired by recent breakthroughs in language models for differ-
ent SE tasks [11, 12, 42], we explore a transformer-based augmen-
tation approach for SE chatbots that emulates the way in which
chatbot developers augment their datasets [2, 33]. More specifically,
the augmentation approach takes as input a few training queries and
uses them to augment more queries by replacing some words with
their synonyms (synonyms replacement). Then, it uses a fine-tuned
BART transformer to change the query structure (paraphrasing).
To evaluate the performance of the augmentation approach, we per-
form an empirical study by applying the Augmentation Approach
to three well-crafted datasets that represent distinct SE-related
tasks, namely 1) Repository: questions exploring software project
data, 2) Ask Ubuntu: technical questions from the Ubuntu Q&A
community on Stack Exchange, and 3) Stack Overflow: questions
commonly asked by developers on Q&A websites. These datasets
include a total of 767 queries covering 19 different intents (e.g.,
LookingForCodeSample). To put the Augmentation Approach re-
sults into perspective, we compare the Rasa NLU’s performance
without augmenting any query to the training dataset (Baseline),
and augmenting human queries to the training dataset (Human).
Our study is formalized through the following research questions:
RQ1: Can the augmentation approach improve the NLU’s
performance?Overall, the AugmentationApproach shows promis-
ing results in improving the Rasa’s performance, where it marginally
increases the Rasa’s performance by up to 3.2% compared to Base-
line. Furthermore, the augmented queries have different sentence
structures with the same semantics as the input queries. In cases
where there was no improvement, the Approach augments queries
with small modifications, which could result in overfitting the Rasa.
On the other hand, the Human augmented queries improve Rasa’s
performance across all datasets compared to Augmentation Ap-
proach.
RQ2: Does the augmentation approach increase the NLU’s
confidence in its classification? Training Rasa using the ap-
proach augmented queries increases the Rasa’s confidence in its
intent classification for the correctly classified intents. In some
cases, the Augmentation Approach outperforms Humans in terms
of confidence scores for correctly classified intents. For the misclas-
sified intents, the results show that the augmented queries in the
Human and Augmentation Approach experiments increase Rasa’s
confidence in the misclassified intents.

Our study makes the following contributions:

• We propose an approach that uses synonym replacement and
paraphrasing techniques to augment queries for chatbots in
the software engineering domain.

• We explore the impact of using the augmentation approach
on the NLU’s performance using three datasets from the SE
domain and different use cases that vary in the number of
initial training queries.

• We provide a replication package containing the implemen-
tation of the augmentation approach as a prototype tool
and our results [4] to facilitate the replication and accelerate
future research in the area.

2 BACKGROUND
Chatbots are software bots that interact with users through natu-
ral language [27]. This simple method of interaction is what gives
chatbots their appeal and makes them a suitable conduit between
users and services, such as in customer service [25]. To facilitate
this chat-like interaction, modern chatbots leverage the natural
language understanding (NLU) component, which extracts struc-
tured information from unstructured text (user’s query). Typically,
the NLU component extracts two key pieces of information from
the user’s query; the intent and entities. The intent represents the
intention/goal behind the user’s query, while entities are impor-
tant keywords in the query. For example, when a user asks “What
are the fixing commits for bug 5391?”, the intent is to know which
commits fixed a specific bug in the project (‘FixingCommit’ intent),
whereas the bug number (‘5391’) is the entity. When interacting
with a chatbot, users are free to express the same intent in differ-
ent ways. For example, the queries “Show the fixing commits for
issue 5391” and “What changes solved 5391?” have the same intent
(‘FixingCommit’) but different syntax.

It is critical for chatbots to have a robust NLU that extracts the
intent from the users’ queries correctly as it gives the chatbot an
accurate assessment of the users’ intentions, leading it to take the
right course of action (send a reply or perform a task). In contrast,
a poorly performing NLU that misclassifies the users’ intent will
lead the chatbot to reply incorrectly and/or perform a wrong action
which has a direct and negative impact on the satisfaction of the
chatbot users [26].

When the NLU extracts an intent, it also returns a confidence
score corresponding to that intent. The confidence score shows how
confident the NLU is in its intent classification, and it has a value
that ranges between 0 (i.e., not confident) to 1 (i.e., fully confident).
Chatbot developers use the confidence score to determine whether
the chatbot has understood the user’s query well enough (high
confidence score), in which case, the chatbot should perform an
action. Otherwise, if the user’s query is not clear enough (low
confidence score), the chatbot asks the user to clarify the query in
order for the chatbot to better understand the intent [1].

Chatbot developers brainstorm to come up with training queries
at the early stages of the chatbot development cycle to train the NLU
on different ways a user could ask about specific intent [2]. Then,
they augment more training queries by replacing some words with
their synonyms and re-writing (paraphrasing) the original training
queries in different ways [3]. However, augmenting the chatbot
training queries is a resource and time consuming task [2, 14].



A Transformer-based Approach for Augmenting Software Engineering Chatbots Datasets Conference’17, July 2017, Washington, DC, USA

Tokenizer POS Tagger
Synonyms

ReplacementParaphrasingDiversity 
filter

Entity
Labeler

Dataset

Data Merger

1

Augmented
Dataset

Phase1: Pre-processing Phase2: Augmentation

Phase 3: Post-processing

Figure 1: An overview of the augmentation approach.

In our study, we want to investigate the impact of an augmen-
tation approach on the NLU’s performance in terms of intents
classification and confidence score. Intent classification with high
confidence is critical to ensure that chatbots correctly understand
and answer the user’s question, which improves the user experience
with the chatbot.

3 APPROACH
The key idea of the augmentation process is that by using a small
initial set of training queries (called the original training set) as
input, we can generate new queries that retain the same semantics
while having different terms/keywords and brand new sentence
structures. Figure 1 shows the components of the augmentation
approach. Initially, the augmentation approach takes a query from
the original training set as an input, then it tokenizes the query and
extracts the part-of-speech for each token in the query. Next, the
augmentation approach generates new queries (candidate queries)
by introducing new keywords and paraphrasing the input query.
Then, it filters the candidate queries and keep only the queries
with the highest potential of improving the NLU’s performance.
Finally, the approach labels the entities in the selected queries
and merges them with the original training set to obtain the final
(augmented) training set. In this section, we detail each component
of the augmentation approach. Also, we showcase an end-to-end
example (Figure 2) to demonstrate how each component works.

Tokenizer: Commonly used in an NLP pipeline, we start our
augmentation approach by tokenizing the input data, to better
process and augment text, such as identifying part of speech and
replacing synonyms. Thus, in this component, we split each input
query in the original training set into tokens using a pre-trained
model from the SpaCy library.

Part-of-Speech (POS) Tagger: This component identifies the POS
(e.g., verb, noun, adjective) for each token in the query. This makes
the augmentation approach more flexible as it can apply synonyms
replacement on specific POS tokens. For example, in case the dataset
already has diverse synonyms for noun tokens, then the chatbot
developers may want to diversify the dataset by having more syn-
onyms of verbs. The working example in Figure 2 showcases the
POS tagging component identifying and labelling the verb tokens
(i.e., cause, show, and introduce) in the input queries in the original
training set.

Synonyms Replacement: Given the tagged tokens from the POS
Tagger component, the Synonyms Replacement component re-
places certain tokens (e.g., verbs, nouns) with their synonyms to
obtain new candidate queries. The goal here is to familiarize the
NLU with a large variety of similar terms that might appear in
the users’ queries, but have not been exposed to the NLU during

- What files cause the most issues?
- Show me which files introduce the most bugs

…

Part Of Speech

- What files induce the most issues?
- What files generate the most issues?

…

Synonym Replacement

- What files contain the most issues?
- Show me which files introduce the most bugs

…

Original Training Set
(Initial Training Queries)

- Most issue inducing files?
- Which files generate the most issues?

…

Paraphrasing

Diversity Filter

Candidate Query

Levenshtein Distance

RankInitial 
Query 1

Initial 
Query 2

Min

Most issue inducing files? 14 12 12 1

Which files generate the 
most issues?

6 9 6 2

Figure 2: Aworking example of the augmentation approach.

its training. To obtain the list of synonyms for a token, one could
use any of the available thesauruses such as WordNet [19] and
PyDictionary [8]. However, those are general purposes thesauruses
and not tailored for SE specific terminologies. For example, when
looking for synonyms to the term ‘bug’, the WordNet thesauruses
returns ‘germ’, ‘microbe’, and ‘hemipteron’. Since our goal is to
augment the SE chatbot training dataset, we opted to use a the-
saurus that is specialized for SE to capture the specific language
and terminologies used in the SE domain. Therefore, the Synonyms
Replacement component leverages an SE thesaurus, which is a
word2Vec model trained on Stack Overflow posts to capture the SE
terms [17]. The SE thesaurus returns ‘issue’ and ‘error’ as synonyms
to the term ‘bug’.

This component creates a new candidate query by replacing
one token within a query from the original training set with its
synonym. In case a query has two or more tokens to be replaced,
the Synonyms Replacement component generates new candidate
queries based on all the possible combinations of the replaceable to-
kens’ synonyms. In the working example in Figure 2, the Synonyms
Replacement component replaces the verb token ‘cause’ from the
query “What files cause the most issues?” with its synonyms ‘in-
duce’ and ‘generate’, thus creating two new candidate queries (e.g.,
“What files induce the most issues?”).

In our preliminary analysis, we find that replacing nouns with
their synonyms generates too much noise. For example, the syn-
onym of the ‘developer’ and ‘button’ tokens are replaced with
‘prismic’ and ‘buttom’; respectively. Thus, we opt to just replace
verb tokens with their synonyms in our study.

Paraphrasing: One aspect of expanding the training dataset is to
expose the NLU to new terminologies. The other important aspect
is training NLU on a variety of sentence structures for queries.
Chatbot developers typically paraphrase the queries they add to the
training set because users can phrase the same question in different
ways [3]. In fact, this process is recommended by the NLU vendors
to enhance their performance in intent classification [13, 41].

Therefore, the Paraphrasing component diversifies the sentence
structure of candidate queries while preserving their meaning (in-
tent).

The paraphrasing component takes as input each candidate
queries from the Synonyms Replacement component. To paraphrase
queries, this component leverages the recent transformer based neu-
ral machine translation (Seq2Seq) model called BART [29]. BART



Conference’17, July 2017, Washington, DC, USA Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab

is a general language model proposed by Facebook AI and has been
used by prior work for paraphrasing task [16, 44, 48] as it achieves
state-of-art performance in various NLP tasks (e.g., machine trans-
lation, summarization, and text generation) [29]. BART is trained
through corrupting the input example (e.g., delete one of its tokens)
during the training stage and then predicting the correct form of the
corrupted sentence. We fine-tune BART to perform paraphrasing
task (discussed in Section 4).

In the working example (Figure 2), the Paraphrasing component
takes the two candidate queries from the Synonyms Replacement
component as an input and outputs paraphrased queries (e.g., “Most
issue inducing files?”). The final output of the Paraphrasing compo-
nent is a list of new candidate queries that preserve the intent and
have both new terms and different sentence structures compared
to the original training set.

Diversity Filter: The main goal of the augmentation approach is
to generate candidate queries with the highest potential of improv-
ing the NLU’s performance. Therefore, the Diversity Filter selects
the candidate queries yielded by the Paraphrasing component that
are most syntactically different compared to the original training
set. This helps to mitigate the issue of overfitting the NLU that may
occur when the candidate queries do not increase the syntactical
diversity of the original training set.

As a means to measure the diversity, this component computes
the Levenshtein distance [28] (number of edits between two queries)
between the candidate queries and the original training set. The
higher the Levenshtein distance, the more dissimilar the queries. In
the working example (Figure 2), the Levenshtein distance between
the candidate query “Most issue inducing files?” and the original
training query “What files contain the most issues?” is 14.

Then, the Diversity Filter ranks the candidate queries based on
their minimum Levenshtein distance to any query in the original
training set. In other words, the Diversity Filter ranks candidate
queries by the highest minimum Levenshtein distance from the
original query, placing queries that are more syntactically different
from the original query at the top. This approach balances the
inclusion of queries that are syntactically diverse but still convey
the same semantic intent as the original query. Finally, the top 𝑁

candidate queries are kept by the Diversity Filter while the rest are
discarded (𝑁 is configurable). In other words, the Diversity Filter
component discards candidate queries that are syntactically similar
to those that are already present in the original training set. For
instance, if we set N=1 in our showcase example, the candidate
query “Most issue inducing files?” passes the filter because it has
the highest minimum Levenshtein distance (12).

Entity Labeler: Typically, the chatbot training datasets include
annotations of both intents and entities for all queries in the set.
Such annotations are essential for some NLUs for the intents classi-
fication step [1]. However, the candidate queries that are retained
after the Diversity Filter do not contain any entity annotations.
Hence, the Entity Labeler component uses heuristics to label the
entities in the candidate queries. To establish the heuristics, we
examined 400 random samples from different intents generated by
the Paraphrasing component and found that the entities remain the
same or experience minor modifications only during the paraphras-
ing. For example, the FileName entity (e.g., ‘ConsumerRecords’)

could be changed (e.g., ‘Consumer Records’) during the paraphras-
ing. The only exception here is the DateTime entities, where a
specific date (e.g., 21-12-2022) can be changed to ‘last week’. Based
on our observations, we define heuristics to label entities in the
candidate queries. Therefore, the Entity Labeler component reads
all labeled entities in the original training dataset and automati-
cally labels the entities in the candidate queries using the defined
heuristics.

Data Merger: The output of any augmentation approach should
be a training dataset that is ready for use. The Data Merger com-
ponent is responsible for adding the output queries of the aug-
mentation approach to their corresponding intents in the original
training set to generate augmented training set file. Therefore, chat-
bot practitioners can use the output file to train the NLU used in
their chatbots.

4 EVALUATION SETUP
In this section, we present the setup of our case study to evaluate
the impact of the proposed augmentation approach on the NLU’s
performance. We detail our selection of the SE datasets used in the
evaluation, NLU platform used for training and testing, tuning the
BART transformer, and experiment design.

4.1 Datasets
To evaluate how effective the approach is in augmenting a variety
of SE datasets, we select three distinct datasets: Repository [2],
Ask Ubuntu [10], and Stack Overflow [46]. Our dataset selection is
based on three criteria. First, these datasets represent realistic ques-
tions that software practitioners ask about software projects and
development. Second, they have adequate numbers of training and
testing queries (ten or more queries per intent) to conduct proper
evaluation. Table 1 presents the intents in each of the datasets, their
definitions, and the distribution of queries in the training and test
sets corresponding to each intent. Finally, the datasets are publicly
available and have been used in previous studies [1, 24, 39]. In the
following, we provide a description of each dataset.

Repository: Contains questions asked by software practitioners
about their software repositories to the MSRBot [2]. One example
query from this dataset is “What are the commits that introduce
bug HHH8492?”. For this dataset, the MSRBot developers created
the training set manually and composed the test set from queries
asked by the MSRBot users. Thus, the training and test sets in this
corpus originate from a real-life use case of an SE-based chatbot in
practice. The Repository dataset contains 398 queries belonging to
ten intents in total.
Ask Ubuntu: This dataset was constructed using the most popular
posts from the Ubuntu Q&A community on Stack Exchange, one of
the most popular online discussion forums [10]. Braun et al. [10]
selected the most popular questions, which were then annotated
using Amazon Mechanical Turk. An example of a query from this
dataset is “How to upgrade Ubuntu 14.04.1 to 14.04.2”. This dataset
contains 154 queries split into four intents. It is important to note
that we discarded the ‘Other’ intent because it had an insufficient
number of queries (i.e., three queries) for our evaluation.



A Transformer-based Approach for Augmenting Software Engineering Chatbots Datasets Conference’17, July 2017, Washington, DC, USA

Table 1: Performance comparison results for augmentation approach against the baseline and human.
Dataset Intent Definition Train Test Total

R
ep

os
it
or
y

BuggyCommitsByDate Present the buggy commit(s) which happened during a specific
time period.

66 13 79

BuggyCommit Identify the bugs that are introduced because of certain com-
mits.

52 9 61

BuggyFiles Determine the most buggy files in the repository to refactor
them.

37 13 50

FixCommit Identify the commit(s) which fix a specific bug. 31 11 42
BuggyFixCommits Identify the fixing commits that introduce bugs at a particular

time
32 7 39

CountCommitsByDates Identify the number of commits that were pushed during a
specific time period.

11 21 32

ExperiencedDevFixBugs Identify the developer(s) who have experience in fixing bugs
related to a specific file.

15 14 29

OverloadedDev Determine the overloaded developer(s) with the highest number
of unresolved bugs.

15 9 24

FileCommits View details about the changes that occurred on a file. 10 12 22
CommitsByDate Present the commit information (e.g., commit message) at a

specific time.
8 12 20

A
sk

U
bu

nt
u SoftwareRecommendation Looking for applications that perform specific task (e.g., extract

images from PDF).
17 40 57

MakeUpdate Looking for information related to upgrading Ubuntu version
to a newer version.

10 37 47

ShutdownComputer Related fix shutdown issues in Ubuntu OS. 13 14 27
SetupPrinter Setup a printer and fix printer installation issues. 10 13 23

St
ac
k
O
ve

rfl
ow

LookingForCodeSample Looking for information related to implementation (e.g., code
snippets).

66 66 132

UsingMethodImproperly An improper use of a method is causing unexpected behaviour. 25 26 51
LookingForBestPractice Looking for the recommended (best) practice, approach or solu-

tion for a problem.
6 6 12

FacingError Facing an error or a failure in a program, mostly in the form of
an error message.

5 5 10

PassingData Passing data between different frameworks or method calls. 5 5 10

StackOverflow:Contains labeled software development questions
from Stack Overflow [46], another popular development Q&A web-
site. The queries in this dataset were collected by Ye et al. [46] and
then Abdellatif et al. [1] labeled the queries’ intents. In total, this
dataset is composed of 215 queries and five different intents. One
example query from this dataset is “How can I get Font X offset
width in java2D?”.

4.2 NLU
The goal of the augmentation approach is to improve the NLU’s
performance by augmenting a given training dataset. Hence, we
need to select an NLU platform to train its model and perform our
evaluation. For this study, we select Rasa, an open-source NLU
platform developed by Rasa Technologies [35]. Unlike third-party
NLUs that operate on the cloud (e.g., Google Dialogflow), Rasa can
be installed, configured, and run locally, which consumes fewer
resources. And the Rasa implementation stays the same during our
experiment, while the internal implementation of third-party NLUs
might change without any prior notice to the users [1]. Moreover,
Rasa has been used by prior work to develop SE chatbots [2, 15, 30].
In our implementation, we used Rasa version 2.5 as it was the latest
stable version available at the time of our study.

4.3 BART Tuning
As discussed in Section 3, the paraphrasing component uses BART
transformer to paraphrase the candidate queries resulted from the
Synonyms Replacement component. BART is trained on 160GB of
documents (e.g. Wikipedia, news articles, stories) with a sentence
reconstruction loss [29]. To use BART, we need to fine-tune it to
the specific task at hand which is, in our case, to paraphrase text.
Therefore, we use the following three datasets to fine-tune BART:
1) Quora Question Pairs contains over 149,263 lines of potential
duplicate pairs of questions obtained from Quora social Q&A web-
site, 2) Microsoft Research Paraphrase composed of 3,749 pairs of
sentences extracted from the internet (e.g., news sources) and then
annotated by humans to indicate whether each pair captures the
same semantics, and 3) Paraphrase Adversaries from Word Scram-
bling contains 25,368 pairs of paraphrased sentences generated
using word swapping and back-translation created by Zhang et al.
[47]. These three datasets have been used in prior work for text
paraphrasing [16, 44], which makes them a solid choice to fine-tune
BART. Furthermore, we use the BART-large model, which has 12
layers in the encoder and decoder, and more than 374 million of
parameters. We train the BART model on a cloud with 6 core Intel
E5-2683 v4 Broadwell, 64GB of RAM, and NVIDIA V100 Volta GPU



Conference’17, July 2017, Washington, DC, USA Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab

Table 2: Performance comparison results for augmentation approach against the baseline and human.

Dataset No. of
Queries/Intent

Baseline Augmentation Approach Human
F1-score F1-score % Improvement % Optimal F1-score % Improvement

Repository
One 43.7 44.7* 2.3 6.9 58.1* 33.0
Three 62.8 64.3* 2.4 34.1 67.2* 7.0
Five 66.4 68.5* 3.2 60.0 69.9* 5.3

Ask
Ubuntu

One 71.6 73.5* 2.7 17.3 82.6* 15.4
Three 84.1 83.6* -0.6 - 90.4* 7.5
Five 87.1 84.2* -3.3 - 90.2* 3.6

Stack
Overflow

One 32 32.2 0.6 2.5 40* 25
Three 36.9 37.9* 2.7 12.3 45* 22.0

* The difference is statistically significant (p-value<0.05) compared to Baseline.

(32G HBM2 memory). We examined BART’s output with different
numbers of returned paraphrases (i.e., 3, 5, 7, and 10) and found that
BART performs best in terms of having diverse sentence structure
and preserving the semantics of the input when it returns three
paraphrases at most for any input query.

4.4 Evaluation Settings
To evaluate the impact of using the augmentation approach on the
NLU’s performance, we train the NLU after augmenting the original
training set and then evaluate the NLU’s performance using the
test set. Unlike the Repository and Ask Ubuntu datasets, there is no
predefined train-test split in the Stack Overflow dataset. Therefore,
we divide the Stack Overflow dataset into 50%-50% for training and
test splits through random stratified sampling. Table 1 presents
the distribution of queries for each intent in the training and test
splits in the Repository, Ask Ubuntu, and Stack Overflow datasets.
It is important to note that we repeat this step 10 times to obtain
different inputs (training queries) and evaluate the performance of
the augmentation approach on diverse input queries.

After obtaining the training and test splits for all datasets, we
craft three scenarios: A scenario with 1 query/intent, 3 queries/in-
tent, and 5 queries/intent. The goal of our scenarios is to evaluate
the potential of the augmentation approach in scenarios with little
training dataset where augmentation have the tendency to yield
the biggest impact on the NLU’s performance. For each scenario,
we randomly select the queries per intent from the original training
dataset. For example, the Stack Overflow dataset has five intents.
Thus, the 3 queries/intent scenario in the Stack Overflow dataset
has in total of 15 training queries (i.e., 3 queries per intent).

4.5 Performance Evaluation
To assess the NLU’s performance in classifying intents, we compute
the widely used metrics of precision, recall, and F1-score. Precision
is the percentage of the correctly classified queries to the total
number of classified queries for that intent (i.e., Precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ).
The recall is calculated as the percentage of the correctly classified
queries to the total number of queries for that intent in the test set
(i.e., Recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 ). To have an overall score, we combine both the
precision and recall using the F1-score weighted by class’ support
(weighted F1-score), which has been used in similar studies [1, 7,
21]. More specifically, we start by computing the F1-score (i.e., F1-
score = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 ) for all classes. Then, we aggregate

all F1-scores using the weighted average, with the class’ support
as weights. It is important to note that, although we evaluate all
three metrics, we only present the weighted F1-score in the paper.
We make the precision, recall, and F1-score results for each intent
publicly available online [4].

5 RESULTS
In this section, we present the results of our case study with respect
to the three research questions. For each research question, we
present the motivation for the question, detail the approach to
answer the question, and present the results.

5.1 RQ1: Can the augmentation approach
improve the NLU’s performance?

Motivation: Previous studies show that augmenting the training
set used to train the NLU leads to improving its performance [1].
However, the process of crafting and collecting more training data
is done manually, which is a costly and time-consuming task [2, 15].
The goal of this research question is to evaluate the impact of using
the augmentation approach (discussed in Section 3) on the NLU’s
performance. Succeeding in this task saves time and resources,
which allows practitioners to focus on the critical tasks of their
chatbots rather than augmenting the training set.
Approach: To answer this RQ and put the results of the augmen-
tation approach into perspective, we perform three different exper-
iments:
(1) Baseline: Establishes a baseline for the NLU’s performance.
In this experiment, we use the original queries from each of the
scenarios (i.e., 1, 3, and 5 queries/intent) to train the NLU. Hence,
no augmented query is included in the NLU training.
(2) Augmentation Approach: This experiment reflects the situa-
tion where a chatbot practitioner augments the original training
dataset using our augmentation approach. In this experiment, we
apply the augmentation approach to scenarios 1, 3, and 5 queries/in-
tent. Then, we augment the queries resulting from the augmentation
approach into the scenario set. In our study, we set the configuration
to augment one query per intent N=1 such that the Diversity Filter
keeps only the top-ranking candidate query. For example, augment-
ing a scenario of 1 query/intent using the augmentation approach
yields a training set of 2 queries/intent. This makes our evaluation
manageable since it requires manually examining all the generated
queries for all intents across the three different datasets to obtain



A Transformer-based Approach for Augmenting Software Engineering Chatbots Datasets Conference’17, July 2017, Washington, DC, USA

Table 3: Sample of the augmented queries by the augmentation approach.

Original Query Augmented Queries Intent

Show me the number of commits happened last week How many commits did you commit between last week and
this week?

CommitsCountByDate

Show me the classes which introduced the most of bug What files are the ones that added most of bugs BuggyFiles

How can one shutdown a PC using the keyboard? Hotkey to shut down from login screen? ShutdownComputer

Python inserting variable string as file name How do I insert a string as a file name in Python? LookingForCodeSample

Spring 4.0.2 schema error What is the reason behind the schema error in Spring 4.0.2? FacingError

insights about the augmented queries. Also, it makes our study
manageable in terms of consumption power since our approach
requires running two deep learning models, BART transformer and
NLU, to generate queries.
(3) Human: In this experiment, we evaluate the impact of using
queries crafted by humans to augment the original training set on
the NLU’s performance. This experiment reflects a situation where
a chatbot practitioner starts with a set of training queries and
then manually augments the training set. The human-augmented
queries are high-quality and can most likely improve the NLU’s
performance compared to any augmentation approach. In this ex-
periment, from the dataset discussed in Section 4.1, we randomly
select one query per intent from the training split that was not
used in the scenarios (e.g., 3 queries per intent) and augment the
selected query to the scenario. Thus, we have the same settings
as the Augmentation Approach experiment (i.e., augmenting one
query per intent).

We follow the same evaluation steps for all datasets, experiments,
and scenarios. First, we train the NLU using the scenario’s queries
resulting from the experiment. Next, we use the test set to evaluate
the NLU’s performance for each experiment and record the results.
It is important to note that in the Stack Overflow dataset, we only
run our evaluation on scenarios 1 query/intent and 3 queries/intent.
This is because some intents (e.g., ‘PassingData’) in the 5 queries/in-
tent scenario of the Stack Overflow dataset do not have enough
training queries left to be used as input queries to randomly select
in the Human experiment.

To measure the improvement in the NLU’s performance achieved
by a specific experiment (i.e., Augmentation Approach and Human)
to the baseline, we resort to the %Improvement metric. The %Im-
provement for an experiment (EXP) is measured using the equation:

%𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝐸𝑥𝑝 ) =
𝐹 1𝑆𝑐𝑜𝑟𝑒 (𝐸𝑥𝑝 )−𝐹 1𝑆𝑐𝑜𝑟𝑒 (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 )

𝐹 1𝑆𝑐𝑜𝑟𝑒 (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 )
∗ 100.

Since the main idea of the augmentation approach is to imi-
tate the chatbot practitioner on how they augment their training
datasets, we use %Optimal metric to measure how close the aug-
mentation approach is to the human augmentation performance.
This measure calculates the ratio of the %Improvement achieved
by the Augmentation approach to the %Improvement achieved by
the Human experiment as follows:

%𝑂𝑝𝑡𝑖𝑚𝑎𝑙 =
%𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ)

%𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝐻𝑢𝑚𝑎𝑛)
∗ 100

It is worth noting that we repeat the evaluation step 100 times for
each scenario and experiment to reduce the randomness effect of
the NLU’s model. We report the average results from those runs in

our results. We use the non-parametric Mann-Whitney U test [45]
to statistically compare the difference between the results of all
experiments. We chose the Mann-Whitney U test because it does
not assume any specific distribution of the data.
Results: Table 2 presents the F1-scores, %Improvement, and %Op-
timal for Baseline, Augmentation Approach, and Human experi-
ments on all scenarios and datasets. From the table, we observe
that the augmentation approach marginally improves the NLU’s
performance (%Improvement > 2%) in six scenarios. On the other
hand, there are two scenarios where the augmentation approach
does not improve the performance of the NLU (%Improvement ≤
0). For example, applying the augmentation approach on the sce-
nario of 1 query/intent in the Ask Ubuntu dataset decreases the
NLU’s performance (%Improvement < -0.06). Among the six sce-
narios where there is an improvement in the NLU’s performance,
we notice that the augmentation approach is most effective in the
scenarios that have more queries. For example, the augmentation
approach achieves similar results to Human in 5 queries/intent
scenario for the Repository dataset with %Optimal of 60%. This is
because those scenarios (e.g., 5 queries/intent) have more queries
that are used to augment more diverse queries compared to the
scenarios with fewer queries (e.g., 1 query/intent).

Upon closer examination of the augmented queries across all
scenarios and datasets, we have two main observations: 1) Some
of the augmented queries have different sentence structures than
the queries in the original training set. Table 3 presents a sample
of the original training queries and their corresponding queries
augmented through the augmentation approach. For instance, the
augmentation approach augments the query “Show me the number
of commits happened last week” from the original training set to a
new candidate query “Howmany commits did you commit between
last week and this week?”. In some cases, the augmented queries
make minor changes to the original queries. For example, the aug-
mentation approach replaces the word ‘fix’ with ‘remedy’ in the
initial training query “Who has the most bugs to fix?” to generate
a new candidate query “Who has the most bugs to remedy?”. 2)
Upon manual examination of all augmented queries across different
scenarios and datasets, we find that the augmentation approach
preserves the semantic (intent) of the original queries as shown in
Table 3. We further examined all generated queries (4,380 queries)
by Paraphrasing component to investigate whether BART trans-
former preserves the intent of the original queries before passing
the queries to the Diversity Filter component. We find that 99.4% of
paraphrased queries maintain the intent of their original queries,
with only 0.6% (26 out of 4,380) of queries having a changed intent
across all runs in different scenarios and datasets. For example,



Conference’17, July 2017, Washington, DC, USA Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab

correct incorrect

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

experiment
Baseline
Augmentation
Approach
Human

(a) 1 query/intent

correct incorrect

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

experiment
Baseline
Augmentation
Approach
Human

(b) 3 queries/intent

correct incorrect

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

experiment
Baseline
Augmentation
Approach
Human

(c) 5 queries/intent
Figure 3: The confidence score distributions for scenarios 1, 3, and 5 queries/intent in the Repository dataset.

the initial training query “Give me the changes of ConnectRest-
Configurable file” asks about presenting the changes that touch
ConnectRestConfigurable file (FileCommits intent), however, the
augmented query is “How can I change the changes of Connec-
tRestConfigurable file”, which changes the meaning of the query to
ask about modifying the commits that changed the file.

To better understand the factors that the augmentation approach
yields to low performance for scenarios with 3 and 5 queries/intent
in the Ask Ubuntu dataset, we examined the augmented queries of
all runs in those scenarios. Surprisingly, we find that the augmenta-
tion approach often augments queries with small modifications to
the initial training query. For example, the approach modified the
Ubuntu version in “How to upgrade Ubuntu [14.04.1](UbuntuVer-
sion) to [14.04.2](UbuntuVersion)?” to augment a new query “How
to upgrade from Ubuntu [10.10](UbuntuVersion) to [11.04](Ubun-
tuVersion)?”. In other cases, the approach omits some text from the
initial training queries. For example, in the “How To Install [Canon
LBP2900B](Printer) printer in [14.04 LTS](UbuntuVersion)? I tried
the method for LBP2900 but it didnt work” query, the approach
removed “I tried the method for LBP2900 but it didnt work” to create
the augmented query (i.e., “HowTo Install [Canon LBP2900B](Printer)
printer in [14.04 LTS](UbuntuVersion)? I tried themethod for LBP2900
but it didnt work”). Thus, the high similarity between the aug-
mented queries and the original training queries might cause over-
fitting and decrease the performance of the NLU. On the other
hand, we observe that the performance for 3 and 5 queries/intent
in the Ask Ubuntu dataset is high (F1-score > 84%), indicating that
the augmentation approach is particularly beneficial in situations
where the performance of NLU is low, which is the main goal of
our study (i.e., improve the low performance of the NLU).

Our study results show that the augmentation approach has
a small, yet positive impact on the performance of the NLU. We
reiterate that this improvement is achieved through automation
and does not require human input. Additionally, we believe that the
generated queries by the approach could serve as inspiration for
chatbot practitioners to diversify sentence structures and synonyms
while manually expanding the training dataset.

Augmented queries provide small but significant improvement
in the NLU’s performance. In various scenarios, the approach
is most efficient when augmenting training datasets of 3 and 5
queries/intent. Additionally, it augments queries with varying
sentence structures while preserving their original semantics.

5.2 RQ2: Does the augmentation approach
increase the NLU’s confidence in its
classification?

Motivation: Each intent classification performed by the NLU has a
corresponding confidence score, as discussed in Section 2. Chatbot
developers rely on the confidence score returned with the classified
intent to determine the chatbot’s next action [1]. More specifi-
cally, developers tend to design their chatbots so that, if the NLU is
not confident in its intent classification, the chatbot asks for fur-
ther clarification from the user (i.e., “Sorry, I did not understand
your question, could you please rephrase it?”). Developers expect
a well-trained NLU to provide higher confidence scores for cor-
rectly classified intents and lower scores for misclassified intents
to minimize wrong actions performed by the chatbot. One way to
increase the NLU’s confidence in its classification is to train the
NLU on more queries for each intent (i.e., augment the training
set). Therefore, in this RQ, we evaluate the impact of using the
augmentation approach on the NLU’s confidence, particularly with
regard to the confidence scores returned with the correctly and
incorrectly classified intents.
Approach: To answer this RQ, we use the output of the three exper-
iments (Baseline, Augmentation Approach, and Human) described
in RQ1. In particular, we examine the confidence scores returned by
the NLU for the test set queries across all the experiments. By using
the three experiments, we establish a baseline (Baseline experiment)
for how confident the NLU is in its intent classification. Then, we
use that baseline to measure the impact of using the augmenta-
tion approach on the NLU’s confidence (Augmentation experiment)
compared to the impact of using human-augmented queries (Hu-
man experiment). We hypothesize that augmenting more queries
increases the NLU’s confidence scores for the correctly classified
intents while decreasing its confidence for the misclassified intents.
This is because the NLU will be exposed to more ways (i.e., different
syntactic structures) of asking about the same intent. Finally, to
compare the confidence scores for the correctly and incorrectly
classified intents, we present the distributions of confidence scores
for each case. Also, we perform the non-parametric unpaired Mann-
Whitney U test [45] to verify whether the difference in the con-
fidence scores across the experiments’ results (e.g., Baseline vs
Augmentation Approach experiments) are statistically significant.
Results: Figure 3 shows the confidence score distributions for both
the correctly and incorrectly classified intents for all scenarios in
the Repository dataset. As shown in the figure, in all experiments,
we find that the median confidence scores of correctly classified



A Transformer-based Approach for Augmenting Software Engineering Chatbots Datasets Conference’17, July 2017, Washington, DC, USA

intents are higher than themisclassified intents. In fact, these results
are in-line with the ones in the prior work [1].

From the figure, we also observe that using the Augmentation
Approach significantly increases the NLU’s confidence in its in-
tent classification for correctly classified intents, particularly in
the 1 query/intent scenario, compared to the Baseline across all
scenarios. For example, in 1 query/intent scenario, the Augmenta-
tion approach increases the median confidence scores (76.3%) by
6% compared to the Baseline (70.1%). In some cases, the Augmen-
tation Approach outperforms the Human experiment in terms of
confidence scores for correctly classified intents. For example, in
the 3 queries/intent scenario, the Baseline experiment has a me-
dian confidence score of 83.1%, while the Augmentation approach
and Human experiment have median confidence scores of 85% and
84.3%, respectively.

For incorrectly classified intents, we find that the augmentation
approach increases the NLU’s confidence on misclassified queries
compared to the Baseline. That is, the median confidence scores
for incorrectly classified intents is higher when training the NLU
with the augmented dataset. Surprisingly, using human-augmented
queries (i.e., Human experiment) increases the overall confidence
scores for misclassified intents compared to the baseline. For exam-
ple, in the 1 query/intent scenario, the median confidence score is
58.1% for the Baseline, while the median confidence scores for the
Augmentation approach and Human experiments are 63.3% and
60.3%, respectively.

Using the Augmentation Approach increases the NLU’s confi-
dence in intent classification for correctly classified intents
across scenarios. Nonetheless, the augmented queries in the
Human andAugmentationApproach experiments increase the
NLU’s confidence in misclassified intents.

6 DISCUSSION
Quality of generated data is far more important than quan-
tity. NLU achieves reasonable performance even when trained on
a few queries per intent, as discussed in RQ1. Results show that
with only one training query per intent (i.e., 1 query/intent sce-
nario), the NLU reaches an F1-Score ranging from 32% in the Stack
Overflow and up to 71.6% in the Ask Ubuntu datasets (see Table 2)
in the Baseline experiment. This observation is further reinforced
when looking at the baseline performance with 5 queries/intent
scenario, where the NLU achieves an F1-score up to 87% in the
Ask Ubuntu dataset. Although this seems promising for chatbot
developers, achieving a robust NLU performance for real-scenario
is still very challenging, as chatbots may deal with sensitive data
(e.g., software project data) or performs critical tasks (e.g., merging
vulnerable code into the main branch). Given this level of robust-
ness of modern NLUs, augmentation approaches should focus on
the quality of the generated queries more than just its ability to
increase the size of the training dataset. Furthermore, having high-
quality augmented queries inspires chatbot practitioners to add
a variety of new queries to their dataset, ultimately resulting in
improved performance.

Practitioners need to consider fine-tuning the confidence
threshold of their chatbots. The confidence score determines

the chatbot’s response, with high scores resulting in action (e.g., an-
swering the user’s question) and low scores prompting the chatbot
to request clarification from the user in order to improve its un-
derstanding of the user’s intent [1]. The Augmentation approaches
raise the confidence levels of NLUs, both for correctly and incor-
rectly classified intents, as discussed in RQ2. Therefore, we rec-
ommend practitioners who use augmentation approaches consider
fine-tuning the appropriate confidence score threshold of their chat-
bots to accept the classified intent or trigger the fallback action.
Moreover, our results suggest that future augmentation approaches
should take into account the confidence scores for both correctly
and incorrectly classified intents when augmenting queries.

There is a need for a well-crafted dataset of paraphrased
queries for the SE domain. In our study, we configured BART to
return three paraphrases, as discussed in Section 4. In RQ1 results,
we observe that BART tends to generate queries with only slight
variations between them. For example, the “How to move content
from QListWidget to a QStringList with PyQt4?” query in the Stack
Overflow dataset, BART generates “How to moving content from
QListWidget to a QStringList with PyQt4?”, “How to moves content
from QListWidget to a QStringList with PyQt4?”, and “How do I
move content from QListWidget to a QStringList with PyQt4?”,
which have high similarities between the queries. We reiterate that
in fine-tuning the BART model to paraphrase queries, we reuse
three datasets (e.g., Quora question pairs) that have been used
in prior work [16, 44]. None of these datasets are related to the
SE domain. The lack of a more specialized SE dataset might limit
BART’s ability to generate paraphrased queries specific to SE. To
the best of our knowledge, there is no crafted dataset that contains
pairs of paraphrased queries related to the SE domain. We plan (and
encourage others) to create benchmarks that contain paraphrased
pairs of queries representing different SE tasks in order to fully
utilize the potential transformers in the SE context.

that only one intent had new examples added to it. However, we
also observed that the performance of other intents dropped at the
same time. And while this can potentially be due to the randomness
of the model, it can also indicate that adding examples to one intent
can affect the performance of other intents.

7 RELATEDWORK
The goal of this paper is to propose an approach to augment the
training datasets for the SE chatbots. Thus, we divide the prior
work into two main areas; work related to developing SE chatbots
and work related to dataset augmentation.
Software Engineering Chatbots. A plethora of studies propose
chatbots to assist developers in their daily tasks [2, 9, 15, 34]. For
example, Bradley et al. [9] propose Devy, a chatbot to help software
developers in their development tasks (e.g., pushing the new code
changes to the project repository). Dominic et al. [15] develop a
chatbot to help newcomers with the onboarding process on OSS
projects. Abdellatif et al. [2] develop a chatbot to answer questions
related to software projects. Paikari et al. [34] propose a chatbot,
called Sayme, that resolves code conflicts among the software teams.
Lin et al. [30] propose MSA chatbot to assist practitioners in devel-
oping and maintaining the micro-services architecture.



Conference’17, July 2017, Washington, DC, USA Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab

The increased usage of software chatbots in the software en-
gineering domain motivates our work; to improve SE chatbot’s
performance and help practitioners focus on the chatbot core func-
tionalities rather than brainstorming more training queries. How-
ever, our work differs in that we propose an augmentation approach
and do not develop a new chatbot.
Datasets Augmentation. There is a number of studies that ex-
amine data augmentation techniques for text classification [5, 20,
22, 32, 36, 43]. For example, Marivate & Sefara [32] evaluate the
impact of four augmentation approaches (WordNet-based synonym,
Word2vec-based, Round Trip Translation, andMixup augmentation)
on the performance of the classification algorithm using Sentiment
140, AG News, and Hate Speech datasets. Sharifirad et al. [37] pro-
pose an approach to improve the classification of sexiest tweets.
In particular, the authors generate new tweets by replacing the
words with their synonyms using the ConceptNet and Wikidata.
The results show that applying the proposed approach improves
the machine learning models in text classifications. Feng et al. [20]
evaluate different augmentation approaches (e.g., random inser-
tion) to fine-tune GPT-2 for text generation task using Yelp reviews
dataset. The results show that keyword replacement and character-
level synthetic noise are effective for text augmentation. Imran et.
al [22] evaluate the impact of data augmentation techniques (e.g.,
word insertion) to improve emotion classification. The work clos-
est to ours is the work that augments datasets to enhance NLU’s
performance [31]. Malandrakis et al. [31] investigate the use of
neural generative encoder-decoder models to improve the NLU’s
performance trained on movie and Live entertainment datasets.

To the best of our knowledge, there is no work that studied eval-
uating the data augmentation approach that combines synonym
replacement and paraphrasing techniques, and tailored it to im-
prove the NLU’s performance for SE chatbots. Our work differs and
complements the prior work in two ways. First, our work imitates
the chatbot developers by adding new synonyms and changing the
sentence structure of the original training set. Second, we evaluate
the approach using three SE datasets. Overall, our work comple-
ments the studies augmenting the training dataset to enhance NLU’s
performance by providing an augmentation approach for the SE
domain.

8 THREATS TO VALIDITY
In this section, we discuss the threats to internal, replicability, and
external validity of our study.
Internal Validity. Concerns confounding factors that could have
influenced our results. We configure BART to return three queries
(sequences), which might impact the quality of the paraphrased
queries. To alleviate this threat, the first two authors examined the
output from BART using different numbers of returned queries (1,
3, 5, 7, and 10) and found that configuring the returned queries to
be three yields the best results in terms sentence structure diversity
and preserving the semantics. Another threat to internal validity re-
lates to the manual labelling of our datasets, which could introduce
subjectivity bias. However, these datasets have been used in many
prior works in SE [1, 18]. Another potential threat is the choice of
steps for our proposed approach and evaluation settings, which

could impact the results. For example, using metrics other than Lev-
enshtein distance (e.g., [6]) to measure the diversity of the candidate
queries might impact the results. Therefore, we plan to evaluate
using a wider range of settings (e.g., more scenarios) in the future.
In our study, we used three datasets (e.g., Quora Question Pairs) to
fine-tune the BART transformer, as discussed in Section 4.3. Fine-
tuning a transformer model involves some degree of randomness
(e.g., random initialization of weights). Thus, replicating the study
might lead to different results. We mitigate this issue by providing
the scripts and datasets used in the evaluation in our replication
package [4]. We believe that our study serves as a starting point
for chatbot practitioners to leverage transformers in augmenting
chatbot training dataset.
External Validity Concerns the generalization of our findings.
In this study, we evaluate an augmentation approach using three
different datasets from the SE domain. The results might not gener-
alize to other SE datasets. However, these datasets have been used
by prior work to evaluate the performance of different NLUs and
propose chatbots in the SE domain [1, 15, 30]. Another threat is
that we use Rasa NLU for evaluation; hence our results might not
be generalizable to other NLUs. However, we select Rasa as it is an
open-source NLU which guarantees that its internal implementa-
tion stays the same during our entire study. Moreover, Rasa has
been widely used by practitioners to develop SE chatbots [2, 15, 30].

9 CONCLUSION & FUTUREWORK
Software chatbots play important roles in the software engineering
domain, enabling practitioners to perform various software devel-
opment tasks, such as running tests, through natural language. The
NLU component is essential for chatbots to understand the user’s
input. Training the NLU on possible queries from users is critical
because it impacts user satisfaction with the chatbot. However,
prior work shows that creating and augmenting a high-quality
training dataset for SE chatbots is a costly and time-consuming
task. To help chatbot developers improve the NLU’s performance
of their chatbots, we evaluate a transformer-based augmentation
approach that emulates the standard way practitioners augment
their chatbot training set. More specifically, the augmentation ap-
proach augments more queries by replacing words with synonyms
(synonyms replacement) and paraphrasing the query using BART
transformer. We evaluate the impact of using the augmentation
approach on the NLU’s performance using three datasets that rep-
resent distinct SE-related tasks. We find that the augmented queries
provide a small but significant improvement in the NLU’s perfor-
mance. Moreover, the augmentation approach augments queries
with diverse sentence structures while maintaining their original
semantics (intents). Also, our results show that the augmentation
approach increases the NLU’s confidence in both correctly and
incorrectly classified intents.

Our paper outlines directions for future work in this area. First,
we plan to examine the performance of different transformers (e.g.,
GPT2, BERT, RoBERTa) in the task of paraphrasing SE queries.
Also, we intend to investigate the use of Stack Overflow posts to
craft a dataset containing paraphrased queries to help tune the
transformers for the SE domain. Finally, we plan to evaluate the
augmentation approach usingmore SE datasets and NLU platforms.



A Transformer-based Approach for Augmenting Software Engineering Chatbots Datasets Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Ahmad Abdellatif, Khaled Badran, Diego Costa, and Emad Shihab. 2021. A

Comparison of Natural Language Understanding Platforms for Chatbots in Soft-
ware Engineering. IEEE Transactions on Software Engineering (TSE) (2021), 1–1.
https://doi.org/10.1109/TSE.2021.3078384

[2] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. 2020. MSRBot: Using Bots
to Answer Questions from Software Repositories. Empirical Software Engineering
(EMSE) 25 (2020), 1834–1863. Issue 3.

[3] Ahmad Abdellatif, Diego Elias Costa, Khaled Badran, Rabe Abdelkareem, and
Emad Shihab. 2020. Challenges in Chatbot Development: A Study of Stack
Overflow Posts. In Proceedings of the 17th International Conference on Mining
Software Repositories (MSR’20). To Appear.

[4] Diego Costa Emad ShihabAhmadAbdellatif, Khaled Badran. 2024. A Transformer-
based Approach for Augmenting Software Engineering Chatbots Datasets. https:
//zenodo.org/records/11121853. (Accessed on 05/06/2024).

[5] Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai. 2020. Exploring Transformer
Text Generation for Medical Dataset Augmentation. In Proceedings of the 12th
Language Resources and Evaluation Conference. European Language Resources
Association, Marseille, France, 4699–4708.

[6] Kevin Bache, David Newman, and Padhraic Smyth. 2013. Text-based measures
of document diversity. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Chicago, Illinois, USA)
(KDD ’13). Association for Computing Machinery, New York, NY, USA, 23–31.
https://doi.org/10.1145/2487575.2487672

[7] Guy Barash, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and
Marcel Zalmanovici. 2019. Bridging the Gap between ML Solutions and Their
Business Requirements Using Feature Interactions. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019).
Association for Computing Machinery, New York, NY, USA, 1048–1058. https:
//doi.org/10.1145/3338906.3340442

[8] Pradipta Bora. [n. d.]. geekpradd/PyDictionary: PyDictionary is a Dictionary
Module for Python 2/3 to get meanings, translations, synonyms and antonyms of
words. https://github.com/geekpradd/PyDictionary. (Accessed on 07/01/2024).

[9] Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-Aware Conversa-
tional Developer Assistants. In Proceedings of the 40th International Conference on
Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Comput-
ing Machinery, New York, NY, USA, 993–1003. https://doi.org/10.1145/3180155.
3180238

[10] Daniel Braun, Adrian Hernandez Mendez, Florian Matthes, and Manfred Langen.
2017. Evaluating Natural Language Understanding Services for Conversational
Question Answering Systems. In Proceedings of the 18th Annual SIGdial Meeting on
Discourse and Dialogue. Association for Computational Linguistics, Saarbrücken,
Germany, 174–185. https://doi.org/10.18653/v1/W17-5522

[11] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad
Aghajani, Denys Poshyvanyk, Massimiliano Di Penta, and Gabriele Bavota. 2022.
An Empirical Study on the Usage of Transformer Models for Code Completion.
IEEE Transactions on Software Engineering 48, 12 (2022), 4818–4837. https:
//doi.org/10.1109/TSE.2021.3128234

[12] Matteo Ciniselli, Luca Pascarella, and Gabriele Bavota. 2022. To What Extent
Do Deep Learning-Based Code Recommenders Generate Predictions by Cloning
Code from the Training Set?. In Proceedings of the 19th International Conference
on Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22). Association
for Computing Machinery, New York, NY, USA, 167–178. https://doi.org/10.
1145/3524842.3528440

[13] Microsoft Docs. 2022. Good example utterances. https://docs.microsoft.com/
en-us/azure/cognitive-services/luis/luis-concept-utterance. (Accessed on
03/30/2024).

[14] James Dominic, Jada Houser, Igor Steinmacher, Charles Ritter, and Paige
Rodeghero. 2020. Conversational Bot for Newcomers Onboarding to Open
Source Projects. In Proceedings of the IEEE/ACM 42nd International Confer-
ence on Software Engineering Workshops (Seoul, Republic of Korea) (ICSEW’20).
Association for Computing Machinery, New York, NY, USA, 46–50. https:
//doi.org/10.1145/3387940.3391534

[15] James Dominic, Jada Houser, Igor Steinmacher, Charles Ritter, and Paige
Rodeghero. 2020. Conversational Bot for Newcomers Onboarding to Open
Source Projects. In Proceedings of the IEEE/ACM 42nd International Confer-
ence on Software Engineering Workshops (Seoul, Republic of Korea) (ICSEW’20).
Association for Computing Machinery, New York, NY, USA, 46–50. https:
//doi.org/10.1145/3387940.3391534

[16] Thomas Dopierre, C. Gravier, and Wilfried Logerais. 2021. ProtAugment: Un-
supervised diverse short-texts paraphrasing for intent detection meta-learning.
In The 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing,
Vol. abs/2105.12995.

[17] Vasiliki Efstathiou, Christos Chatzilenas, and Diomidis Spinellis. 2018. Word
Embeddings for the Software Engineering Domain. In Proceedings of the 15th

International Conference on Mining Software Repositories (Gothenburg, Sweden)
(MSR ’18). Association for Computing Machinery, New York, NY, USA, 38–41.
https://doi.org/10.1145/3196398.3196448

[18] Farbod Farhour, Ahmad Abdellatif, Essam Mansour, and Emad Shihab. 2024. A
Weak Supervision-Based Approach to Improve Chatbots for Code Repositories.
In Proceedings of the ACM International Conference on the Foundations of Software
Engineering (FSE’24).

[19] Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford
Books. https://mitpress.mit.edu/9780262561167/

[20] Steven Y. Feng, Varun Gangal, Dongyeop Kang, Teruko Mitamura, and Eduard
Hovy. 2020. GenAug: Data Augmentation for Finetuning Text Generators. In Pro-
ceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge
Extraction and Integration for Deep Learning Architectures. Association for Com-
putational Linguistics, Online, 29–42. https://doi.org/10.18653/v1/2020.deelio-1.4

[21] A. Ilmania, Abdurrahman, S. Cahyawijaya, and A. Purwarianti. 2018. Aspect
Detection and Sentiment Classification Using Deep Neural Network for Indone-
sian Aspect-Based Sentiment Analysis. In 2018 International Conference on Asian
Language Processing (IALP). 62–67. https://doi.org/10.1109/IALP.2018.8629181

[22] MiaMohammad Imran, Yashasvi Jain, Preetha Chatterjee, and Kostadin Damevski.
2023. Data Augmentation for Improving Emotion Recognition in Software En-
gineering Communication. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering (Rochester, MI, USA) (ASE ’22).
Association for Computing Machinery, New York, NY, USA, Article 29, 13 pages.
https://doi.org/10.1145/3551349.3556925

[23] jsphdnl. 2023. nlp Conversational Data for building a chat bot.
https://stackoverflow.com/questions/45821517/conversational-data-for-
building-a-chat-bot. (Accessed on 01/19/2024).

[24] Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew
Lee, Parker Hill, Jonathan K. Kummerfeld, Kevin Leach, Michael A. Lauren-
zano, Lingjia Tang, and Jason Mars. 2019. An Evaluation Dataset for Intent
Classification and Out-of-Scope Prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Asso-
ciation for Computational Linguistics, Hong Kong, China, 1311–1316. https:
//doi.org/10.18653/v1/D19-1131

[25] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software
Bots. IEEE Software 35, 1 (2018), 18–23. https://doi.org/10.1109/MS.2017.4541027

[26] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software
Bots. IEEE Software 35, 1 (2018), 18–23. https://doi.org/10.1109/MS.2017.4541027

[27] Carlene Lebeuf, Alexey Zagalsky, Matthieu Foucault, and Margaret-Anne Storey.
2019. Defining and Classifying Software Bots: A Faceted Taxonomy. In Proceedings
of the 1st International Workshop on Bots in Software Engineering (Montreal,
Quebec, Canada) (BotSE ’19). IEEE Press, 1–6. https://doi.org/10.1109/BotSE.2019.
00008

[28] Vladimir I Levenshtein. 1966. Binary Codes Capable of Correcting Deletions,
Insertions and Reversals. Soviet Physics Doklady 10 (February 1966), 707.

[29] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

[30] Chun-Ting Lin, Shang-Pin Ma, and Yu-Wen Huang. 2020. MSABot: A Chatbot
Framework for Assisting in the Development and Operation of Microservice-
Based Systems. In Proceedings of the IEEE/ACM 42nd International Conference on
Software EngineeringWorkshops (Seoul, Republic of Korea) (BotSE’20). Association
for Computing Machinery, New York, NY, USA, 36–40. https://doi.org/10.1145/
3387940.3391501

[31] Nikolaos Malandrakis, Minmin Shen, Anuj Goyal, Shuyang Gao, Abhishek Sethi,
and Angeliki Metallinou. 2019. Controlled Text Generation for Data Augmenta-
tion in Intelligent Artificial Agents. In Proceedings of the 3rd Workshop on Neural
Generation and Translation. Association for Computational Linguistics, Hong
Kong, 90–98. https://doi.org/10.18653/v1/D19-5609

[32] VukosiMarivate and Tshephisho Sefara. 2020. Improving Short Text Classification
Through Global Augmentation Methods. In Machine Learning and Knowledge
Extraction, Andreas Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar Weippl
(Eds.). Springer International Publishing, Cham, 385–399.

[33] Microsoft. 2023. Utterances - Azure Cognitive Services | Microsoft
Docs. https://docs.microsoft.com/en-us/azure/cognitive-services/luis/concepts/
utterances. (Accessed on 01/08/2024).

[34] Elahe Paikari, JaeEun Choi, SeonKyu Kim, Sooyoung Baek, MyeongSoo Kim,
SeungEon Lee, ChaeYeon Han, YoungJae Kim, KaHye Ahn, Chan Cheong, and
André van der hoek. 2019. A Chatbot for Conflict Detection and Resolution. In
2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE).
29–33. https://doi.org/10.1109/BotSE.2019.00016

[35] Rasa. [n. d.]. Conversational AI Platform | Superior Customer Experiences Start
Here. https://rasa.com/. (Accessed on 07/01/2024).

https://doi.org/10.1109/TSE.2021.3078384
https://zenodo.org/records/11121853
https://zenodo.org/records/11121853
https://doi.org/10.1145/2487575.2487672
https://doi.org/10.1145/3338906.3340442
https://doi.org/10.1145/3338906.3340442
https://github.com/geekpradd/PyDictionary
https://doi.org/10.1145/3180155.3180238
https://doi.org/10.1145/3180155.3180238
https://doi.org/10.18653/v1/W17-5522
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.1109/TSE.2021.3128234
https://doi.org/10.1145/3524842.3528440
https://doi.org/10.1145/3524842.3528440
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-utterance
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-utterance
https://doi.org/10.1145/3387940.3391534
https://doi.org/10.1145/3387940.3391534
https://doi.org/10.1145/3387940.3391534
https://doi.org/10.1145/3387940.3391534
https://doi.org/10.1145/3196398.3196448
https://mitpress.mit.edu/9780262561167/
https://doi.org/10.18653/v1/2020.deelio-1.4
https://doi.org/10.1109/IALP.2018.8629181
https://doi.org/10.1145/3551349.3556925
https://stackoverflow.com/questions/45821517/conversational-data-for-building-a-chat-bot
https://stackoverflow.com/questions/45821517/conversational-data-for-building-a-chat-bot
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/MS.2017.4541027
https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1145/3387940.3391501
https://doi.org/10.1145/3387940.3391501
https://doi.org/10.18653/v1/D19-5609
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/concepts/utterances
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/concepts/utterances
https://doi.org/10.1109/BotSE.2019.00016
https://rasa.com/


Conference’17, July 2017, Washington, DC, USA Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab

[36] Georgios Rizos, Konstantin Hemker, and Björn Schuller. 2019. Augment to
Prevent: Short-Text Data Augmentation in Deep Learning for Hate-Speech Clas-
sification. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (Beijing, China) (CIKM ’19). Association for Comput-
ing Machinery, New York, NY, USA, 991–1000. https://doi.org/10.1145/3357384.
3358040

[37] Sima Sharifirad, Borna Jafarpour, and Stan Matwin. 2018. Boosting Text Classifi-
cation Performance on Sexist Tweets by Text Augmentation and Text Generation
Using a Combination of Knowledge Graphs. In Proceedings of the 2nd Workshop
on Abusive Language Online (ALW2). Association for Computational Linguistics,
Brussels, Belgium, 107–114. https://doi.org/10.18653/v1/W18-5114

[38] Sheri. 2022. Python Intent classification for Chatbot. https://stackoverflow.com/
questions/62970861/intent-classification-for-chatbot. (Accessed on 04/28/2024).

[39] Kumar Shridhar, Harshil Jain, Akshat Agarwal, and Denis Kleyko. 2020. End
to End Binarized Neural Networks for Text Classification. In Proceedings of Sus-
taiNLP:Workshop on Simple and Efficient Natural Language Processing. Association
for Computational Linguistics, Online, 29–34. https://doi.org/10.18653/v1/2020.
sustainlp-1.4

[40] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Pro-
ductivity One Bot at a Time. In Proceedings of the 2016 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Seattle, WA, USA)
(FSE 2016). Association for Computing Machinery, New York, NY, USA, 928–931.
https://doi.org/10.1145/2950290.2983989

[41] Tmbo. 2022. multiple entity recognition· Issue #427 · RasaHQ/rasa. https://github.
com/RasaHQ/rasa/issues/427. (Accessed on 03/23/2024).

[42] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using Pre-Trained Models to Boost
Code Review Automation. In Proceedings of the 44th International Conference
on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for
Computing Machinery, New York, NY, USA, 2291–2302. https://doi.org/10.1145/
3510003.3510621

[43] Jason Wei and Kai Zou. 2019. EDA: Easy Data Augmentation Techniques for
Boosting Performance on Text Classification Tasks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Association for Computational Linguistics, Hong Kong, China, 6382–6388. https:
//doi.org/10.18653/v1/D19-1670

[44] Peter West, Ximing Lu, Ari Holtzman, Chandra Bhagavatula, Jena D. Hwang,
and Yejin Choi. 2021. Reflective Decoding: Beyond Unidirectional Generation
with Off-the-Shelf Language Models. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). Association
for Computational Linguistics, Online, 1435–1450. https://doi.org/10.18653/v1/
2021.acl-long.114

[45] Daniel S Wilks. 2011. Statistical methods in the atmospheric sciences. Vol. 100.
Academic press.

[46] Deheng Ye, Zhenchang Xing, Chee Yong Foo, Zi Qun Ang, Jing Li, and Nachiket
Kapre. 2016. Software-Specific Named Entity Recognition in Software En-
gineering Social Content. In 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), Vol. 1. 90–101. https:
//doi.org/10.1109/SANER.2016.10

[47] Yuan Zhang, Jason Baldridge, and Luheng He. 2019. PAWS: Paraphrase Adver-
saries from Word Scrambling. In Proc. of NAACL.

[48] Jianing Zhou, Hongyu Gong, and Suma Bhat. 2020. PIE: A Parallel Idiomatic
Expression Corpus for Idiomatic Sentence Generation and Paraphrasing. In The
Joint Conference of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing (ACL-IJCNLP 2021), MWE Workshop, 2021.

https://doi.org/10.1145/3357384.3358040
https://doi.org/10.1145/3357384.3358040
https://doi.org/10.18653/v1/W18-5114
https://stackoverflow.com/questions/62970861/intent-classification-for-chatbot
https://stackoverflow.com/questions/62970861/intent-classification-for-chatbot
https://doi.org/10.18653/v1/2020.sustainlp-1.4
https://doi.org/10.18653/v1/2020.sustainlp-1.4
https://doi.org/10.1145/2950290.2983989
https://github.com/RasaHQ/rasa/issues/427
https://github.com/RasaHQ/rasa/issues/427
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/2021.acl-long.114
https://doi.org/10.18653/v1/2021.acl-long.114
https://doi.org/10.1109/SANER.2016.10
https://doi.org/10.1109/SANER.2016.10

	Abstract
	1 Introduction
	2 Background
	3 Approach
	4 Evaluation Setup
	4.1 Datasets
	4.2 NLU
	4.3 BART Tuning
	4.4 Evaluation Settings
	4.5 Performance Evaluation

	5 Results
	5.1 RQ1: Can the augmentation approach improve the NLU's performance?
	5.2 RQ2: Does the augmentation approach increase the NLU's confidence in its classification?

	6 Discussion
	7 Related Work
	8 Threats to Validity
	9 Conclusion & Future Work
	References

