
Towards Understanding and Improving the Value of
Chatbots in Software Engineering

Ahmad Abdellatif

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Software Engineering) at

Concordia University

Montréal, Québec, Canada

December 2021

c© Ahmad Abdellatif, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ahmad Abdellatif

Entitled: Towards Understanding and Improving the Value of Chatbots in Soft-

ware Engineering

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Ahmed Soliman

External Examiner
Dr. Andy Zaidman

Examiner
Dr. Ferhat Khendek

Examiner
Dr. Juergen Rilling

Examiner
Dr. Nikolaos Tsantalis

Supervisor
Dr. Emad Shihab

Approved by
Dr. Leila Kosseim, Graduate Program Director
Department of Computer Science and Software Engineering

December 17, 2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Towards Understanding and Improving the Value of Chatbots in Software Engineering

Ahmad Abdellatif, Ph.D.

Concordia University, 2022

Software chatbots have been around since 1966, where the first computer interacted with a hu-

man. Recently, advances in artificial intelligence and natural language processing and understanding

led to the rise and widely use of chatbots in a variety of services (e.g., healthcare, e-commerce, cus-

tomer service). Nowadays, chatbots have become the main conduit between humans and services.

Through natural language, chatbots enable users to communicate with different services intuitively.

Another reason for the increasing popularity of chatbots in several domains is their benefits in saving

time, effort, and cost. These benefits and wide adoption of chatbots attract practitioners to imple-

ment chatbots that support software engineering tasks. Chatbots play an important role in various

software development tasks from answering development questions to running tests and controlling

services. While there are numerous chatbots and their capability of supporting software practition-

ers is encouraging, little is known about the development challenges and usage benefits of software

engineering chatbots.

This thesis presents series of empirical studies that aim to understand the challenges of develop-

ing chatbots for the software engineering domain, highlight the value of using chatbots in software

development, and proposes novel approaches to support developers at developing more efficient

software engineering chatbots. More specifically, we tackle three aspects of chatbots in software

engineering. First, we present an empirical study to explore the chatbot development challenges.

We find that chatbot developers face several challenges that are related to chatbot integration, de-

velopment, natural language understanding platforms (NLUs), user interaction, and user input.

Second, we propose a chatbot layered on top of software repositories to answer software project

related questions in order to showcase the potential of chatbots in software development. We find

iii

that practitioners are able to complete their tasks more accurately (65.6% more completed tasks)

and in less time (83.3% faster) when using chatbots compared to using conventional tools. During

this work we find two critical challenges in chatbot development which are selecting an NLU model

for the chatbot implementation and curating a high-quality dataset to train the NLU model.

Third, we propose guidelines and approaches to improve chatbots in the software engineering

domain. First, we assess the performance of multiple widely used NLUs using representative soft-

ware engineering tasks to guide chatbot developers in designing more efficient chatbots. We report

a guideline for chatbot developers on the best performing NLUs for intents classification and entity

extraction. Finally, we investigate an approach that combines synonyms replacement and paraphras-

ing techniques to augment the training dataset of SE chatbots, which helps chatbot developers create

high-quality datasets for training the NLU models. We find that augmenting the dataset using the

combined approach does not improve the NLU’s performance for intents classification. Also, the

results show that using the combined approach has a negligible effect on the NLU’s confidence in

its classification.

iv

Related Publications

The following publication are related to the materials presented in this thesis:

• A. Abdellatif, K. Badran, D. E. Costa, and E. Shihab, “A Comparison of Natural Language

Understanding Platforms for Chatbots in Software Engineering”, IEEE Transactions on Soft-

ware Engineering (TSE), Accepted 2021.

• A. Abdellatif, K. Badran, and E. Shihab, “MSRBot: Using Bots to Answer Questions from

Software Repositories”, Springers Journal of Empirical Software Engineering, Accepted 2020

• A. Abdellatif, D. E. Costa, K. Badran, R. Abdalkareem, and E. Shihab, “Challenges in Chat-

bot Development: A Study of Stack Overflow Posts”, In Proceedings of the 17th International

Conference on Mining Software Repositories (MSR), Accepted 2020.

The following publications are not directly related to the material presented in this thesis but

were conducted as parallel work to the research presented in this thesis.

• M. Wessel, A. Abdellatif, I. Wiese, T. Conte, E. Shihab, M. Gerosa, and I. Steinmacher,

“Bots for Pull Requests: The Good, the Bad, and the Promising”, In the 44th International

Conference on Software Engineering (ICSE), Accepted 2022.

• A. Abdellatif, Y. Zeng, M. Elshafei, E. Shihab, and W. Shang, “Simplifying the Search of

npm Packages”, Elseviers Journal of Information and Software Technology (IST), Accepted

2020.

• A. Abdellatif, M. Alshayeb, S. Zahran, and M. Niazi, A measurement framework for software

product maturity assessment, Journal of Software: Evolution and Process, Accepted 2019

v

Statement of Originality

I, Ahmad Abdellatif, hereby declare that I am the sole author of this thesis. All ideas and

inventions attributed to others have been properly referenced. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners. I understand that my thesis

may be made electronically available to the public.

vi

Dedications

To my mom, dad, Mohammad, Saja, Rawan, Omar, Zein, Taim, and grandfather

vii

Acknowledgments

First, I thank Almighty Allah for providing me the strength and the ability to pursue my Ph.D.

thesis.

I would like to express my extremely grateful to my supervisor Dr. Emad Shihab for all of

his guidance, support, and patience through out my Ph.D. journey. His immense knowledge and

plentiful experience have encouraged me in all the time of my academic research and daily life. Dr.

Emad, words fail me to thank you for all your effort and comments to make me a good researcher.

I want to thank my committee members, Dr. Andy Zaidman, Dr. Ferhat Khendek, Dr. Nikolaos

Tsantalis, and Dr. Juergen Rilling. Also, I extend my gratitude to Dr. Weiyi Shang for his fruitful

feedback about my work.

During my journey, I was lucky to collaborate and discuss my research with brightest re-

searchers. I would like to thank Drs Rabe Abdalkareem, Diego Costa, Marco Gerosa, Igor Stein-

macher, Weiyi Shang, Essam Mansour and Mairieli Wessel for sharing their insights and advices.

I would like to extend my thanks to my collogues that I was very lucky to work and collaborate

with, Khaled Badran, Suhaib Mujahid, Makram Adaime, Mohamed Elshafei, Jinfu Chen, Sayed-

Hassan Khatoonabadi, Jasmine Latendresse, Haya Samaana, Abbas Javan, Farbod Farhour, Mahsa

Arani, Patrick Ayoup, Atique Reza, Xiaowei Chen, Riya Dutta, Nicholas Nagy, Olivier Noury, Gi-

ancarlo Sierra, Hosein Nourani, Juan Hoyos, Yi Zeng and everyone else in the Data-driven Analysis

of Software (DAS) Lab for the many fruitful discussions and collaborations.

Some special words of gratitude go to my dear friends who have always been a major source

of support, guidance, and love. I would like to thank Mutasim, Saif, Ammar, Ahmad, Mohammad,

and Khader for being marvelous friends. Thanks guys for always being there for me.

viii

I am extremely grateful to my mom, dad, brother, and sister for your love, prayers, and caring.

Without your endless support, I would not have been able to complete my Ph.D journey. I am

blessed to have you. My beloved wife and the little three musketeers (Omar, Zein, and Taim), thank

you for your scarifies, love, and support through the journey. You provided me with the courage and

motivation all the time to reach the goal. I dedicated this thesis to you.

ix

Contents

List of Figures xiv

List of Tables xvi

1 Introduction and Research Statement 1

1.1 Introduction . 1

1.2 Problem Statement . 2

1.3 Thesis Organization . 3

1.4 Thesis Overview . 4

1.5 Thesis Contributions . 8

2 Background and Related Work 9

2.1 Background . 9

2.2 Software Bots . 10

2.3 Using Chatbots to Assist Developers . 12

2.4 Visions for the Future Use of Chatbots . 13

2.5 Chapter Summary . 14

3 Understanding the challenges of chatbot development 15

3.1 Introduction . 16

3.1.1 Organization of the Chapter . 18

3.2 Methodology . 18

3.3 Case Study Results . 23

x

3.3.1 RQ1: What topics are chatbot developers asking about? 23

3.3.2 RQ2: What types of questions are chatbot developers asking? 27

3.3.3 RQ3: Which topics are the most difficult to answer? 29

3.4 Discussion & Implications . 32

3.4.1 Chatbot Topics Evolution . 32

3.4.2 Chatbot Compared to Other SE Fields . 34

3.4.3 Implications . 35

3.5 Threats to validity . 37

3.6 Chapter Summary . 39

4 Determining the value of SE-context chatbots 41

4.1 Introduction . 42

4.1.1 Organization of the Chapter . 44

4.2 MSRBot Framework . 44

4.3 Case Study Setup . 51

4.3.1 Questions Supported by the Bot . 53

4.3.2 Study Participants . 54

4.3.3 Questionnaire Survey . 55

4.3.4 Evaluating the Bot . 56

4.4 Case Study Results . 58

4.4.1 RQ1: How useful are the bot’s answers to users’ questions? 58

4.4.2 RQ2: How quickly can users complete their tasks using the bot? 60

4.4.3 RQ3: How accurate are the bot’s answers? 63

4.5 Discussion . 68

4.5.1 Bots Evaluation . 68

4.5.2 Study Implications . 69

4.6 Threats to validity . 71

4.7 Chapter Summary . 72

xi

5 Can we help developers to design more effective chatbots for the SE domain? 74

5.1 Introduction . 75

5.1.1 Organization of the Chapter . 78

5.2 Background . 78

5.2.1 Definitions . 78

5.2.2 Explanatory Example . 80

5.3 Case Study Setup . 81

5.3.1 Evaluated NLUs . 81

5.3.2 SE Tasks and Data Corpora . 82

5.3.3 Performance Evaluation of NLUs . 87

5.4 Case Study Results . 89

5.4.1 Intents Classification . 90

5.4.2 NLUs Confidence scores . 91

5.4.3 Entity Extraction . 94

5.4.4 Concluding Remarks . 96

5.5 Discussion . 98

5.5.1 Examining the Impact of the Confidence Score Threshold on NLU Perfor-

mance . 98

5.5.2 Unique Entities . 99

5.5.3 Recommendations . 101

5.6 Threats to validity . 103

5.7 Conclusion & Future Work . 106

6 Improving the SE chatbot’s accuracy 108

6.1 Introduction . 109

6.1.1 Organization of the Chapter . 112

6.2 Background . 112

6.3 Approach . 113

6.4 Case Study Setup . 120

xii

6.4.1 Datasets . 120

6.4.2 NLU . 123

6.4.3 BART tuning . 123

6.4.4 Evaluation Settings . 124

6.4.5 Performance Evaluation . 125

6.5 Case Study Results . 126

6.5.1 RQ1: Can ChatMent improve the NLU’s performance? 126

6.5.2 RQ2: Does ChatMent increase the NLU’s confidence in its classification? . 128

6.6 Discussion . 131

6.7 Lessons Learned . 133

6.8 Threats to Validity . 136

6.9 Conclusion & Future Work . 137

7 Summary, Contributions and Future Work 138

7.1 Summary . 138

7.2 Future Work . 140

7.2.1 Improving User-Chatbot Interaction . 140

7.2.2 Exploring the Use of Chatbots in Other Software Engineering Tasks 141

7.2.3 Supporting more Users’ Questions . 141

7.2.4 Enhancing the Unique Entities Extraction 141

7.2.5 Investigating the Impact of Using Chatbots on the Developers’ Social Aspects142

7.2.6 Evaluating the Performance of Transformers for Augmenting SE Dataset . 142

Appendix A Appendix-A 143

Appendix B Appendix-B 146

Bibliography 151

xiii

List of Figures

Figure 3.1 Overview of the methodology of our study. 18

Figure 3.2 Relative growth of chatbot related posts over time. 32

Figure 3.3 Chatbot categories evolution over time. 33

Figure 3.4 Chatbot topics’ popularity vs. difficulty 35

Figure 4.1 Overview of the MSRBot Framework and its Components’ Interactions . . 45

Figure 4.2 Example of MSRBot Framework Components Interactions to Answer User’s

Question . 48

Figure 4.3 An Example User Conversation with MSRBot 52

Figure 4.4 Usefulness of the Bot’s Answers . 59

Figure 4.5 Time Required to Complete Tasks (bot vs. baseline) 60

Figure 4.6 Speed of the Bot’s Reply . 62

Figure 4.7 Number of Answers for Each Task in the Baseline 65

Figure 5.1 An overview of user-chatbot interaction 80

Figure 5.2 Intent classification performance as F1-measure of the four NLUs. 89

Figure 5.3 Confidence score distribution for all NLUs and tasks. 92

Figure 5.4 Entity extraction performance as avg. F1-measure of the four NLUs. 95

Figure 5.5 Analysis of theshold sensitivity in terms of F1-measure of the NLUs in the

Repository and Stack Overflow tasks. 98

Figure 6.1 An overview of ChatMent framework. 114

Figure 6.2 A working example of ChatMent. 115

xiv

Figure 6.3 The confidence score distributions for scenarios T1, T3, and T5 in the Repos-

itory dataset. 128

Figure B.1 The confidence score distributions for Scenarios T1, T3, and T5 in the Ask

Ubuntu dataset. 147

Figure B.2 The confidence score distributions for Scenarios T1, T3, and T5 in the Stack

Overflow dataset. 148

xv

List of Tables

Table 3.1 The tag set used to identify the chatbot related posts. The TRT and TST are

expressed in percentages. 21

Table 3.2 The chatbot topics, categories, and their popularity. 22

Table 3.3 Chatbot posts types on Stack Overflow. 28

Table 3.4 The difficulty per topic. 29

Table 3.5 Correlation of topics popularity and difficulty. 30

Table 3.6 Comparison of popularity and difficulty between different fields 34

Table 4.1 List of Questions Examined by MSRBot and the Rationale for Their Inclusion 50

Table 4.2 Participants’ Knowledge on Version Control Repositories and Issue Tracking

System . 54

Table 4.3 Reasons for Uncompleted Tasks by the Bot 64

Table 5.1 Intents distribution in the Repository task. 83

Table 5.2 Entities distribution in the Repository task. 84

Table 5.3 List of the Stack Overflow task entities. 85

Table 5.4 List of the Stack Overflow task intents. 85

Table 5.5 Intents’ characteristics and classification performance as F1-measure of the

four NLUs. 90

Table 5.6 Entity extraction performance as F1-measure per entity of the four NLUs. . . 97

Table 5.7 NLUs’ overall performance ranking. 97

Table 5.8 Distribution of unique entities by entity type in the Stack Overflow task. . . . 100

xvi

Table 5.9 Precision, Recall, and F1-measure of extracting unique entities in the Stack

Overflow task. 101

Table 5.10 Recommendations for fine-tuning the NLUs when developing Chatbots. . . . 101

Table 6.1 Intents distribution in the Repository task. 121

Table 6.2 Performance comparison results for ChatMent against the baseline and human. 125

Table 6.3 Sample of ChatMent augmented queries. 127

Table 6.4 The Cliff’s delta effect size for all experiment in the Repository dataset. . . . 131

Table 6.5 The average number of ChatMent and human augmented queries. 131

Table 6.6 Performance results as F1-score w/out using our Selection phase. 132

Table A.1 Intents classification results for the Repository task. 143

Table A.2 Intents classification results for the Stack Overflow task. 144

Table A.3 Entity extraction classification results for the Repository task. 144

Table A.4 Entity extraction classification results for the Stack Overflow task. 145

Table B.1 The Cliff’s delta effect size for all experiment in the Ask Ubuntu dataset. . . 149

Table B.2 The Cliff’s delta effect size for all experiment in the Stack Overflow dataset. 150

xvii

Chapter 1

Introduction and Research Statement

1.1 Introduction

The idea of chatbots was pitched in the 1960s to allow humans to interact with machines. Eliza Weizen-

baum (1966) proposed the first natural language interaction between users and machines in 1966.

Chatbots are a sub-category of software bots which automate tasks and have the ability to com-

municate with users through natural language C. Lebeuf, Zagalsky, Foucault, and Storey (2019a);

C. R. Lebeuf (2018). Nowadays, chatbots are becoming more popular and attracting the attention

of many practitioners and large organizations (e.g., Google, Microsoft, IBM) Daniel, Cabot, Deru-

elle, and Derras (2020). Moreover, they are frequently used to perform various tasks. For example,

Ni, Lu, Liu, and Liu (2017) developed a chatbot that diagnoses patients and generates a report to

the doctor with possible causes of the patients’ symptoms. A. Xu, Liu, Guo, Sinha, and Akki-

raju (2017) developed a customer service chatbot to answer users’ questions on social media (e.g.,

Twitter, Facebook).

Prior work shows that the recent rise of chatbots is due to the advancement of artificial intelli-

gence and natural language processing techniques C. Lebeuf, Storey, and Zagalsky (2018c). Those

improvements allow chatbots to better understand the users’ intentions and establish more efficient

conversations, thus allowing chatbots to support more tasks and be more user-friendly. Through

natural language, chatbots allow users to easily communicate with different services to perform

specific tasks. This simple method of interaction enables the chatbot to serve as a suitable conduit

1

between users and services C. Lebeuf et al. (2018c). In other words, chatbot users can monitor

and control different services without needing technical knowledge/skills to perform those tasks. In

fact, previous studies show that chatbots reduce the cost, time, and effort required to achieve certain

goals by automating difficult and tedious tasks Storey and Zagalsky (2016a).

Given its benefits, chatbot adoption in the Software Engineering (SE) domain is increasing Paikari

and van der Hoek (2018). Beside automating repetitive tasks, chatbots help developers in their soft-

ware development tasks by extracting information easily and efficiently Daniel and Cabot (2021);

Storey and Zagalsky (2016b), resolving code conflicts Paikari et al. (2019), and answering develop-

ment questions using Stack Overflow Murgia, Janssens, Demeyer, and Vasilescu (2016b); Romero,

Parra, and Haiduc (2020a).

While there are numerous chatbots and their capability of supporting software practitioners is

encouraging, little is known about chatbots in the Software Engineering domain. Specifically, the

challenges of developing chatbots that assist software practitioners in different tasks and the chatbot

usage-benefits in the SE domain. To identify the chatbot development challenges, we examine the

difficulties that face chatbot practitioners to ease developing and integrating chatbots in the software

development process. Moreover, we develop a software engineering based chatbot that leverages

code and issues tracking software repository data to answer software project related questions to

highlight the value of using chatbots in SE. In this thesis, we aim to 1) identify the challenges that

face practitioners when developing chatbots, 2) understand the benefits of using chatbots in the

software development, and 3) improve the SE-based chatbots.

1.2 Problem Statement

Recent studies show that chatbots are becoming more popular in the SE domain due to their ben-

efits in many other domains (e.g., customer services, e-commerce) such as improving productivity

and saving resources Daniel and Cabot (2021). However, the challenges that face practitioners in

developing SE-based chatbots and their usage benefits in the SE domain are still unexplored areas.

Understanding these aspects is of paramount importance because they enable to design of more

effective chatbots and increase their adoption by software practitioners. This concern led to the

2

formulation of this thesis problem statement, which is stated as follows:

Given that chatbots are beneficial in several domains, we believe that the full potential of using

chatbots in the software development process remains untapped. Therefore, we conduct empirical

studies to gain insights about the chatbot development challenges, understand the value of using

chatbots in the software development, and propose approaches to design more effective chatbots for

software engineering.

1.3 Thesis Organization

First, the thesis provides a background and discusses work related to chatbots (Chapter 2). The

remainder of the thesis is divided into two parts. Each part focuses on studying one aspect of this

thesis goal:

• Part I: Understanding the chatbot development challenges and benefits of using chatbots

in the software development process. We present a study that highlights the development

challenges that face chatbot developers. Our work illustrates the most pressing and difficult

challenges to develop chatbots. In addition, we present a chatbot that answers software project

related questions. And we evaluate the proposed chatbot in a real-life scenario by asking SE

practitioners to use it. Our work illustrates the potential benefits of using chatbots to assist

practitioners in their development tasks. [Chapter 3 and 4]

• Part II: Improving the chatbots in the SE domain. We present a guideline on the best

performing NLUs for intents classification and entity extraction using SE tasks to develop

more efficient SE-based chatbots. In addition, we evaluate an approach to help developers

augment training datasets for their chatbots. Our work illustrates how to improve chatbots in

the SE domain. [Chapter 5 and 6]

3

1.4 Thesis Overview

In this section, we provide an overview of the work presented in this thesis and highlight the main

results of each work.

Chapter 2: Background and Related Work.

Before diving into the chatbot development challenges, we first present a background of the chatbots

and the used terminologies throughout this thesis. Then, we discuss the existing work related to

using software bots in software engineering. Moreover, we present studies related to developing

chatbots that assist practitioners in their daily development tasks. Finally, we discuss the work that

envisions the use of chatbots in the SE domain.

Part I: Understanding the chatbot development challenges and benefits of using chat-

bots in the software development process.

A large body of prior work focuses on proposing chatbots to assist developers in their daily de-

velopment tasks Bradley, Fritz, and Holmes (2018); Dominic, Houser, Steinmacher, Ritter, and

Rodeghero (2020a); Paikari et al. (2019); Qasse, Mishra, and Hamdaqa (2021); Wessel and Stein-

macher (2020). However, the challenges that face practitioners in developing chatbots and their

usage-benefits in the SE domain are unexplored areas. In this part, we explore the development

challenges by examining the chatbot developers’ posts on Stack Overflow. In addition, we develop

an SE-chatbot to highlight the potential benefits of using chatbots in software development.

Chapter 3: Understanding the challenges of chatbot development.

Using chatbots improves the productivity of software practitioners by automating redundant tasks,

controlling services through natural language, and notifying practitioners about critical events in the

software development (e.g., build or service failures) C. Lebeuf et al. (2018c); Storey and Zagalsky

(2016b). While using chatbots has a positive impact on the software development process, little is

known about the challenges that encounter practitioners during designing and developing SE-based

chatbots and adopting them in the development process. Prior work shows that developing chatbots

4

requires special expertise from developers which makes chatbot development different than the

traditional software development Daniel et al. (2020). For example, chatbot development requires

machine learning and natural language processing knowledge to analyze and process the user’s

input, and perform actions based on that input Jha (2019). Moreover, developing chatbots requires

knowledge in designing the chatbot’s conversation flow with the users. Therefore, as a first step, our

goal is to have a general understanding of the chatbot development process and its challenges. More

specifically, we examine the challenges related to chatbot development by analyzing the chatbot

developers’ questions on the development Q&A website (Stack Overflow).

In Chapter 3, we perform one of the first in-depth studies to understand the development chal-

lenges that face chatbot practitioners. We mine Stack Overflow posts related to chatbots and lever-

age topic modeling to understand the chatbot topics that are being by developers on Stack Overflow.

We find that developers discuss topics related to chatbot integration, development, natural language

understanding platforms (NLUs), user interaction, and user input. Also, our results show that de-

velopers are looking for specific features implementation. More importantly, we find that the most

challenging topics are related to training chatbot models. This work was accepted as a full paper in

the International Conference on Mining Software Repositories Abdellatif, Costa, Badran, Abdelka-

reem, and Shihab (2020).

Chapter 4: Determining the value of SE-context chatbots.

Software repositories contain a plethora of software development data that helps to improve the

software quality Hassan (2008); Khomh, Adams, Dhaliwal, and Zou (2015). Software practitioners

struggle to extract this data to answer questions related to their software project (e.g., “Which com-

mits fixed the bug 5012?”). Practitioners need special expertise to perform such tasks, especially

when the data is scattered in different repositories (e.g., code and issue repositories). Moreover,

even if the practitioners have the required skills to extract data from software repositories, this task

requires effort and time.

To understand and showcase the potential of chatbots in the software development, we develop

a chatbot that answers software project related questions. We layered a chatbot on top of software

5

repositories to help practitioners extract software repository information related to their develop-

ment and maintenance tasks. Then, we perform a study with software practitioners to evaluate the

effectiveness of the proposed chatbot and its impact on the practitioners’ productivity. We find that

practitioners using the chatbot completed 90.8% of the tasks accurately (90.8%) on median of 40

seconds per task, compared to 25.2% of the tasks were completed on median of 240 seconds per

task when not using the chatbot. Moreover, most of the participants (90.8%) find the chatbot to be

either useful or very useful. We observe that selecting and training a chatbot’s model is challeng-

ing for SE-based chatbots. This is because selecting a suitable model (i.e., NLU) is crucial for the

chatbot to understand the user’s queries. Another observations is that training a chatbot’s model

requires a lot of resources and efforts to curate a high-quality training dataset. The results of this

research have been published in the Journal of Empirical Software Engineering Abdellatif, Badran,

and Shihab (2020a).

Part II: Improving the chatbots in the SE domain.

In Part I, we highlight the chatbot development challenges and explore the benefits of using chatbots

in the SE domain. In this part, we shift our focus towards helping chatbot developers to design more

effective SE chatbots. To achieve this, we target two of the main challenges related to the NLUs

that face chatbot developers, which we uncoverd in Part I (Chapter 3 and 4) of this thesis. More

specifically, we evaluate the performance of NLUs using SE tasks to guide chatbot practitioners in

the NLU selection for their SE-based chatbots. Then, we evaluate a data augmentation approach

that helps practitioners craft training datasets for chatbots in the SE-domain.

Chapter 5: Can we help developers to design more effective chatbots for the SE domain?

At the heart of all chatbots lies a Natural Language Understanding (NLU) component that enables

chatbots to understand the user’s input. One of the main tasks of NLU is to extract structural infor-

mation from unstructured language input posted by the user Abdellatif, Badran, and Shihab (2020a).

The chatbot’s response highly depends on whether the NLU extracts the information correctly. For

example, if the NLU misclassifies the user’s intention from the question, the chatbot performs an

6

incorrect action and/or returns an incorrect reply. Developing an NLU from scratch is a very dif-

ficult task as it needs AI and NLP expertise, and thus, chatbot developers resort to a handful of

widely-used NLUs that they leverage in their chatbots Marbot (2019); Munoz, Araque, Llamas, and

Iglesias (2018); Murgia, Janssens, Demeyer, and Vasilescu (2016a); Toxtli, Monroy-Hernández, and

Cranshaw (2018). However, there is no consensus on the best NLU to use in the chatbot implemen-

tation Damir (2020); T. G (2016); Nick (2018). Moreover, developers of chatbots that operate in

the SE domain report facing challenges when selecting the best NLU for the domain Abdellatif,

Badran, and Shihab (2020a); Dominic et al. (2020a). Choosing a suitable NLU for the chatbot im-

plementation is a critical task as it directly impacts the user satisfaction Lastra (2016); C. Lebeuf,

Storey, and Zagalsky (2018d).

To guide chatbot practitioners in the NLU selection for their SE-based chatbots, we perform an

empirical study to assess the performance of four widely-used NLUs, namely IBM Watson, Rasa,

Google Dialogflow, and Microsoft LUIS in intents classification using representative SE tasks. Also,

we evaluate the NLUs using different features (i.e., list and prediction features) for extracting a piece

of information (e.g., bug ticket ID) from the user’s query. We find that IBM Watson achieves the best

in intents classification with an F1-measure greater than 84%. For the entity extraction, Microsoft

LUIS and IBM Watson outperform other NLUs in the two SE tasks. Finally, we find that NLUs tend

to better classify intents that have a higher number of training examples compared to intents with

fewer numbers of training examples. This work was published in IEEE Transactions on Software

Engineering journal Abdellatif, Badran, Costa, and Shihab (2021b).

Chapter 6: Improving the SE chatbot’s accuracy.

Chatbot developers train the NLU model on queries that present the different ways users rephrase

their queries to the chatbot. Training the NLUs on more queries yields better performance in terms

of intents classification Abdellatif et al. (2021b). Nevertheless, building and collecting a training

dataset for chatbots in the SE domain is a costly and time-consuming task Abdellatif, Badran, and

Shihab (2020a); Dominic et al. (2020a). This is because the chatbot developers dedicate time and

effort to brainstorm and create training queries for the chatbot. Moreover, there is a lack of user-

chatbot interaction datasets that are available for training the SE chatbots.

7

In Chapter 6, we evaluate an approach that combines NLP techniques to help practitioners

augment datasets for SE-based chatbots. The approach takes as an input the dataset used to train

the NLU, and outputs a dataset with more augmented queries. The main goal of the approach is

to augment new queries that have new keywords, brand new sentence structure, and maintains the

semantic (intent) of the queries in the original dataset. To evaluate the impact of the approach

on the NLU’s performance, we conduct an empirical study using three SE datasets. We find that

using the combined approach to augment the dataset for SE chatbots does not improve the NLU’s

performance in intents classification. Moreover, the results show that the approach does not improve

the NLU’s confidence in its classification. Our results should alarm the research community on the

limitations of current augmentation approaches when applied on software engineering datasets.

1.5 Thesis Contributions

The main contributions of this thesis are as follows:

• We discover and report that developers face different chatbot developments challenges that

are related to chatbot integration, development, natural language understanding platforms

(NLUs), user interaction, and user input.

• We develop a chatbot that leverages code and issue tracking software repository data to answer

software project related questions to highlight the value of using chatbots in SE.

• We compare the performance of four widely-used NLU on tasks from the SE domain. Also,

we assess the NLUs using different features for extracting entities from the user’s query.

• We evaluate the value of a dataset augmentation approach for SE chatbots to enhance the

NLU’s performance and reduce the cost of manual augmentation of the training dataset.

• We provide a guideline for practitioners to improve the performance of their SE-based chat-

bots. Moreover, we make the tools, approaches, and datasets that used in this thesis publicly

available to accelerate the future research for chatbots in the SE domain.

8

Chapter 2

Background and Related Work

In this chapter we provide an overview of the relevant background to our research which in-

cludes a brief description chatbots, and related terminology used throughout the report. Also, we

present the work to software bots in the software engineering domain, using chatbots to assist de-

velopers in their development tasks, and visions for the future use of chatbots.

2.1 Background

Storey and Zagalsky defined bots as tools that perform repetitive predefined tasks to save devel-

oper’s time and increase their productivity Storey and Zagalsky (2016b). They outlined five areas

where they see bots as being helpful: code, test, DevOps, support, and documentation. A recent

study showed that 25% of the project on Github are using at least one bot Wessel et al. (2018a). For

example, Greenkeeper (2019) bot updates the dependencies in the project if they pass the CI tests,

and the bot opens an issue in case the test fails to notify the developers about which package update

breaks the build. Kubernetes Prow Kubernetes (2016) tests the pull requests and merges them if the

tests passed. Snyk (2019) searches for vulnerabilities in the project dependencies and submits a pull

request to fix them.

Chatbots are a sub-category of software bots which have the ability to communicate with users

through natural language C. Lebeuf et al. (2019a); C. R. Lebeuf (2018). Chatbots serve as the

9

conduit between their users and automated services C. Lebeuf et al. (2018d). Through natural lan-

guage, users can ask the chatbot to perform a specific task or inquire about a piece of information.

At the heart of all chatbots lies a natural language platform (NLU). NLUs are essential for the

chatbot’s ability to understand and act on the user’s input. The main goal of the NLU is to ex-

tract structured data from unstructured language input. In particular, it extracts intents and entities

from users’ queries. Intents represent the user intention/purpose of the question, while entities

represent important pieces of information in the query. For example, in the query “How to detect

HTML elements movements ?”, the intent is to know how to detect the movements of the elements

(i.e., looking for code sample). On the other hand, the ‘HTML’ is an entity of type programming

language. Chatbots uses both the intent and entities to perform the action that answers the user’s

question. In this example, the chatbot searches for HTML code sample that detects the elements’

movements and returns it to the user.

To use an NLU on a specialized domain, chatbot developers should define a set of custom

entities and intents. Then, for each custom intent, the NLU needs to be trained on a set of queries that

represents the different ways a user could ask for that intent. For example, the following two queries

“how many commits happened in the last month?” and “show me the number of commits between

1-09-2019 and 30-09-2019” have the same semantics but different syntax. Both questions can be

used to train the NLU on the different ways a user could ask a question with ‘get the number of

commits by date’ intent. Similarly to custom intents, NLUs need to be trained to properly recognize

custom entities. To do that, developers can label the entity types and their values in the queries.

For example, in the following query “what is the fixing commit for bug HHH-8501?”, the entity

‘HHH-8501’ is labeled as a Jira ticket type.

2.2 Software Bots

Software bots are getting more attention from Software Engineering practitioners Storey and

Zagalsky (2016b). For example, Phaithoon et al. (2021) developed FixME bot to help project main-

tainers detect and track the self-admitted technical debts that wait a specific bug resolution before

fixing the debt. Wyrich and Bogner (2019) implemented a bot that performs code refactoring for

10

incorrect order of language modifiers, missing override annotation, commented-out code smells,

and unused method parameters and creates a pull request with the new changes. Basu and Banerjee

(2021) implemented a bot that assigns Jira tickets among the engineers at Walmart in a round-

robin manner to improve the ticket resolution time. Urli, Yu, Seinturier, and Monperrus (2018a)

developed the Repairnator which is a repair bot for Java programs. The Repairnator monitors the

CI of the project and in the case of a test failure, the bot reproduces the bug and generates a fix

using NPEFix Cornu, Durieux, Seinturier, and Monperrus (2015), Nopol Xuan et al. (2017), and

Astor Martinez and Monperrus (2016). Carvalho et al. (2020) designed the C3PR (Code Check and

Correction via Pull Requests) bot that finds static analysis issues in the code. Then, it generates

the fix using ESLint, TSLint, and WalkMod Sonar plugin and submits it as a pull request to be

reviewed by the developers. Şerban, Golsteijn, Holdorp, and Serebrenik (2021) developed a bot

that suggests fixes to the static analysis warnings for the project maintainers. Kumar et al. (2019)

implemented the Sankie bot which recommends reviewers for pull requests. Sankie’s developers

evaluated it on 50 repositories at Microsoft for 2 weeks and their results showed that 72% of the

reviewers added by Sankie ended up interacting in the pull request. On the other hand, researchers

proposed taxonomies to better understand and characterize of the existing software bots Erlenhov,

de Oliveira Neto, Scandariato, and Leitner (2019); C. Lebeuf et al. (2019a). C. Lebeuf et al. (2019a)

designed a multi-faceted taxonomy that is related to the environment, intrinsic, and interaction prop-

erties of bots. Erlenhov et al. (2019) proposed a DevBots taxonomy to support the process of clas-

sifying and understanding the different bots used by software practitioners. Erlenhov, Neto, and

Leitner (2020) identified three personas of DevBots based on their autonomy, chat interfaces, and

smartness.

The vast amount of research on developing software bots to perform software development tasks

(e.g., resolve code conflicts) motivate our work. In this research proposal, we propose a chatbot

framework to answer users’ questions using project repository data.

11

2.3 Using Chatbots to Assist Developers

Chatbots were proposed in the 1960s to enable interaction between humans and machines. For

example, Weizenbaum (1966) in 1966 developed Eliza chatbot that uses pattern matching and sub-

stitution methodology to act as a psychotherapist and answers patients’ questions. In 1973, Cerf

(1973) developed Parry chatbot that mimics a patient with paranoid schizophrenia. Later in the

1990s, Wallace (1995) developed ALICE that imitates a human over the internet and engages in a

conversation with a user. The recent advances in artificial intelligence and natural language pro-

cessing led to the current rise and wide use of chatbots to perform different tasks C. Lebeuf et al.

(2018c) such as assisting customer service A. Xu et al. (2017), answering student admission ques-

tions Agus Santoso et al. (2018), and helping health care workers Cameron et al. (2018). Recently,

chatbots has attracted much attention in the SE domain to support software developers in their daily

tasks Bradley et al. (2018); Dominic et al. (2020a); Qasse et al. (2021); Wessel and Steinmacher

(2020). For example, Bradley et al. (2018) developed Devy to assist developers in their basic de-

velopment tasks (e.g., commit a code). Then, the authors evaluate Devy through asking 21 software

practitioners to complete two tasks using Devy. The results show that all participants completed

both tasks successfully. Qasse et al. (2021) developed a chatbot, called iContractBot, that assists

developers in developing and modeling contracts (i.e., self-executed program codes) in blockchain

platforms. Dominic et al. (2020a) developed a chatbot to assist in the project onboarding process

for newcomers. Wessel and Steinmacher (2020) introduced meta-bot to serve as an intermediate be-

tween developers and different bots on Github. With that, developers can manage Github bots and

their notifications by simply interacting with the meta-bot through natural language. Paikari et al.

(2019) developed a chatbot prototype to detect and resolve code conflicts that arise when multiple

developers work on the same file.

A number of studies have focused on implementing chatbots to answer software development re-

lated questions Chun-Ting Lin and Huang (2020); Romero, Parra, and Haiduc (2020b); Tian, Thung,

Sharma, and Lo (2017a); B. Xu, Xing, Xia, and Lo (2017a). B. Xu et al. (2017a) developed An-

swerBot to answer software development questions using Stack Overflow. AnswerBot extracts the

12

answers using related Stack Overflow posts and summarize the answers to respond to user’s ques-

tion. Vale and Maia (2021) developed an assistant to answer development related questions using a

transformer-based model (GPT-2). Tian et al. (2017a) developed APIBot, a chatbot that is able to

answer developers’ questions about a specific API using that API’s documentation. Chun-Ting Lin

and Huang (2020) developed MSABot to help developers in the development and maintenance of

Microservices-based systems. Romero et al. (2020b) proposed a GitterAns, a chatbot that answers

development questions in online Gitter chatting platform.

Prior work focused on proposing chatbots that answer users’ questions using external sources of in-

formation (e.g., Stack Overflow and API documentation) and support software practitioners in their

development tasks. However, none of this work has used an internal source of information (repos-

itories data) to support developers. One of the main goals of this thesis is to empirically validate

the challenges of developing SE chatbots. Moreover, we showcase a chatbot that uses an internal

source of information to answer software project related questions.

2.4 Visions for the Future Use of Chatbots

In addition to the visionary work by Storey and Zagalsky Storey and Zagalsky (2016c) which

presented a cognitive support framework in the bots landscape, a number of other researchers pro-

posed work that laid out the vision for the integration of bots in the Software Engineering domain.

In many ways, this visionary work motivates our bot framework. Acharya, Parnin, Kraft, Dagnino,

and Qu (2016) proposed the idea of code drones, a new paradigm where each software artifact rep-

resents an intelligent entity. The authors outline how these code drones interact with each other,

updating and extending themselves to simplify developers’ lives in the future. They see the use of

bots as a key to bringing their vision to life. Similarly, Matthies, Dobrigkeit, and Hesse (2019) envi-

sioned a bot that analyzes and measures the software project’s data to help development teams track

their project progress. Researchers also envisioned bots that generate fixing patches and validate

the refactoring and bug fixes van Tonder and Goues (2019), and explain those fixes to the develop-

ers Monperrus (2019). Dominic, Houser, Steinmacher, Ritter, and Rodeghero (2020b) proposed a

vision of a chatbot to help in the onboarding of newcomers to OSS projects by providing resources

13

and recommending experienced developers for assistance.

Beschastnikh, Lungu, and Zhuang (2017) presented their vision of an analysis bot platform, called

Mediam. The idea of Mediam is that developers can upload their projects to GitHub and allow

multiple bots to run on them, which will generate reports that provide feedback and recommenda-

tions to developers. The key idea of this vision is that bots can be easily developed and deployed,

allowing developers quick access to new methods developed by researchers. Robillard et al. (2017)

envisioned a future system (OD3) that produces documentation to answer user queries. The pro-

posed documentation is generated from different artifacts i.e. source code, Q&A forums, etc.

The gap between this visionary work and industrial use, motivates our work as we aim to bridge

this gap by bringing the visionary work to life. In our research proposal, we propose a chatbot

framework to support software developers that have different levels of technical knowledge in their

daily tasks. And, we examine the chatbot usages on GitHub from software developers’ perspective.

2.5 Chapter Summary

This chapter provides a background about the chatbots and their relevant definitions. Then,

it surveys previous work on software bots in the software engineering domain. Next, it presents

prior research on using chatbots to help developers in their tasks and discusses visionary work on

of integrating chatbots in the software engineering domain. In the next chapter, we describe our

empirical study to identify the chatbot development challenges. Also, we present our proposed

chatbot framework to help answering software project related question.

14

Chapter 3

Understanding the challenges of chatbot

development

Chatbots are becoming increasingly popular due to their benefits in saving costs, time, and ef-

fort. This is due to the fact that they allow users to communicate and control different services easily

through natural language. Chatbot development requires special expertise (e.g., machine learning

and conversation design) that differ from the development of traditional software systems. At the

same time, the challenges that chatbot developers face remain mostly unknown since most of the ex-

isting studies focus on proposing chatbots to perform particular tasks rather than their development.

Therefore, we answer this question by examining the Q&A website, Stack Overflow, to provide in-

sights on the topics that chatbot developers are interested and the challenges they face. In particular,

we leverage topic modeling to understand the topics that are being discussed by chatbot developers

on Stack Overflow. Then, we examine the popularity and difficulty of those topics. Our results

show that most of the chatbot developers are using Stack Overflow to ask about implementation

guidelines. We determine 12 topics that developers discuss (e.g., Model Training) that fall into five

main categories. Most of the posts belong to chatbot development, integration, and the natural lan-

guage understanding (NLU) model categories. On the other hand, we find that developers consider

the posts of building and integrating chatbots topics more helpful compared to other topics. Specif-

ically, developers face challenges in the training of the chatbot’s model. We believe that our study

15

guides future research to propose techniques and tools to help the community at its early stages to

overcome the most popular and difficult topics that practitioners face when developing chatbots.

The result of this research question appears in the International Conference on Mining Software

Repositories Abdellatif, Costa, et al. (2020).

3.1 Introduction

More than 50 years after Weinzebaum introduced the first computer program to have a conver-

sation with humans Weizenbaum (1966), chatbots have become the main conduit between humans

and services Storey and Zagalsky (2016b). Potentialized by the recent advances in artificial intelli-

gence and natural language processing C. Lebeuf et al. (2018c), chatbots are the primary interface

in a variety of services, from smart homes Baby, Khan, and Swathi (2017); Valtolina, Barricelli, and

Gaetano (2020) and personal assistants Apple (2020); Google (2020a), to health care Care (2020)

and E-commerceSumo (2020). Given how chatbots reduce the operational costs of services, the

usage of chatbots will only increase - experts predict that 85% of users’ interactions with services

will be done through chatbots by 2021 Milenkovic (2019).

Due to their importance and popularity, developing and maintaining chatbots is becoming more

important. In addition, the development of chatbots requires expertise in specialized areas, such as

machine-learning and natural language processing, which, distinguishes it from traditional software

development Jha (2019). While recently introduced chatbot frameworks (e.g., Microsoft Bot Frame-

work Microsoft (2020b)) have reduced the barrier to entry of creating chatbots, e.g., by providing

the components for user interaction and natural language understanding platforms, little is known

about the specific challenges that chatbot developers face when developing chatbots. Understanding

such challenges is of paramount importance, helping the research community provide more effec-

tive tools for chatbot development, improving their quality, and ultimately increasing their adoption

and usefulness among users.

In this chapter, we provide the first attempt at understanding the challenges of chatbot develop-

ment by investigating what chatbot developers are asking about on Stack Overflow. We study Stack

16

Overflow since it is the most prominent code-centric Q&A website and used constantly by the de-

velopment community to communicate their challenges and issues, provide solutions and foment

discussions about all aspects in software development Abdalkareem, Shihab, and Rilling (2017);

Overflow (2019b). Our investigation dives into the chatbot-related posts on Stack Overflow to pin-

point the major topics surrounding the discussions on chatbot development. We use well-known

topic modeling techniques to group the posts into cohesive topics and apply a series of quantita-

tive analyses, both through metrics and manual analysis. Specifically, our work investigates the

following research questions:

• RQ1: What topics are chatbot developers asking about? We find that chatbot develop-

ers ask about 12 main topics that can be grouped into 5 main categories. The categories are

related to chabot integration, development, natural language understanding (NLU), user inter-

action, and User Input. The most popular questions include those related to chatbot creation,

integration, and user interface.

• RQ2: What types of questions are chatbot developers asking? Chatbot developers use

Stack Overflow primarily as a source of guidance for specific implementation routines, work-

ing examples, and troubleshooting. This shows a need for better documentation that provides

real-scenarios and more information about the NLU models used by chatbots.

• RQ3: Which topics are the most difficult to answer? The most difficult topics are related

to training the chatbot NLU models. On the other hand, posts related to traditional software

development, e.g., chatbot development framework, are more frequently answered, albeit, we

did not find any statistically significant correlation between the popularity and difficulty of

the chatbot topics in our study.

In addition to the identified chatbot topics in Stack Overflow, we discuss the evolution of the

chatbot topics on Stack Overflow and find that the chatbot-related discussions have increased sub-

stantially since 2016. The activity of some categories are linked to the releases of chatbot platforms.

Also, we compare the chatbot topics to other mature SE fields (e.g., mobile and security) in terms

of popularity and difficulty. Our results show that the chatbot community needs more effort to reach

the maturity level of similar SE fields.

17

Our findings show that platform owners need to improve their current documentation and in-

tegration with popular third-parties. Moreover, we believe that our study guides future research to

focus on the most popular and challenging chatbot topics.

3.1.1 Organization of the Chapter

The rest of the chapter is organized as follows. Section 3.2 describes our methodology. Sec-

tion 3.3 reports our empirical study results. Section 3.4 discusses our results and the implications of

our findings. Section 3.5 discusses the threats to validity, and Section 3.6 concludes the chapter.

3.2 Methodology

Identify Chatbot Tags

chatbot

Filter
Relevant Tags

TRT
TST

LDA Topic Modelling

Select Optimal
Number of Topics

Categorize Posts
Into Topics

Label Topics’
Using Keywords

Posts Categorized
Into Labeled Topics

chatbot,
rasa,
c#,
…

chatbot,
rasa,

wit.ai,
…

Data Preprocessing

Extract Titles
& Preprocess For LDA

Download SOF Data

Extract
Coexisting Tags

Extract `chatbot’
Tagged Posts

Extract Posts Using
Filtered Tags

Extract Chatbot Posts
1 2 3

45

Figure 3.1: Overview of the methodology of our study.

The main goal of our study is to examine what chatbot developers are asking about. To achieve

this goal, we resort to analyze the developers’ discussions on Stack Overflow as it provides a rich

dataset and have been used by similar investigations in other domains, such as concurrency S. Ahmed

and Bagherzadeh (2018), cryptography APIs Nadi, Krüger, Mezini, and Bodden (2016), and deep

learning Han, Shihab, Wan, Den, and Xia (2019). While providing structured data with questions,

answers and their respective metadata (e.g., accepted answers), Stack Overflow does not contain

any fine-grained topic information related to chatbots. Hence, we first need to identify the posts

from Stack Overflow that are related to chatbots, group them according to their dominant topic, and

then conduct our analysis. As Figure 3.1 shows, we perform the selection of chatbot related posts

18

in a methodology of five-steps, which will be detailed further in this section.

Step 1: Download & extract Stack Overflow dump. We download the entire Stack Overflow

dump (last updated 4 September 2019) Exchange (2019), containing user questions, answers, and

the metadata of the posts (e.g., view count, creation date) for the period between August 2008 and

September 2019. The initial dataset contains approximately 18 million questions and 28 million

answer posts.

Step 2: Identify chatbot tags. Stack Overflow holds posts on a myriad of different software

development topics (e.g., Java, security, and blockchain). Posts are typically tagged by their authors

with commonly used tags (e.g. chatbot, web) to improve the posts’ visibility and chances of being

answered Barua, Thomas, and Hassan (2014). To identify the most relevant chatbot-related tags,

we follow the approach used by prior work Bagherzadeh and Khatchadourian (2019); Rosen and

Shihab (2016), and create a tag set using the following procedure. First, we retrieve all posts with

the ‘chatbot’ tag, yielding a set of 2,116 posts. We refrain from adding any other tags in this inital

step to reduce the chances of introducing noise, as this will be used to identify other chatbot-related

tags. Second, we extract all the tags that co-exist with the ‘chatbot’ tag from the chatbot-tagged

posts. Next, we use two heuristic metrics used in prior work to obtain a bigger set of chatbot-related

tags Rosen and Shihab (2016); Wan, Xia, and Hassan (2019). The first metric is the tag relevance

threshold (TRT), a measure of how related a specific tag is to the chatbot-tagged posts. This measure

calculates the ratio of the chatbot-related posts (posts that include the ‘chatbot’ tag) for a specific

tag compared to the total number of posts for that tag. Specifically, the TRT is measured using the

equation TRTtag = No. of chatbot posts for the tag
Total no. of posts for the tag . For example, ‘rasa’ is a tag with a TRT of 21.2%,

which means that 21.2% of the posts tagged with ‘rasa’ are also tagged with ‘chatbot’. By using the

TRT we are able to eliminate the irrelevant tags from our set.

However, some tags that have a small number of posts (e.g., the ‘botlibre’ tag has only 3 posts)

can have a high TRT of (33.3%) because a single one of their posts is chatbot-related, and this may

introduce insignificant tags. Therefore, we use a second metric, the tag significance threshold (TST),

which is a measure of how prominent a specific tag is in the chatbot-tagged posts Rosen and Shihab

(2016); Wan et al. (2019). This metric is measured by using the total number of the chatbot posts

for that tag and the total number of the chatbot posts for the most popular tag (‘chatbot’ tag with

19

2,116 posts.) as follows TSTtag = No. of chatbot postsforthetag
No. of chatbot posts for themost popular tag . For example, the ‘rasa’

tag has a TST of 0.3% which means that the total number of the posts that are tagged with ‘rasa’

and ‘chatbot’ at the same time are equal to 0.3% of the total number of chatbot-related posts for the

‘chatbot’ tag.

We consider a tag to be significant and relevant to the chatbot posts if its corresponding TRT

and TST are above a certain threshold. The first three authors, with varying degrees of chatbot

development experience, independently examined the tags with different TRT and TST thresholds.

For each tag, we inspect a randomly selected sample of posts, to identify when the tags become less

relevant and less specific to chatbots, to identify the most appropriate TRT and TST thresholds. This

method has been used by several previous similar studies Bagherzadeh and Khatchadourian (2019);

Rosen and Shihab (2016) and has the goal of selecting tags relevant to chatbots without including

too much noise in the dataset. Then, we discussed the chosen thresholds to reach a consensus on

the optimal TRT and TST values. The first three authors independently evaluated the optimal TRT

and TST thresholds that yield the best results and discussed their choices to reach a consensus.

We find that tags with a TRT value higher than 11% and a TST value higher than 0.14% value

yield an appropriate balance between the inclusion of more posts related to chatbots (i.e,. more

representative dataset) and the filtering of posts that are unrelated to chatbots (i.e., less noise). It is

important to note that our thresholds are in-line with the thresholds used by previous studies that

adapted the same approach S. Ahmed and Bagherzadeh (2018); Bagherzadeh and Khatchadourian

(2019); Yang, Lo, Xia, Wan, and Sun (2016). Finally, we use the selected TRT and TST thresholds

to identify our tag set. Table 3.1 shows the tags obtained in our tag set and their respective TRT and

TST values.

Step 3: Extract chatbot posts. After obtaining the chatbot-related tag set, we use those tags (see

Table 3.1) to extract the posts that will constitute our chatbot dataset throughout this study. We

extract this corpus by querying all posts on Stack Overflow that are tagged with one of the tags

in our tag set. This process yielded a dataset containing 3,890 chatbot posts and their respective

metadata.

Step 4: Preprocessing chatbot posts. We filter out the irrelevant information before applying the

topic modeling techniques. In this analysis, we focus only on the posts’ titles, as opposed to their

20

Table 3.1: The tag set used to identify the chatbot related posts. The TRT and TST are expressed in
percentages.

Tag
Name

TRT TST Tag Name TRT TST

chatbot 100 100 aws-lex 14.3 0.6
facebook-
chatbot

42.1 6.2 sap-
conversational-ai

50 0.5

amazon-
lex

22.2 4.3 chatfuel 26.3 0.5

rasa-nlu 18.4 2.9 pandorabots 41.2 0.3
aiml 27.6 2.6 rasa 21.2 0.3
rasa-
core

22.6 2.4 chatbase 18.2 0.3

wit.ai 13.1 1.9 chatscript 30.8 0.2
chatterbot 25.4 1.6 rivescript 28.6 0.2
api-ai 11.4 0.8 program-o 37.5 0.1
web-
chat

13.6 0.8 botpress 33.3 0.1

gupshup 27.1 0.6 lita 25 0.1

body contents, as the content in the posts’ bodies can introduce noise to our analysis. This approach

of using the posts’ titles has been used in the prior investigations Rosen and Shihab (2016), as a

post’s title has been shown to be representative of the post body Chen, Chen, Xing, and Xu (2016);

B. Xu et al. (2017a). After extracting the posts’ titles, we prepare the data to be used in the topic

modelling process. To do so, we leverage the Python NLTK (NLTK) (2019a) and Gensim Gensim

(2019) tools to perform the preprocessing steps on our dataset. First, we remove the stopwords, such

as ‘how’, ‘a’ and ‘can’, using the NLTK stopwords corpus (NLTK) (2019b) as those words hinder

the process of differentiating between topics. Next, we build a bigram model using Gensim since

we notice that some words commonly appear together (e.g., ‘Rasa NLU’ and ‘Bot Framework’) and

the topic modelling technique should consider them together. Moreover, we lemmatize the words

to map them to their origin (e.g., ’development’ is mapped to ’develop’). Those steps output a

preprocessed dataset that is ready to be inputted to the topic modelling technique in our next step.

Step 5: Identify chabot topics. To identify the topics that are discussed by chatbot developers

on Stack Overflow, we use the Latent Dirichlet Allocation (LDA) modeling technique Blei, Ng,

and Jordan (2003), which has been widely used in Software Engineering studies Bagherzadeh and

Khatchadourian (2019); Rosen and Shihab (2016). LDA groups the posts of our dataset into a set

of topics based on the word frequencies and their co-occurrences in the posts. In particular, LDA

21

Table 3.2: The chatbot topics, categories, and their popularity.

Main Category Topic # Posts Avg.
Views

Avg.
Favourites

Avg.
Scores

Integration
API Calls 264 354.2 1.2 0.5
Messenger Integration 463 638.0 1.4 0.7
NLU Integration/Slots 388 406.0 1.1 0.8

Development
General Creation/Integration 250 671.6 3.1 0.6
Development Frameworks 375 513.3 1.6 0.8
Implementation Technologies 320 619.2 1.5 0.7

NLU Intents & Entities 437 516.3 1.7 1.0
Model Training 347 524.3 1.4 0.7

User Interaction
Chatbot Response 253 409.1 1.2 0.7
Conversation 278 510.5 1.9 0.6
User Interface 208 536.8 2.6 0.8

User Input User Input 307 402.7 1.2 0.6

assigns to each post a series of probabilities (one per topic) that indicate the chances of a post being

related to a topic. The topic with the highest probability for a particular post (i.e., the post that

contains more keywords of a particular topic) is considered to be the post’s dominant topic. We use

the Mallet implementation of LDA in our methodology McCallum (2002).

The main challenge of using LDA is to identify the optimal number of topics K, that the LDA

uses to group the posts. If the K value is too high, topics may become too specific to draw any

relevant analysis. On the other hand, if K value is small, the yielded topics may be too generic, en-

compassing posts of many different aspects. To overcome this issue, we examine differentK values

ranging between 5 to 20 in steps of 1 and calculate the coherence metric value of the topics. The co-

herence metric measures the understandability of the topics resulting from the LDA using different

confirmation measures, and has been shown to be highly correlated with human understandability

Röder, Both, and Hinneburg (2015). Thus, the first two authors run the LDA with varying K values

and then stored the resulting coherence score from each run. We find that K values in the range of 10

to 14 have very similar coherence scores (i.e., the difference is very small). To ensure that we select

the best K value, the first two authors examined a randomly selected sample of 30 posts from each

topic for K values from 10 to 14. Based on this examination, we find that a K value of 12 (i.e., 12

topics) provides an optimal set of topics that balances the generalizability and the specificity (i.e.,

most cohere posts) of the resulting chatbot topics.

22

3.3 Case Study Results

In this section, we present the analysis of the chatbot posts and topics to answer our research

questions.

3.3.1 RQ1: What topics are chatbot developers asking about?

Motivation: Chatbot development has some particularities that distinguish it from traditional soft-

ware development Jha (2019). For example, chatbot developers require specific expertise in natural

language processing, machine learning, and conversation design, which are often unnecessary or

overlooked in most conventional software development tasks. Hence, the challenges faced by chat-

bot developers are likely to differ from the challenges of traditional software development. Since

developers use Q&A websites to communicate both problems and solutions, the goal of this re-

search question is to dive into the invaluable data of Stack Overflow to identify the most common

and pressing chatbot topics and the issues that are more frequently encountered by the chatbot com-

munity. Moreover, identifying the widely discussed chatbot topics is the initial step to highlight the

topics that are gaining more traction and difficult to answer by the chatbot community.

Approach: We use the LDA as a method to identify the different topics that developers discuss

on Stack Overflow as mentioned in Section 3.2. The first three authors (annotators) labelled the

set of topics based on the posts overall theme. In particular, each of the annotators individually

inspected the top 20 keywords and a random sample of at least 30 posts from each topic in order

to label it with a title that best represents the posts of that topic. Then, the authors discuss each of

the 12 topics’ labels to reach a consensus about the titles of all topics. We observe that some topics

that discuss similar aspects of the chatbot development process or are related to the same chatbot

component can be further grouped into categories. For example, one topic with keywords related

to ‘response’, ‘webhook’, and ‘card’ and another topic that has ‘display’, ‘trigger’, and ‘prompt’

keywords are related to chatbot user interaction. Therefore, we further categorize those topics to

have a hierarchical view on the chatbot discussions on Stack Overflow. We also examine the most

popular chatbot topics among developers. To investigate that, we use three different complemen-

tary measurements of popularity that have been adopted in prior work S. Ahmed and Bagherzadeh

23

(2018); Bagherzadeh and Khatchadourian (2019); Bajaj, Pattabiraman, and Mesbah (2014); Nadi et

al. (2016):

(1) The average number of views (avg. views) of the post from both registered and unregistered

users. Our intuition here is that if a post is viewed by a large number of developers, then this

post is popular among chatbot developers. Overall, this metric measures the interest of the

community by telling us how often a post is visualized.

(2) The average number of posts marked as favourite (avg. favourites) by Stack Overflow

users. This metric measures the issues and solutions that developers deemed to be helpful and

having a high chance of recurring during the development of chatbots.

(3) The average score (avg. scores) of the posts. Stack Overflow allows it’s members to up-vote

posts that they consider to be interesting and useful. The votes are then aggregated as a score,

which we use as a metric of perceived community value.

Results: Table 3.2 shows the 12 topic titles, which are grouped into 5 main categories. It also shows

the number of posts that belong to each topic and the topics’ popularity through our popularity

metrics: views, favourites, and the scores received by developers on Stack Overflow. As seen from

the table, the developers ask about different topics in chatbot development and the number of posts

varies across the topics.

The 12 chatbot topics can be mainly grouped into five categories: ‘Integration’, ‘Development’,

‘NLU’, ‘User Interaction’, and ‘User Input’. Next, we discuss those categories in more details.

Integration: This category contains three topics, namely Messenger Integration, NLU Integra-

tion/Slots, and API Calls. This category deals with the integration between chatbot platforms, APIs,

and websites. About 28.6% of posts in our dataset belong to this category. We also see that the

Messenger Integration topic has the highest number of posts in our dataset. In this topic, develop-

ers mainly ask about how to create and integrate chatbots to messenger applications. One of the

reasons of the widespread of chatbots is the global adoption of messaging platforms (e.g., Slack)

C. Lebeuf et al. (2018c). For example, Facebook reported that there are more than 300,000 active

chatbots in 2018 that are deployed on its Messenger platform Boiteux (2018). An example of posts

24

under this topic is a developer asking on Stack Overflow “Facebook Chatbot (PHP webhook) send-

ing multiple replies”Woodman (2018). As chatbots are used to integrate various services C. Lebeuf

et al. (2018c), chabot developers are more exposed to the challenges of multi-service and platform

integration.

Development: The posts of this category are related to building chatbots using different devel-

opment frameworks, asking about special configurations and features, and specific implementations

using those frameworks. For example, a developer posted on Stack Overflow “How to start a conver-

sation from Nodejs client to Microsoft bot”Hovel (2017). The posts of Development Frameworks,

Implementation Technologies, and General Creation/Integration topics form this category. In our

study, this category is the second largest, containing 24.3% of the posts in our dataset. This shows

that developers tend to heavily rely on chatbot frameworks.

Natural Language Understanding (NLU): This category contains posts related to the definition

of intents (the purpose/intention behind the user’s input) and entities (important pieces of informa-

tion in the user’s input such as city names), handling and manipulating those intents and entities,

customizing and configuring NLUs, and improving the performance of the NLU models. This cat-

egory comprises 20.2% of the posts in our dataset. It has Intents & Entities and Model Training

topics. Those topics are related to the chatbot capability of understanding the users’ input and re-

plying accordingly, which has a direct impact on user satisfaction Abdellatif, Badran, and Shihab

(2020a). The post “How can I improve the accuracy of chatbot built using Rasa?” Ratan (2017)

is an example of posts from this category. Currently, large IT companies are investing to build

NLUs (e.g., Microsoft developed LUIS platform Microsoft (2021b)), which is an indicator of their

importance and popularity. Moreover, NLU platforms nowadays are considered to be one of the

critical components of chatbots Rychalska, Glabska, and Wroblewska (2018a). Leveraging an NLU

platform allows developers to focus on the core functionalities of their chatbots rather than having

to analyze the user input and manage the conversation with the user.

User Interaction: This category contains posts about conversation design, generating reply

messages to users, and designing the chatbot’s graphical user interface. For example, developers

ask “How to resume or restart paused conversation in RASA?”Shuvro (2019) and “How to add

custom choices displayed through Prompt options [...] using C#?”C. N. G (2019). This category

25

includes User Interface, Chatbot Response, and Conversation topics and forms 19% of the posts in

our dataset. We believe that managing the conversation flow with the user is not an easy task since

the chatbot users might deviate (i.e., change to other topic) from the designed conversation flow.

User Input: The posts of this category are related to checking/validating and storing the user

input, e.g., “How to store and retrieve the chat history of the dialogflow?”Casagrande (2019). There

is only one topic that is included in this category and it contains 7.9% of posts in our dataset. Having

a single topic as a group indicates that parsing and storing chatbot users’ input is a more independent

problem among the chatbot topics.

From our results, we observe that the categories cover the end-to-end development of chatbots.

The User Interaction category covers the creation of the chatbot interface, while the User Input

category covers the manipulation of the users’ input received through the User Interaction compo-

nent. The NLU category includes posts about understating the users’ input and optimizing the NLU

Model of the chatbot, the Development category covers the back-end development of the core func-

tionalities of the chatbot, and finally, the Integration category covers the integration of all the chatbot

components together (User interface, NLU, backend, etc.). This shows that developers are facing

various challenges and seeking knowledge about each phase of the chatbot development process.

Moreover, the topics within each category reflect specific concerns and issues within that category.

For example, in the NLU category, developers are asking questions about defining/handling intents

and entities, and improving the performance of the NLU model.

In the second part of our analysis, we investigate the popularity of the chatbot topics. We

find that the most popular topics fall into the Development and NLU categories. Table 3.2 shows

that the topic General Creation/Integration contains the most viewed and most favourited posts by

chatbot developers. This topic contains posts with basic questions about chatbot creation and its high

popularity can be explained by the introductory nature of the topic, that is, any newcomer will look

for these posts to start developing their first chatbot. Another aspect of this topic’s popularity might

be due the lack of proper chatbot introductory documentation and support for newcomers. The most

viewed and favourited post in our dataset is “Any tutorials for developing chatbots?” with more than

71,565 views and 104 members marking it as a favorite post, evidences the lack of documentation

concern. Interestingly, our findings suggest that the chatbot development community should give

26

special attention to providing a more extensive and accessible documentation on how to develop

chatbots from scratch. Intents & Entities is the topic with highest average of post score, the process

of handling intents and entities is one of the most specialized aspects of chatbot development, which

might explain why developers have a higher (relative) praise for posts from this particular topic.

Chatbot developers ask about every aspect and phase of the chatbot devel-

opment process including Integration, NLU, Development, User Input, and

User Interaction. The most popular topics in the chatbot dataset are related

to General Creation/Integration.

3.3.2 RQ2: What types of questions are chatbot developers asking?

Motivation: After understanding the most interesting topics to chatbot developers, we set out to

examine the types of posts that they ask in each chatbot category. Prior work Rosen and Shihab

(2016) shows that developers ask different types (i.e., how, why, what) of questions to address

distinct challenges, hence, this analysis will help us identify the nature of the challenges encountered

during chatbot development.

Approach: To achieve that, we follow a similar approach used by prior work to identify the types of

the posts on Stack Overflow Rosen and Shihab (2016); Treude, Barzilay, and Storey (2011). In par-

ticular, we randomly sample posts from each of the five main chatbot categories with a confidence

level of 95% and a confidence interval of 5%. Our random sample size for each category yields

a total of 1241 posts: 286 Integration posts, 273 Development posts, 258 NLU posts, 253 User

Interaction posts, and 171 User Input posts. Overall, the annotators achieve substantial agreement

(kappa=0.62) on the 1241 classified posts. Our level of agreement is higher than the agreement

reached in similar studies Rosen and Shihab (2016). For the cases that all annotators failed to agree

on, the annotators revisit the questions together and discussed them to reach an agreement. Then,

the first three authors individually examine the sample posts’ titles and bodies and label each post

using one of following types that were used by prior work Rosen and Shihab (2016):

• How: Used for posts that ask about a method or technique to implement something Rosen

and Shihab (2016). Posts with this type differ from the ‘why’ posts as in here the developer

27

Table 3.3: Chatbot posts types on Stack Overflow.

Main Categories % How % Why % What % Other

Integration 66.4 22.7 10.8 0.0
Development 57.9 23.4 18.3 0.4
NLU 54.3 29.5 15.9 0.4
User Interaction 66.8 22.5 10.3 0.4
User Input 68.4 14.6 14.6 2.3

Chatbots (all) 61.8 25.4 11.7 1.2

has a particular goal in mind, and asks for the steps to achieve this goal (e.g., “how to get user

name in Microsoft bot framework in C# using V4?”).

• Why: Posts where the developer asks about the reason, cause, or purpose of something Rosen

and Shihab (2016). Posts of ‘why’ type are often related to troubleshooting where the devel-

oper expects an explanation of a particular (and unexpected) behavior (e.g., “why is Word-

press blocking the js livechat window?”).

• What: Posts where the developer is asking for a particular information Rosen and Shihab

(2016). Often, the user wants to clarify a doubt that is useful to make more informed decisions

(e.g., “what are ”implicit triggers” in a Google Action package?”).

• Other: We assign this type to posts that do not fall under any of the above types (e.g., “chatbot

conversation objects, your approach?”).

To measure the quality of our classification of the random sample, we use Cohen’s Kappa McHugh

(2012) to measure the level of inter-agreement among the annotators.

Results: Table 3.3 shows the percentage of the posts types for each chatbot category. We see

that more than half of the posts (61.8%) are of ‘how’ type, followed by ‘why’ (25.4%) and ‘what’

(11.7%). This shows that the developers are looking for more working examples, debugging, and

information. The User Interaction category has the most ‘how’ posts (66.8%), showing a need for

more sources of guidance to design and manage the conversation flow between the user and chatbot.

The NLU category has the most ‘why’ posts (29.5%), suggesting the need for discussion forums and

better documentation on how the NLU models work, especially given that most NLUs are closed

source. The Development category has the most ‘what’ posts (18.3%), suggesting that providing

28

Table 3.4: The difficulty per topic.

Topic Posts w/o Median
Accepted (%) Time (h)

General Creation/Integration 72.0 8.2
Intents & Entities 71.4 19.5
User Interface 70.7 7.0
Model Training 70.2 22.4
Messenger Integration 70.0 22.6
User Input 66.8 9.3
NLU Integration/Slots 66.5 12.8
Conversation 65.5 6.9
Chatbot Response 65.2 11.3
Implementation Technologies 64.7 15.5
API Calls 63.7 16.2
Development Frameworks 63.7 15.6

general information about the supported features of the chatbot frameworks is appreciated by the

community.

Chatbot developers mainly (61.8%) look for implementation guidance by post-

ing how posts, followed by why (25.4%) and what (11.7%). Developers are

concerned about the how aspect of the User Interaction category, whereas

most the highest share of why posts are from the NLU category, and what

posts from the Development category.

3.3.3 RQ3: Which topics are the most difficult to answer?

Motivation: Given that we know the popular topics and their types of posts. Now, we want to

investigate the difficulty of answering posts in each topic. Finding whether some topics are harder

to answer than others will help us identify the topics that need more attention from the community.

Also, it allows us to highlight the topics where there is a need for better tools/frameworks to support

developers at addressing chatbot development challenges.

Approach: We measure the difficulty of each topic by applying two metrics that have been used in

prior work Bagherzadeh and Khatchadourian (2019); Rosen and Shihab (2016); Yang et al. (2016):

(1) The percentage of posts of a topic without accepted answers (% w/o accepted answers).

29

Table 3.5: Correlation of topics popularity and difficulty.

Correlation Coeff. / p-value Avg. Views Avg. Score Avg. Favourite

% w/o Accepted Answers 0.524/0.084 0.147/0.651 0.419/0.176
Median Time to Answer (Hrs.) 0.105/0.749 0.223/0.485 −0.335/0.287

For each chatbot topic, we measure the percentage of posts that have no accepted answers.

While many answers can be issued in a post, the post’s author has the sole authority to mark

an answer as accepted if it satisfies and solves the original post’s question. Therefore, topics

with less accepted answers are considered more difficult Bagherzadeh and Khatchadourian

(2019); Rosen and Shihab (2016).

(2) The median time in hours for an answer to be accepted (Median Time to Answer (Hrs.)).

We measure the median time in hours for posts to receive an accepted answer. This metric

considers the creation time of the accepted answer and not the time at which the answer

is marked as accepted. The longer it takes for a post to be properly answered (receive an

accepted answer), the harder the post isBagherzadeh and Khatchadourian (2019); Rosen and

Shihab (2016).

Our dataset includes some posts that did not have sufficient time to receive an answer. In our

dataset of chatbot-related posts, questions take a median of 14.8 hours to be answered, hence, we

remove from this analysis posts that were created less than 14.8 hours before the data collection

date (September 4, 2019).

Results: Table 3.4 shows the percentage of accepted answers and median time (in hours) to receive

an accepted answer for each of the identified topics in Section 3.3.1. The topics in Table 3.4 are

ordered based on the percentage of accepted answers they received. The most popular topic General

Creation/Integration is also the one with the largest share of posts without accepted answers. The

posts in this topic, however, take a median time of only 8.2 hours to receive an accepted answer,

which is the third fastest median time in our topics. To understand the reason behind the high

percentage of posts with no accepted answers (72%), we examine the posts of this topic. We find

that the posts without an accepted answer are given low scores (on average 0.17) from developers

on Stack Overflow. This might be due to unclear or ill-formed questions, which effectively reduces

30

the chances of getting an accepted answer.

If we analyze the median time to answer a topic, we see a higher variation among the topics.

Messenger Integration, Intents & Entities, and Model Training are the most difficult topics based

on their time to receive accepted answers. Interestingly, Intents & Entities, and Model Training

are related to the NLU category which discusses how to load and train NLU models, and identify

and handle intents and entities. The results show that the topics related to the NLU are harder to

answer by the Stack Overflow community. This may be due to the black box implementation of

most popular NLUs, which prevents chatbot developers from fully understanding and solving NLU

related issues.

On the other hand, posts that are related to Development Frameworks have the highest percent-

age of accepted answers and a median time to answer in-line with the overall chatbot topics (15.6

hours). This topic includes posts on how to implement chatbot routines using a certain technology

(e.g., “How to send location from Facebook messenger platform?”) or comparing of different plat-

forms (e.g., “Comparison between Luis.ai vs Api.ai vs Wit.ai?”). These are also tasks that are more

closely related to traditional software development, which could explain why the Stack Overflow

respondents tend to answer this topic faster and more frequently.

To have a full view of the chatbot-related posts, we want to examine if there is a statistically

significant correlation between the difficulty and popularity. In particular, we use the Spearman

Rank Correlation Coefficient Spearman (2008) to verify the correlations between the three popu-

larity metrics (avg. views, avg. favourites, and avg. scores) and the two difficulty metrics (% w/o

accepted answers and median time to answer). We choose Spearman’s rank correlation since it does

not have any assumption on the normality of the data distribution. As shown in Table 3.5, we do not

find any statistically significant correlation between the popularity and difficulty metrics since all

correlations have p − value > 0.05. In other words, the difficult topics are not necessary popular

among developers, and vice versa.

31

2008 2010 2012 2016 2018 20202014
Years

Re
la

tiv
e

Im
pa

ct
(1

0³
)

0.3

0.2

0.1

0.0

Figure 3.2: Relative growth of chatbot related posts over time.

Topics related to training chatbot models are the most difficult in chatbot de-

velopment. While the most popular topic, General Creation/Integration, con-

tains the largest share of unanswered posts. On the other hand, posts related

to the Development Frameworks topic tend to be answered more frequently.

3.4 Discussion & Implications

In this section, we discuss the chatbot topics evolution and compare our findings with the find-

ings in prior work. Then, we delve into the data to identify the prevalent topics on different platforms

and discuss the implications of our results.

3.4.1 Chatbot Topics Evolution

Chatbots are an emerging topic that is getting more attention from developers in different do-

mains (e.g. security ”Dutta, Joyce, and Brewer (”2018”), software engineering Toxtli et al. (2018)).

To examine the evolution of a topic, we utilize two measures; the absolute growth, which measures

the change in the total number of posts over time; and the relative growth, which represents the

relative change in the total number of posts for a specific topic compared to the change in the total

32

Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jul 2018 Jan 2019 Jul 2019Jan 2018

40

60

80

100

#
 o

f
P

o
st

s

Topic Category

Integration

NLU

Development

User Input

User Interaction

Amazon Lex
Release

Wit.ai
Release

Years

0

20

Figure 3.3: Chatbot categories evolution over time.

number of posts for the entire Stack Overflow dataset. To highlight the evolution of the chatbot

topics, we examine the relative growth of all chatbot topics compared to Stack Overflow over time,

from August 2008 to September 2019. Figure 3.2 shows the evolution of the chatbot in terms of

relative growth compared to Stack Overflow. As seen from the Figure, the relative growth of the

chatbot topics has an increasing trend that started in 2016. This increase in the last few years shows

that chatbots are gaining more attention from the community over time.

To better understand the evolution of the different chatbot development activities, we measure

the absolute growth of each of the five categories over time. We find that all of our categories are

growing positively over time as shown in Figure 3.3. This means that the number of posts for every

category is increasing overtime, which in turn indicates the increasing trend of the various chatbot

development activities represented by the different categories.

We further investigate the reasons behind the sudden increases (i.e., hikes) in the number of

posts during specific periods of time and find two interesting cases as shown in Figure 3.3. The first

case is related to the Integration category which has the highest spike (46 posts) on June 2017. We

find that most of the discussions during this spike are related to the integration of the Amazon Lex

platform Amazon (2019) that was released in April 2017 AWS (2019). The second sudden increase

can be observed in the NLU category during November 2016. Posts of that spike are asking about

the intents and entities in the Wit.ai platform Facebook (2019), which was released in April 2016

TechCrunch (2017).

33

Table 3.6: Comparison of popularity and difficulty between different fields

Metrics Chatbot Mobile Security Big Data

of Posts 3,890 1,604,483 94,541 125,671
Avg. ViewCount 512.4 2,300 2,461.1 1,560.4
Avg. FavoriteCount 1.6 2.8 3.8 1.9
Avg. Score 0.7 2.1 2.7 1.4
Avg. AnswerCount 1.0 1.5 1.6 1.1
% w/o Answers 67.7 52 48.2 60.3
Med. TimeToAnswer (Hrs.) 14.8 0.7 0.9 3.3

Although we show the results of the chatbot categories’ evolution over time, we share the evolu-

tion results of each of the topics in a publicly available online dataset A. A. D. C. K. B. R. A. E. Shi-

hab (2020). In general, we can see a trend of chatbot development activities gaining traction among

developers. Our findings also show that the chatbot community tends to pick up the new platforms

as shown in the cases of Amazon Lex and Wit.ai.

3.4.2 Chatbot Compared to Other SE Fields

In the previous sections, we find that chatbot discussions only started to become more active in

2016. As a new and emerging field, we set out to investigate how the topics of chatbot compares

against discussions of more consolidated Software Engineering (SE) fields such as mobile, big data

and security (topics that were similarly studied in the past). To answer this question, we examine the

difficulty and popularity of the chatbot topics and compare it against other disciplines, by including

data from similar studies on Stack Overflow, focused on the topics of mobile apps Rosen and Shihab

(2016), security Yang et al. (2016), and big data Bagherzadeh and Khatchadourian (2019). Those

studies were conducted in a different time frame, therefore, we use their reported keywords to

construct an updated dataset and calculate the popularity and difficulty metrics for each of those

fields.

Table 3.6 shows the results of the popularity and difficulty metrics among the four fields. From

the sheer number of posts, the chatbot topic is, by a few orders of magnitude, smaller than mobile,

security and big data. Second, the chatbot posts are consideranly more difficult compared to the

other fields, which is also a consequence of having a small and niche crowd. There is a big gap in

the time to receive an accepted answer for the chatbot-related posts compared to other topics. Most

mobile and security posts are answered in less than an hour, while most chatbot posts take at least

34

310

360

410

460

510

560

610

660

710

60 62 64 66 68 70 72 74

Po
p

u
la

ri
ty

 (
A

vg
. V

ie
w

s)

Difficulty (% w/o Accepted Answers)

Implementation
Technologies

Development
Frameworks

Conversation

Chatbot Response

API Calls
User Interface

NLU Integration/Slots

Messenger
Integration

General Creation/Integration

Model
Training

Intents &
Entities

User
Interaction

Least
Popular

Least
Difficult

Most
Difficult

Most
Popular

Figure 3.4: Chatbot topics’ popularity vs. difficulty

14 hours. This corroborates with the emerging nature of the chatbot topic and indicates that much

needs to be done to put the chatbot development community on pair with other mature fields such

as mobile and security.

3.4.3 Implications

The results of our study can help chatbot community at better focusing their efforts on the most

pressing issues in chatbot development. In the following, we describe how our results can be used

to better guide practitioners, researchers and educators at improving the practice and learning of

chatbots development.

To help identify the most pressing issues, we present in Figure 3.4 a bubble plot that positions

the topics in terms of their popularity and difficulty. The size of the bubble represents the number

of posts for a particular topic and we visually split the figure into four quadrants to show the rel-

ative importance and difficulty of the topics. We use the average number of views as a proxy for

popularity and the percentage of posts without accepted answers as a proxy for difficulty.

Implication for Practitioners. As shown in Figure 3.4, albeit being the most popular topic, begin-

ner questions on how to build Chatbots (General Creation/Integration) remain largely unanswered.

35

The development community should use this finding to devise better tutorials and documentation

aiming at reducing the entry-barrier for developing chatbots.

Our findings can help chatbot developers better prioritize their work by taking into account the

areas of the most difficult topics in chatbot development. Topics related to NLU, such as Model

Training and Intents & Entities, are among the topics with the highest share of posts without ac-

cepted answers. Software managers can take that into account by assigning more resources (devel-

opment time) to tasks that involve training NLU models, especially given that NLU has the highest

share of troubleshooting posts (Section 3.3.2), indicating that developers experience issues more

frequently with this kind of tasks.

The evidence of the difficulty of NLU related topics can be used to motivate better and more

intuitive NLU frameworks. Practitioners can improve the current documentation of the NLU frame-

works and companies that develop and publish NLU platforms should focus on improving the

expressiveness of their current framework APIs. For instance, some platforms (e.g., Google Di-

alogFlow Google (2020a) and Microsoft LUIS Microsoft (2021b)) offer graphical interface for

training the NLU model, in an attempt to extend the model training to users less familiar to software

programming G. Dialogflow (2020); Microsoft (2020c).

Figure 3.4 also shows that Messenger Integration is the largest topic in our dataset. In fact, Inte-

gration is the category with the highest number of posts in Stack Overflow. Chatbots are expected to

communicate between multiple services and integrate with messengers to make use of already ex-

isting Social Networks platforms (e.g., Facebook). Practitioners should invest more resources into

facilitating integration of their platforms and tools with other services. For instance, Dialogflow

offers developers a one-click integration feature to some of the most popular chatting platforms,

such as Slack, Twitter and Skype Google (2020b). As chatbot developers find integration a press-

ing issue, providing straightforward approaches to integration would allow developers to focus on

the core chatbot functionalities, reducing the time and effort overhead of developing multi-service

chabots.

Implication for Researchers. Our findings confirm that chatbot developers discuss topics such

as Conversation, NLU Integration/Slots, and Chatbot Response, that differ chatbot development

from traditional software development. As shown in Figure 3.4, NLU related topics are notoriously

36

difficult and research can be put into some of the problems faced by chatbot developers at training

their NLU models. One such problem is the acquisition of a high-quality dataset, frequently asked

by developers in Stack Overflow Overflow (2017, 2019a). A high-quality dataset that represents

well the intents and entities supported by the chatbot is paramount for the chatbot performance. New

comprehensive datasets and approaches that focus on generating labelled data can help alleviate

this challenge faced by developers. Another problem is related to methods for extracting intents

and entities, which has received some attention by the research community Gao, Chen, Zhang, He,

and Lin (2019); B. Xu et al. (2017a); Ye et al. (2016); Zamanirad, Benatallah, Chai Barukh, Casati,

and Rodriguez (2017); Q. Zhang, Fu, Liu, and Huang (2018), but remains a challenging problem in

chatbot development.

Implication for Educators. Educators can use our topics and categories as a roadmap to design

their chatbot-related courses. The category development also has a high number of discussions

looking for the most appropriate framework and best practices (‘what’ posts), hence, educators can

introduce their audience to the several existing chatbot development frameworks and discuss best

practices and standards to be followed during the chatbot development phase. As mentioned before,

special attention should be given to the NLU topics, which has shown to be difficult (Figure 3.4).

In particular, since NLU has the highest share of ‘why’ posts, this indicates that chatbot developers

are in need of theoretical explanations of NLU machine-learning algorithms and models.

There are many aspects that practitioners, researchers, and educators can take into consider-

ation when deciding where to focus their efforts. Nevertheless, we believe that our findings and

implications can help improve this decision-making process.

3.5 Threats to validity

Internal Validity: Internal validity concerns factors that could have influenced our results. We

use tags from Stack Overflow to identify chatbot-related posts and it might be the case that some

chatbot-related posts are mislabelled (i.e., missing tags or having incorrect tags) and therefore are

omitted from our dataset. We mitigate this threat by examining all tags that coexist with the ‘chatbot’

tag and selecting a set of tags that are related to chatbots using the TST and TRT measures. Those

37

measures have been used in prior work to have a better coverage of a certain topic’s posts and limit

the noise in the dataset Bagherzadeh and Khatchadourian (2019); Rosen and Shihab (2016); Wan et

al. (2019); Yang et al. (2016). Moreover, we find that the TST and TRT thresholds that we obtain

in our study are in-line with previous studies S. Ahmed and Bagherzadeh (2018); Bagherzadeh and

Khatchadourian (2019); Yang et al. (2016).

One potential threat is that we select K = 12 as the optimal number of topics for the LDA topic

modelling technique. The number of topics (K) has a direct influence on the quality of the resulting

topics from the LDA, and selecting an optimal number is known to be difficult. To alleviate this

threat, we follow the approach used in similar studies to select the number of topics Han et al.

(2019); Wan et al. (2019). Specifically, we experiment with different values of K and we examine

the coherence of topics to select the optimalK value that balances the generalizability and relevance

of the chatbot topics.

The labelling of posts types is another threat to the validity of our results, due to the subjectivity

of the process. We mitigate this threat by performing three independent classifications and eval-

uating the interrater-agreement using the Cohen-Kappa test, that indicated substantial agreement

among the annotators .

Construct Validity: Construct validity considers the relationship between theory and observation,

in case the measured variables do not measure the actual factors. Labelling the resulting topics from

the LDA might not reflect the posts associated with the topics. To minimize this threat, the first

three authors individually examine the keywords and more than 30 posts randomly from each topic,

then they discuss each topic’s label to reach a consensus on the label that reflects the posts of that

topic. We use different metrics to measure the popularity and difficulty of the chatbot topics which

might be a threat to construct validity. These metrics have been used in similar studies S. Ahmed

and Bagherzadeh (2018); Bagherzadeh and Khatchadourian (2019); Bajaj et al. (2014); Nadi et al.

(2016); Rosen and Shihab (2016); Yang et al. (2016).

External Validity: Threats to external validity concern the generalization of our findings. Our study

was focused on and collected data from posts on Stack Overflow, however, there are other forums

that may host developers’ discussions regarding chatbots. We believe that using Stack Overflow

allows for the generalizability of our results as Stack Overflow is a very popular platform that

38

hosts a large number of questions and answers from developers with a wide variety of domains and

expertise. We also believe that this study can be improved by including discussions from different

forums or surveying actual software developers about issues that they face when building chatbots.

The focus of this study is on chatbot which is considered to be a sub-category of software

bots C. Lebeuf et al. (2019a); C. R. Lebeuf (2018). Therefore, our observations and results cannot

be generalized to other types of bots, such as agents. However, we believe that our observations are

still relevant and contribute to the larger community (software bot). We encourage other researchers

to conduct similar studies on other types of bots and compare the results from the different types to

paint a full picture about bots in general.

3.6 Chapter Summary

In this chapter, we analyze Stack Overflow posts to identify the most pressing issues facing

chatbot development. We find that developers discuss 12 chatbot-related topics that fall under five

main categories, namely Integration, Development, NLU, User Interaction, and User Input. Chatbot

developers are highly interested in posts that are related to chatbot creation and integration into

websites. On the other hand, training the NLU model of the chatbot proves to be challenging task

for developers. We also find that chatbot practitioners show considerable interest in understanding

the behavior of NLUs, while also seeking good recommendation regarding chatbot development

platforms and best practices. We believe that our results are useful to the chatbot community as they

guide future research to focus on the more pressing and difficult aspects of chatbot development.

Moreover, our findings help platform owners to understand the issues faced by chatbot developers

when using their platforms, and to overcome those challenges. Chatbot educators can take into

consideration the discussed topics and categories and their perspective difficulty to better design

their courses.

Our study opens the door for chatbot researches and practitioners to further understand the chat-

bot development challenges. Nevertheless, we plan in the future to examine developers’ discussion

from other forums to draw more accurate and generalizable conclusions. We also plan to investigate

the developers discussions regarding bots in general, which would allow us to compare our results

39

with with other bot types. Finally, we intend to investigate chatbot repositories and analyze the

commits and bug reports to obtain further insights regarding the various issues faced by chatbot

developers and their attempts to solve it.

In the following chapter, we validate our results from Section 3.4.3 and endorse the chatbot

potential to revolutionize SE. Specifically, we develop a chatbot framework that extracts data from

software repositories to assist developers in their tasks. Mining data from software repositories to

answer development/maintenance questions is a tedious and difficult task. We implement a chatbot

on top of software repositories to answer those questions facing developers. Then, we perform a

user study to evaluate the effectiveness and efficiency of the proposed chatbot.

40

Chapter 4

Determining the value of SE-context

chatbots

Software repositories contain a plethora of useful information that can be used to enhance soft-

ware projects. Prior work has leveraged repository data to improve many aspects of the software

development process, such as, help extract requirement decisions, identify potentially defective code

and improve maintenance and evolution. However, in many cases, project stakeholders are not able

to fully benefit from their software repositories due to the fact that they need special expertise to

mine their repositories. Also, extracting and linking data from different types of repositories (e.g.,

source code control and bug repositories) requires dedicated effort and time, even if the stakeholder

has the expertise to perform such a task. Therefore, we use bots to automate and ease the process

of extracting useful information from software repositories. Particularly, we lay out an approach of

how bots, layered on top of software repositories, can be used to answer some of the most common

software development/maintenance questions facing developers. We perform a preliminary study

with 12 participants to validate the effectiveness of the bot. Our findings indicate that using bots

achieves very promising results compared to not using the bot (baseline). Most of the participants

(90.0%) find the bot to be either useful or very useful. Also, they completed 90.8% of the tasks cor-

rectly using the bot with a median time of 40 seconds per task. On the other hand, without the bot,

the participants completed 25.2% of the tasks with a median time of 240 seconds per task. Our work

41

has the potential to transform the MSR field by significantly lowering the barrier to entry, making

the extraction of useful information from software repositories as easy as chatting with a bot. The

result of this research question appears in Journal of Empirical Software Engineering Abdellatif,

Badran, and Shihab (2020a).

4.1 Introduction

Software repositories contain an enormous amount of software development data. This reposi-

tory data is very beneficial, and has been mined to help extracts requirements (e.g., Ali, Guhneuc,

and Antoniol (2013); Mordinyi and Biffl (2017)), guides process improvements (e.g., Gupta, Sureka,

and Padmanabhuni (2014); Siddiqui and Ahmad (2018)) and improves quality (e.g., Hassan (2008);

Khomh et al. (2015)). However, we argue that even with all of its success, the full potential of soft-

ware repositories remains largely untapped. For example, recent studies presented some of the most

frequent and urgent questions (e.g., “Where do developers make the most mistakes?” and “Which

mistakes are the most common?”) that software teams struggle to answer Begel and Zimmermann

(2014a). Many of the answers to such questions can be easily mined from repository data.

Although software repositories contain a plethora of data, extracting useful information from

these repositories remains to be a tedious and difficult task Banerjee and Cukic (2015); Bankier

and Gleason (2014). Software practitioners (including developers, project managers, QA analysts,

etc.) and companies need to invest significant time and resources, both in terms of personnel and

infrastructure, to make use of their repository data. Even getting answers to simple questions may

require significant effort.

More recently, bots were proposed as means to help automate redundant development tasks

and lower the barrier to entry for information extraction Storey and Zagalsky (2016a). Hence,

recent work laid out a vision for how bots can be used to help in testing, coding, documenting, and

releasing software Beschastnikh et al. (2017); Tian, Thung, Sharma, and Lo (2017b); Wessel et al.

(2018b); B. Xu, Xing, Xia, and Lo (2017b). To bridge the gap between the visionary works and

practicality, and to bring those visionary works to life, we devise a framework of using bots over

software repositories. Although different bots have been developed for the software engineering

42

domain, no prior work has applied bots to answer the developers questions using the stored data

from software repositories.

Although it might seem like applying bots on software repositories is the same as using them to

answer questions based on Stack Overflow posts, the reality is there is a big difference between the

two. One fundamental difference is the fact that bots that are trained on Stack Overflow data can

provide general answers, and will never be able to answer project-specific questions such as “how

many bugs were opened against my project today?”. Also, we would like to better understand how

bots can be applied on software repository data and highlight what is and what is not achievable

using bots on top of software repositories.

Therefore, our goal is to design and build a bot framework for software repositories and per-

form a case study to examine its efficiency and highlight the challenges facing our framework. The

approach contains five main components, a user interaction component, meant to interact with the

user; entity recognizer and intent extractor components, meant to process and analyze the user’s

natural language input; a knowledge base component, that contains all of the data and informa-

tion to be queried; and a response generator component, meant to generate a reply message that

contains the query’s answer and return it to the user interaction component. To evaluate our bot

approach, we add support for 15 of the most commonly asked questions by software practitioners

mentioned in prior work Begel, Khoo, and Zimmermann (2010); Begel and Zimmermann (2014a);

Fritz and Murphy (2010); Sharma, Mehra, and Kaulgud (2017); Sillito, Murphy, and Volder (2008).

To evaluate our framework, we perform a case study with 12 participants using the Hibernate and

Kafka projects. In particular, we asked those participants to perform a set of tasks using the bot

then evaluate it based on its replies. We examine the bot in terms of its effectiveness, efficiency,

and accuracy and compare it to a baseline where the survey participants are asked to do the same

tasks without using the bot. We also perform a post-survey interview with a subset of the survey

participants to better understand the strengths and areas of improvements of the bot approach.

Our results indicate that bots are useful (as indicated by 90.0% of answers), efficient (as indi-

cated by 84.17% of answers) and accurate (as indicated by 90.8% of tasks) in providing answers to

some of the most common questions. In comparison to the baseline, the bots significantly outper-

form the manual process of finding answers for their questions (the survey participants were able to

43

only answer 25.2% of the questions correctly and took much longer to find their answers). Based

on our post-survey interviews with the participants, we find that bots can be improved if they enable

users to perform deep-dive analysis and help compensate for user errors, e.g., typos. Based on our

results, we believe that applying bots on software repositories has the potential to transform the

MSR field by significantly lowering the barrier to entry, making the extraction of useful information

from software repositories as easy as chatting with a bot.

In addition to our findings, the chapter provides the following contributions:

• To the best of our knowledge, this is the first study to use bots on software repositories.

Also, our framework allows project stakeholders to extract repository information easily using

natural language.

• We perform an empirical study to evaluate our bot framework and compare it to a baseline.

Also, we provide insights on areas where bot technology/frameworks still face challenges in

being applied to software repositories.

• We make our framework implementation Abdellatif, Badran, and Shihab (2019a) and datasets

Abdellatif, Badran, and Shihab (2019c) publicly available in an effort to accelerate future

research in the area.

4.1.1 Organization of the Chapter

The rest of the chapter is organized as follows. We detail our framework and its components in

Section 4.2. We explain the questions supported by the bot and questionnaire survey to evaluate our

framework in Section 4.3. In Section 4.4, we report our findings, detailing the usefulness, speed,

and accuracy of the bot. Section 4.5 discusses the bot evaluation and the implications of our results.

Section 4.6 discusses the threats to validity, and Section 4.7 concludes the chapter.

4.2 MSRBot Framework

Our goal is to build a bot that users can interact with to ask questions (such as questions pre-

sented in Table 4.1) to their software repositories. To enable this, our framework is divided into

44

API/DB

Intent Extractor

User Interaction Knowledge Base

Entity Recognizer

User Question

Reply Message

Entity

Response Generator

Intent

Intent Data

Figure 4.1: Overview of the MSRBot Framework and its Components’ Interactions

five main parts (as shown in Figure 4.1), namely 1) user interaction 2) entity recognizer 3) intent

extractor 4) knowledge base and 5) response generator. In the following subsections, we detail each

of these parts and showcase a working example of our framework.

User Interaction

Users of bot frameworks need to be able to effectively interact with their information. This can

be done in different ways, e.g., through natural language text, through voice and/or visualizations.

In addition to handling user input, the user interaction component also presents the output of the

question to the user. This is done in the same window and appears as a reply to the user’s ques-

tion. Users are expected to pose their questions in their own words, which can be complicated to

handle, especially since different people can pose the same question in many different ways. To

help us handle this diversity in the natural language questions, we devise entity recognizer and in-

tent extractor components, which extract structured information from unstructured language input

(question) posted by the user. We detail those components in the next subsections.

Entity Recognizer

The entity recognizer component identifies and extracts a useful information (entity) that a user

mentioned in the question using Named Entity Recognition (NER) Tjong Kim Sang and De Meulder

45

(2003). Also, it categorizes the extracted entities under certain types (e.g. city name, date, and

time). There are two main NER categories: Rule-Based and Statistical NER. Prior work showed

that statistical NER is more robust than the rule-based in extracting entities Liu, Zhang, Wei, and

Zhou (2011); Mohit (2014); Ratinov and Roth (2009). In the rule-based NER, the user should come

up with different rules to extract the entities while in the statistical NER the user trains a machine

learning model on an annotated data with the named entities and their types in order to allow the

model to extract and classify the entities. The extracted entities help the knowledge base component

in answering the user’s question. For example, in the question: “Who modified Utilities.java?”,

the entity is “Utilities.java” which is of type “File Name”. Having the file name is necessary to

know which file the user is asking about in order to answer the question correctly (i.e. bring the

information of the specified file). However, knowing the file name (entity) is not enough to answer

the user’s question. Therefore, we also need an intent extractor component, which extracts the user’s

intention from the posed question. We detail this component in the next subsection.

Intent Extractor

The intent extractor component extracts the user’s purpose/motivation (intent) of the question.

In the last example, “Who modified Utilities.java?”, the intent is to know the commits authors that

modified the Utilities file. One of the approaches (e.g., Zamanirad et al. (2017)) to extract the

intents is to use Word Embeddings, more precisely the Word2Vec model Mikolov, Sutskever, Chen,

Corrado, and Dean (2013). The model takes a text corpus as input and outputs a vector space where

each word in the corpus is represented by a vector. In this approach, the developer needs to train

the model with a set of sentences for each intent (training set). Where those sentences express

the different ways that the user could ask about the same intent (same semantic). After that, each

sentence in the training set is represented as a vector using the following equation:

~Q =
n∑

j=1

~Qwj Where ~Qwj ε V S (1)

where ~Q and ~Qwj represent the word vector of a sentence and vector of each word in that

sentence in the vector space V S, respectively. Afterwards, the cosine similarity metric Jurafsky

46

and Martin (2009) is used to find the semantic similarity between the user’s question vector (after

representing it as a vector using Equation 1) and each sentence’s vector in the training set. The intent

of the user’s question will be the same as the intent of the sentence in the training set that has the

highest score of similarity. The extracted intent is forwarded to the response generator component

in order to generate a response based on the identified intent. Also, the intent is forwarded to

knowledge base component in order to answer the question based on its intent. We explain this

component in the next subsection.

If the intent extractor is unable to identify the intent (low cosine similarity with the training set),

it notifies the knowledge base and the response generator components, which respond with some

default reply.

Knowledge Base

The knowledge base component is responsible for answering the user’s questions (e.g. making

an API call or querying a DB). It uses the passed intent from the previous component to map it with

an API call or DB query that needs to be executed in order to get the answer of the question. And,

it uses the extracted entities from the entity recognizer component as parameters for the query or

call. For example, if a user asks the question “Which commits fixed the bug ticket HHH-11965?”,

then the intent is to get the fixing commits and the issue key “HHH-11965” is the entity. So, the

knowledge base component uses the identified intent to retrieve the mapped query to the extracted

intent and the entity as a parameter to that query. Therefore, the knowledge base component queries

the database on the fixing commits (using SZZ Śliwerski, Zimmermann, and Zeller (2005)) that are

linked to Jira ticket “HHH-11965”. The component forwards the query’s results to the response

generator component to generate a reply message on the user’s question. In case the intent extractor

was unable to identify the intent, the knowledge base will do nothing and wait for a new intent and

entities. Furthermore, the knowledge base component verifies the presence of the entities associated

with the extracted intent and notifies the response generator in case of missing entities or unable to

retrieve the data from the API. We describe the response generator component in the next subsection.

47

Knowledge
Base

Response
Generator

DB/API

Get the Number of
Commits

User Interface Intent
Recognizer

(last week) à Date
Entity

Entity
Extractor

16
Commits

Hi there, how can I help you?

What is the number of changes that
occurred in the last week?

There is a total of 16 commits that were
pushed to the repository in the last week

Figure 4.2: Example of MSRBot Framework Components Interactions to Answer User’s Question

Response Generator

The response generator component generates a reply message that contains the answer to the

user’s question and sends it to the user interaction component to be viewed by the user. The response

is generated based on the question asked, and more specifically, the extracted intent of the question.

Finally, it sends the generated message to the user interaction component.

In some cases, the bot may not be able to respond to a question due to lack of information

(i.e., intents and entities). For example, if it is not possible to extract the intent, the response

generator returns a default response:“Sorry, I did not understand your question, could you please

ask a different question?”. And, in case of a missing entity, the response is “Could you please

specify the entity?” and it mentions the entity in the message (e.g., file name).

It is worth mentioning that there are certain components that need to be customized to suit our

approach. We customize the entity recognizer and intent extractor components to make our bot

48

applicable on software repositories data. For example, we need to train the entity recognizer on the

software engineering entities that are specific to software repositories (e.g., Jira tickets and commit

hashes) to be able to identify those entities in the posed query. Also, our knowledge base component

is specific to software repositories in a number of ways. First, it extracts and links the data from the

source code and issue tracking repositories. Second, the knowledge base is customized to retrieve

the answer to the user’s queries based on the defined intents and entities. On the other hand, the

remaining components are applicable to any type of software bots (e.g., user interface).

Explanatory Example

Putting everything together, we showcase an end-to-end example of the interactions between

the components of our proposed framework to answer the user’s question. In Figure 2, the user

interacts with the bot through the user interface component to inquire about the number of changes

that happened in the last week. Next, the user interface component forwards the question to the

entity recognizer and intent extractor components to parse the user’s query. The entity recognizer

component identifies the entity ‘last week’ (i.e., 21/01/2019 27/01/2019) of type ‘Date’ in the query.

On the other hand, the intent extractor component classifies the intent of the posed query as “Get

the Number of Commits”. Then, the results of the entity recognizer and intent extractor are sent

to the knowledge base component to be processed. Also, the extracted intent is forwarded to the

response generator component to generate the reply message. The knowledge base component uses

the forwarded intent to retrieve the SQL query that is mapped to it while the entity is used as the

parameter for the query. Next, the knowledge base executes the SQL query and retrieves the data

from the database. Then, the knowledge base sends the query execution result (i.e., 16 commits)

to the response generator. Finally, the response generator uses the results from the knowledge base

and the forwarded intent from the intent extractor to generate the reply message (“There is a total

of 16 commits that were pushed to the repository in the last week”), and sends it back to the user

interface component to present the answer of the question to the user.

49

Table 4.1: List of Questions Examined by MSRBot and the Rationale for Their Inclusion

Question Rationale Ref.

Q1. Which commits fixed the bug
id?

To refer the commit to a developer who is working on simi-
lar bug.

Begel and
Zimmermann
(2014a)

Q2. Which developer(s) fixes the
most bugs related to File Name?

To know which developer(s) have experience in fixing bugs
related to a specific component or file.

Begel and
Zimmermann
(2014a)

Q3. Which are the most bug intro-
ducing files?

To refactor the buggy files in the repository. Begel and
Zimmermann
(2014a)

Q4. Who modified File Name? To know which developer(s) worked on the file in order to
ask them about a piece of code.

Fritz and Mur-
phy (2010);
Sharma et al.
(2017)

Q5. Which are the bugs introduced
by commit Commit Hash?

To study the type of bugs introduced because of certain com-
mit.

Begel and
Zimmermann
(2014a)

Q6. What is the number of commits
in/on Date?

To track the progress of the team members at particular time
(e.g., in the last day, week, month).

Fritz and Mur-
phy (2010)

Q7. What commits were submitted
on Date?

To know exactly what commits were done, to flag for review,
testing, integration, etc.

Fritz and Mur-
phy (2010)

Q8. What is/are the latest commit(s)
to File Name?

Developers may want to know what are the last things that
changed in a file/class to be up to date before they make
modifications.

Begel and
Zimmermann
(2014b); Fritz
and Mur-
phy (2010);
Sharma et al.
(2017)

Q9. What are the commits related to
File Name?

To track changes which are happening on the file which the
developer is currently working on. Or to know the changes
happening to a file that was abandoned by a developer.

Begel et al.
(2010)

Q10. What is/are the most common
bug(s)?

The team wants the most important/common bug (registered
as watchers) so it can be addressed.

Begel and
Zimmermann
(2014a)

Q11. What are the buggy/fixing
commits that happened in/on Date?

To know the buggy or fixing commits happened at a partic-
ular time e.g. before release date.

Begel and
Zimmermann
(2014a)

Q12. How many bugs have the sta-
tus/priority?

Quickly view the number of bug reports with a specific sta-
tus (e.g., open) or priority (e.g., blocker) plan a fix for it.

Begel and
Zimmermann
(2014a)

Q13. Who is the author of File
Name?

Developers who have questions about a specific file or class
may want to speak to the person who created it.

Sharma et al.
(2017); Sillito
et al. (2008)

Q14. Which developer(s) have the
most unfixed bugs?

To determine the overloaded developers and possibly re-
assign bugs to others on the team.

Begel and
Zimmermann
(2014a)

Q15. What is the percentage of bug
fixing commits that introduced bugs
in/on Date?

To study the characteristics of the fixing commits which
happened at a certain time and induced bugs.

Begel and
Zimmermann
(2014a)

50

4.3 Case Study Setup

To determine whether using bots really helps answer tasks based on repository data, we perform

an experiment with 12 participants using Hibernate-ORM and Kafka repositories. We built a web-

based bot application that implemented our framework and had users directly interact with the bot

through this web-application. A screenshot of our bot’s interface is shown in Figure 4.3. We divided

the participants into two groups (each of 6 participants). Then, we sent emails that include links to

the bot and online survey to both groups’ members, asking each group to perform a set of tasks

using the bot. Finally, we examine the bot in terms of its effectiveness, efficiency and accuracy and

compare it to a baseline where both groups’ members are asked to perform the same tasks without

the bot. It is important to emphasize that each group performs the same set of tasks related to a

specific repository. In other words, all members of group 1 performed the tasks using Hibernate-

ORM, while the members of the group 2 used Kafka project.

To extract the intents and entities, we leveraged Google’s Dialogflow engine Google (2019a).

Dialogflow has a powerful natural language understanding (NLU) engine that extracts the intents

and entities from a user’s question based on a custom NLP model. Our choice to use Dialogflow

was motivated by the fact that it can be integrated easily with 14 different platforms and supports

more than 20 languages. Furthermore, it provides speech support with third-party integration and

the provided service is free. These features make it easier to enhance our framework with more

features in the future.

Any NLU model needs to be trained. Therefore, to train the NLU, we followed the same ap-

proach as Toxtli et al. (2018). Typically, the more examples we train the NLU on, the more accurate

the NLU model can extract the intents and entities from the users questions Google (2019c). As a

first step, we conducted a brainstorm session to create the initial training set which represents the

different ways that the developers could ask for each intent in Table 4.1. Moreover, our bot can

handle basic questions such as greeting users and asking general questions about the bot such as:

“How are you?”. Then, we used the initial set to train the NLU and asked two developers (each has

more than 7 years of industrial experience) to test the bot for one week. During this testing period,

we used the questions that the developers posed to the bot to further improve the training of the

51

Hi,	please	state	your	question	to	me?

Who	are	the	developers	that	�ix	most	of	the	bugs	in	Ka�kaAdminClient.java?

The	developers	that	�ixed	most	of	the	bugs	in	Ka�kaAdminClient.java	are:	
				1-	Colin	P.	Mccabe	

				2-	Jason	Gustafson	
				3-	Colin	Patrick	McCabe	

				4-	Rajini	Sivaram	
				5-	Ismael	Juma

What	is	the	bug	introduced	because	of	commit	hash
	0636928d961a6ceaab46d908f9372d913c3e5faf?

The	commit	hash	you	mentioned	introduced	KAFKA-2089	Jira	ticket.

 Type your message here...

Figure 4.3: An Example User Conversation with MSRBot

NLU. The training data is publicly available on Abdellatif et al. (2019c).

Although we use Dialogflow in our implementation, it is important to note that there exist other

tools/engines that one can use such as Gensim Gensim (2019), Stanford CoreNLP Manning et al.

(2014), Microsoft’s LUIS Microsoft (2019b), IBM Watson IBM (2019c), or Amazon Lex Amazon

(2019).

To ensure that the usage scenario of the Bot is as realistic as possible, we asked the participants

to perform a set of tasks using the bot. We used the questions that have been identified in the

literature as being of importance to developers Begel et al. (2010); Begel and Zimmermann (2014a,

2014b); Fritz and Murphy (2010); Sharma et al. (2017); Sillito et al. (2008) to formulate the tasks

in our experiment. The participants use the bot by posing any number of natural language questions

needed to complete the task. Next, the participants evaluate the bot by answering a set of questions

related to the task and bot’s reply. To compare, we also ask the participants to perform the same

tasks without the bot, which we call the baseline comparison. We detail all the steps of our case

study in this section.

52

4.3.1 Questions Supported by the Bot

To perform our study, we needed to determine a list of questions that our bot should support.

To do so, we surveyed work that investigated the most commonly asked questions of software

practitioners (mostly developers and managers). We found a number of notable and highly cited

studies, such as the study by Begel and Zimmermann Begel and Zimmermann (2014a, 2014b),

which reported questions commonly asked by practitioners at Microsoft, the study by Fritz and

Murphy Fritz and Murphy (2010) that conducted interviews with software developers to determine

questions that developers ask and the study by Sharma et. al Sharma et al. (2017), which prioritized

the importance of questions that developers ask. We also surveyed a number of other studies whose

goal was not directly related to questions that developers ask, but which we found to be relevant

for us to understand which questions we should ask (e.g., Begel et al. (2010); Sillito et al. (2008)).

In most of these studies, the authors reported that software practitioners are lacking support in

answering these questions, which is exactly what our bot can help provide. After going through the

literature, we selected arbitrarily 15 questions that our bot can support and can be answered using

repository data.

Table 4.1 presents the questions we use in the case study, the rationale for supporting the ques-

tion and the study where the question was mentioned/motivated from. Each question represents an

intent and the bold words represent the entities in the question. For example, the user could ask Q11

as: “What are the buggy commits that happened last week?”, then the intent is “Determine Buggy

Commits” and the entity is “last week”. It is important to emphasize that the bot’s users can ask

the questions in different ways other than what is mentioned in Table 4.1. In the last example the

user can ask the bot “What are the changes that introduced bugs on Dec 27, 2018” where the intent

remains the same although the question is asked in a different way and the entity is changed to a

specific date (Dec 27, 2018).

Although we support 15 questions in our prototype at this time, it is important to note that the

bot framework can support many more questions and we are extending it to do so now. We opted to

focus on these 15 questions since our goal is to evaluate the bot in this research context and wanted

to keep the evaluation manageable.

53

Table 4.2: Participants’ Knowledge on Version Control Repositories and Issue Tracking System

Likert
Scale

Number of Participants
Version Control

Repositories (Git)
Issue Tracking
System (Jira)

1 (No Knowledge) 0 1
2 (Entry Level) 2 4
3 (Intermediate) 3 4
4 (Competent) 5 1
5 (Expert) 2 1

4.3.2 Study Participants

Once we decided on the 15 questions that we are able to support, we want to evaluate how useful

the bot is. Since bots are meant to be used by real software practitioners, we decided to evaluate our

bot through a user study.

Our user study involved 12 participants. For each participant, we asked them about their main

occupation, background, software development experience and their knowledge of software repos-

itories. All participants were graduate students (4 Ph.D. and 8 master students). Of the 12 partici-

pants, 75% have more than 3 years of professional software development experience and 25% have

between 1-3 years of development experience. The participants’ experience using Version Control

Repositories (e.g., Git) and Issue Tracking System (e.g., Jira) are shown in Table 4.2.

We deliberately reached out to graduate students to conduct our user study for a few specific

reasons. First, we knew that most of these graduate students (80%) have worked in a professional

software development environment in the past. Second, since this is one of the first studies using

bots, we wanted to interview some of the participants in person, which provides us with invaluable

feedback about aspects of using bots that may not come out in the user study. Expecting developers

from industry, who are already busy and overloaded, dedicate this much time to our study would

be difficult and if they did, we would not be able to go as deep in our study with them. Also,

as prior work has shown, students can be a good proxy for what developers do in professional

environments, especially if the participants are experienced and the technology under study is new,

which is our case Höst, Regnell, and Wohlin (2000); Salman, Misirli, and Juristo (2015). Lastly,

the main goal of our case study is to evaluate the proposed framework, i.e., this is a judgment study

54

rather than a sample study, using students is completely valid. The real important factors for us is

not the characteristics of the participants (students), rather the evaluation of the framework. Once

we recruited our participants, we devised a questionnaire survey to evaluate the bot and baseline

approaches. We detail our survey next.

4.3.3 Questionnaire Survey

We devised a survey that participants answer to help us understand the usefulness of the bot. To

make the situation realistic, we mined the data from the Git and Jira repositories of the Hibernate-

ORM and Kafka projects. Hibernate is a Java library that provides Object/Relational Mapping

(ORM) support. And, Kafka is a Java platform that supports streaming applications. We setup

our bot framework to be able to answer all the supported questions on Hibernate’s and Kafka’s

repository data. There was no specific reason for choosing those projects as our case study, however,

they did meet some of the most common criteria - they are large open source projects (Hibernate

with 177 releases and Kafka with 97 releases) that uses Git and Jira, they have rich history (each

has more than 6,500 commits, 8,800 bug reports), are popular amongst developers (each has more

than 340 unique contributors) and have been studied by prior MSR-type studies (e.g., T. M. Ahmed,

Bezemer, Chen, Hassan, and Shang (2016); Digkas, Lungu, Chatzigeorgiou, and Avgeriou (2017);

Kabinna, Bezemer, Shang, and Hassan (2016); Sawant and Bacchelli (2017)).

Our survey was divided into three parts. The first section gathered information about the par-

ticipants and asked questions related to experience, current role, and knowledge in mining software

repositories, which is the information we presented in the section above. The second part of the

survey was composed of 10 tasks that the participants are asked to perform. The task statements

we gave the users all the needed information to complete the task. For example, the given task

statement would say “ask about the commits that fix HHH-6574”, and a user might use the bot to

perform the task by asking: “which commits fixed the bug id?” In this case, the user is free to ask the

question in any way they prefer, e.g., what are the fixing commits of HHH-6574 ticket? We provide

a Jira ticket number that exists in Hibernate and Kafka, since we do not expect the user/participant

to know this, however, someone related to any project is asking this question, s/he would indeed

have such information. The remainder of the second part contained questions for the participants to

55

evaluate the bot based on the answer they receive. We discuss the questions used to evaluate the bot

in the next section.

In addition to asking the participants to complete the tasks using the bot, we also got them

to perform the same tasks manually (without using the bot) to have a baseline comparison. For the

baseline evaluation, we gave the exact tasks formulated from the questions shown in Table 4.1 to the

participants, so they know exactly what to answer to. The participants were free to use any technique

they prefer such as writing a script, performing web searches, using tools (e.g., gitkraken Git Client

- Glo Boards — GitKraken (2019) and Jira Client Jira Client — Atlassian Marketplace (2019)),

executing Git/Jira commands, or searching manually for the answer in order to complete the tasks.

Our goal was to resemble as close to a realistic situation as possible.

4.3.4 Evaluating the Bot

Bots are typically evaluated using factors that are related to both, accuracy and usability Vas-

concelos, Candello, Pinhanez, and dos Santos (2017). Particularly, this work suggested two main

criteria when evaluating bots:

• Usefulness: which states that the answer (provided by the bot) should include all the informa-

tion that answers the question clearly and concisely Sankar, Greyling, Vogts, and du Plessis

(2008); Zamora (2017).

• Speed: which states that the answer should be returned in a time that is faster than the tradi-

tional way that a developer retrieves information Zamora (2017).

In essence, bot should help developers in performing their tasks and do this in a way that is

faster than if you were not using the bot. In addition to the two above evaluation criteria, we

added another criteria, related to the accuracy of the answers that the bot provides. In our case, we

define accuracy as the number of correctly completed tasks performed by the bot, where the task is

marked as correct if the returned answer by the bot matches the actual answer the actual answer to

the question Vasconcelos et al. (2017). We formalize our case study with three research questions

that are related to the three evaluation measures used, in particular we ask:

RQ1: How useful are the bot’s answers to users’ questions?

56

RQ2: How quickly can users complete their tasks using the bot?

RQ3: How accurate are the bot’s answers?

To address RQ1, we ask two sub-questions. First, we ask whether the bot was able to return an

answer in the first place (in some cases it cannot) and we ask the participants whether they consider

that the answer returned is useful in answering the question posed on a five point Likert’s scale

(from very useless to very useful).

For RQ2, we recorded the actual time the participants need to perform each of the tasks while

using the bot through an online survey tool. For each task, we measure the time starting from the

moment the participant is given the task until s/he submits the task. We use this time to quantitatively

compare the time savings to the baseline, i.e., accomplishing the same tasks without using the bot.

In addition, we ask the participants to indicate how fast the bot replies to their questions on a five

point Likert’s scale from very slow to very fast (to measure perceived speed). For the case of the

baseline, we asked the participants to measure and report the time it took them to complete each

task. We limited the maximum time to finish each task to 30 minutes when using the bot and in the

baseline, i.e., in case they did not manage to get an answer within 30 minutes, we considered the

task to be incomplete.

To address RQ3, we recorded all the interactions performed by the participants and, more im-

portantly, the output of each bot’s components including its responses. Then, we analyzed the tasks’

results manually to determine if a task is completed correctly or not (by cloning the repositories and

writing the scripts to answer the questions). For example, if the participant asks for the number of

commits on a particular day, we would check if the returned answer was actually correct or not.

This enables us to ensure that the entity recognizer, intent extractor, mapping process in the knowl-

edge base, and the response generator components are working correctly. In the case of the baseline

questionnaire, we asked the participants to provide us the answer of each task in the survey. This

allowed us to determine the accuracy of the manually determined tasks. To ensure that the par-

ticipants actually searched the answer for the asked task, we required that the participants briefly

explain how they performed the task. Having this information also provided us with insight into

how much work and what tools/techniques/commands practitioners typically use to perform such

57

tasks. Finally, at the end of the survey, we added an optional field to allow the participants to write

their comments or suggestions, if they have any.

To avoid overburdening the participants, we divided them into two groups, where each group

has 6 participants and is given 10 tasks to perform on a certain repository. The tasks were formulated

from 10 randomly selected questions from the list of questions supported by the bot. The questions

that were selected to formulate the tasks are Q1, Q2, Q3, Q5, Q6, Q7, Q9, Q11, Q14, and Q15

in Table 4.1. The first group performed the tasks on the Hibernate project while the members

of the second group are instructed to do the same tasks on the Kafka project. Both groups (the

Hibernate and Kafa groups) were asked to perform the tasks twice, once using the bot and another

time without the bot (which we call the baseline). None of the participants knew the questions that

the bot was trained on. This is to ensure they will use their own words when they are interacting

with the bot and to monitor the questions that the participants ask the bot about. It is important

to emphasize that each group received the same tasks in both, the baseline questionnaire and the

bot-related questionnaire.

4.4 Case Study Results

In total, the 12 participants asked the bot 165 questions (some developers asked more than

10 questions) to perform the assigned tasks Abdellatif et al. (2019c). Of the 165 questions, we

excluded 9 questions from our analysis because they were out of scope (e.g., “What’s your name?”,

“What language are you written in?”), as the main focus of this work is to study bots on software

repositories. Therefore, all of the presented results are based on the remaining 156 questions that

are relevant.

4.4.1 RQ1: How useful are the bot’s answers to users’ questions?

As mentioned earlier, one of the first criteria for an effective bot is to provide its users with useful

answers to their questions. Evaluating a bot by asking how useful its answers were commonly used

in most bot-related research (e.g. Feng, Shaw, Kim, and Hovy (2006); B. Xu et al. (2017b); Zamora

(2017)).

58

0%

0%

10%

23.6%

66.4%

0 10 20 30 40 50 60 70

Very Useless

Useless

Fair

Useful

Very Useful

Number of Answers

Li
ke

rt
 S

ca
le

Figure 4.4: Usefulness of the Bot’s Answers

Participants were asked to indicate the usefulness of the answer provided by the bot after each

question they asked. The choice was on a five-point Likert’s scale from very useful (meaning, the

bot provided an answer they could actually act on) to very useless (meaning, the answer provided

does not help answer the question at all). The participants also had other choices within the range,

which were: useful (meaning, the answer was helpful but could be enhanced), fair (meaning, the

answer gave some information that provided some context, but did not help the answer fully) and

useless (meaning, the reply did not help with the question, but a reply was made).

Figure 4.4 shows the usefulness results in case they were correct. Overall, 90.0% of the partici-

pants indicated that the results returned by the bot were considered to be either useful or very

useful. Another 10.0% indicated that the bot provided answers that were fair, meaning the answers

helped, but were not particularly helpful in answering their question. It is important to emphasize

that when considering usefulness, we considered all tasks that were performed correctly.

Upon closer examination of the fair results, we found a few interesting reasons that lead users to

be partially dissatisfied with the answers. First, in some cases, the users found that the information

returned by the bot to not be easily understandable. For example, if a user asks for all the commit

logs of commits that occurred in the last year, then the returned answer will be long and terse. In

such cases, the users find the answers to be difficult to sift through, and accordingly indicate that

the results are not useful. Such cases showed us that perhaps we need to pay attention to the way

that answers are presented to the users and how to handle information overloading. We plan to

address such issues in future versions of our bot framework. Another case is related to information

59

Bot Completed Tasks
 (Baseline)

Completed and Uncompleted
 Tasks (Baseline)

20
20

0
20

00

T
im

e
in

 S
ec

on
ds

 (
Lo

g
S

ca
le

)

Figure 4.5: Time Required to Complete Tasks (bot vs. baseline)

that the users expected to see. For example, some users indicated that they expect to have the

commit hash returned to them for any commit-related questions. Initially, we omitted returning

the commit hashes (and generally, identification info) since we felt such information is difficult to

read by users and envisioned users of the bot to be more interested in summarized data (e.g., the

number of commits that were committed today). Clearly, the bot proved to be used for more than

just summarized information and in certain cases users were interested in detailed info, such as a

commit hash or bug ID. All of these responses provided us with excellent ideas for how we will

evolve the bot.

The majority (90.0%) of the bot’s users found it to be useful or very useful.

Areas for improvement include figuring out how to effectively present the bot’s

answers to users.

4.4.2 RQ2: How quickly can users complete their tasks using the bot?

Since bots are meant to answer questions in a chat-like forum, speed is of the essence. Therefore,

our second RQ aims to shed light on how fast can users perform tasks related to their repositories

using the bot and compare that to the time they need to complete the same tasks without the bot

60

(i.e., the baseline). We also ask the users to indicate their perceived speed of the bot.

Measured speed. We measure the exact time that the participants needed to complete each of the

given tasks, once using the bot and another without the bot, which we call the baseline. This gives

us better insights about the actual time savings when using the bot.

Figure 4.5 shows boxplots of the distribution of the time it took for the participants to perform

the tasks, with and without the bot (note that the y-axis is log-scaled to improve readability). As

evident from Figure 5, using the bot (the left most box plot) significantly outperforms the baseline

approach, achieving a median task completion time of 40 seconds and a maximum of 1666 seconds.

On the other hand, for the baseline approach, we have two results - one that considers all tasks that

users were able to complete (labeled “Completed Tasks (Baseline)” in Figure 5) and the other con-

sidering all tasks, i.e., completed and uncompleted1 (labeled “Completed and Uncompleted Tasks

(Baseline)” in Figure 5). The median task completion time for the tasks in the baseline approach

is 240 seconds with a maximum of 1,740 seconds. While, if all the completed and uncompleted

tasks are considered, the time to perform a task is even higher, with a median of 600 seconds and

a maximum of 1,800 seconds. To ensure that the difference between the bot and the two cases of

the baseline is statistically significant, we performed a Wilcox test, and the difference in both cases

(i.e., using the bot vs. completed tasks in the baseline and using the bot vs. all tasks in the baseline),

and find that the difference is statistically significant (i.e., p-value≤ 0.01). It is obvious that using

the bot to perform tasks is faster than the baseline approach. However, this research question inves-

tigates the amount of time that the bot saves compared to users manually doing the tasks, which in

our case is more than 3 minutes/task, on median.

Perceived speed. The other side of the coin is to determine how users perceive the speed of the

bot to be. To accomplish this, we asked users to indicate how fast they received the answer to their

question from the bot. Once again, the choices for the users were given on a five point Likert’s

scale, from very fast (approx. 0 - 3 seconds) to very slow (≥ 30 seconds). The participants also had

other choices within the range, which were: fast (4 - 10 seconds), fair (11 - 20 seconds) and slow

(21 - 30 seconds).
1Since we gave a maximum of 30 minutes for participants to complete a task, tasks that were not answered after 30

minutes were considered to be incomplete and also to have taken 30 minutes.

61

0

3.33%

12.5%

10%

74.17%

0 10 20 30 40 50 60 70 80

Very Slow

Slow

Fair

Fast

Very Fast

Number of Answers

Li
ke

rt
 S

ca
le

Figure 4.6: Speed of the Bot’s Reply

Figure 4.6 shows the results of the survey participants. The majority of the responses (84.17%)

indicated that the bot’s responses were either, fast or very fast. The remaining 15.83% of the replies

indicated that the bot’s response was either fair or slow. Clearly, our answers show that the bot

provides a significant speed up to users.

Deep-dive analysis. To better understand why some of the tasks took longer to perform using the

bot, we looked into the logged data and noted 4 cases that may have impacted the response speed

of the bot. We found that in those cases, Dialogflow took more than 5 seconds to extract intents and

entities from the user’s question. We searched for the reasons behind Dialogflow’s delay and found

that the way users ask questions can make it difficult for Dialogflow’s algorithms to extract the

entities and intents. On the other hand, there is one case where the participant required more than

30 minutes to complete their task using the bot. We followed up with the participant afterwards to

determine the reason and were told that the participants simply “forgot” to complete the task since

they were distracted.

As for the case where users took a long time to find that answers in the baseline case, we found

that the main reason for such delays is that some tasks were more difficult to answer. Hence, users

needed to conduct online searches (e.g., using Stack Overflow) of ways/techniques that they can use

to obtain the answer.

That said, overall, the participants were fast in completing tasks using the bot. It is important

to keep in perspective how much time using the bot saves. As we learned from the feedback of our

baseline experiments, in many cases, and depending on the task being performed, a developer may

62

need to clone the repository, write a short script, and process/clean-up the extracted data to ensure

that they complete the tasks correctly - and that might be a best case scenario. If the person looking

for the information is not very technical (e.g., a manager), they may need to spend time to learn

what commands they need to run or tools to use, etc., which may require several hours or days.

The participants take a median time of 40 seconds to perform a task using the

bot. Moreover, the majority (84.17%) of the bot’s users perceived the bot’s

responses to be fast or very fast. However, the way that the user frames the

question may impact the speed of the bot’s reply.

4.4.3 RQ3: How accurate are the bot’s answers?

In addition to using the typical measures to evaluate bots, i.e., usefulness and speed, it is critical

that the bot returns accurate results. This is of particular importance in our case, since software

practitioners generally act on this information, sometimes to drive major tasks.

Bot’s performance. We measure accuracy by checking the tasks’ results performed by the users

using the bot and comparing it with the actual answer to the task if it was queried manually by

cloning the repositories then writing a script to find the answer or executing git/Jira commands.

For example, to get the developers who touched the ”KafkaAdminClient” file, we ran the following

git command: ”git log –pretty=format:%cn – clients/src/main/java/org/apache/kafka/clients/admin

/KafkaAdminClient.java”. This RQ checks each component’s functionality in the framework. Par-

ticularly, it checks whether the extraction of the intents and entities is done correctly from the natural

language question posed by the users. Moreover, we check whether our knowledge base compo-

nent queries the correct data and if the response generator produces the correct reply based on the

intent and knowledge base, respectively. In total, the first two authors manually checked all the 120

completed tasks by the participants using the bot.

Our results showed that the users correctly completed 90.8% (109 of 120) of the tasks using the

bot. Manual investigation of the correct tasks showed that the bot is versatile and was able to handle

different user questions related to the tasks. For example, the bot was able to handle the questions

“tell me the number of commits last month” asked by participant 1 vs. “determine the number of

63

Table 4.3: Reasons for Uncompleted Tasks by the Bot

Reason Number of Questions
Extract Intent 5
Recognize Entity 5
Developer’s Distraction 1
Out of scope 9

commits that happened in last month.” asked by participant 2 vs. “how many commits happened in

the last month” from participant 3, which clearly have the same semantics but different syntax.

Our findings indicate that the 10 tasks that the users fail to complete correctly were due to the

incorrect extraction of intents or entities by our trained NLU model as shown in Table 4.3. For

example, in one scenario the user asks “tell me the commit info between 27th May 2018 till the end

of that month?” and our NLU model was unable to identify the entity (because it was not trained

on the date format mentioned in the participant’s question). Consequently, the knowledge base

and the response generator components mapped the wrong entity and returned an incorrect result.

Interestingly, in such cases, some of the participants had to ask the bot more than once to complete

the task correctly. For example, P1 posed the following question “how many of June 2018 bugs are

fixed” to perform task 10, the bot fails to extract the correct intent (the fixing commits that induce

bugs) from the question, which lead to an incorrect reply (returned the developers that are expert in

fixing bugs). Consequently, the participants rephrased the query to the bot as follows: “show me

the percentage of bugs fixes that introduced bugs in June 2018” which allowed the bot to return the

correct answer. Overall, the participants asked 1.3 question per task, on average. It is important to

note that we consider the task where the participant is distracted as incomplete since s/he took more

than 30 minutes.

Baseline performance. As mentioned earlier, we also conducted a baseline comparison where we

asked users to perform the same tasks without the bot. Figure 7 shows a break down of 1) the

number of completed tasks and 2) the number of correct tasks per completed tasks. On the positive

side, we can see that the survey participants were able to provide some sort of answer for all tasks,

albeit some of the tasks (e.g., T3, T6, T11 and T15) had less answers from participants. Across all

tasks, the participants provided some sort of answer in 62.6% of the cases.

However, what is most interesting is that the number of correct answers is much lower. Across

64

91.7%

58.3%

8.3%

66.7%

100% 100% 100%

25.0%

33.3%

16.7%

36.4%

42.9%

0%

50%

8.3%

41.7%

91.7%

0%

25.0%

0%
0

1

2

3

4

5

6

7

8

9

10

11

12

13

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

N
um

be
r o

f A
ns

w
er

s

Questions

Number of
Completed Task

Number of Correctly
Completed Tasks

Figure 4.7: Number of Answers for Each Task in the Baseline

all tasks, the survey participants provided the correct answer in 25.2% of the cases. For example,

for T3, T11 and T15, all of the provided answers were incorrect. On the other hand, T9’s answers

were all correct.

This outcome highlights another (in addition to saving time) key advantage of using the bot frame-

work, which is that reduction of human error. When examining the results of the baseline experi-

ments, we noticed that in many cases participants would use a wrong command or a slightly wrong

date. In other cases where they were not able to provide any answer, they simply did not have the

know how or failed to find the resources to answer their question within a manageable time frame.

Overall, the bot achieves an accuracy of 90.8% in answering user’s questions,

which is much higher than the baseline’s accuracy of 25.2%. Techniques to

make the NLU training more effective can help further improve the bot’s ac-

curacy.

Follow-up Interviews

The survey results provided us with an excellent way to quantify the usefulness, efficiency,

and accuracy of the bot. However, we wanted to obtain deeper insights, particularly related to

65

what the participants felt were the strengths and areas for improvement for the MSR-related bot

framework. Therefore, we conducted semi-structured interviews, where we sat with 5 of the 12

survey participants and asked them: 1) What they believe are the strengths of using a bot framework?

2) What they believe can be improved? and 3) any general comments or feedback they had for us?

We asked for permission to record the results of the interview, to enable us to perform deeper offline

analysis of the results.

In terms of strengths, most of the points mentioned during the interview surrounded the ben-

efits and applicability of the bot on top of software repositories in industry/practical settings. We

elaborate on some of the points pointed by the interviewees below:

• Bots are useful in software projects where personnel with many roles are involved. Al-

though we knew from the RQs that bots will be useful, however, our interview revealed to us

that bots are probably useful to more than just developers. For example, P1 and P2, two of

the most experienced participants indicated that usually large projects involve personnel with

varying technical backgrounds. And it is usually the less technical personnel (e.g., project

managers) that can significantly benefit from repository information, but often lack the know-

how to extract such information.

• Bots are very efficient, even when large and long-lived projects are being analyzed. An-

other major strength pointed out is the ability of the bot to provide answers from a very rich

history very quickly. For example, P4 mentions the fact that some repos “have more than

20,000 [or more] commits and if you are going through like 20,000 bugs or specific commits

it will take so much time and probably you may even miss important data easily”.

Another participant, P5 had a different perspective and saw the potential for bots to help

researchers that study software projects. Particularly, he pointed out that our bot framework

can be used by researchers who may want to get a few quick answers about a project or do

some deep-dive analysis based on some of their findings. For example, one can ask the bot

how many changes or how many bugs were reported against a file that they found to yield

interesting results in their analysis.

• Bot’s have a very low barrier-to-entry, especially since they can understand natural

66

language. The participants pointed out that a major advantage is that they did not need to

‘learn’ any specific technology or language to interact with the bot. This significantly lowers

the barrier to entry for adopters of our framework. For example, P3 says “I like that you

type in natural language without thinking about building a query to do the thing [answer the

question at hand]”

Other points mentioned reaffirmed our quantitative findings. For example, participants P2, P3

and P5 all mentioned the bot’s speed in replying to questions and the fact that the bot helps complete

the tasks at hand faster as a major benefit. We do not discuss this in detail here, since we believe our

results already discussed such point and there is no point in repeating the same points again.

We also gained some valuable feedback about the potential areas of improvement for the bot

framework. We elaborate on some of the points mentioned by the interviewees below:

• Support deep-dive of answers provided. The participants mentioned that although they ap-

preciated the simplicity and clarity of the bot’s answers, you see adding the ability of allowing

the user to dive more into the results as a potential future feature. For example, participant

P1 mentioned that it would be great to add hyperlinks for commit hashes or bug IDs that are

returned. We believe that such a feature is indeed warranted and plan to (and believe we could

easily) implement such a feature.

• Make the bot more resilient and modifiable. One clear limitation of our bot framework

is that it supports a limited number of questions, even though we did that since our goal

is to evaluate the viability of using a bot on top of software repositories. In any case, the

participants P2 and P3 suggested that a clear improvement is to support more questions. We

certainly plan to look into ways that can make our bot learn effectively from questions that

are not yet supported, based on the questions users ask. Another participant, P4 suggested

that we try and add a recommendation system to the bot so that typos are fixed with a “did

you mean ...” type of messages. Also, questions that might be mistyped, e.g., how vs. who,

can be provided with a suggested fix.

That said, all participants strongly showed support for the idea and mentioned they see a lot

of potential for the combination of bots and software repositories. Our work is a step in the right

67

direction, showing the value and applicability of using bots to effectively extract useful information

easily from software repositories.

4.5 Discussion

In this section, we present other perspectives in evaluating the software bots, and discuss the

future and practical implications of our work.

4.5.1 Bots Evaluation

One of the main challenges in our work is the evaluation part since there is not much prior work

that evaluates the use of bots on software repositories. One of the goals of using bots in the software

engineering domain is to improve developers’ productivity Storey and Zagalsky (2016a). Therefore,

we believe that any proposed bot should be evaluated against the methods that developers usually

use to perform their tasks.

As discussed in section 4.3, we evaluate the proposed framework according to its effectiveness

and usefulness for developers in performing their tasks. However, there may be other ways to assess

software bots. For example, usage, which can be measured by the number of times that a user uses

the bot in a certain duration (e.g., a week). Other measures for speed can be related to the number

of interactions needed for a user to complete a task, i.e., asking more questions to perform one task

increases the time required to complete that task.

In our case study, there are 11 cases where the participants reworded the question because the bot

failed to return the correct answer because of 1) incorrect extraction of intents and entities 2) missing

entities in the posed questions 3) typos in the users questions (e.g., What commits happened between

27/5/208 - 31/5/2018) 4) the bot encountered connection issues to the internet. For example, one

of the participants asked the bot “What the details of the commits between May 27th 2018 and

May 31st 2018”, the bot failed to extract the entity (May 27th 2018 and May 31st 2018) because it

was not trained on date format that is specified in the posed question. Then, the user rephrased the

question to the bot as follows: “What are the details of the commit between 27/5/2018 - 31/5/2018”,

which allowed the bot to extract the entity correctly.

68

That said, measuring the total time needed to perform a certain task may cover the number of in-

teractions metric. One can also argue that the number of interactions is considered as a measure for

users satisfaction rather than a speed. Because a large number of interactions to perform a task im-

pacts the satisfactions of the bot users negatively Ask, Facemire, Hogan, and Conversations (2016);

The impact of conversational bots in the customer experience - Good Rebels (2020); C. Lebeuf et

al. (2018d).

In general, the evaluation of software bots varies based on their characteristics and the tasks they

can perform. For example, if a bot is proactive (e.g., reminds the user to execute a certain task),

then the number of interactions may be invalid as a speed metric since the conversation always

comes from the bot. Storey and Zagalsky Storey and Zagalsky (2016a) suggested to measure the

bot’s efficiency and effectiveness in completing developers’ tasks. However, we believe that there

are different dimensions that bots’ developers and researchers can use to assess the proposed bots

regardless of their types such as accuracy and user satisfaction. For example, to measure user

satisfaction, the bot can monitor and track the sentiment of a user through the conversation and take

different actions based on the current user sentiment. On the other hand, bots can be evaluated based

on their intelligence, such as how easily they can adapt to new contexts, their ability to explain the

reasoning behind their behavior, and the degree of smoothness of the conversation flow C. Lebeuf

et al. (2018d). We believe that bots evaluation is still an active area and we encourage researchers to

investigate the various dimensions and measures that the bots community can use to assessdifferent

bots.

4.5.2 Study Implications

Our framework has a number of implications on both, software engineering research and prac-

tice.

Implications for Future Research: Our study mainly focused on proposing and evaluating a

framework to answer some of the most common developers’ questions using software reposito-

ries. Based on our results, we find a number of implications for future research. First, there is a

need for the MSRBot to support more complex queries, as indicated by the participants’ comments.

69

For example, one of the participants stated that the bot is going to help a lot in answering more

complex queries using the repositories data. Hence, our study motivates the need to examine more

complex questions using data from different types of software repositories. Also, our study shows

that there is a need to develop approaches that answers questions dynamically (i.e., removing the

need to have predefined questions) using repositories to overcome the limited number of questions

supported by the bot.

Second, the retrieved data in the bot’s answers and the way it is displayed to the user can be im-

proved. For example, one of the participants recommends providing a suggestion to the user in

case the bot was unable to identify the user’s intent from the posed question. Another participant

indicated that the bot’s reply should be short and suggested the use of pagination to enable the user

to navigate more easily through the bot’s reply. Using pagination when displaying the bot’s reply

(e.g., commits that happened in the last 3 months) needs careful consideration since questions such

as how many records to display on each page, and how can users know in which page a specific

record is, need to be considered. Furthermore, it is unconventional to implement the pagination in

a chat interface, which might affect user satisfaction. Although there are many studies on software

bots, we are not aware of any studies that discuss the best way to represent the bot’s reply and kind

of information that bots’ users expect to see. Our findings motivate the need for such studies.

Practical Implications: A direct implication of our findings is that using the bot simplifies the

extraction of useful information from software repositories in different ways. First, it helps project

stakeholders that do not have technical skills to easily extract the information from different repos-

itories using the natural language. And, although some developers have the skills to perform such

tasks (i.e., mining and analyzing data from software repositories), our framework reduces the time

to complete those tasks compared to the baseline (i.e., any tool other than MSRBot). Overall, we

believe that our framework supports practitioners at different levels in performing their tasks by low-

ering the barrier to entry for extracting useful data from software repositories. For example, it helps

project managers to track the project progress (based on the closed tickets) and assists developers in

their daily tasks.

70

4.6 Threats to validity

In this section, we discuss the threats to construct, internal and external validity of our study.

Construct Validity: The 12 participants used to evaluate the bot framework may have reported

incorrect results, which would impact our findings. However, we are quite confident in the results

returned since 1) most of these students have professional software development experience and 2)

in most cases, there was a clearly popular answer (i.e., very few outliers). We also interviewed a

subset of the participants, and based on our discussions, all participants seemed very competent in

evaluating the output of the bot.

We selected different questions from the literature to evaluate the proposed framework which

might bias our evaluation by adding the questions that the bot can better answer. However, we

mitigate this threat to validity in different ways. First, we selected the list of questions from different

studies arbitrarily. Second, in the given tasks, the participants are free to ask any type of questions

to the bot (that is related to the task). Lastly, the participants are unaware of the list of questions that

the bot can answer or is trained on.

Internal Validity: We used Google’s Dialogflow to extract the intents and entities from the posed

questions. Hence, our results might be impacted by Dialogflow’s ability to translate the user’s

questions. That said, RQ3, which examines the accuracy of the bot showed high accuracy, which

makes us confident in the use of Dialogflow. However, using another framework, might lead to

different results. In the future, we plan to examine the impact of such frameworks on our bot. Also,

Dialogflow’s NLU model is trained on examples that were provided and manually labeled (i.e., the

intents and entities) by us. The quality and quantity of training data may impact the effectiveness

of the NLU. That said, in our evaluation, Dialogflow was able to handle the majority of questions

from our users. In the future, we plan to investigate ways that our bot can learn from user’s input

and automate the intent and entity extraction/training phase.

Another threat to internal validity is that we used the questions identified in the literature to

formulate the tasks in our case study. In some cases, the statement provided in the task might bias

the participants on how to pose questions to the bot. The reason for providing the statements to

the participants is that we want to keep our study manageable and to evaluate the developed bot

71

using the supported types of questions. However, we mitigate this threat by providing the question

as a statement. Also, we did not reveal the list of the questions that the bot was trained on to the

participants. Albeit anecdotal, we believe that our results show a limited effect of the wording of

the tasks on the participants because their questions were syntactically different than the provided

statements, although they have similar semantics) (e.g., “how many commits in the last month” and

“what are the details of the commits between 27/5/2018 - 31/5/2018?”.

External Validity: Our study was conducted using Hibernate-ORM and Kafka projects and sup-

ported 15 common questions. This means that the study might yield different results when selecting

other projects or supporting a different set of questions related to software repositories. These are

threats to external validity as they may limit the generalisability of our results. However, we plan to

expand our study to support more systems and questions in the future. Also, it is important to note

that the point of this chapter is to design and evaluate the feasibility of using bots on top of software

repositories to automate the answering of commonly asked questions.

Also, we used students to evaluate our framework. Therefore, using different participants (i.e.,

developers) might affect the generalizability of our results. However, we argue that the main purpose

of the case study is to evaluate our approach rather than studying the participants characteristics.

Moreover, most of the participants have more than 3 years of industrial experience which reduces

the threats to external validity. Furthermore, we plan to conduct a large-scale study in the future by

having more developers from the industry.

4.7 Chapter Summary

Software repositories contain numerous amounts of useful information to enhance software

projects. However, not all project stakeholders are able to extract such data from the repositories

since it requires technical expertise and time. In this chapter, we design and evaluate the feasibility

of using bots to support software practitioners in asking questions about their software repositories.

Our findings show that the bot provides answers that are considered very useful or useful (as in-

dicated by 90% of the participants), efficient (participants take on median 40 seconds to complete

the tasks), and accurately answers questions posed by its users (as indicated by 90.8% of completed

72

tasks). Also, our study highlighted some of the potential pitfalls when applying bots on software

repositories. For example, our study finds that more attention is needed regarding the content and

length of the information that the bot replies with, how to handle complex user questions, and how

to handle user errors such as typos. Overall, our work showed that bots have the potential of playing

a critical role by lowering the barrier-to-entry for software stakeholders to extract useful information

from their repositories. Also, the bots are efficient when used on large projects with a long history,

which saves the developers’ time needed to extract the data from the repositories. Finally, we be-

lieve that our work encourages other researchers to explore different usages of bots on different

types of software repositories, e.g., code review repositories.

In addition to addressing the issues found in the user study (e.g., handling user typos), the re-

sults in this chapter outline some directions for future work. First, since the entity recognizer and

intent extractor components accuracy depend on the training dataset, we will examine different tech-

niques to generate a dataset for those components (e.g., using Stack Overflow topics) to increase

their accuracy. We want to compare the performance of different Natural Language Understanding

Platforms (e.g., Dialogflow and Rasa) using software engineering datasets to help the bot’s com-

munity identify the platform that best fits their context. Also, we are planning to support a wider

range of repositories such as (e.g., Gerrit Code Review). Moreover, in the current implementation

of our framework, we did not provide the users with the ability to configure the bot. However, al-

lowing users to configure the bot may improve the flexibility and adaptability of our framework. In

the future, we plan to allow the MSRBot to be configured through users’ feedback by asking users

for their preferences and suggesting possible configurations. Finally, we plan to evaluate our bot

framework using industrial settings to gain more insights into the roles and scenarios in which the

bot can be used.

The focus of this part is to identify the chatbot development challenges and present the chatbot

potential in enhancing the software development. In the next chapter, we shift our focus to evaluate

widely-used NLUs using SE tasks with an aim to guide the developers to design more effective SE

chatbots by choosing an NLU for their chatbots based on their needs and the context of usage in the

SE domain.

73

Chapter 5

Can we help developers to design more

effective chatbots for the SE domain?

Chatbots are envisioned to dramatically change the future of Software Engineering, allowing

practitioners to chat and inquire about their software projects and interact with different services

using natural language. At the heart of every chatbot is a Natural Language Understanding (NLU)

component that enables the chatbot to understand natural language input. Recently, many NLU plat-

forms were provided to serve as an off-the-shelf NLU component for chatbots, however, selecting

the best NLU for Software Engineering chatbots remains an open challenge.

Therefore, in this chapter, we evaluate four of the most commonly used NLUs, namely IBM

Watson, Google Dialogflow, Rasa, and Microsoft LUIS to shed light on which NLU should be

used in Software Engineering based chatbots. Specifically, we examine the NLUs’ performance in

classifying intents, confidence scores stability, and extracting entities. To evaluate the NLUs, we

use two datasets that reflect two common tasks performed by Software Engineering practitioners,

1) the task of chatting with the chatbot to ask questions about software repositories 2) the task of

asking development questions on Q&A forums (e.g., Stack Overflow). According to our findings,

IBM Watson is the best performing NLU when considering the three aspects (intents classification,

confidence scores, and entity extraction). However, the results from each individual aspect show

that, in intents classification, IBM Watson performs the best with an F1-measure>84%, but in

74

confidence scores, Rasa comes on top with a median confidence score higher than 0.91. Our results

also show that all NLUs, except for Dialogflow, generally provide trustable confidence scores. For

entity extraction, Microsoft LUIS and IBM Watson outperform other NLUs in the two SE tasks.

Our results provide guidance to software engineering practitioners when deciding which NLU to

use in their chatbots.

5.1 Introduction

Software chatbots are increasingly used in the Software Engineering (SE) domain since they

allow users to interact with platforms using natural language, automate tedious tasks, and save

time/effort Storey and Zagalsky (2016b). This increase in attention is clearly visible in the increase

of number of bots related publications Abdellatif, Badran, and Shihab (2019b); Abdellatif, Costa,

et al. (2020); Chun-Ting Lin and Huang (2020); Dominic et al. (2020b); B. Xu et al. (2017a), con-

ferences Conference (2019), and workshops BotSE (2019). A recent study showed that one in

every four OSS projects (26%) on GitHub are using software bots for different tasks Wessel et al.

(2018b). This is supported by the fact that bots help developers perform their daily tasks more effi-

cientlyStorey and Zagalsky (2016b), such as deploy builds DeployBot (2020), update dependencies

Dependabot (2020), and even generate fixing patches Urli, Yu, Seinturier, and Monperrus (2018b).

At the core of all chatbots lie the Natural Language Understanding platforms—referred hereafter

simply as NLU. NLUs are essential for the chatbot’s ability to understand and act on the user’s input

D. Braun, Hernandez-Mendez, Matthes, and Langen (2017); Rychalska, Glabska, and Wroblewska

(2018b). The NLU uses machine-learning and natural language processing (NLP) techniques to

extract structured information (the intent of the user’s query and related entities) from unstructured

user’s input (textual information). As developing an NLU from scratch is very difficult because

it requires NLP expertise, chatbot developers resort to a handful of widely-used NLUs that they

leverage in their chatbots Abdellatif et al. (2019b); Marbot (2020); Munoz et al. (2018); Murgia et

al. (2016b); Toxtli et al. (2018).

As a consequence of the diversity of widely-used NLUs, developers are faced with selecting the

best NLU for their particular domain. This is a non-trivial task and has been discussed heavily in

75

prior work (especially since NLUs vary in performance in different contexts) D. Braun, Hernandez-

Mendez, et al. (2017); Canonico and De Russis (2018); Gregori (2017). For instance, in the context

of the weather domain, Canonico and De Russis (2018) showed that IBM Watson outperformed

other NLUs, while Gregori (2017) evaluated NLUs using frequently asked questions by university

students and found that Dialogflow performed best. In fact, there is no shortage of discussions on

Stack Overflow about the best NLU to use in chatbot implementation Damir (2020); T. G (2016);

Nick (2018) as choosing an unsuitable platform for a particular domain deeply impacts the user

satisfaction with the chatbot Ask et al. (2016); Lastra (2016); C. Lebeuf et al. (2018d).

An important domain that lacks any investigation over different NLUs’ performance is SE. Soft-

ware Engineering is a specialized domain with very specific terminology that is used in a particular

way. For example, in the SE domain, the word ‘ticket’ refers to an issue in a bug tracking system

(e.g., Jira), while in other domains it is related to a movie (e.g., TicketMaster bot) or flight ticket.

Moreover, there is no consensus amongst SE chatbot developers on the best NLU to use for the

SE domain. For instance, TaskBot Toxtli et al. (2018) uses Microsoft Language Understanding

Intelligent Service (LUIS) LUIS (Language Understanding) Cognitive Services Microsoft Azure

(2019) to help practitioners manage their tasks. MSRBot Abdellatif et al. (2019b) uses Google Di-

alogflow NLU to answer questions related to the software repositories. MSABot Chun-Ting Lin and

Huang (2020) leverages Rasa NLU to assist practitioners in developing and maintaining microser-

vices. Given that no study has investigated which NLU performs best in the SE domain, chatbot

developers can not make an informed decision on which NLU to use when developing SE-based

chatbots.

Hence, in this chapter, we provide the first study to assess the performance of widely-used NLUs

to support SE tasks. We evaluate NLUs on queries related to two important SE tasks: 1) Repository:

Exploring projects’ repository data (e.g.,“What is the most buggy file in my repository?”), and 2)

Stack Overflow: Technical questions developers frequently ask and answer from Q&A websites

(e.g., “How to convert XElement object into a dataset or datatable?”).

Using the two SE tasks, we evaluate four widely-used NLUs: IBM Watson IBM (2019a),

Google Dialogflow Google (2020b), Rasa Rasa (2020b), and Microsoft LUIS LUIS (Language

Understanding) Cognitive Services Microsoft Azure (2019) under three aspects: 1) the NLUs’

76

performance in correctly identifying the purpose of the user query (i.e., intents classification); 2)

the confidence yielded by the NLUs when correctly classifying and misclassifying queries (i.e.,

confidence score); and 3) the performance of the NLUs in identifying the correct subjects from

queries (i.e., entity extraction).

Our results show that, overall (considering NLUs’ performance in intents classification, con-

fidence score, and entity extraction), IBM Watson is the best performing NLU for the studied SE

tasks. However, the findings from evaluating the NLUs on individual aspects show that the best

performing NLU can vary. IBM Watson outperforms other NLUs when classifying intents for both

tasks (F1-measure > 84%). Also, we find that all NLUs (except for Dialogflow in one task) re-

port high confidence scores for correctly classified intents. Moreover, Rasa proves to be the most

trustable NLU with a median confidence score > 0.91. When extracting entities from SE tasks, no

single NLU outperforms the others in both tasks. LUIS performs the best in extracting entities from

the Repository task (F1-measure 93.7%), while IBM Watson comes on top in the Stack Overflow

task (F1-measure 68.5%).

Given that each NLU has its own strengths in the different SE tasks (i.e., performs best in

intent classification vs. entity extraction), we provide an in-depth analysis of the performance of the

different NLU’s features, which are the list feature, where the NLU extracts entities using an exact

match from a list of synonyms; and the prediction feature, where the NLU predicts entities that it

might not have been trained on before. Also, we analyze the characteristics of the intents in each

task to better understand the intents that tend to be harder to classify by all of the evaluated NLUs.

The chapter makes the following contributions:

• To the best of our knowledge, this is the first work to evaluate NLUs on two representative

tasks (i.e., software repositories data and Stack Overflow posts) from the SE domain.

• We evaluate the NLUs using different features for extracting entities (i.e., list and prediction

features).

• We explore the impact of selecting different confidence score thresholds on the NLUs’ intent

classification performance.

77

• We provide a set of actionable recommendations, based on our findings and experience in

conducting this study, for chatbot practitioners to improve their NLU’s performance.

• We make our labelled dataset publicly available to enable replication and help advance future

research in the field Abdellatif, Badran, Costa, and Shihab (2021d).

5.1.1 Organization of the Chapter

The rest of the chapter is organized as follows. Section 5.2 provides an overview about chatbots

and explains related concepts used throughout this chapter. Section 5.3 describes the case study

setup used to evaluate the performance of the NLUs. We report the evaluation results in Section 5.4.

Section 5.5 discusses our findings and provides a set of recommendations to achieve better classifi-

cations results. Section 5.6 discusses the threats to validity, and section 5.7 concludes the chapter.

5.2 Background

Before diving into the NLUs’ evaluation, we explain in this section the chatbot-related termi-

nology used throughout the chapter. We also present an overview of how chatbots and NLUs work

together to perform certain actions.

5.2.1 Definitions

Software chatbots are the conduit between their users and automated services C. Lebeuf et al.

(2018d). Through natural language, users ask the chatbot to perform specific tasks or inquire about

a piece of information. Internally, a chatbot then uses the NLU to analyze the posed query and

act on the users’ request. The main goal of an NLU is to extract structured data from unstructured

language input. In particular, it extracts intents and entities from users’ queries: intents represent the

user intention/purpose of the question, while entities represent important pieces of information in

the query. For example, take a chatbot like the MSRBot Abdellatif et al. (2019b), that replies to user

queries about software repositories. In the query “How many commits happened in the last month

of the project?”, the intent is to know the number of commits that happened in a specific period

(CountCommitsByDate), and the entity ‘last month’ of type DateTime determines the parameter for

78

the query. The chatbot uses both the intent and entities to perform the action that answers the user’s

question. In this example, the chatbot searches in the repository for the number of commits issued

in the last month.

Most NLUs come with a set of built-in entities (e.g., currencies and date-time), which are pre-

trained on general domain queries. To use an NLU on a specialized domain, developers should

define a set of custom intents and entities. For each custom intent, the NLU needs to be trained

on a set of queries that represents different ways a user could express that intent. Again, taking

the former example, “How many commits happened in the last month?”, this query can be asked in

multiple different ways. For instance, “show me the number of commits between 1-03-2020 and 31-

03-2020” is an example of a query with the same semantics but different syntax. Both queries can

and should be used to train the NLU on how to identify the CountCommitsByDate intent. Similarly

to custom intents, NLUs need to be trained to recognize custom entities. To do that, developers

label the entity types and their values in the queries. For example, in the following query “what is

the fixing commit for bug HHH-8501?”, the entity ‘HHH-8501’ is labelled as a JiraTicket type.

The misclassification of intents and entities negatively impacts the user experience, although

each in its own way. When an NLU misclassifies an intent, the chatbot fails to understand the query

in a fundamental manner, leading the chatbot to reply to a different query or performing the wrong

task. Misclassifying entities, on the other hand, causes the chatbot to reply about a wrong piece of

information. For example, in the query “How to convert xml to json file in java” there are three

entities: ‘XML’, ‘Json’ and ‘Java’. If the NLU fails to extract the ‘Java’ entity, the chatbot loses

the context of the question and might reply with an answer for converting XML to Json with code

example from any other programming language (e.g., Python).

The last piece in the picture is the confidence score, which represents how confident the NLU

is in classifying the intent Google (2019b); IBM (2019b); Microsoft (2019c); Rasa (2019a). The

confidence score is given on a scale from 0 (i.e., not confident) to 1 (i.e., fully confident), which

corresponds to the classified intent by the NLU. Chatbot developers use the confidence score to

choose their next action, either by answering the user’s question/request or triggering a fallback

intent. The fallback intent is a response issued by the chatbot to give the user a chance to rephrase

or clarify their initial query. Typically, the fallback intent is triggered when the returned confidence

79

Knowledge
Base

Response
Generator

DB/API

Intent: GetMaintainers
Entities: (ticket 8983)[JiraTicket]
Confidence Score: 0.06 < Threshold

Intent: GetFixingCommits
Entities: (ticket 8983)[JiraTicket]
Confidence Score: 0.85 > Threshold

Natural Language
Understanding PlatformUser Interface

Hi there, how can I help you?

Fix ticket 8983?

Sorry, I did not understand your question, could
you please rephrase the question?

Which commit fixed the bug ticket 8983?

The bug ticket 8983 was fixed by the commit with
hash 26f55f9baa8f4f34

Figure 5.1: An overview of user-chatbot interaction

score is lower than a certain threshold. Choosing a suitable threshold for a chatbot is not an easy

task, as a low value would make a chatbot answer to unclear questions more often (too confident),

and a high threshold would trigger the fallback intent too often (insecure chatbot), annoying the user

by asking it to rephrase the question frequently.

In our study, we want to investigate the NLUs’ performance with regards to intents classification,

confidence score, and entity extractions. All three aspects are critical to ensure that chatbots return

correct and complete responses to the user.

5.2.2 Explanatory Example

To demonstrate how chatbots utilize NLUs to answer a user’s query, we showcase an example

of a user asking a repository related question to a chatbot as shown in Figure 5.1. In this example,

we use a simplified architecture of the chatbot Abdellatif et al. (2019b) for illustration purposes.

The NLU is trained on the queries (intents) related to mining software repositories and is trained

80

to extract repository entities from users’ questions, such as a JiraTicket (e.g., HHH-8593). In this

example, after the costumary greeting from the chatbot, the user asks the chatbot “Fix ticket 8983?”

which is forwarded to the NLU where it classifies the user’s question as having a GetMaintainers

intent with a confidence score of 0.06. The low confidence score (lower than a predetermined

threshold) triggers the fallback intent, thus, the chatbot asks the user to rephrase the question in a

more understandable way (i.e., “Sorry, I did not understand your question, could you please rephrase

the question?”). After the user rephrases the question “Which commit fixed the bug ticket 8983?”,

the NLU extracts the entity ‘ticket 8983’ of type JiraTicket and classifies the intent of the query

as GetFixingCommits with a confidence score of 0.85. Finally, the chatbot performs the necessary

action, querying the database to answer the posed question (“The bug ticket 8983 was fixed by the

commit with hash 26f55f9baa8f4f34”).

5.3 Case Study Setup

Since the main goal of this chapter is to evaluate the performance of different NLUs using SE

tasks, we need to select the candidate NLUs that we want to examine and the SE tasks’ data corpus

to train and test those NLUs. In this section, we detail our selection of the NLUs, SE tasks used in

the evaluation, and our experiment design.

5.3.1 Evaluated NLUs

There exists several widely-used NLUs that are easily integrated with third-party applications.

To make our study comprehensive, we choose to examine the performance of four NLUs, namely

IBM Watson, Dialogflow, Rasa, and LUIS. We select these NLUs since they are popular and widely

used by both researchers and practitioners Munoz et al. (2018); Toxtli et al. (2018), and have

been studied by prior NLU comparison work in other domains D. Braun, Hernandez-Mendez, et

al. (2017); Gregori (2017); Koetter et al. (2018). Moreover, all selected NLUs can be trained by

importing the data through their user interface or API calls, which facilitates the training process.

In the following, we provide a description of those NLUs.

81

• Watson Conversation (IBM Watson): An NLU provided by IBM IBM (2019a). IBM Wat-

son has prebuilt models for different domains (e.g. banking) and a visual dialog editor to

simplify building the dialog by non-programmers.

• Dialogflow: An NLU developed by Google Google (2020b). Dialogflow supports more than

20 spoken languages and can be integrated with many chatting platforms such as Slack Google

(2020b).

• Rasa: The only open-source NLU in our study, owned by Rasa Technologies Rasa (2020b).

Rasa allows developers to configure, deploy, and run the NLU on local servers. Thus, increas-

ing the processing speed by saving the network time compared to cloud-based platforms. In

our evaluation, we use Rasa-nlu v0.14, which was the latest version when conducting the

experiment.

• Language Understanding Intelligent Service (LUIS): An NLU cloud platform from Mi-

crosoft LUIS (Language Understanding) Cognitive Services Microsoft Azure (2019). LUIS

has several prebuilt domains such as music and weather, and supports five programming lan-

guages: C#, Go, Java, Node.js, and Python.

5.3.2 SE Tasks and Data Corpora

To evaluate the performance of the NLUs in the Repository and Stack Overflow tasks, we select

two representative data corpora, one for each task 1) Repository corpus Abdellatif et al. (2019b)

used for the Repository task and includes questions posed to a chatbot by practitioners looking

for information related to their projects’ software repositories 2) Stack Overflow corpus Ye et al.

(2016) used for the Stack Overflow task and contains a set of posts from Stack Overflow discussion

threads. Our selection of these two tasks was motivated by two main reasons: Firstly, both tasks

reflect realistic situations, as in both, developers are asking questions about issues they face or to get

more information about their projects (e.g., fixing commit for a bug). In fact, the Repository task

also covers questions that are commonly asked by project managers to grasp the state of the project

repository. Hence, both tasks make our results more generalizable to the chatbots practitioners in the

SE domain. Secondly, using two tasks in our evaluation gives us better insights on how each NLU

82

Table 5.1: Intents distribution in the Repository task.

Intent Definition Train (%) Test (%) Total (%)

BuggyCommitsByDate Present the buggy com-
mit(s) which happened dur-
ing a specific time period.

66 (23.8) 13 (10.7) 79 (19.6)

BuggyCommit Identify the bugs that are in-
troduced because of certain
commits.

52 (18.8) 9 (7.4) 61 (15.3)

BuggyFiles Determine the most buggy
files in the repository to
refactor them.

37 (13.4) 13 (10.7) 50 (12.6)

FixCommit Identify the commit(s)
which fix a specific bug.

31 (11.2) 11 (9.0) 42 (10.6)

BuggyFixCommits Identify the fixing commits
that introduce bugs at a par-
ticular time

32 (11.6) 7 (5.8) 39 (9.8)

CountCommitsByDates Identify the number of com-
mits that were pushed dur-
ing a specific time period.

11 (3.9) 21 (17.4) 32 (8.0)

ExperiencedDevFixBugs Identify the developer(s)
who have experience in fix-
ing bugs related to specific
file.

15 (5.4) 14 (11.6) 29 (7.3)

OverloadedDev Determine the overloaded
developer(s) with the high-
est number of unresolved
bugs.

15 (5.4) 9 (7.4) 24 (6.0)

FileCommits View details about the
changes that are occurred
on on a file.

10 (3.6) 12 (10.0) 22 (5.5)

CommitsByDate Present the commit infor-
mation (e.g., commit mes-
sage) at a specific time.

8 (2.9) 12 (10.0) 20 (5.0)

83

Table 5.2: Entities distribution in the Repository task.

Entity Type Definition Train Test

FileName Name of the file (e.g., Transaction.java). 35,007 26
JiraTicket Ticket ID number (e.g., KAFKA-3612). 21,012 11
DateTime Specific/period data (e.g., during July of 2019). 117 52
CommitHash Hash of a certain commit. 15,303 10

performs in different sub-contexts of SE. The Stack Overflow task uses a corpus that has a diverse

set of posts from the top 8 tags in Stack Overflow, the most popular Q&A website in the developers

community Abdalkareem, Shihab, and Rilling (2017); Mamykina, Manoim, Mittal, Hripcsak, and

Hartmann (2011). On the other hand, the Repository task contains project specific information (i.e.,

“who touched file x?”) rather than general programming questions.

Repository Corpus. This corpus was originally used to train and test the MSRBot Abdellatif

et al. (2019b), a chatbot tailored for answering users’ questions on project repository data. This

corpus contains a set of 398 queries, with 10 different intents, as shown in Table 5.1. Each intent

contains a set of different questions with the same semantic, indicating the different ways a user

could ask the same query. Those intents have questions related to code repository (e.g., “List me

the changes done in ClassA.java” from the FileCommits intent), issue tracker (e.g., “Who has the

most bug assignments?” from the OverloadedDev intent), or a combination of both code and issue

tracker (e.g., “Which commits fixed HHH-10956?” a query from the FixCommit intent). The corpus

includes explicitly defined training and test sets that are labelled by the developers of the MSRBot.

The training set includes the questions used to train the chatbot, acquired and curated by three

developers involved in the project, while the test set is composed of questions posed by 12 software

developers to test the MSRBot on a specified set of 10 different tasks. We use the training and test

set as defined by the MSRBot authors in this experiment.

Each entity in the Repository corpus contains a so-called list feature Dialogflow (2020a); IBM

(2020a); Microsoft (2020a); Rasa (2020c), a list of equivalent synonyms used by the NLU to recog-

nize entities. With the list feature, the NLUs are limited to extract the exact match of the entities, but

can use the specified synonyms in the extraction process. For instance, the entity ‘HHH-7325’ of

84

Table 5.3: List of the Stack Overflow task entities.

Entity Definition Total

ProgLanguage Types of programming languages (e.g., Java) Ye et al. (2016). 96
Framework Tools/frameworks that developers use (e.g., Maven) Ye et al. (2016). 85
Standards “Refers to data formats (e.g., JSON), design patterns (e.g.,Abstract

Factory), protocols (e.g., HTTP), technology acronyms (e.g., Ajax)”
Ye et al. (2016).

20

API An API of a library (e.g., ArrayList) Ye et al. (2016). 67
Platform Software/Hardware platforms (e.g., IOS) Ye et al. (2016). 13

type JiraTicket has a list of synonyms containing ‘bug7325’, ‘issue7325’, and ‘HHH7325’, hence,

any of these words can be used by the NLU to recognize the entity ‘HHH-7325’. The Repository

corpus contains four entity types using the list feature as shown in Table 5.2, covering the main ar-

tifacts in a repository, such as files (FileName), commits (CommitHash), and tickets from the JIRA

bug-tracker (JiraTicket).

Table 5.4: List of the Stack Overflow task intents.

Intent Description Total (%)

LookingForCodeSample Looking for information related to implementation.
This includes looking for code snippets, the func-
tionality of a method, or information specific to the
user’s needs.

132 (61.3%)

UsingMethodImproperly A method or a framework is being used improperly
causing an unexpected or unwanted behaviour of
the program in hand. This can be related to code
bugs or to performance issues.

51 (23.7%)

LookingForBestPractice Looking for the recommended (best) practice, ap-
proach or solution for a problem.

12 (5.6%)

FacingError Facing an error or a failure in a program, mostly in
the form of an error message or a build failure.

10 (4.7%)

PassingData Passing data between different frameworks or
method calls.

10 (4.7%)

Stack Overflow Corpus. Stack Overflow is a popular Q&A website among developers and plays

an important role in the software development life cycle Abdalkareem et al. (2017). Given its

importance, data from Stack Overflow has already been used in prior work to train chatbots B. Xu

85

et al. (2017a). The titles of the questions in Stack Overflow represent a request for information

by software practitioners (e.g., “How to create an JS object from scratch using a HTML button?”).

Recently, Ye et al. (2016) developed a machine learning approach to extract software entities (e.g.,

the programming language name) from Q&A websites like Stack Overflow, and manually labelled

entities from 297 Stack Overflow posts as shown in Table 5.3. We use the same corpus Ye et al.

(2016) and extract the title of each post with its labelled entities. Unlike the Repository corpus,

entities in the Stack Overflow corpus do not have a list feature, (list of entity synonyms), and need

to be predicted by the NLUs (i.e., prediction feature). In other words, we train the NLUs only on the

entities included in the training set. This allows us to evaluate the NLUs’ ability to extract entities

that they have not been trained on before, which emulates real-life scenarios where it is difficult for

the practitioners to train the NLUs on all SE entities.

While the original Stack Overflow corpus contains manually labelled entities, it lacks the intent

behind the posed questions. Hence, we need to manually label the intents of the queries before we

can use the corpus for the Stack Overflow task. To achieve that, the first author used thematic anal-

ysis Cruzes and Dyba (2011) to categorize those queries (titles) according to their intents. Thematic

analysis V. Braun and Clarke (2006) is a technique to extract common themes within a corpus via

inspection, which was done manually in our case. This method is frequently used in qualitative

research to identify patterns within collected data and has been used in prior work in the SE domain

Lenberg, Feldt, and Wallgren (2015); Munir, Wnuk, and Runeson (2016). Initially, the first author

categorized the queries into 19 intents. Then, we merged the categories that have a small number

of examples (less than 10) but have a very similar rationale. This is because some NLUs recom-

mend a training set of at least 10 queries for each intent Rasa (2020a). For example, the queries of

FacingException and FacingError intents are quite similar in their goal as developers are looking

for a solution to fix the crash and error.

To validate the manually extracted intents, we asked two additional annotators - the second

author and one other Ph.D. student - to independently label the queries using the extracted intents.

For each question, we asked the annotators to evaluate whether the query has a clear intent or not

using the multiple choice (‘Yes’, ‘May be’, and ‘No’). If the annotators answer the previous question

with ‘Yes’ or ‘May be’, then they classify the title using one of the defined intents shown in Table

86

5.4. After both annotators finished the labelling process, we merged the labelled queries into one

set to be used in the NLUs evaluation. We then use the Cohen’s Kappa coefficient to evaluate

the level of agreement between the two authors Cohen (1960). The Cohen’s Kappa coefficient

is a well-known statistic that evaluates the inter-rater agreement level for categorical scales. The

resulting coefficient is a scale that ranges between -1.0 and +1.0, where a negative value means

poorer than chance agreement, zero indicates agreement by chance, and a positive value indicates

better than chance agreement. We find that the level of agreement between the two annotators

on the occurrence of intent (i.e., whether a title has an intent or not) is +0.74, and the agreement

on the intents classification is +0.71. Both agreements are considered to be substantial inter-rater

agreements Fleiss and Cohen (1973). All three annotators discussed the disagreements and voted to

the best fitting intent. After the merge, we discarded queries with unclear intent (total of 82), such

as “JConsole Web Application”. The final set includes 215 queries Abdellatif et al. (2021d), Tables

5.3 and 5.4 show the number of entities and intents included in our evaluation, respectively.

Our manual classification led to the creation of 5 intents shown in Table 5.4 with their def-

initions. The intents in the Stack Overflow Corpus represent different types of questions posted

on Stack Overflow. For example, the FacingError intent contains questions asking for a solution

for an encountered error: “PHP mysqli query returns empty error message” StackOverflow (2019).

Table 5.3 shows entities used in the Stack Overflow corpus that are very specific to the SE do-

main. For example, ProgLanguage entity type has a set of different programming languages such

as Python and JavaScript. Such entities can be used by code-centric chatbots Chun-Ting Lin and

Huang (2020); Wyrich and Bogner (2019), such as chatbots that extract files that call a particular

method in the code Chun-Ting Lin and Huang (2020).

5.3.3 Performance Evaluation of NLUs

We use the corpora from the Repository and Stack Overflow tasks to train IBM Watson, Di-

alogflow, Rasa, and LUIS and evaluate their performance. As each task has specific characteristics,

we detail in the following how we train and test the NLUs for each task.

To evaluate the NLUs on the Repository task, we use the same training set from the Repository

corpus, which includes 10 intents with their queries and entities with their lists of synonyms. To set

87

up the NLUs, we configure the NLUs to use the list feature for all entities, that is, the NLU will not

attempt to extract any entities that are not present in the training set. This is thematically in-line with

the nature of the Repository task where a chatbot answers questions about software repositories. In

this context, an entity that does not exist in the repository (e.g., wrong Jira ticket number) is not

useful for the chatbot and cannot be used to extract any information for the user. Then, using the

NLUs’ API, we define the entity types that exist in the Repository corpus, namely 1) CommitHash

2) JiraTicket 3) FileName, and use a fourth built-in entity type (DateTime).

In contrast to the Repository task, there is no original split in the Stack Overflow corpus, as this

corpus was not originally intended to be used as training sets for chatbots. In fact, we augmented

the dataset by manually labeling the intents in all queries, as discussed in Section 5.3.2. Therefore,

to evaluate the NLUs’ performance on the Stack Overflow task, we use a stratified tenfold cross

validation Han, Pei, and Kamber (2011). The cross validation randomly divides the corpus into

ten equal folds where nine folds are used for training and one fold for testing. Since we used the

stratified version, the method maintains a consistent distribution of intents across all folds. It is

important to note that we use the same process to train and test all the NLUs, hence, the queries

remain consistent across the NLUs in each run of the tenfold cross validation. Moreover, we do not

use the list feature to train the NLUs on all entities in the Stack Overflow task. Instead, we train

the NLUs to extract the entities using the prediction feature. This allows us to evaluate the NLUs’

ability to extract entities that they have not been trained on before, which better emulates real-life

scenarios where practitioners cannot expect to train their chatbots in all possible entities.

We train Dialogflow, LUIS, and Rasa using their APIs, and train IBM Watson using its user

interface. After the training process, we send each query in the test set through all NLU APIs and

analyze their response, which includes the classified intent, the intent’s confidence score, and the

extracted entities. This response is then compared against the oracle to evaluate the performance of

the NLU. To enable the replicability of our study, we make the scripts used to evaluate the NLUs

performance and datasets publicly available Abdellatif et al. (2021d).

To evaluate the performance of the NLUs in each task, we calculate the standard classification

accuracy measures that have been used in similar work (e.g., D. Braun, Hernandez-Mendez, et al.

(2017)) - precision, recall, and F1-measure. In our study, precision for a class (i.e., intent or entity)

88

Repository Stack Overflow
0

20

40

60

80

100

F1
-m

ea
su

re

85.5 84.483.1
78.180.7

74.8

48.8

70.7

IBM Watson
Dialogflow
Rasa
LUIS

Figure 5.2: Intent classification performance as F1-measure of the four NLUs.

is the percentage of the correctly classified queries to the total number of classified queries for that

class (i.e., Precision = TP
TP+FP). The recall for a class is the percentage of the correctly classified

queries to the total number of queries for that class that exist in the oracle (i.e., Recall = TP
TP+FN).

Finally, to present the overall performance of each NLU, we use the weighted F1-measure. In

particular, we compute the F1-measure (i.e., F1-measure = 2× Precision×Recall
Precision+Recall) for each class and

aggregate all classes F1-measure using weighted average, with the class’ support as weights. This

approach of calculating the F1-measure has been used in similar work Barash et al. (2019); Ilmania,

Abdurrahman, Cahyawijaya, and Purwarianti (2018). While we evaluate all three metrics, we only

showcase the weighted F1-measure in the chapter, whereas the precision, recall, and F1-measure

for each intent and entity are presented in the Appendix.

5.4 Case Study Results

In this section, we present the comparison of the NLUs’ performance in terms of intents classi-

fication, confidence score, and entity extraction on the Repository and Stack Overflow tasks.

89

Table 5.5: Intents’ characteristics and classification performance as F1-measure of the four NLUs.

5.4.1 Intents Classification

To evaluate the NLUs in intents classification, we train and test each of the NLUs using the cor-

pus from each of the two SE tasks. When testing the NLUs, we only consider the top scoring intent

as the classified intent for two reasons. First, to emulate real life use-cases where chatbots use the

intent with the highest corresponding score, as it is the intent with the highest probability of being

correct Google (2019b); IBM (2019b); Microsoft (2019c); Rasa (2019a). Second, to ensure that the

evaluation of all NLUs is consistent, as Dialogflow only returns one intent with the corresponding

confidence score in its response for a single query.

Results. Figure 5.2 shows the F1-measure for intent classification. The Figure presents the perfor-

mance for each SE task, per NLU. The ranking is consistent across both tasks, showing that IBM

Watson outperforms other NLUs, achieving an F1-measure of 85.5% in the Repository task and

84.4% in the Stack Overflow task. We also observe that for both SE tasks, LUIS comes last in

intents classification.

To obtain a more detailed view of the NLUs’ performance, we present the characteristics of all

intents (columns 3-5) and the NLUs’ F1-measure values (columns 6-9) in Table 5.5. We highlight

in bold the best performing NLU for each intent. Our results show that IBM Watson is the best

performing NLU for 8 intents, followed by Rasa, which performs best for 5 intents.

90

Moreover, we observe that some intents are more difficult to classify than others. For example,

the CommitsByDate, FileCommits, FacingError, and PassingData intents are difficult to classify,

with at least 2 of the four NLUs achieving an F1-measure < 60%.

Given the performance of the NLUs on the different intents, we inspect the queries of each in-

tent and find three main factors that contribute to the NLUs’ varying performance. First, NLUs tend

to generally perform well for intents that have a higher number of training samples (e.g., the Look-

ingForCodeSample intent). Second, NLUs better classify intents that contain queries with exclusive

words, that is, words that do not appear in any other intents (see the column % Queries w. Exclusive

words in Table 5.5). For example, FacingError is the intent with the highest average score among

all NLUs. This intent contains exclusive words, such as ‘fail’ and ‘crash’, in all its queries. Con-

versely, the NLUs misclassify intents that more frequently share words with other intents (i.e., those

intents have less exclusive words). For example, PassingData intent has similar # Training Samples

as FacingError intent but less % Queries w. Exclusive words. Third, intents that have distinct entity

types in their queries (e.g., Platform entity type occurs only with LookingForCodeSample intent

queries) are better classified by certain NLUs since such NLUs use the extracted entity types as

input for the intent classification Dialogflow (2020c); IBM (2020b). This is clearly shown by the

high F1-measure yielded by IBM Watson and Rasa in the classification of the intents FixCommit

and BuggyCommit, which have specific entity types (i.e., CommitHash and JiraTicket).

NLUs rank similarly in both tasks in intents classification, with IBM Watson

outperforming all other NLUs, followed by Dialogflow, Rasa, and LUIS. Aside

from the training sample size, intents that contain exclusive words and distinct

entity types are easier to identify by all NLUs.

5.4.2 NLUs Confidence scores

As discussed earlier in Section 5.2, every intent classification performed by the NLU has an

associated confidence score. The confidence score is used to determine how much trust one can put

into the intent classification of the NLU. Typically, NLUs should provide high confidence scores

for intents that are correctly classified. For example, if a query is asking “What is the number of

91

Repository Stack Overflow
0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

IBM Watson

Repository Stack Overflow

Dialogflow

Repository Stack Overflow
0.0

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

Rasa

Repository Stack Overflow

LUIS
Classification

Correct
Incorrect

Figure 5.3: Confidence score distribution for all NLUs and tasks.

commits between 1-July-2020 to 1-August-2020?” and the NLU provides a high confidence score

(e.g., 0.98) when attributing the query to the CountCommitsByDate intent, then the users of the NLU

can trust these confidence scores. Also, the contrary is true, if an NLU provides high confidence

scores to wrongly classified intents, then one would lose trust in the NLUs’ produced confidence

scores.

To compare the performance of the NLUs in terms of confidence scores, we queried each NLU

with questions from the two tasks - Repository and Stack Overflow. For each query, we considered

the highest confidence score to map to a specific intent. For example, for the query above (“What is

the number of commits between 1-July-2020 to 1-August-2020?”), an NLU may return a confidence

score of 0.98 for the intent CountCommitsByDate, and a confidence score of 0.80 for the intent

BuggyCommitsByDate. If the correct intent is CountCommitsByDate, then we would consider this

as a correctly classified instance and record the confidence score. In cases where the top confidence

score does not indicate the correct intent, we record this an incorrect classification and record the

intent confidence score.

92

We present the distributions of the confidence scores and compare these distributions for cor-

rectly and incorrectly classified intents. Ideally, NLUs should have high confidence scores for cor-

rectly classified intents (and vice versa). In addition, having clearly disjoint distributions of the

confidence scores between the correctly and incorrectly extracted intents indicates that practitioners

can rely on the confidence score of the NLU.

Results. Figure 5.3 shows the distributions of confidence scores returned by IBM Watson, Di-

alogflow, Rasa, and LUIS in the Repository and Stack Overflow tasks. From Figure 5.3, we observe

that all NLUs return higher median confidence scores for the correctly classified intents compared

to the incorrectly classified intents, for both tasks. The sole exception is Dialogflow, which has a

higher median confidence score for incorrectly classified intents for the Repository task.

Among the evaluated NLUs, Rasa stands out as being the NLU with the highest corresponding

confidence scores medians (higher than 0.91) in both the Repository and Stack Overflow tasks, for

the correctly classified intents. Furthermore, Rasa has the most compact distribution of confidence

scores among other NLUs and the least overlapping confidence scores between the correctly clas-

sified and misclassified intents. This means that when Rasa returns a high confidence score, it is

highly likely to be correct.

To ensure that the difference in the confidence scores between the correctly and incorrectly

classified intents across NLUs is statistically significant, we perform the non-parametric unpaired

Mann-Whitney U test on each NLU results. We find that the differences are statistically significant

(i.e., p-value < 0.05) in all cases and for both, the Repository and Stack Overflow tasks, except

for the results of Dialogflow in the Repository task. Generally, our results show that developers

can trust the confidence score yielded by NLUs to assess if the NLUs have correctly classified the

intent, or the chatbot needs to trigger the fallback action, an action that is used when an NLU cannot

determine a correct intent.

As mentioned earlier, the only outlier in our evaluation is the experiment from Dialogflow on the

Repository task. Dialogflow returns a higher confidence score median for the misclassified intents

(1.0) compared to the correctly classified intents (0.73), in the Repository task (see Figure 5.3). We

searched the online documentation and forums to see if others have faced similar situations. We

found multiple posts where developers raise issues with Dialogflow’s high confidence scores for

93

incorrectly classified intents StackOverflow (2020); StackOverflow (2020). This indicates that our

results are not an outlier and there might be an issue with Dialogflow that needs to be addressed.

The developers reported that they rely on workarounds to overcome such issues, such as combining

the confidence score with other measures (e.g., regular expression) StackOverflow (2020).

Overall, NLUs yield higher confidence scores for correctly classified intents.

IBM Watson, Rasa, and LUIS provide higher median confidence scores, rang-

ing between 0.68 - 0.96, for correctly classified intents.

5.4.3 Entity Extraction

To correctly answers users’ queries, chatbots need to also correctly extract the relevant entities.

We consider the extracted entity to be correct only if its type and value exactly match the type and

value of expected entity for that query in the oracle. The reason behind our criteria is that extracting

entities that are only partially correct (i.e., have only correct values or correct types), causes the

chatbot to incorrectly reply to the user’s query. Since there can exist a varying number and types

of entities in each query, we need a mechanism to ensure that our evaluation accounts for such

variance. To mitigate this issue, we calculate the precision, recall, and weighted F1-measure based

on the number of entities in each entity type, for the entity extraction results.

Results. Figure 5.4 presents the entity extraction results for the two tasks. To better interpret

the results, we reiterate that extracting entities in the Repository and Stack Overflow tasks require

different NLU features. For the Repository task, we configure the NLUs to extract entities using the

list feature (i.e., list of synonyms) and entities are extracted as an exact match. In the Stack Overflow

task, however, we configure the NLUs to use the prediction feature as discussed in Section 5.3.2,

that is, requesting the NLUs to predict the correct entity. Given their differences, we discuss the

results of each task separately, first describing the results for the Repository task and then the Stack

Overflow task.

Repository. According to Figure 5.4, LUIS is the best performing NLU with an average F1-measure

of 93.7%, followed by Rasa (90.3%). Both IBM Watson and Dialogflow perform similarly (70.7%)

when extracting entities in the Repository task.

94

To better understand the factors influencing the performance, we examine the F1-measure of the

NLUs in light of the different entity types. Table 5.6 shows the NLU’s performance per entity type.

We highlight, in bold, the best performing NLU for each entity type. Our results confirm that LUIS

is the best performing NLU when extracting the CommitHash, JiraTicket, and FileName entity types

from the Repository task. IBM Watson also performs well in the CommitHash and JiraTicket entity

types, but it falls short when extracting FileName entities (F1-measure of 15.9%). This is due to

IBM Watson’s inability to differentiate between the normal words (e.g., ‘To’ and ‘A’) and entities

of type FileName (e.g., ‘To.java’ and ‘A.java’). In other words, it extracts entities based on their

exact match with the training set without considering the entities’ context when using the list feature

IBM (2020c). For DateTime entities, Rasa performs best in extracting all the dates correctly (F1-

measure of 100%) from the given queries. Rasa uses a probabilistic context-free grammar through

their pipeline (Duckling) to extract the dates from the posed queries Rasa (2019b). For other NLUs,

we notice two reasons behind the incorrect extraction of the DateTime entities: 1) the misspelling of

the date from the users (e.g., “what are the commits I submit on 27/5/2018 ∼ 31/5/2018”) 2) vague

date formats in queries (e.g., “Tell me about the commits from 05-27 to 05-31 in 2018”).

Repository Stack Overflow
0

20

40

60

80

100

F1
-m

ea
su

re

70.7 68.570.7
65.8

90.3

59.9

93.7

55.1 IBM Watson
Dialogflow
Rasa
LUIS

Figure 5.4: Entity extraction performance as avg. F1-measure of the four NLUs.

Stack Overflow. We observe in Figure 5.4 that IBM Watson yields the best results (F1-measure of

95

68.5%), followed by Dialogflow (65.8%), Rasa (59.9%), and LUIS (55.1%). Note that the perfor-

mance of the NLUs on the Stack Overflow task is expectedly lower than the performance obtained

in the Repository task, given that NLUs have to predict entities in a query.

Similar to the case of the Repository task, we also examine the performance of the NLUs when

extracting the different entity types in the Stack Overflow task. Table 5.6 shows that the perfor-

mance of the NLUs varies from one entity type to the other, and that no NLU outperforms the rest

in extracting the majority of entity types. Table 5.6 shows that, in the Stack Overflow task, both

IBM Watson and Dialogflow outperform other NLUs in extracting two different entity types. Fur-

thermore, we observe that some entity types are more difficult to extract than others. In particular,

entities of type Framework, Standards, and API are difficult to extract (i.e., the four NLUs achieve

an F1-measure < 60%). Upon closer investigation of the results, we find that more than 60% of the

most difficult entities appear only once in the task, that is, they are unique entities. For example, the

entity ‘DOM’ of type Standards in the query “How to tell if an element is before another element

in DOM” is a unique entity as it occurs only once in the Stack Overflow task. This entity was not

extracted by any of the evaluated NLUs. Consequently, NLUs tend to perform well when extracting

entities which appear frequently in the training set (i.e., not unique).

Overall, NLUs perform differently in the two evaluated tasks, with LUIS and

Rasa outperforming others when using the list feature (Repository task) for

entity extraction, while IBM Watson and Dialogflow perform better when the

entities need to be predicted (Stack Overflow task).

5.4.4 Concluding Remarks

In the previous three sections, we compare the NLUs’ performance in terms of three aspects

(intents classification, confidence scores, and entity extraction). We find that the performance of

each NLU can vary from one aspect to another, and between the two tasks. In other words, there

is no NLU that outperforms all others in every aspect. Hence, in this section, we set up to rank the

NLUs on their overall performance (considering the results from all aspects studied in the previous

sections) in order to find the best NLU for chatbots in the SE domain. Having an overall measure is

96

challenging since we have different tasks (Repository and Stack Overflow) and are using different

entity extraction features (i.e., list vs. prediction features). Therefore, we use an approach that has

been used in prior work E. Shihab, Jiang, Adams, Hassan, and Bowerman (2011) to rank techniques

evaluated against different datasets. In particular, we use F1-measures of each task for intents

classification (Section 5.4.1) and entity extraction (Section 5.4.3) aspects. For the confidence score

aspect, we rank the NLUs using the median confidence scores for the correctly classified intents of

each task as shown in Section 5.4.2. To rank the NLUs, we compute the NLUs’ average rank using

their ranks in all aspects and tasks. The NLU with the lowest average rank is the best performing

NLU.

Table 5.6: Entity extraction performance as F1-measure per entity of the four NLUs.

Task Entity Type F1- measure
IBM Watson Dialogflow Rasa LUIS Avg.

R
ep

os
ito

ry CommitHash 100.0 100.0 88.9 100.0 97.2
JiraTicket 100.0 91.7 90.0 100.0 95.4
DateTime 86.2 56.3 100.0 98.1 85.2
FileName 15.9 79.2 71.4 80.0 61.6

St
ac

k
O

ve
rfl

ow

ProgLanguage 92.0 93.7 91.4 86.8 91.0
Platform 67.4 55.9 75.1 43.6 60.5
Framework 65.4 56.0 56.1 54.4 58.0
Standards 54.1 56.9 14.9 17.5 35.9
API 43.3 42.8 29.9 23.5 34.9

Table 5.7: NLUs’ overall performance ranking.

Ranking in Repository Task Ranking in Stack Overflow Task
NLU Intents

Classification
Confidence

Score
Entity

Extraction
Intents

Classification
Confidence

Score
Entity

Extraction
Avg.
Rank

IBM Watson 1 2 3* 1 2 1 1.7
Rasa 3 1 2 3 1 3 2.2
Dialogflow 2 3 3* 2 4 2 2.7
LUIS 4 4 1 4 3 4 3.3

* Same rank

Table 5.7 presents the NLUs’ ranks in the different aspects on both tasks and their overall ranks.

We find that IBM Watson is the best performing NLU when considering all aspects in both tasks,

followed by Rasa, Dialogflow, and LUIS. That said, chatbot practitioners need to consider the most

97

important aspect (i.e., intents classification or entity extraction) and tasks performed by their chatbot

when selecting the NLUs they want to use.

Threshold

F
1−

m
ea

su
re

● ● ● ●
●

●

●

●

●

●

●

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

● IBM Watson
Dialogflow
Rasa
LUIS

(a) Ranking in Repository Task

Threshold

F
1−

m
ea

su
re

● ● ● ● ● ● ●

●

●

●

●

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

● IBM Watson
Dialogflow
Rasa
LUIS

(b) Stack Overflow Task

Figure 5.5: Analysis of theshold sensitivity in terms of F1-measure of the NLUs in the Repository
and Stack Overflow tasks.

5.5 Discussion

In this section, we dive into the evaluation results to gain more insights on the NLUs’ confidence

score sensibility as well as quantifying their abilities to extract unique entities. Finally, we provide

a set of actionable recommendations to chatbot developers and researchers to achieve better intents

classification and entity extraction results.

5.5.1 Examining the Impact of the Confidence Score Threshold on NLU Perfor-

mance

One important impacting factor of the results from these NLUs is the confidence score threshold,

i.e., at what confidence score value would an NLU be confident in classifying the returned intent as

correct. In some cases, NLUs return high confidence scores for the incorrectly classified intents as

shown in Section 5.4.2. Hence, defining the appropriate threshold to accept the classified intent or

trigger the fallback action is still a challenge for chatbot developers. In essence, developers have to

arbitrarily determine which confidence score value they will use to determine a correct classification.

98

Given that the confidence score threshold impacts the NLUs’ performance, an important question

is, how does the confidence score threshold impact the performance?

To maintain consistency with the results presented in Section 5.4, we use the same experimental

settings. We vary the confidence score used by each NLU to determine the correct intent and plot

its F1-measure performance.

Figure 5.5 shows the NLUs’ F1-measures at varying confidence score thresholds. We perform

this analysis for both tasks. For the Repository task, our results show that Rasa is the most robust,

achieving consistently high performance for threshold values between 0-0.7. On the other hand,

IBM Watson and Dialogflow start to see a reduction in performance for threshold values higher than

0.3. LUIS seems to generally follow a downward trend with higher confidence score thresholds. In

the case of the Stack Overflow task, we again observe stable performance by Rasa for confidence

score thresholds between 0-0.8, while IBM Watson, Dialogflow, and LUIS decrease in performance

as the confidence score threshold increases.

From the results obtained, we observe that 1) the NLU’s performance varies based on the task at

hand and 2) that using lower confidence score threshold values tends to achieve better performance.

This is because the selected threshold changes the NLU’s performance only when it surpasses some

of the confidence scores returned by that NLU. For example, Rasa has a high confidence score me-

dian (0.91), and hence, it will only be affected when the threshold increases significantly (threshold

> 0.7). That said, one needs to be careful since using a low confidence score may also lead to

the chatbot providing the wrong answer to the question being asked. Overall, we recommend that

developers should investigate and carefully choose a proper confidence score threshold since such

thresholds can have a significant impact on the chatbot’s performance.

5.5.2 Unique Entities

The performance of the NLUs in extracting entities from the Stack Overflow task was affected

by unique entities, as shown in Section 5.4.3. As the name suggests, unique entities appear just once

in the dataset for the Stack Overflow task; thus, the NLUs have to predict their occurrences without

prior training. It is important to note that there are no unique entities when evaluating the NLUs

using the list feature because the NLUs have been trained on all entities that exist in the Repository

99

Table 5.8: Distribution of unique entities by entity type in the Stack Overflow task.

Entity Type Unique Entities (%)

ProgLanguage 1 (1.3)
Framework 36 (48)
Standard 5 (6.7)
API 32 (42.7)
Platform 1 (1.3)

task. To better understand the NLUs’ ability to extract unique entities, we investigate the results

from the Stack Overflow task, examining the NLU performance on queries containing only unique

entities. Hence, queries containing any non-unique entity were excluded from this investigation. We

find 58 queries that fit our criteria, and they include a total of 75 unique entities that are distributed,

as shown in Table 5.8. Similarly to the evaluation conducted in Section 5.4.3, we calculate the

precision, recall, and weighted F1-measure of the NLUs when extracting unique entities.

Table 5.9 presents the NLUs’ performance in extracting unique entities. We find that IBM

Watson outperforms other NLUs with an F1-measure of 31.6% in extracting unique entities. We

examine the results of extracting unique entities and find two factors that impact the NLUs’ per-

formance. First, the NLUs depend on the entities syntax similarity to recognize the entities in the

queries of the testing set. For example, two NLUs (IBM Watson and LUIS) incorrectly extracted

‘Receiving 0.0’ as a Framework entity from the query “Receiving 0.0 when multiplying two dou-

bles in an array” because ‘Receiving 0.0’ is syntactically similar to some other Framework entities

such as ‘Spring 4.0.2’ and ‘CodeIgniter 2.0.3’. Second, we find that the NLUs extract one of the

words in the multi-worded entity (e.g., ‘SAP crystal reports’ is a single entity of type Framework)

as a separate entity on its own, given that the NLUs are trained on such separate entities. For ex-

ample, the multi-worded entity ‘Python NameError’ with an API type is extracted by all NLUs as

the entity ‘Python’ of type ProgLanguage. In fact, the multi-worded entities in the Stack Overflow

task are all unique entities, except for two entities (i.e., ‘Internet Explorer’ and ‘WebSphere 8.5.5’).

Hence, these results motivate the need for tools/techniques from the research community to extract

the unique entities. Also, we encourage the chatbot developers to give special attention to unique

entities by training the NLU on more examples by including those entities.

100

Table 5.9: Precision, Recall, and F1-measure of extracting unique entities in the Stack Overflow
task.

NLU Precision Recall F1-measure

IBM Watson 51.4% 28% 31.6%
Dialogflow 0% 0% 0%
Rasa 12% 1.3% 2.1%
LUIS 25.3% 5.3% 7.7%

5.5.3 Recommendations

Table 5.10: Recommendations for fine-tuning the NLUs when developing Chatbots.

Problem Recommendation

Low accuracy on intents classification
R1. Train NLUs with multiple queries per intent
R2. Merge intents with similar words and disambiguate
with a follow-up action
R3. Combine extra factors (e.g. regex, entity type) to aid
to the confidence score

Low accuracy on entity extraction
R4. Use different entity features (list feature vs predic-
tion feature) according to the entity type
R5. When using entity prediction, focus on including
entities in different query positions

Based on our findings and experience in conducting this study, we provide a set of action-

able recommendations to help chatbot practitioners to improve the performance of the used NLU.

Table 5.10 summarizes our recommendations to improve the NLUs’ performance in intents classifi-

cations and entity extraction. While our results are based on SE tasks, some of the guidelines can be

used to improve the NLU performance regardless of the domain. We discuss the recommendations

in details in the following.

R1. Train NLUs with multiple queries per intent. Our results show that the NLUs perform better

when classifying queries with intents that have more training examples. While more data is typi-

cally better in any machine-learning task, the focus on crafting a good training set needs to be put in

the diversity of queries per intent. In fact, some NLUs recommend that each intent has 10 training

examples or more Rasa (2020a) that represent different ways of querying that intent (e.g., having

different sentence lengths Rasa (2019c)). NLUs like Dialogflow and LUIS provide an interactive

101

GUI Dialogflow (2020b) to allow the chatbot developers to edit and add training examples using

the questions users pose to the chatbot. Chatbot developers should leverage this feature, especially

at the early stages of the chatbot development, as a part of the debugging process of the NLU and

as a way of fine-tuning the initial training set of the chatbot. We plan (and encourage others) to ex-

plore semi-supervised learning Zhu and Goldberg (2009) and weak supervision Z.-H. Zhou (2017)

approaches to automate the NLU’s retraining process.

R2. Merge intents with similar words and disambiguate with a follow-up action. The results

show that NLUs better classify intents that contain exclusive words and distinct entity types, not

shared with other intents. Hence, it is worth exploring the possibility of merging similar intents that

share many common words and entity types into a single intent, as the NLUs can misclassify these

intents. The merge of intents can be done in two ways: 1) during training, combining queries of sim-

ilar intents into one intent, or 2) after the intents classification as a chatbot post-processing phase.

Option 1 is only recommended when frequently misclassified intents have fewer training examples,

as the merging can help boost the initial training dataset. Otherwise, option 2 is a more generally

applicable solution as it does not introduce any noise by modifying the training dataset. Once the

NLU classifies the merged intent, chatbot developers can employ some strategies to disambiguate

the merged intent. The disambiguation can be done using entity extraction, regular expressions, or

even relying on follow-up chatbot questions to help extract the target intent. For example, if there

is a chatbot that does code refactoring, then the intents ‘refactor class’ and ‘refactor method’ have

very similar training examples. In this case, the chatbot developers can merge both intents into one

intent (e.g., ‘refactor’). Then, to identify the target intent (class or method), the chatbot could ask

the user about the type of refactoring to perform.

R3. Combine multiple factors to aid the confidence score. While most of the NLUs return high

confidence scores when correctly classifying intents, as we discussed in Section 5.4.3, we recom-

mend the chatbot developers to use other measures to ensure the intent was classified correctly. For

example, chatbot developers can combine the confidence scores with regular expressions to check

if specific keywords appear in the question. Another example is an intent that has a distinct entity

102

type where developers can check whether an entity of that type exists in the query and use that in-

formation to make sure that the intent was correctly classified (e.g., only queries of ‘BuggyCommit’

intent have ‘JiraTicket’ entities).

R4. Use different entity features according to the entity type. Developers should resort to differ-

ent entity features (either list feature or prediction feature) together in the same chatbot, depending

on the entities of their domain. Entities that are enumerable (e.g., months of the year) and have

known finite values are better identified with the features containing all known synonyms. We ob-

serve this when evaluating the entity extraction performance in the Repository task, where NLUs

extracted entities more accurately. However, in most cases, an entity could be expressed in various

(and unknown) ways and developers need to resort to the prediction feature (e.g., Framework enti-

ties).

R5. When using the entity prediction feature, focus on including entities in different positions

within the queries. When it comes to extracting entities using the prediction feature, developers

need to diversify their queries so that they include entities in different positions (i.e., beginning,

middle, and end of the query) in order to improve the NLU’s ability to extract the entities in different

contexts Microsoft (2019a); Rasa (2019d). Also, developers should expose the NLU with different

variants of the entity (e.g., ‘issues’ and ‘bugs’) Microsoft (2019a). Finally, we believe that there is a

need for a benchmark that contains SE terms (i.e., SE thesaurus) and their variations (e.g., ‘commit’

and ‘change’) as this helps the developers of SE chatbots to train the NLUs on SE entities and their

synonyms.

5.6 Threats to validity

In this section, we discuss the threats to internal, construct, replicability, verifiability, conclu-

sion, and external validity of our study.

Internal Validity: Concerns confounding factors that could have influenced our results. The Stack

103

Overflow tasks used to evaluate the NLUs’ performance were manually labelled which might intro-

duce human bias. To mitigate this threat, we had multiple annotators to label the tasks and used the

discussion and voting to resolve all disagreements between the annotators. Another threat to inter-

nal validity is that we use the default configurations for all NLUs in our study, which could impact

their performance. For example, we use the default NLU confidence score threshold to present our

results in Section 5.4, but mitigate this threat by studying the impact of confidence score threshold

on the NLUs’ performance in Section 5.5.1. Other parameters could be tuned to enhance the NLUs’

performance (spell-correction and training validation Google (2020)). We purposely decided to

evaluate the NLUs under their default configurations, to evaluate the performance of an average

user would encounter when deploying the NLUs in a chatbot. Also, the only common configuration

across all NLUs is the confidence score threshold. In other words, some NLUs have configurations

that could be tuned, which are not available in the other NLUs or have been implicitly defined in the

NLU (since their internal implementation is closed source). Hence, modifying these configurations

in one NLU might lead to different results and conclusions.

Construct Validity: Considers the relationship between theory and observation, in case the mea-

sured variables do not measure the actual factors. To evaluate the NLUs’ performance in the Reposi-

tory task, we use the MSRBot corpus that was created to evaluate the MSRBot. The MSRBot dataset

might have some limitations, such as having questions (intents) that might be less popular than oth-

ers in real settings. However, we argue that the questions that MSRBot supports were derived via

a semi-structured process that collected the most common questions asked by software practition-

ers from previous studies Begel and Zimmermann (2014a); Fritz and Murphy (2010); Sharma et

al. (2017). On the other hand, the MSRBot evaluation participants were free to word their ques-

tions to the chatbot. Finally, the list of questions used to train the MSRBot was not revealed to the

participants.

Replicability Validity: Concerns the possibility of replicating the study Epskamp (2019a). In our

study, we used three of the most popular NLUs that are closed source (except for Rasa). The NLU

internal implementation might change without any prior notice to the users. Therefore, replicating

the study might lead to different results. We mitigate this issue by providing the scripts and datasets

104

used in each task and the version used for Rasa (open-source). We encourage the scientific commu-

nity to replicate the study through our replication package Abdellatif et al. (2021d) after a certain

time (e.g., 6 months) to examine if there is a change in the NLUs performance. We believe that our

study presents a snapshot of the NLUs’ performance comparison in the SE domain. Moreover, our

results serve as a starting point for the chatbot practitioners when selecting the NLUs to use.

Verifiability Validity: Concerns the verifiability of the study results Brundage et al. (2020). In our

study, we compared the performance of different NLUs using two common SE tasks (i.e., Repos-

itory and Stack Overflow tasks). Using different NLUs or different tasks might lead to different

conclusions. To mitigate this threat, we selected NLUs that are used in prior work D. Braun,

Hernandez-Mendez, et al. (2017); Gregori (2017); Koetter et al. (2018) as a first step to bench-

mark the NLUs in the SE domain. Also, we described our case study setup in Section 5.3, studied

each task characteristics and detailed our analysis and results in Section 5.4. Finally, we shared the

dataset used to train/test NLUs, NLUs’ responses Abdellatif et al. (2021d), and the used scripts Ab-

dellatif et al. (2021d) with the community to allow for further investigation and accelerate the future

research in the field.

Conclusion Validity: Concerns the relationship between the treatment and the outcome. In Sec-

tion 5.4.4, we compute the overall NLUs’ performance in both tasks by ranking the NLUs on each

task based on their F1-measure then compute their average ranks in all tasks. The NLU’s perfor-

mance differs based on its intended usage (i.e., intents classification and entity extraction) and task

(i.e., Repository and Stack Overflow). The main goal behind this analysis is to find the NLU that

could be the best to use in the initial implementation of the SE chatbots. Moreover, this analysis has

been used in similar studies E. Shihab et al. (2011) to obtain an overall performance for the NLUs.

Finally, our results show consistency in the NLUs’ ranks in all usages (except for entity extraction)

for both tasks.

External Validity: Concerns the generalization of our findings. While we use four of the most

commonly used NLUs to evaluate their performance in the SE domain, there exist other NLUs

which are not included in our study. Since our goal is to find the best performing NLU in the

SE domain, in our study we only select the NLUs that have been widely used by researchers and

practitioners and they can be trained using their API calls and/or user interface.

105

Our study may be impacted by the fact that we evaluate the NLUs using the Repository and

Stack Overflow tasks; hence our results may not generalize to other tasks in the SE domain. How-

ever, we believe that they cover very common tasks in SE, which could be improved with chatbots.

That said, we encourage other researchers to conduct more similar studies that consider other NLUs

and more SE tasks.

5.7 Conclusion & Future Work

Software chatbots are becoming popular in the SE community due to their benefits in saving de-

velopment time and resources. An NLU lies at the heart of each chatbot to enable the understanding

of the user’s input. Selecting the best NLU to use for a chatbot that operates in the SE domain is a

challenging task. In this chapter, we evaluate the performance of four widely-used NLUs, namely

IBM Watson, Google Dialogflow, Rasa, and Microsoft LUIS. We assess the NLUs’ performance

in intents classification, confidence score, and entity extraction using two different tasks designed

from a Repository and Stack Overflow contexts. When considering all three aspects (intents classi-

fication, confidence scores, and entity extraction), we find that IBM Watson is the best performing

NLU for the studied SE tasks. For each individual aspect, in intents classification, IBM Watson

outperforms other NLUs for both tasks. On the other hand, when it comes to confidence scores,

all NLUs (except for Dialogflow) return high confidence scores for the correctly classified intents.

Also, we find that Rasa is the most trustworthy NLU in terms of confidence score. Finally, LUIS

and IBM Watson achieve the best results in extracting entities from the Repository and Stack Over-

flow tasks, respectively. Moreover, our results shed light on the characteristics that affect the NLUs’

performance in intents classification (e.g., # Training Samples) and entity extraction (e.g., unique

entities). Therefore, we encourage researchers to develop techniques and methods that enhance the

NLUs’ performance for tasks with different characteristics. We believe that our work guides chatbot

practitioners to select the NLU that best fits the SE task performed by their chatbots.

Our study paves the way for future work in this area. First, our results show that NLUs tend

to perform well when they are trained on more examples. Therefore, we plan to examine different

dataset augmentation techniques to generate more training examples for the NLUs to enhance their

106

performance. Also, we believe that there is a need for more studies that compare different NLUs

using more datasets to benchmark NLUs in the SE context. We contribute towards this effort by

making our dataset publicly available Abdellatif et al. (2021d).

In this chapter, we find that NLUs perform better when it is trained on more queries. And the

results of Chapters 3 & 4 show that training NLUs is a challenging task for chatbot developers

because it requires dedicated time and resources to a create high-quality dataset to train the NLU.

Therefore, in the following chapter, we evaluate an augmentation approach to facilitate the creation

of a training dataset for chatbots in the SE domain.

107

Chapter 6

Improving the SE chatbot’s accuracy

Software practitioners are increasingly adopting chatbots in their development tasks. This is

driven by various chatbot usage-benefits in reducing the cost and speedingup the development pro-

cess. Chatbots rely on the Natural Language Understanding (NLU) component to understand user’s

query. Prior to using the NLU, chatbot developers need to craft high-quality dataset for their train-

ing. NLUs yields to better performance when they are trained on more data. However, previous

research shows that creating training dataset for the software engineering chatbot is expensive in

terms of resources and time.

Therefore, in this chapter, we evaluate an approach that combines the synonyms replacement and

paraphrasing augmentation techniques to augment datasets for software engineering chatbots. We

evaluate the performance of the combined approach on three datasets from the software engineering

domain. The results show that the combined approach does not improve the NLU’s performance.

Moreover, we find that using the approach or human augmented queries has a negligible to small

effect on the NLU’s confidence in its classification. Our results should alert the chatbot commu-

nity on the limitations of current augmentation approaches when applied on software engineering

domain.

108

6.1 Introduction

Chatbots have proven themselves to be a game changer in the customer service field and it is

expanding to new areas Storey and Zagalsky (2016d). The wide-spread adoption of chatbots is

due to their benefits in saving time, cost, and effort. The increased popularity and proven benefits

of chatbots are driving the software engineering (SE) practitioners to develop chatbots for the SE

domain. For example, Chun-Ting Lin and Huang (2020) developed the MSABot, a chatbot that

assists developers in building and managing micro-services projects (e.g., set microservices project

parameters). Abdellatif, Badran, and Shihab (2020b) developed the MSRBot to answer questions

related to software projects (e.g., “Who fixed bug 5?”).

Chatbots leverage a Natural Language Understanding (NLU) component to understand users’

queries (i.e., messages). In essence, NLUs use AI and natural language processing techniques

to extract structured information (the intent/purpose of the user’s query and related entities) from

unstructured input text. The performance of the NLU is directly related to the quality and diversity

of the dataset used in its training Abdellatif, Badran, Costa, and Shihab (2021c). Indeed, many

NLUs recommend that the training set includes semantically similar but syntactically varied queries

to train the NLU on the different ways users can ask about the same information Docs (2020); Tmbo

(2017). For example, the queries “List the developer who resolved issue 5”, “Who fixed bug 5?”,

and “Which developer fixed issue 5?” have the same semantic (identify the developer who fixed a

specific bug) but different syntax.

Nowadays, an extensive variety of NLUs are available online that developers can use in their

chatbot implementation, such as Rasa (August) and Google (2020a). Nonetheless, despite the easy

accessibility of NLUs, crafting a high-quality training dataset is a costly and time-consuming task.

This is because chatbot developers need to brainstorm a variety of training queries in order to famil-

iarize the NLU with new terms and diverse sentence structures of possible user queries. Moreover,

chatbot developers will consistently augment their training set as they develop more training queries.

Indeed, prior work shows that the lack of training datasets for SE-based chatbots is a challenge for

SE practitioners Abdellatif, Badran, and Shihab (2020b); Dominic et al. (2020a). For example, Do-

minic et al. (2020a) reported that the absence of training queries limits their chatbot perfomance.

109

Likewise, Abdellatif, Badran, and Shihab (2020b) stated that the MSRBot failed to correctly classify

some user queries because of the scarcity of training data. Consequently, this hinders the SE practi-

tioners ability to develop more efficient SE chatbots as the training set would need to be crafted and

augmented manually.

When an initial training dataset is created, Augmentation represents the process of creating

new unobserved data points van Dyk and Meng (2001). This process is especially important for

machine learning applications where adding more training data can improve the model’s perfor-

mance. In fact, a number of studies have focused on evaluating different augmentation approaches

to improve sentiment analysis Marivate and Sefara (2020), hate-speech detection Rizos, Hemker,

and Schuller (2019), and medical text prediction Amin-Nejad, Ive, and Velupillai (2020). More-

over, researchers have attempted to develop augmentation approaches to improve the NLU’s perfor-

mance Dopierre, Gravier, and Logerais (2021); Malandrakis et al. (2019); Wei and Zou (2019). For

example, Dopierre et al. (2021) proposed an approach to improve the intents classification for sev-

eral domains, such as the banking domain. Malandrakis et al. (2019) used the sequence-to-sequence

model and variational autoencoders to enhance the NLU’s performance in the intents classification

task. However, none of these studies examined the combination of previously-used augmentation

approaches and tailored them to augment SE chatbot datasets.

To address this gap, we explore an approach that combines synonym replacement and para-

phrasing techniques to augment datasets for SE-based chatbots. For simplicity, we refer to this

combined approach as ChatMent in the rest of this paper. ChatMent takes the queries in the original

training set1 as an input and uses them to augment more queries as an output. In particular, the

approach contains four phases, a Preprocessing phase, meant to preprocess the queries and ex-

tract information that helps in the augmentation process; an Augmentation phase, that introduces

new terms/keywords and changes the structure (paraphrases) the input queries to create candidate

queries; a Selection phase, which selects the most useful candidate queries to keep; and a Post-

processing phase, meant to merge the selected candidates with the original training set.

To assess the impact of using ChatMent on the NLU’s performance, we perform an empirical

study using three software engineering datasets, namely 1) Repository: contains questions asked
1Refers to the training dataset crafted by the chatbot developers to train the NLU.

110

by developers about their software projects (e.g., “Which are the most buggy files in the project?”),

2) Ask Ubuntu: composed of questions that developers ask about the Ubuntu OS (e.g., “Is it rec-

ommended to upgrade to Ubuntu 15.04”), and 3) Stack Overflow: contains software development

related questions (e.g., “How to pass Ajax object data to python file?”) from the online discussion

forum Stack Overflow. These datasets include a total of 767 queries that belong to 19 different

intents. Using these datasets, our study examines the following research questions:

RQ1: Can ChatMent improve the NLU’s performance? While ChatMent was able to augment

the dataset with new queries, we find that using the ChatMent does not improve the NLU’s per-

formance. However, we observe a clear improvement in the NLU’s performance when using the

human-augmented queries. Nevertheless, the ChatMent-augmented queries contain new terms and

different sentence structure compared to the queries in the original training set.

RQ2: Does ChatMent increase the NLU’s confidence in its classification? The NLU is more

confident in its intents classification when it is trained on more queries. However, we find that us-

ing ChatMent has a negligible effect on the NLU’s returned confidence scores whereas using the

human-augmented queries yields a small effect on the NLU’s confidence scores in some instances.

To this end, this work makes the following contributions:

• To the best of our knowledge, this is the first work that evaluates using an augmentation

approach for SE-based chatbots.

• We explore the impact of using ChatMent on the NLU’s performance using three datasets

from the SE domain and different use-cases that vary in the number of initial training queries.

• We provide a replication package containing the implementation of ChatMent as a prototype

tool and our results Abdellatif, Badran, Costa, and Shihab (2021a) to facilitate the replication

and accelerate future research in the area.

• We report lessons learned to guide future research in augmenting datasets for SE chatbots.

111

6.1.1 Organization of the Chapter

The rest of the chapter is organized as follows. Section 6.2 provides a background on the chat-

bots and explains related terminologies used in the paper. We detail ChatMent and its components in

Section 6.3. Section 6.4 describes the case study setup used to evaluate the efficiency of ChatMent.

We report the case study results in Section 6.5. Section 6.6 discusses our findings. Section 6.7

discusses lessons learned. Section 6.8 discusses the threats to validity, and section 6.9 concludes the

paper.

6.2 Background

Chatbots are software bots that interact with users through chat C. Lebeuf, Zagalsky, Foucault,

and Storey (2019b). This simple method of interaction is what gives chatbots their appeal and

makes them a suitable conduit between users and services C. Lebeuf, Storey, and Zagalsky (2018a)

(e.g., Customer Service). To facilitate this chat-like interaction, modern chatbots leverage the crit-

ical natural language understanding (NLU) component which extracts structured information from

unstructured text (user’s query). Typically, NLU components extract two key pieces of information

from the user’s message; the intent and entities. The intent represents the intention/goal behind the

user’s message, while entities are important keywords in the message. For example, when a user

asks “What are the fixing commits for bug 5391?”, the intent is to know which commits fixed a

specific bug in the project (‘FixingCommit’ intent), whereas the bug number (‘5391’) is the entity.

When interacting with a chatbot, users are free to express the same intent in different ways. For

example, the queries “Show the fixing commits for issue 5391” and “What changes solved 5391?”

both have the same intent (‘FixingCommit’) but different syntax.

It is critical for chatbots to have a robust NLU that extracts the intent from the users’ queries

correctly as it gives the chatbot an accurate assessment of the users’ intentions, leading it to take

the right course of action (send a reply or perform an task). In contrast, a poorly performing NLU

that misclassifies the users’ intent will lead the chatbot to reply incorrectly and/or perform a wrong

action. Thus, the incorrect intent extraction (or poor NLU’s performance) has a direct and negative

impact on the satisfaction of the chatbot users, which has also been shown in previous studies Ask

112

et al. (2016); Lastra (2016); C. Lebeuf, Storey, and Zagalsky (2018b).

When the NLU extracts an intent, it also returns a confidence score corresponding to that intent.

The confidence score shows how confident the NLU is in its intent classification, and it has a value

that ranges between 0 (i.e., not confident) to 1 (i.e., fully confident). Chatbot developers use the

confidence score to determine whether the chatbot has understood the user’s query well enough

(high confidence score) in which case the chatbot should perform an action. Otherwise, if the

user’s query is not clear enough (low confidence score), the chatbot should ask the user to clarify or

rephrase the query in order for the chatbot to better understand the intent Abdellatif et al. (2021c).

At its core, the NLU component is a machine learning model which requires training queries that

represent the different ways a user could phrase a query for each intent. Usually, chatbot developers

brainstorm to come-up with these training queries at the early stages of the chatbot development

cycle Abdellatif, Badran, and Shihab (2020b). Once the chatbot is deployed and users come on

board, the users’ queries can by curated and used to augment the training set of the NLU and

improve its performance Microsoft (2021a); Rasa (2021). Nevertheless, the early step of building

the initial training dataset poses a real challenge to chatbot developers Abdellatif, Costa, et al.

(2020) and may require the help of domain-experts (e.g., medical field) in order obtain a reasonable

starting point for the dataset. Moreover, adding more training queries to the initial training dataset

can improve the NLU’s performance as shown in prior work Abdellatif et al. (2021c).

To overcome this challenge and help SE chatbot developers build their training datasets, we

evaluate the combination of synonyms replacement and paraphrasing techniques to automatically

augment the training set using small set of initial training queries as input.

6.3 Approach

The ChatMent is based on the key idea that, by using a small initial set of training queries

(called original training set), we can augment (build) new queries that retain the same semantics

while having different terms/keywords and brand new sentence structures. We design ChatMent to

be a multi-phased approach shown in Figure 6.1. More specifically, the approach is composed of

four phases:

113

Pipeline

Tokenization POS Tagger
Synonyms

Replacement Paraphrasing

Familiarity
filterDiversity filter

Data
Augmentation

Dataset

Entity Labeler

3

Augmented
Dataset

Phase1: Pre-processing Phase2: Augmentation

Phase 4: Post-processing Phase3: Selection

Figure 6.1: An overview of ChatMent framework.

(1) Preprocessing phase. In this phase, the original training set is preprocessed to tokenize the

queries and identify the part-of-speech for each token. This information is then passed to the

Augmentation phase.

(2) Augmentation phase. This is the core phase of ChatMent where all new queries (candi-

date queries) are generated. This phase introduces new keywords and rephrases the sentence

structure of the queries from the original training set.

(3) Selection phase. Filters the candidate queries to keep only the queries with the highest po-

tential of improving the NLU’s performance.

(4) Postprocessing phase. This phase labels the entities in the candidate queries and merges

them with the original training set to obtain the final (augmented) training set.

Next, we explain each phase and its components in details and we showcase a working example,

presented in Figure 6.2, to demonstrate how each component works.

Preprocessing phase

In the first phase of ChatMent, we tokenize the queries in the original training set and extract the

part-of-speech of each token which helps the Augmentation phase in generating candidate queries.

Next we describe the steps composing this phase:

Tokenization Each training query is split into tokens using a pretrained model from the SpaCy

library Spacy (2021). Spacy is a Python library for natural language processing and has been used

114

- What files cause the most issues?
- Show me which files introduce the most bugs

…

Part Of Speech

Familiarity Filter

- What files induce the most issues?
- What files generate the most issues?

…

Synonym Replacement

- What files contain the most issues?
- Show me which files introduce the most bugs

…

Original Training Set
(Initial Training Queries)

Candidate Query Classification Confidence

Most issue inducing files? Incorrect 0.82

Which files generate the
most issues?

Correct 0.66

What files generate the
majority of issues?

Correct 0.95

- Most issue inducing files?
- Which files generate the most issues?
- What files generate the majority of issues?

…

Paraphrasing

Training set

NLUTest set

Test Results

Diversity Filter

Candidate Query

Levenshtein Distance

RankInitial
Query 1

Initial
Query 2

Min

Most issue inducing files? 14 12 12 1

Which files generate the
most issues?

6 9 6 2

Figure 6.2: A working example of ChatMent.

in prior work Abdellatif, Costa, et al. (2020). Having the tokens helps the Augmentation phase to

find and replace the synonyms for some tokens in the query.

Part-of-speech (POS) tagging. This component identifies the POS (e.g., verb, noun, adjective)

for each token in the query. By extracting this information about the tokens, our Augmentation

phase becomes resilient. For example, in case the original training set is already rich with noun

synonyms, then the ChatMent user needs to diversify the dataset by having more synonyms of

verbs. For this step, we leverage the POS tagger from the Spacy library. The working example in

Figure 6.2 showcases the POS tagging component identifying and labelling the verb tokens (i.e.,

cause, show, and introduce) in the original training set.

115

Augmentation phase

The Augmentation phase is the heart of ChatMent, responsible for pumping new candidate

queries that have different keywords and new sentence structures. This phase encompasses two

steps 1) Synonyms replacement and 2) Paraphrasing. We detail each of these steps in this section.

Synonyms replacement. Given the output from the preprocessing phase, this component re-

places certain tokens (e.g., verbs, nouns) with their synonyms to obtain new candidate queries.

The goal here is to familiarize the NLU with more terms that might appear in the users’ queries

To obtain the list of synonyms for token, one could use any of the available thesauruses such as

WordNet Miller (1995). However, since ChatMent targets SE chatbots, these thesauruses may lead

to less-than-optimal results as they are not domain specific. For example, when looking for syn-

onyms to the term ‘bug’, the WordNet thesauruses returns ‘germ’, ‘microbe’, and ‘hemipteron’.

This demonstrates the need for a more specific thesaurus that is well-suited for the specialized

domain of SE. Therefore, we use a thesaurus specialized for the SE domain, which is a word2Vec

model trained on Stack Overflow posts to capture the SE terms Efstathiou, Chatzilenas, and Spinellis

(2018). With this SE-based thesaurus, we obtain the following synonyms for the the term ‘bug’: ‘de-

fect’, ‘bug/feature’, and ‘bugs’. Nevertheless, we encourage practitioners to use other thesauruses

based on the context and domain of their chatbots.

In case a query has two or more tokens to be replaced, we create new candidate queries based on

all the possible combinations of the replaceable tokens’ synonyms. For example, if a query has two

replaceable tokens and each token has three synonyms, we create six (2*3) new candidate queries.

In the working example in Figure 6.2, the Synonym Replacement component replaces the verb to-

ken ‘cause’ from the query “What files cause the most issues?” with its synonyms ‘induce’ and

‘generate’, thus creating two new candidate queries (e.g., “What files induce the most issues”).

Finally, in our study we configure the Synonym Replacement component to replace the verb

tokens due to three main reasons. First, all the entities in our dataset are nouns, and replacing the

entities will affect our ability to label them automatically later on. Moreover, the focus of our study

is to improve intents classification task which requires that we change the query and not the entities

in it. Second, most of the nouns in our datasets are proper nouns (e.g., ‘Java’, ‘Ubuntu’), thus, they

116

do not actually have synonyms. Lastly, because of their abundance, replacing noun tokens requires

a high computational cost as it generates a large number of candidate queries that will go through

the rest of the components.

Paraphrasing. Introducing new terms in the candidate queries is not sufficient to improve

the NLU’s performance as chatbot users might use the same terms by phrase the question in a

different way. For example, to identify the developer that fixed a certain bug, the user could ask

“List the developers who fixed issue 5” or “Which developers worked on fixing issue 5?”. In fact,

this is why some NLUs recommend to include queries that have different sentence structure in

the training set as it enhances the NLU’s performance in intents classification Docs (2020); Tmbo

(2017). Therefore, we diversify the sentence structure of candidate queries using a Paraphrasing

component that restructures the queries while preserving their meaning (intent). This paraphrasing

component takes as an input the candidate queries from the Synonym Replacement component.

To paraphrase queries, this component leverages the recent transformer based neural machine

translation (seq2seq) model called BART Lewis et al. (2020). BART is a general language model

proposed by Facebook AI and has been used by prior work for paraphrasing tasks Dopierre et al.

(2021); Martin, Fan, de la Clergerie, Bordes, and Sagot (2021); West et al. (2021); S. Xu, Semnani,

Campagna, and Lam (2020); J. Zhou, Gong, and Bhat (2020) as it achieves state-of-art performance

in various NLP tasks (e.g., machine translation, summarization, and text generation) Lewis et al.

(2020). BART is trained through corrupting the input example (e.g., delete one of its tokens) during

the training stage and then predicting the correct form of the sentence corrupted sentence. We

fine-tune BART to perform paraphrasing tasks (discussed in Section 6.4).

In the working example (figure 6.2), the Paraphrasing component takes the two candidate queries

from the Synonym Replacement component as an input and outputs paraphrased queries (e.g., “Most

issue inducing files?”). The final output of the Augmentation phase are new candidate queries that

have both new terms and different sentence structures compared to the original training set.

Selection phase

Adding all candidate queries to the original training set might overfit the NLU, especially if the

original training set is small. To mitigate this issue, we devise the Selection phase which filters the

117

candidate queries to keep only the queries that are useful for the NLU. We believe that augmenting

candidate queries that are unfamiliar to the NLU (differ from the original training set) can improve

the NLU’s performance. Moreover, candidate queries that make the original training set more lexi-

cally diverse can potentially add more value to the NLU. Therefore, we devise the Familiarity filter

and Diversity filter components to select those queries.

Familiarity filter. The main goal of this component is to filter out candidate queries that the

NLU - trained on the original training set - is already familiar with. If the NLU correctly classifies

the candidate query with a high confidence score, then the NLU is familiar with this candidate

query. On the other hand, if a specific candidate query ends up being incorrectly classified or

correctly classified but with a low confidence score, then the NLU is unfamiliar with that candidate

query, which hints to its uniqueness compared to the original training set. Moreover, this query is

likely to be a valuable addition to the training set of the NLU.

The best way to identify whether a candidate query is familiar to the NLU is to leverage the NLU

itself to perform this task. In particular, we first train the NLU using the original training set and

then test it using the candidate queries from the Augmentation phase. Then, we remove all candidate

queries that are correctly classified with high confidence scores (higher than a set threshold). The

remaining candidate queries are either incorrectly classified by the NLU or correctly classified but

with a low confidence score (lower than the threshold).

The working example (Figure 6.2) shows the Familiarity filter where the NLU is trained on the

original training set. To filter the candidate queries, the output of the Paraphrasing component is

used as a test set for the NLU. In this example, the first query (“Most issue inducing files?”) passes

the filter as it was incorrectly classified. Although the second query (“Which files generate the most

issues?”) was classified correctly, it also passes the filter because the corresponding confidence score

(0.66) is lower than the threshold (e.g., 0.7). The third query is discarded as it is correctly classified

with a high confidence score. Finally, the first two queries that passed the filter are forwarded to the

Diversity filter component.

Diversity filter. The goal of this filter is to select the candidate queries that are most syntactically

different compared to the original training set. This helps to mitigate the issue of overfitting the NLU

that may occur when the candidate queries do not increase the syntactical diversity of the original

118

training set.

As a mean to measure the diversity, this component computes the Levenshtein distance Lev-

enshtein (1966) between the candidate queries and the original training set. More specifically, the

Levenshtein distance calculates the number of edits (insertion or deletion of a character, or replace-

ment of a character by another one) between two inputs (i.e., the candidate queries and original

training set). The higher the Levenshtein distance, the more dissimilar the queries. This process is

shown in the Diversity filter component shown in the working example (Figure 6.2). In the example,

the Levenshtein distance between each of the candidate queries and original training set queries is

computed. For instance, the Levenshtein distance between the candidate query “Most issue induc-

ing files?” and initial query 1 from the original training set “What files contain the most issues?” is

14.

Then, we want to rank the candidate queries based on how diverse they are. So, we first obtain

a single value for each candidate query by using the minimum Levenshtein distance between the

candidate query and any initial query. In the working example, the minimum Levenshtein distance

for the candidate query is shown in the ‘Min’ column. For example, the minimum Levenshtein

distance for the candidate query “Most issue inducing files?” is 12. Next, we rank the candidate

queries in a descending order using the minimum Levenshtein distance. This minimizes the chance

of selecting a candidate query that is similar to any of the queries from the original training set.

Finally, the top N ranking candidate queries in are kept by the Diversity filter while the rest is

discarded (N is a number that can be configured by the user). In this study, we set N = 1 for

the Diversity filter component. Therefore, the Diversity filter keeps only the top ranking candidate

query, which is “Most issue inducing files?” in the working example.

Postprocessing phase

After obtaining the filtered candidate queries, its necessary to label the entities in these queries

before merging them back with the original training set. Next we describe the components compos-

ing this phase:

Entity labeler. The candidate queries that are retained after the Selection phase do not contain

any entity annotations. Such annotations are essential for some NLUs in the intents classification

119

step Abdellatif et al. (2021c). Hence, in this component, we label the entities in the candidate

queries. To label the entities, we examined the Paraphrasing phase output (400 samples from dif-

ferent intents) and found that the entities remain the same or experience minor modifications only

during that phase. For example, the FileName entity (e.g., ‘ConsumerRecords’) could be changed

during our Augmentation phase (e.g., ‘Consumer Records’) due to using BART. The only excep-

tion here are the DateTime entities, where the a specific date (e.g., 21-09-2021) can be changed

to ‘last week’. Based on our observations, we define heuristics to label entities in the candidate

queries. Therefore, the Entity labeler component reads all labeled entities in the training dataset and

automatically labels the entities in the candidate queries using the defined heuristics.

Data merger. The output of any augmentation approach should be a training dataset that is

ready for use. Therefore, this component is responsible for adding the candidate queries to their

corresponding intents in the original training set. The chatbot practitioners can use this output to

train the NLU used in their chatbots.

6.4 Case Study Setup

The goal of this study is to evaluate the impact of using ChatMent on the NLU’s performance

given a training dataset for SE-based chatbots. Thus, in this section, we detail our selection of the

SE datasets used for the evaluation, NLU platform used for training and testing, and experiment

design.

6.4.1 Datasets

To ensure that we evaluate ChatMent on a variety of SE datasets, we select three distinct SE-

based datasets: Repository Abdellatif, Badran, and Shihab (2020b), Ask Ubuntu D. Braun, Hernan-

dez Mendez, Matthes, and Langen (2017), and Stack Overflow Ye et al. (2016) datasets. Our dataset

selection is based on three reasons. First, these datasets represent realistic questions that software

practitioners ask about software projects and development. Second, they have adequate numbers

of training and testing queries for each intent (ten or more queries per intent) to conduct proper

evaluation. Finally, they are publicly available and have been used in previous studies Abdellatif et

120

Table 6.1: Intents distribution in the Repository task.

Dataset Intent Definition Train Test Total
R

ep
os

ito
ry

BuggyCommitsByDate Present the buggy commit(s) which
happened during a specific time pe-
riod.

66 13 79

BuggyCommit Identify the bugs that are introduced
because of certain commits.

52 9 61

BuggyFiles Determine the most buggy files in the
repository to refactor them.

37 13 50

FixCommit Identify the commit(s) which fix a spe-
cific bug.

31 11 42

BuggyFixCommits Identify the fixing commits that intro-
duce bugs at a particular time

32 7 39

CountCommitsByDates Identify the number of commits that
were pushed during a specific time pe-
riod.

11 21 32

ExperiencedDevFixBugs Identify the developer(s) who have ex-
perience in fixing bugs related to spe-
cific file.

15 14 29

OverloadedDev Determine the overloaded devel-
oper(s) with the highest number of
unresolved bugs.

15 9 24

FileCommits View details about the changes that are
occurred on on a file.

10 12 22

CommitsByDate Present the commit information (e.g.,
commit message) at a specific time.

8 12 20

SoftwareRecommendation Looking for applications that perform
specific task (e.g., extract images from
PDF, video editing).

17 40 57

A
sk

U
bu

nt
u MakeUpdate Looking for information related to up-

grading Ubuntu version to a newer
version.

10 37 47

ShutdownComputer Related to shutdown the computer
based on a condition (e.g., speci-
fied time) and fix shutdown issues in
Ubuntu OS.

13 14 27

SetupPrinter Setup a printer and fix printer installa-
tion issues.

10 13 23

St
ac

k
O

ve
rfl

ow LookingForCodeSample Looking for information related to im-
plementation. This includes looking
for code snippets, the functionality of
a method, or information specific to
the user’s needs.

66 66 132

UsingMethodImproperly A method or a framework is be-
ing used improperly causing an unex-
pected or unwanted behaviour of the
program in hand. This can be related
to code bugs or to performance issues.

25 26 51

121

Dataset Intent Definition Train Test Total

St
ac

k
O

ve
rfl

ow LookingForBestPractice Looking for the recommended (best)
practice, approach or solution for a prob-
lem.

6 6 12

FacingError Facing an error or a failure in a program,
mostly in the form of an error message
or a build failure.

5 5 10

PassingData Passing data between different frame-
works or method calls.

5 5 10

al. (2021c); Larson et al. (2019); Shridhar et al. (2019); Shridhar, Jain, Agarwal, and Kleyko (2020).

Next, we describe each dataset in details.

Repository: Contains questions asked by software practitioners about their software repositories

to a chatbot, called MSRBot Abdellatif, Badran, and Shihab (2020b). Examples of queries in this

dataset are “What are the commits that introduce bug HHH8492?” and “Which developers have the

most bug assignments?”. For this dataset, the MSRBot developers created the training set manually,

and composed the test set from queries asked by the MSRBot users. Thus, the training and test

sets in this dataset originate from a real-life use case of an SE-based chatbot in practice. Table 6.1

presents the intents in this dataset, their definitions, and the distribution of queries in the training

and test sets corresponding to each intent. The Repository dataset contains 398 queries belonging

to ten intents in total.

Ask Ubuntu: This dataset was constructed using the most popular posts from the Ubuntu Q&A

community on Stack Exchange, one of the most popular online discussion forums D. Braun, Her-

nandez Mendez, et al. (2017). D. Braun, Hernandez Mendez, et al. (2017) selected the most popular

questions with accepted answers from the Ubuntu community. These questions were then labeled by

annotators recruited through Amazon Mechanical Turk (AMT). Examples from this dataset include

“How to shutdown computer when users are logged on?” and “How to setup HP printer/scanner

on Ubuntu?”. This dataset contains 154 queries split into four intents as shown in Table 6.1. It is

important to note that we discard the “Other” intent from the Ask Ubuntu dataset because it had

only three queries, which is insufficient for our evaluation.

Stack Overflow: Contains software development questions posted on Stack Overflow Ye et al.

122

(2016). Stack Overflow is another popular Q&A website that developers use to help in their software

development workflows. The questions in this dataset were initially collected by Ye et al. (2016)

from the top six tags on Stack Overflow. Next, Abdellatif et al. (2021c) labeled the intents of

these posts. In total, this dataset is composed of 215 queries and five different intents as shown in

Table 6.1. Examples of questions in this dataset include “How to write an efficient hit counter for

websites” and “How can I get Font X offset width in java2D?”.

6.4.2 NLU

The goal of ChatMent is to augment a given training dataset to improve the NLU’s performance.

Hence, we need to select an NLU platform to train its model and perform our evaluation. For

this study, we select Rasa, an open-source NLU platform developed by Rasa Technologies Rasa

(August). Unlike third-party NLUs that operate on the cloud (e.g., Google Dialogflow), Rasa can

be installed, configured, and run locally which consumes less resources. Moreover, Rasa has been

used by prior work Abdellatif et al. (2021c); Abdellatif, Badran, and Shihab (2020b); Chun-Ting Lin

and Huang (2020); Dominic et al. (2020b). In our implementation, we use Rasa version 2.5 as it

was the latest stable version available at the time of our study.

6.4.3 BART tuning

As discussed in Section 6.3, the paraphrasing component uses BART to paraphrase the candi-

date queries outputted by the Synonyms replacement component. BART is trained on 160GB of

documents (e.g. Wikipedia, news, stories) with a sentence reconstruction loss Lewis et al. (2020).

To use BART, we need to fine-tune it to the specific task at hand which is to paraphrase queries in

our case. Therefore, we use the following three datasets to fine-tune BART:

• Quora Question Pairs: Quora is a social Q&A website where users ask questions and other

users answer them. The dataset consists of over 149,263 lines of potential duplicate pairs

of questions obtained from Quora. For example, the “How to learn Java programming lan-

guage?” question is duplicated with “How do I learn a computer language like java?”.

• Microsoft Research Paraphrase: This dataset is composed of 3,749 pairs of sentences

123

extracted from the internet (e.g., news sources) and then annotated by humans to indicate

whether each pair captures the same semantics.

• Paraphrase Adversaries from Word Scrambling (PAWS-Labeled): Y. Zhang, Baldridge,

and He (2019) curated a dataset that is composed of pairs of sentences generated using word

swapping and back-translation. Then, five annotators labeled these generated sentences to

indicate whether they represent paraphrases of the original sentences. This dataset contains

25,368 pairs of paraphrased sentences.

These three datasets have been used in prior work Dopierre et al. (2021); West et al. (2021)

which makes them a solid choice to fine-tune BART. For the specific BART implementation, we use

the BART-large model which has 12 layers in the encoder and decoder, and more than 374 million

of parameters. We train the BART model on a cloud with 6 core Intel E5-2683 v4 Broadwell, 64GB

of RAM, and NVIDIA V100 Volta (32G HBM2 memory) GPU. We examined BART’s output with

different numbers of returned paraphrases (i.e., 3, 5, 7, and 10) and found that BART performs

best in terms of having diverse sentence structure and preserving the semantics of the input when it

returns 3 paraphrases at most.

6.4.4 Evaluation Settings

To evaluate the impact of using ChatMent on the NLU’s performance, we need to train the

NLU after augmenting the original training set using ChatMent and then evaluate its performance

using the test set. Unlike the Repository dataset, all queries in the Ask Ubuntu and Stack Overflow

datasets are collected from online forums (i.e., they are not used to implement chatbots). This

means that for these datasets there is no predefined train-test splits. Therefore, we divide the Ask

Ubuntu and Stack Overflow datasets into 50%-50% for training and test splits. More specifically,

we apply random stratified sampling per intent to maintain a consistent distribution of the queries in

the intents. This enables us to have enough training queries to apply ChatMent on, and enough test

queries to evaluate the NLU’s performance afterwards. Table 6.1 shows the distribution of queries

for each intent in the training and test splits in the Repository, Ask Ubuntu, and Stack Overflow

datasets.

124

Table 6.2: Performance comparison results for ChatMent against the baseline and human.

Experiment
Repository Ask Ubuntu Stack Overflow

T1 T3 T5 T1 T3 T5 T1 T3 T5

Baseline 44.73 62.05 67.02 72.93 83.68 86.99 33.04 35.81 -
ChatMent 44.29 62.69 68.17 71.76 84 87.51 31.17 36.52 -
Human 55.87 64.3 69.92 77.05 85.31 90.18 37.36 40.2 -

After obtaining the training and test splits for all datasets, we want to examine the impact of

applying ChatMent on datasets with different training sizes. This helps us to explore the effect

of using ChatMent at different use-cases (data is scarce). Therefore, we devise three evaluation

scenarios: T1, T3, and T5 where we randomly select one, three, and five queries per intent from

the original training dataset for each scenario, respectively. We selected relatively small numbers

of starting queries in our scenarios as we believe that ChatMent is most useful in cases where the

chatbot developers are just starting to build their training set and want to add more queries to it.

6.4.5 Performance Evaluation

To assess the NLU’s performance in classifying intents, we compute the widely used metrics

of precision, recall, and F1-score. Precision is the percentage of the correctly classified queries

to the total number of classified queries for that intent (i.e., Precision = TP
TP+FP). The recall is

calculated as the percentage of the correctly classified queries to the total number of queries for

that intent in the test set (i.e., Recall = TP
TP+FN). To have an overall score, we combine both the

precision and recall using the F1-score weighted by class’ support (weighted F1-score), which has

been used in similar studies Abdellatif et al. (2021c); Barash et al. (2019); Ilmania et al. (2018).

More specifically, we start by computing the F1-score (i.e., F1-score = 2× Precision×Recall
Precision+Recall) for all

classes. Then, we aggregate all F1-scores using the weighted average, with the class’ support as

weights. It is important to note that, although we evaluate all three metrics, we only present the

weighted F1-score in the paper. We added the precision, recall, and F1-score for each intent in all

datasets to the Appendix.

125

6.5 Case Study Results

In this section, we present our evaluation results of ChatMent. For each RQ, we provide a

motivation, detail the approach to answer the RQ, and present the results.

6.5.1 RQ1: Can ChatMent improve the NLU’s performance?

Motivation: To improve the NLU’s performance, chatbot developers typically add more queries

to their training set. However, prior work shows that this process is a costly and time-consuming

task Abdellatif, Badran, and Shihab (2020b); Dominic et al. (2020b). ChatMent is designed to

automatically augment the original training set to achieve an improved performance of the NLU

while saving the chatbot developers’ time and effort. Therefore, in this RQ, we set out to assess the

ChatMent’s impact on the NLU’s performance.

Approach: To answer this RQ, we perform three different experiments:

(1) Baseline: Establishes a baseline for the NLU’s performance. In this experiment, we use the

queries from each of the scenarios (T1, T3 and T5) to train the NLU without augmenting new

queries to the scenarios.

(2) ChatMent: Represents the case where ChatMent is used to augment the original training

set. This experiment reflects the situation where a chatbot developer would start with a set of

initial training queries and then apply the ChatMent to augment the original training set. In

this experiment, we augment the scenarios T1, T3, and T5 using ChatMent.

(3) Human: To put the ChatMent results into perspective, we evaluate the impact of using

human-augmented queries on the NLU’s performance. This experiment reflects another situ-

ation where a chatbot developer starts with a set of initial training queries and then manually

augments the original training set. The human-augmented queries are high-quality and most

likely can improve the NLU’s performance compared to any augmentation approach. This

experiment is performed by selecting one random query per intent from the training split that

were not used in the scenarios T1, T3, and T5.

In the ChatMent and Human experiments, we use the selected candidate queries to augment the

126

Table 6.3: Sample of ChatMent augmented queries.

Original Query Augmented Queries Intent

Show me the files which introduced
more bugs

What are some examples of files
that introduce bugs?

BuggyFiles

Show me the number of commits in
last month

How many commits did you com-
mit in the last month?

CommitsByDate

Shutdown problem in Ubuntu 16.04 What are the problems with Ubuntu
16.04 LTS?

ShutdownComputer

List the changes that resolved the
defect ticket KAFKA 1482

List the commits that fixed the bug
KAFKA-1988

FixCommit

What are the bug introducing
change done last month

What bug introduce commits in
27/05/2018

BuggyCommit

queries from the scenario. To perform our evaluation, we follow the same steps for all experiments,

datasets, and scenarios. First, we train the NLU using the scenario’s queries resulting from the

experiment. Next we use the test set to evaluate the NLU’s performance for each experiment and

record the results. It is important to note that in the Stack Overflow dataset, we only run our

evaluation on scenarios T1 and T3. This is because some intents (e.g., ‘PassingData’) in the T5

scenario of the Stack Overflow dataset do not have enough training queries left to be used as input

queries to randomly select from in the Human experiment.

Results: Table 6.2 presents the F1-scores for Baseline, ChatMent, and Human experiments on all

scenarios and datasets. We find that using ChatMent does not improve the NLU’s performance

overall as shown in Table 6.2. For example, there is a 1% decrease in performance in scenario T1 in

the Ask Ubuntu dataset and a 1% performance increase in scenario T5 in the Repository dataset by

the ChatMent compared to the Baseline. Unsurprisingly, the Human experiment performs the best

in all scenarios across the datasets in terms of F1-score.

Upon closer examination of the ChatMent’s augmented queries, we have three main observa-

tions 1) ChatMent augments queries that have different sentence structures compared to the queries

in the original training set. Table 6.3 presents a sample of the original training queries and their

corresponding queries augmented through ChatMent. For instance, ChatMent augments the initial

training query “Show me the files which introduced more bugs” to a new candidate query “What

127

Baseline ChatMent Human

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

Classification
Correct
Incorrect

(a) Scenario T1

Baseline ChatMent Human

0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

Classification
Correct
Incorrect

(b) Scenario T3

Baseline ChatMent Human
0.2

0.4

0.6

0.8

1.0

Co
nf

id
en

ce
 S

co
re

Classification
Correct
Incorrect

(c) Scenario T5

Figure 6.3: The confidence score distributions for scenarios T1, T3, and T5 in the Repository dataset.

are some examples of files that introduce bugs?”. 2) Although ChatMent augments queries with

different sentence structures, in most cases, it preserves the intent of the original queries as shown

in Table 6.3. Among all augmented queries, we find only six candidate queries that had their intents

changed compared to the initial training queries. For example, the initial training query “Which

commits fixed KAFKA 2727?” asks about the fixing commit for a specific bug in a project (‘Fix-

Commit’ intent), however, ChatMent augments it to “Which branches are connected to KAFKA

2727?” which changes the meaning of the query to ask about the branch associated with the bug

ticket. 3) ChatMent fails to augment candidate queries for some intents (e.g., ‘FacingError’). We

further discuss this point in Section 6.6.

Augmenting the dataset using ChatMent does not improve the NLU’s perfor-

mance. Moreover, ChatMent fails to augment the queries of some intents.

Nonetheless, we observe that the candidate queries generated by ChatMent

have different sentence structures compared to the original training set while

preserving their semantics (intents).

6.5.2 RQ2: Does ChatMent increase the NLU’s confidence in its classification?

Motivation: When using an NLU, chatbot developers rely on the confidence score returned

with the classified intent to determine the chatbot’s next action Abdellatif et al. (2021c). More

specifically, developers tend to design their chatbots so that, if the NLU is not confident in its in-

tent classification, the chatbot asks for further clarification from the user (i.e., “Sorry, I did not

understand your question, could you please rephrase it?”). Otherwise, the chatbot answers user’s

128

question/request. Developers also want the NLU to return higher confidence scores when it cor-

rectly classifies the intent and lower confidence scores for the misclassified intent. This limits the

incorrect actions (actions based on a misunderstanding) taken by the chatbot. One way to increase

the NLU’s confidence in its classification is to train the NLU on more queries for each intent (i.e.,

augment the training set). Therefore, in this RQ, we study the effect of using ChatMent on the

NLU’s confidence, particularly with regards to the confidence scores returned with the correctly

and incorrectly classified intents.

Approach: To answer this RQ, we use the output of the three experiments (Baseline, ChatMent,

and Human) described in RQ1. More specifically, we examine the confidence scores returned by

the NLU for the queries in the test set across all the experiments. By using the three experiments,

we are able to establish a baseline (from the Baseline experiment) for how confident the NLU is

in its intent classification. Then, we use that baseline to measure the impact of using ChatMent on

the NLU’s confidence (ChatMent experiment) compared to the impact of using human-augmented

queries (Human experiment). We hypothesize that augmenting more queries increases the NLU’s

confidence scores for the correctly classified intents while decreasing its confidence for the misclas-

sified intents. Finally, to compare the confidence scores for the correctly and incorrectly classified

intents, we present the distributions of confidence scores for each case.

Results: In this RQ, we only discuss the results for the Repository dataset as our observations and

findings in this RQ apply similarly to the Ask Ubuntu and Stack Overflow datasets. Nevertheless,

we present the confidence score distributions for the Ask Ubuntu and Stack Overflow datasets in the

Appendix.

Figure 6.3 shows the confidence score distributions for the correctly and incorrectly classified

intents in the Repository dataset. From the figure, we observe that the median of confidence scores

from correctly classified intents is higher than the ones from the misclassified intents in all experi-

ments. In fact, these results are in-line with the ones in the prior work Abdellatif et al. (2021c).

On the other hand, training the NLU using the ChatMent-augmented queries does not improve

the NLU’s confidence in its classification compared to the baseline as shown Figure 6.3. One

possible reason for this is that the NLU’s performance is robust without any augmentation. For

example, in scenario T3 in the Baseline experiment of the Repository dataset where the NLU is

129

trained on one query per intent only, the NLU achieves confidence scores median of 0.92 for the

correctly classified intents. Another interesting observation is that using the human-augmented

queries (Human experiment) improves the NLU’s confidence in its classification for scenarios T1

and T3 for the correctly classified intents only. As clearly shown in the Figure 6.3, the median of the

confidence scores in the correct classifications in the T1 scenario is 0.87 for the Human experiment,

while the ChatMent and Baseline achieve 0.74 and 0.75 medians, respectively. For scenario T5,

none of the augmentation experiments (i.e., Human and ChatMent) increase the NLU’s confidence

in its correct classifications or decrease its confidence in incorrect classifications. In other words,

the human-augmented and ChatMent-augmented queries achieve comparable median of confidence

scores to the baseline queries in the T5 scenario.

To verify whether the difference in the confidence scores across the experiments’ results (e.g.,

Human vs ChatMent) is statistically significant, we perform the non-parametric unpaired Mann-

Whitney U test. We find that the difference between the Human and Baseline experiments is sta-

tistically significant (i.e., P-value < 0.05) in Scenarios T1 and T3 for the correctly classified con-

fidence scores only. Also, we find that the difference in the correctly classified confidence scores

distributions is significant between ChatMent and Human experiments in all scenarios T1, T3, and

T5. For the confidence scores of the misclassified intents, we find that the differences between all

experiments are insignificant.

Finally, to quantify the difference of the statistically significant changes, we use Cliff’s Delta Cliff

(1993) to compute the delta effect size between confidence scores of the experiments. Moreover, we

use Romano, Kromrey, Coraggio, and Skowronek (2006) guide to interpret the delta effect size. We

find that the difference in the confidence scores of correctly classified intents between ChatMent and

both the Human and Baseline is small for scenario T1 as shown in Table 6.4. In scenarios T3 and

T5 however, the delta effect size is negligible for the correctly classified confidence scores across

all experiments.

Using ChatMent does not increase the NLU’s confidence in its classification.

Nonetheless, the human augmented queries increase the NLU’s confidence

marginally when the original training set is smaller.

130

Table 6.4: The Cliff’s delta effect size for all experiment in the Repository dataset.

Classification Scenario Experiment 1 Experiment 2 Delta Size

Correct

1 Baseline ChatMent 0.021 Negligible
3 Baseline ChatMent -0.039 Negligible
5 Baseline ChatMent -0.068 Negligible
1 Baseline Human -0.166 Small
3 Baseline Human -0.123 Negligible
5 Baseline Human -0.044 Negligible
1 ChatMent Human -0.183 Small
3 ChatMent Human -0.083 Negligible
5 ChatMent Human 0.026 Negligible

Incorrect

1 Baseline ChatMent -0.019 Negligible
3 Baseline ChatMent -0.001 Negligible
5 Baseline ChatMent -0.081 Negligible
1 Baseline Human -0.027 Negligible
3 Baseline Human 0.017 Negligible
5 Baseline Human -0.114 Negligible
1 ChatMent Human -0.010 Negligible
3 ChatMent Human 0.019 Negligible
5 ChatMent Human -0.032 Negligible

Table 6.5: The average number of ChatMent and human augmented queries.

Model
Repository Ask Ubuntu Stack Overflow

T1 T3 T5 T1 T3 T5 T1 T3 T5

ChatMent 0.7 1.8 2.2 0 0 0.1 0 0 -
Human 9.9 8.7 8 3 2.7 2.4 5.1 5.4 -

6.6 Discussion

As shown in the results of RQ1, the NLU’s performance after applying ChatMent remains very

close to the baseline. Prior work shows that NLUs tend to perform the best when they are trained on

more queries Abdellatif et al. (2021c). Therefore, we calculate the average number of augmented

queries (i.e., queries introduced by ChatMent and not in the original training set) per intent. We also

perform the same analysis on the Human experiment results. Table 6.5 presents the average number

of queries augmented per intent for the Repository, Ask Ubuntu, and Stack Overflow datasets in the

ChatMent and Human experiments.

131

Table 6.6: Performance results as F1-score w/out using our Selection phase.

Models
Repository Ask Ubuntu Stack Overflow

T1 T3 T5 T1 T3 T5 T1 T3 T5

Random 55.87 64.3 69.92 77.05 85.31 90.18 37.36 40.2 -
Selection 57.52 66.67 70.14 82.08 89.71 90.51 43.25 43.12 -

From the results, we observe that ChatMent does not add new queries in the Ask Ubuntu (ex-

cept for scenario T5) and Stack Overflow datasets, which could explain why ChatMent does not

improve the NLU’s performance in these two datasets. Thus, it is likely that the slight changes in

performance between the baseline and ChatMent are due to some randomness in the NLU training

process. On the other hand, we observe that ChatMent augments few queries to the Repository

dataset as shown in Table 6.5. However, these augmented queries seem to have little effect on the

NLU’s performance as discussed in RQ1. The results also highlight that, in the Human experiment,

more queries are augmented to all the datasets, allowing the NLU to train on more data. This bet-

ter explains the increase in NLU’s performance in the Human experiment. Finally, when looking

at the results of each scenario, we find that ChatMent augments more queries in scenarios T3 and

T5, which is likely because the approach has more input queries to augment compared to the T1

scenario. To better understand the reasons behind the small number of augmented queries by Chat-

Ment, we examine the results in depth and notice that most of the candidate queries generated by the

Augmentation phase are discarded by the Selection Phase. In other words, the candidate queries are

either familiar to the NLU or not lexically diverse enough. Moreover, we also find that the candidate

queries generated by the Augmentation phase are similar to each other.

Therefore, we further investigate the effectiveness of the Selection phase. To achieve this, we

compare the performance of two trained NLU models. We train the first model, called Random

model, by selecting one random query from the training split and adding it to the scenarios (e.g.,

T1). For the second model, we input the queries from the original training set into the Selection

phase and add one output query from the Selection phase to the scenario dataset and train an NLU

model (Selection model) using the augmented dataset. Finally, we evaluate the Random and Se-

lection models using the test set for the Repository, Ask Ubuntu, and Stack Overflow. Table 6.6

132

presents the performance results of both the Random and Selection models in terms of F1-score.

The Selection model achieves better performance compared to the Random model across all scenar-

ios and datasets. The highest increase in F1-score is 5.89% in the Stack Overflow dataset (scenario

T1), while the lowest performance improvement is 0.33% in the Ask Ubuntu dataset (scenario T5)

over the Random model.

Our findings show that the Selection phase is effective in selecting queries that improve the

NLU’s performance. In light of this finding, we speculate that the majority of candidate queries

generated by the Augmentation phase are not meaningful enough to pass the Selection phase. We

reiterate that the Augmentation phase is a multi-step process that includes a Synonym Replace-

ment component and Paraphrasing component that leverages state-of-the-art paraphrasing approach

(BART). Nevertheless, the results show that more needs to be done in order to produce higher qual-

ity augmented queries, especially during the paraphrasing process. Moreover, our findings highlight

the need for more investigations about the applicability of different augmentation techniques spe-

cialized for the SE-based chatbots.

6.7 Lessons Learned

Does relaxing the selection criteria help improve the NLU’s performance? No. We con-

figured ChatMent to augment more than one query per intent by loosening the selection criteria to

select the top three queries rather than only the top one. We find that the NLU’s performance de-

creases compared to augmenting one query. Upon closer examination of the results, we observe that

the NLU misclassifies intents that share similar characteristics (i.e, queries with exclusive words and

have distinct entity type) with other intents. This matches the findings in Abdellatif et al. (2021c)

where the NLUs tend to correctly classify intents with exclusive words. Therefore, future augmen-

tation approaches need to consider the characteristics of the augmented queries for each intent to

increase the NLU’s performance in intents classification.

There is a need for benchmarks of paraphrased queries for the SE domain. Prior work

shows that fine-tuning the transformers using SE datasets is valuable compared to using general

training data Mastropaolo et al. (2021); von der Mosel, Trautsch, and Herbold (2021). In our study,

133

we use three datasets (e.g., Quora question pairs) to fine-tune BART for the paraphrasing task.

However, none of these datasets are related to the SE-domain. This might be one of the reasons

behind the limited usefulness of the candidate queries augmented by the Augmentation phase as

discussed in Section 6.6. Therefore, we explore using an SE dataset to fine-tune BART. In par-

ticular, we downloaded 44K Stack Overflow posts that marked as duplicates. We believe that the

duplicated post titles are considered as paraphrased as they are asking about the same development

problem Ahasanuzzaman, Asaduzzaman, Roy, and Schneider (2016). Then, we fine-tune BART

using the Stack Overflow duplicate posts and the three corpora discussed in Section 6.4. Finally, we

use the same evaluation process presented in Section 6.4 to asses ChatMent given the new fine-tuned

BART model. The results show that the NLU’s performance decreases when using this configura-

tion. To better understand the reason for this decrease in performance, we examine the resulting

queries and find that the augmented queries are paraphrased in a way to ask about achieving a task

using a specific programming language. For example, the original query “What commits resolved

the bug ticket KAFKA 1521” is augmented to the candidate query “What commits resolved the

bug ticket KAFKA 1521 using PHP?”. It is typical of Stack Overflow posts to mention the pro-

gramming language in the title, therefore the dataset might bias BART to include a programming

language in each query. To the best of our knowledge, there is no crafted dataset that contains pairs

of paraphrased queries related to the SE domain. We believe that there is a need for benchmarks

that contains paraphrased pairs of queries that represent different SE tasks.

NLUs are robust even when trained on few queries. In our study, we find that the NLU

achieves a good performance even when trained on few queries per intent. In fact, with only one

training query per intent (i.e., T1 Scenario), the NLU performs considerably well, with an F1-Score

ranging from 33% in the Stack Overflow dataset and up to 73% in the Ask Ubuntu dataset as

shown in the baseline results of the T1 scenario Table 6.2. This observation is further reinforced

when looking at the baseline performance with three and five initial training queries (i.e., scenarios

T3 and T5), where the NLU achieves an F1-score ranging from 35% to 87% across the different

datasets. Therefore, future augmentation approaches should focus on the quality of the generated

queries more than the quantity as the NLU only needs a few queries to perform well.

134

Modifying the candidate queries using a rule-based component does not improve the re-

sults. We observe that the candidate queries generated by the Augmentation phase are similar to

each other as discussed in Section 6.6. Hence, we attempted to diversify the candidate queries fur-

ther by introducing another component to the Augmentation phase. More specifically, we develop

a rule-based technique to transform a query into a question. For example, the Augmentation phase

outputs the candidate query “Show me the number of commits in the last month”, which is then

input into the rule-based component, resulting in the query “What is the number of commits in the

last month?”. However, the results show that using the rule-based component does not improve

the performance of the current version of ChatMent. This is because the Selection phase discards

most of the candidate queries generated by the rule-based component as they are not meaningful

enough to the NLU. Our finding confirms the robustness of the NLU and underlines the need of

augmentation approaches that generate more diverse candidate queries that are useful to the NLU.

Some training queries improve the NLU’s performance more than others. The results from

Section 6.6 show that training the NLU on queries selected by Selection phase achieves better

performance compared to the randomly selected queries, although all input queries were originally

designed by humans. Therefore, the usefulness of the queries in the training set is an important

aspect that chatbot developers need to consider. That said, it is difficult to decide the usefulness of

the query as most of the NLU implementations are black box Abdellatif et al. (2021c). Therefore,

we recommend chatbot developers to use the Selection phase to select the most useful queries to

add to their training set.

Better augmentation techniques are needed for SE-based chatbots. We use the state-of-art

augmentation techniques (i.e., synonyms replacement and BART) to augment the training datasets

of SE chatbots. However, in our experiment, these approaches come-short when augmenting useful

queries as discussed in Section 6.6. This raises a red flag for SE-chatbot community as the current

state-of-art augmentation techniques (e.g., BART) might be limited in its ability to augment chatbot

training datasets. This requires more investigation about the applicability of different augmentation

techniques on the task of augmenting SE chatbot training datasets. Moreover, this highlights the

need for specialized augmentation approaches for SE-based chatbots. We plan (and encourage

135

others) to explore other augmentation approaches (e.g., BERT, GPT2) and weak-supervision Z.-

H. Zhou (2017) to augment SE-based chatbots training dataset.

6.8 Threats to Validity

In this section, we discuss the threats to internal, replicability, and external validity of our study.

Internal Validity: Concerns confounding factors that could have influenced our results. We con-

figure BART to return three queries (sequences) which might impact the quality of the paraphrased

queries. To alleviate this threat, the first author examined the output from BART using different

numbers of returned queries (1, 3 ,5, 7, and 10) across the three datasets and found that configur-

ing the returned queries to be three yields to the best results in terms of having different sentence

structure and preserving semantics of the input queries. Another threat to internal validity is that we

configure the Synonym Replacement component to replace only the verbs in a query. Thus, replac-

ing words with different part-of-speech (e.g., nouns) might lead to different results. However, we

find that replacing nouns is ineffective as most nouns in our datasets are proper nouns (e.g., ‘Java’,

‘Ubuntu’) which are words that do not have synonyms. We also find that words from with other

part-of-speech (e.g., pronouns) are scarce in our datasets.

Replicability Validity: Concerns the possibility of replicating the study Epskamp (2019b). To

enable the replication of this study we make our scripts and data publicly available at Abdellatif

et al. (2021a). Since we used the open-source Rasa NLU in this study, we also provide details

about the Rasa version we used to enable replication. However, we observed some randomness

in the NLU’s performance when trained and tested using the same data. This might affect our

results and conclusion as the change in the NLU’s performance across different experiments might

have been caused by the model’s training randomness. Nevertheless, we mitigate this by repeating

the evaluation step three times for each experiment. Thus, the presented results in Section 6.5 are

averaged from the three runs in order to reduce the randomness effect on the results.

External Validity: Concerns the generalization of our findings. In this study, we devise an approach

to augment the training dataset for SE chatbots. And for the purpose of evaluating ChatMent, we use

136

three different datasets which might make our results not generalized for other SE datasets. How-

ever, these datasets have been used by previous studies to evaluate the NLUs and chatbots Abdellatif

et al. (2021c); Larson et al. (2019); Shridhar et al. (2019, 2020) in the SE domain.

We use Rasa NLU to evaluate the impact of using ChatMent on the NLU’s performance; hence

our results might not be generalized to other NLUs. However, we select Rasa as it is an open-

source NLUs which guarantee that its internal implementation stay the same during our entire study.

Moreover, Rasa has been widely used by practitioners to develop SE chatbots Abdellatif et al.

(2021c); Abdellatif, Badran, and Shihab (2020b); Chun-Ting Lin and Huang (2020); Dominic et al.

(2020b).

6.9 Conclusion & Future Work

Software chatbots play important roles in the software engineering domain as they enable prac-

titioners to perform tasks (e.g., run tests) through natural language. Chatbots rely on the NLU

component to understand the user’s input. Training the NLU on possible queries from users is im-

portant because it affects its ability to classify the user’s intent behind the query. Creating datasets

to train the NLU is a costly and time-consuming task. Therefore, in this chapter, we explore an

augmentation approach (called ChatMent) to help chatbot developers create high-quality training

dataset. Then, we evaluate the impact of using ChatMent on the NLU’s performance using three

SE datasets and the Rasa NLU platform. We find that training the NLU using ChatMent does not

improve the NLU’s performance and confidence in its intent classification. Nevertheless, we find

that the Selection phase is effective in selecting candidate queries that are useful to the NLU.

The results in this paper outline some directions for future work. First, we are planning to

evaluate ChatMent on more NLUs (e.g., Dialogflow, IBM Watson) to evaluate the generalizability

of ChatMent. Second, we want to examine the performance of different Transformers (e.g., GPT2,

BERT, RoBERTa) in the task of paraphrasing SE queries. As we discussed in Section 6.6, there is

a lack of SE paraphrased queries to train the Transformers. Therefore, we want to investigate the

use of Stack Overflow posts to design a benchmark containing paraphrased queries to help tune the

transformers for the SE domain.

137

Chapter 7

Summary, Contributions and Future

Work

Software chatbots draw the attention of practitioners in the SE domain. However, little is known

about the challenges of developing SE-based chatbots and their benefits in assisting practitioners in

their development tasks. We identified the challenges that face chatbot practitioners when devel-

oping chatbots. We highlighted the benefits of using chatbots in the SE domain. We presented

empirical studies and proposed approaches to address some of the identified challenges. In this

chapter, we summarize the thesis by presenting the main work and contribution in each chapter of

the thesis. Additionally, we discuss future work related to chatbot development for SE domain.

7.1 Summary

The main focus of this thesis is to understand SE-based chatbot development challenges and val-

ues of using them in SE tasks, and improve the SE-based chatbots. First, we focus on studying the

main challenges of developing chatbots. Second, we showcase the potential benefits of using chat-

bots in the software development process by developing an SE chatbot. The results from these two

studies reveal that practitioners struggle to select an NLU platform for their chatbot implementation

as it is critical for the chatbot’s capability of understanding user’s queries. Moreover, the results

show that developing datasets to train the NLU is a costly and time-consuming task. Based on these

138

findings, we conduct an empirical study to find the best performing NLU in the SE context. Also,

we propose an approach to augment the training dataset for SE chatbots. The presented research in

this thesis provides the following contributions:

Chapter 3: Understanding the challenges of chatbot development

In Chapter 3, we provide the first attempt at understanding the challenges of chatbot develop-

ment. We perform a qualitative study by analyzing posts on Stack Overflow to identify the major

topics surrounding the discussions on chatbot development. Our results show that developers dis-

cuss 12 chatbot topics (e.g., intents & entities) that fall under five categories. Most of the posts

belong to chatbot development, integration, and the natural language understanding (NLU) model.

We also find that chatbot developers are highly interested in posts that are related to chatbot creation

and integration into websites. Furthermore, we find that developers face challenges in the training

of the chatbot’s model.

Chapter 4: Determining the value of SE-context chatbots

This thesis presents the first study to use chatbots on software repositories. More specifically,

we lay out a chatbot on top of software repositories to answer some of the most common software

development/maintenance questions facing developers during their tasks. Furthermore, we conduct

a user study to evaluate the proposed chatbot, and our findings show that most of the study partic-

ipants (90%) find the chatbot to be either useful or very useful. Moreover, participants completed

90.8% of tasks correctly using the chatbot, compared to the 25.2% tasks completed without the chat-

bot. We find that the selection of NLU platform to use directly impacts the chatbot’s accuracy in

classifying user’s queries. Finally, crafting a dataset to train the NLU is costly and time-consuming

task for chatbot developers.

Chapter 5: Can we help developers to design more effective chatbots for the SE do-

main?

To help chatbot developers to design more effective chatbots, we perform the first work to

evaluate widely used NLUs on two representative tasks from the SE domain. We find that NLU

139

tends to perform better when they are trained on more queries where IBM Watson achieves the best

in terms of intents classification. Also, we find that most NLUs report high confidence scores for

correctly classified intents. For the entity extraction task, the results show that LUIS performs the

best in extracting entities from the Repository task (F1-measure 93.7%), while IBM Watson comes

on top in the Stack Overflow task (F1-measure 68.5%).

Chapter 6: Improving the SE chatbot’s accuracy

To assist chatbot developers to craft high-quality datasets to train the NLU, we evaluate the

combination of the synonyms replacement and paraphrasing NLP techniques in an approach to

augment the training datasets of SE-based chatbots. The approach augments queries that preserve

similar semantics but have new terms/keywords and sentence structures compared to the queries in

the chatbot training dataset. Our study shows that training the NLU using the combined approach

does not improve the NLU’s performance and confidence in its intent classification. Nevertheless,

we find that the Selection phase is effective in selecting queries that improve the NLU’s perfor-

mance. Our results should alert the chatbot community on the limitations of current augmentation

approaches when applied to the software engineering domain.

7.2 Future Work

We believe that this thesis makes significant contributions towards identifying the challenges of

developing SE chatbots and understanding the values of using chatbots in the software development

tasks. However, there are still more challenges that need to be addressed in order to ease the devel-

opment and increase the adoption of chatbots in the software engineering domain. We discuss some

avenues for future work.

7.2.1 Improving User-Chatbot Interaction

Our results in Chapter 3 show that chatbot developers have difficulties in designing conversation

flow with the user and generating answers to user’s queries. The results in Chapter 4 confirm

these findings where the users of the MSRBot suggested enhancing the presentation of the chatbot’s

140

answers, especially when the answer is too long and contains a lot of information. For future work,

an additional investigation on the best way to present the chatbot’s reply to the user is required to

increase the adoption of chatbots in the software engineering domain.

7.2.2 Exploring the Use of Chatbots in Other Software Engineering Tasks

The results in Chapter 4 show that using chatbots layered on top of software repositories (i.e.,

code and issue tracking repositories) to answer software project related questions are promising in

terms of usefulness, efficiency, and accuracy. Therefore, we are planning in the future to explore

using chatbots on other software engineering tasks such as performing source code analysis (e.g.,

finding and fixing vulnerabilities in the source code) and answering code related questions (e.g.,

what technical debt exists in the code?).

7.2.3 Supporting more Users’ Questions

Chapter 4 of this thesis shows that the users asked the MSRBot questions that are not yet sup-

ported. Therefore, the chatbot cannot answer those questions which negatively impacts the users’

experience with the chatbot. This implies two future research directions 1) To study the types of

questions that practitioners based on their roles (e.g., project managers) usually ask during their

software development. Identifying the most frequent questions helps developing more task-specific

chatbots (e.g., testing chatbots). 2) Develop approaches that answer user’s questions dynamically

(i.e., removing the need to have predefined questions). Both directions help increase the applicabil-

ity of the chatbots in the software engineering domain by supporting more user’s questions.

7.2.4 Enhancing the Unique Entities Extraction

Chatbots use the extracted intent and entities to perform the next action. The results of this thesis

show that the NLUs have poor performance in identifying unique entities (i.e., entities that appear

once in the chatbot’s training dataset). Therefore, the chatbot performs wrong actions which lead to

return incorrect answers to the user. Prior work shows that chatbots answers deeply affect the user’s

satisfaction. In the future, we plan to propose techniques to extract and augment the unique entities

to increase the chatbot’s accuracy in performing the intended tasks asked by the user.

141

7.2.5 Investigating the Impact of Using Chatbots on the Developers’ Social Aspects

Although the results of this thesis present the potential benefits of using chatbots in the software

development process. There is a lack of studies that focus on the social aspects of using chatbots. As

a research community, we want to implement and integrate tools that increase the code quality and

velocity of software development. However, we want to ensure that these tools have no negative im-

pacts on the software practitioners (e.g., no social interactions between team members). Prior work

shows that the social aspects are important towards team productivity and software sustainability.

Future work should explore the impact of using chatbots on the social aspects of team members.

7.2.6 Evaluating the Performance of Transformers for Augmenting SE Dataset

In Chapter 6, we evaluate an approach that augments the training dataset for SE chatbots. A

major problem with using the transformer (BART) to paraphrase queries is that all the paraphrased

queries are not adding values to the NLU. In other words, the augmented queries are similar to the

ones in the original training dataset for the chatbot. In the future, we plan to focus on evaluating the

paraphrasing capabilities of different transformers using SE datasets and proposing more advanced

augmentation approaches to help chatbot developers in crafting high-quality training datasets.

142

Appendix A

Appendix-A

Detailed Precision and Recall Values When Evaluating Intents Classifications.

In section 5.4.1, we presented the F1-measure values for each task when classifying intents. In this

appendix, we add detailed precision, recall, and F1-measure values that are used to compute the

F1-measure values for each task on each NLU.

Table A.1: Intents classification results for the Repository task.

Intent
IBM Watson Dialogflow Rasa LUIS

P R F1 P R F1 P R F1 P R F1

CountCommitsByDate 86.4 90.5 88.4 84.0 100.0 91.3 100.0 66.7 80.0 88.9 38.1 53.3
FileCommits 83.3 41.7 55.6 100.0 66.7 80.0 100.0 16.7 28.6 16.7 8.3 11.1
OverloadedDev 100.0 88.9 94.1 100.0 66.7 80.0 88.9 88.9 88.9 40.9 100.0 58.1
CommitsByDate 87.5 58.3 70.0 50.0 50.0 50.0 88.9 66.7 76.2 0.0 0.0 0.0
ExperiencedDevFixBugs 100.0 85.7 92.3 92.3 85.7 88.9 100.0 85.7 92.3 100.0 7.1 13.3
BuggyFiles 100.0 92.3 96.0 100.0 92.3 96.0 100.0 100.0 100.0 90.9 76.9 83.3
BuggyCommitsByDate 60.0 92.3 72.7 80.0 61.5 69.6 70.6 92.3 80.0 100.0 84.6 91.7
FixCommit 100.0 100.0 100.0 84.6 100.0 91.7 100.0 100.0 100.0 52.4 100.0 68.8
BuggyCommit 90.0 100.0 94.7 90.0 100.0 94.7 90.0 100.0 94.7 47.4 100.0 64.3
BuggyFixCommit 100.0 100.0 100.0 85.7 85.7 85.7 50.0 85.7 63.2 33.3 85.7 48.0

P: Precision, R: Recall, F1: F1-measure

Detailed Precision and Recall Values When Assessing Entity Extraction.

When discussing the entity extraction results in Section 5.4.3, we presented the F1-measure values

for each task. Here, we present the detailed precision, recall, and F1-measure values that are used

143

Table A.2: Intents classification results for the Stack Overflow task.

Intent
IBM Watson Dialogflow Rasa LUIS

P R F1 P R F1 P R F1 P R F1

UsingMethodImproperly 93.6 73.3 79.1 84.0 58.3 66.5 81.6 58.3 64.4 71.7 51.7 57.5
LookingForCodeSample 85.3 97.9 90.9 81.5 91.4 85.9 78.2 92.1 84.5 75.4 95.7 84.0
FacingError 80.0 80.0 80.0 60.0 60.0 60.0 30.0 40.0 33.3 10.0 10.0 10.0
PassingData 35.0 40.0 36.7 50.0 50.0 50.0 35.0 40.0 36.7 0.0 0.0 0.0
LookingForBestPractice 86.7 80.0 81.3 86.7 80.0 81.3 76.7 80.0 78.0 90.0 80.0 83.3

P: Precision, R: Recall, F1: F1-measure

to compute the F1-measure values presented earlier.

Table A.3: Entity extraction classification results for the Repository task.

Entity Type
IBM Watson Dialogflow Rasa LUIS

P R F1 P R F1 P R F1 P R F1

FileName 8.6 100.0 15.9 86.4 73.1 79.2 93.8 57.7 71.4 83.3 76.9 80.0
JiraTicket 100.0 100.0 100.0 84.6 100.0 91.7 100.0 81.8 90.0 100.0 100.0 100.0
DateTime 78.1 96.2 86.2 56.9 55.8 56.3 100.0 100.0 100.0 98.1 98.1 98.1
CommitHash 100.0 100.0 100.0 100.0 100.0 100.0 100.0 80.0 88.9 100.0 100.0 100.0

P: Precision, R: Recall, F1: F1-measure

144

Table A.4: Entity extraction classification results for the Stack Overflow task.

Entity Type
IBM Watson Dialogflow Rasa LUIS

P R F1 P R F1 P R F1 P R F1

ProgLanguage 88.4 96.2 92.0 90.7 97.2 93.7 92.1 91.5 91.4 95.9 80.2 86.8
Framework 70.7 63.2 65.4 85.3 43.2 56.0 89.1 42.1 56.1 88.6 41.1 54.4
Standards 81.0 42.9 54.1 85.7 47.6 56.9 17.5 14.3 14.9 23.8 14.3 17.5
API 50.9 39.2 43.3 84.0 32.4 42.8 62.3 20.3 29.9 48.6 16.2 23.5
Platform 76.9 61.5 67.4 64.1 53.8 55.9 84.6 69.2 75.1 53.8 38.5 43.6

P: Precision, R: Recall, F1: F1-measure

145

Appendix B

Appendix-B

Detailed Confidence Scores Distributions.

In Section 6.5, we presented the confidence scores distributions for the Repository dataset. In this

appendix, we present the distribution of the confidence scores for the correctly and incorrectly

classified intents in the Ask Ubuntu and Stack Overflow datasets.

146

Baseline ChatMent Human

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
nf

id
en

ce
 S

co
re

Classification
Correct
Incorrect

(a) Scenario T1

Baseline ChatMent Human

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
nf

id
en

ce
 S

co
re

Classification
Correct
Incorrect

(b) Scenario T3

Baseline ChatMent Human
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
nf

id
en

ce
 S

co
re

Classification
Correct
Incorrect

(c) Scenario T5

Figure B.1: The confidence score distributions for Scenarios T1, T3, and T5 in the Ask Ubuntu
dataset.

147

Baseline ChatMent Human
0.0

0.2

0.4

0.6

0.8

1.0
Co

nf
id

en
ce

 S
co

re

Classification
Correct
Incorrect

(a) Scenario T1

Baseline ChatMent Human

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
nf

id
en

ce
 S

co
re

Classification
Correct
Incorrect

(b) Scenario T3

Figure B.2: The confidence score distributions for Scenarios T1, T3, and T5 in the Stack Overflow
dataset.

148

Detailed Delta Effect Size Between Confidence Scores of the Experiments.

When discussing the delta size effect in Section 6.5, we presented the size effect results for the

Repository dataset. Here, we present the delta size effect between the experiments for the Ask

Ubuntu and Stack Overflow datasets.

Table B.1: The Cliff’s delta effect size for all experiment in the Ask Ubuntu dataset.

Classification Split Experiment 1 Experiment 2 Delta Size

Correct

1 Baseline ChatMent 0.009 Negligible

3 Baseline ChatMent 0.028 Negligible

5 Baseline ChatMent -0.020 Negligible

1 Baseline Human -0.213 Small

3 Baseline Human -0.035 Negligible

5 Baseline Human -0.073 Negligible

1 ChatMent Human -0.231 Small

3 ChatMent Human -0.062 Negligible

5 ChatMent Human -0.051 Negligible

Incorrect

1 Baseline ChatMent -0.021 Negligible

3 Baseline ChatMent -0.026 Negligible

5 Baseline ChatMent -0.037 Negligible

1 Baseline Human -0.167 Small

3 Baseline Human -0.030 Negligible

5 Baseline Human -0.084 Negligible

1 ChatMent Human -0.149 Small

3 ChatMent Human -0.007 Negligible

5 ChatMent Human -0.047 Negligible

149

Table B.2: The Cliff’s delta effect size for all experiment in the Stack Overflow dataset.

Classification Split Experiment 1 Experiment 2 Delta Size

Correct

1 Baseline ChatMent 0.021 Negligible

3 Baseline ChatMent -0.039 Negligible

1 Baseline Human -0.166 Small

3 Baseline Human -0.123 Negligible

1 ChatMent Human -0.183 Small

3 ChatMent Human -0.083 Negligible

Incorrect

1 Baseline ChatMent -0.019 Negligible

3 Baseline ChatMent -0.001 Negligible

1 Baseline Human -0.027 Negligible

3 Baseline Human 0.017 Negligible

1 ChatMent Human -0.010 Negligible

3 ChatMent Human 0.019 Negligible

150

References

Abdalkareem, R., Shihab, E., & Rilling, J. (2017, March). What do developers use the crowd for?

a study using stack overflow. IEEE Softw., 34(2), 53–60. doi: 10.1109/MS.2017.31

Abdalkareem, R., Shihab, E., & Rilling, J. (2017, Mar). What do developers use the crowd for? a

study using stack overflow. IEEE Software, 34(2), 53-60. doi: 10.1109/MS.2017.31

Abdellatif, A., Badran, K., Costa, D., & Shihab, E. (2021a). Chatment: A data augmen-

tation approach for software engineering chatbots. https://github.com/ahmad

-abdellatif/Augmentation. ((Accessed on 10/16/2021))

Abdellatif, A., Badran, K., Costa, D., & Shihab, E. (2021b). A comparison of natural language

understanding platforms for chatbots in software engineering. IEEE Transactions on Software

Engineering (TSE), 1-1. doi: 10.1109/TSE.2021.3078384

Abdellatif, A., Badran, K., Costa, D., & Shihab, E. (2021c). A comparison of natural language

understanding platforms for chatbots in software engineering. IEEE Transactions on Software

Engineering (TSE), 1-1. doi: 10.1109/TSE.2021.3078384

Abdellatif, A., Badran, K., Costa, D., & Shihab, E. (2021d). A comparison of natural lan-

guage understanding platforms for chatbots in software engineering — zenodo. https://

zenodo.org/record/4734080. ((Accessed on 02/10/2021))

Abdellatif, A., Badran, K., & Shihab, E. (2019a). ahmad-abdellatif/msrbot: Msrbot framework.

https://github.com/ahmad-abdellatif/MSRBot. ((Accessed on 10/10/2019))

Abdellatif, A., Badran, K., & Shihab, E. (2019b). MSRBot: Using bots to answer questions from

software repositories. Empirical Software Engineering (EMSE), To Appear.

Abdellatif, A., Badran, K., & Shihab, E. (2019c, July). MSRBot: Using Bots to Answer Questions

151

https://github.com/ahmad-abdellatif/Augmentation
https://github.com/ahmad-abdellatif/Augmentation
https://zenodo.org/record/4734080
https://zenodo.org/record/4734080
https://github.com/ahmad-abdellatif/MSRBot

from Software Repositories. Empirical Software Engineering. Retrieved from https://

doi.org/10.5281/zenodo.3382071 doi: 10.5281/zenodo.3382071

Abdellatif, A., Badran, K., & Shihab, E. (2020a). Msrbot: Using bots to answer questions from

software repositories. Empirical Software Engineering (EMSE). doi: 10.1007/s10664-019

-09788-5

Abdellatif, A., Badran, K., & Shihab, E. (2020b). Msrbot: Using bots to answer questions from

software repositories. Empirical Software Engineering (EMSE), 25, 1834-1863.

Abdellatif, A., Costa, D. E., Badran, K., Abdelkareem, R., & Shihab, E. (2020). Challenges in chat-

bot development: A study of stack overflow posts. In Proceedings of the 17th international

conference on mining software repositories (msr’20) (p. To Appear).

Acharya, M. P., Parnin, C., Kraft, N. A., Dagnino, A., & Qu, X. (2016). Code drones. In Proceed-

ings of the 38th international conference on software engineering companion (p. 785788).

New York, NY, USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/2889160.2889211 doi: 10.1145/2889160.2889211

Agus Santoso, H., Anisa Sri Winarsih, N., Mulyanto, E., Wilujeng saraswati, G., Enggar Sukmana,

S., Rustad, S., . . . Firdausillah, F. (2018). Dinus intelligent assistance (dina) chatbot for

university admission services. In 2018 international seminar on application for technology

of information and communication (p. 417-423).

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., & Schneider, K. A. (2016). Mining du-

plicate questions in stack overflow. In Proceedings of the 13th international conference on

mining software repositories (p. 402412). New York, NY, USA: Association for Computing

Machinery. Retrieved from https://doi.org/10.1145/2901739.2901770 doi:

10.1145/2901739.2901770

Ahmed, S., & Bagherzadeh, M. (2018). What do concurrency developers ask about? a large-scale

study using stack overflow. In Proceedings of the 12th acm/ieee international symposium on

empirical software engineering and measurement (pp. 30:1–30:10). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/3239235.3239524 doi:

10.1145/3239235.3239524

Ahmed, T. M., Bezemer, C.-P., Chen, T.-H., Hassan, A. E., & Shang, W. (2016). Studying

152

https://doi.org/10.5281/zenodo.3382071
https://doi.org/10.5281/zenodo.3382071
https://doi.org/10.1145/2889160.2889211
https://doi.org/10.1145/2889160.2889211
https://doi.org/10.1145/2901739.2901770
http://doi.acm.org/10.1145/3239235.3239524

the effectiveness of application performance management (apm) tools for detecting perfor-

mance regressions for web applications: An experience report. In Proceedings of the 13th

international conference on mining software repositories (pp. 1–12). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/2901739.2901774 doi:

10.1145/2901739.2901774

Ali, N., Guhneuc, Y. G., & Antoniol, G. (2013, May). Trustrace: Mining software repositories

to improve the accuracy of requirement traceability links. IEEE Transactions on Software

Engineering, 39(5), 725-741. doi: 10.1109/TSE.2012.71

Amazon. (2019, Dec). Amazon lex - build conversation bots. https://aws.amazon.com/

lex/. ((Accessed on 12/12/2019))

Amin-Nejad, A., Ive, J., & Velupillai, S. (2020, May). Exploring transformer text generation for

medical dataset augmentation. In Proceedings of the 12th language resources and evaluation

conference (pp. 4699–4708). Marseille, France: European Language Resources Association.

Retrieved from https://aclanthology.org/2020.lrec-1.578

Apple. (2020). Siri - apple. https://www.apple.com/ca/siri/. ((Accessed on

01/08/2020))

Ask, J. A., Facemire, M., Hogan, A., & Conversations, H. N. B. (2016). The state of chatbots.

Forrester. com report, 20.

AWS, A. (2019). Document history for amazon lex - amazon lex. https://docs.aws.amazon

.com/lex/latest/dg/doc-history.html. ((Accessed on 12/12/2019))

Baby, C. J., Khan, F. A., & Swathi, J. N. (2017, April). Home automation using iot and a chatbot

using natural language processing. In 2017 innovations in power and advanced computing

technologies (i-pact) (p. 1-6). IEEE Press. doi: 10.1109/IPACT.2017.8245185

Bagherzadeh, M., & Khatchadourian, R. (2019). Going big: A large-scale study on what big

data developers ask. In Proceedings of the 2019 27th acm joint meeting on european soft-

ware engineering conference and symposium on the foundations of software engineering

(p. 432-442). New York, NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/3338906.3338939 doi: 10.1145/3338906.3338939

Bajaj, K., Pattabiraman, K., & Mesbah, A. (2014). Mining questions asked by web developers.

153

http://doi.acm.org/10.1145/2901739.2901774
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/
https://aclanthology.org/2020.lrec-1.578
https://www.apple.com/ca/siri/
https://docs.aws.amazon.com/lex/latest/dg/doc-history.html
https://docs.aws.amazon.com/lex/latest/dg/doc-history.html
https://doi.org/10.1145/3338906.3338939

In Proceedings of the 11th working conference on mining software repositories (pp. 112–

121). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2597073.2597083 doi: 10.1145/2597073.2597083

Banerjee, S., & Cukic, B. (2015). On the cost of mining very large open source repositories. In

Proceedings of the first international workshop on big data software engineering (pp. 37–43).

Piscataway, NJ, USA: IEEE Press. Retrieved from http://dl.acm.org/citation

.cfm?id=2819289.2819301

Bankier, J. G., & Gleason, K. (2014). Institutional repository software comparison. Unesco.

Barash, G., Farchi, E., Jayaraman, I., Raz, O., Tzoref-Brill, R., & Zalmanovici, M. (2019). Bridging

the gap between ml solutions and their business requirements using feature interactions. In

Proceedings of the 2019 27th acm joint meeting on european software engineering confer-

ence and symposium on the foundations of software engineering (p. 10481058). New York,

NY, USA: Association for Computing Machinery. Retrieved from https://doi.org/

10.1145/3338906.3340442 doi: 10.1145/3338906.3340442

Barua, A., Thomas, S. W., & Hassan, A. E. (2014, Jun 01). What are developers talking about?

an analysis of topics and trends in stack overflow. Empirical Software Engineering, 19(3),

619–654.

Basu, A., & Banerjee, K. (2021, jun). Designing a bot for efficient distribution of service re-

quests. In 2021 ieee/acm third international workshop on bots in software engineering (botse)

(p. 16-20). Los Alamitos, CA, USA: IEEE Computer Society. Retrieved from https://

doi.ieeecomputersociety.org/10.1109/BotSE52550.2021.00011 doi:

10.1109/BotSE52550.2021.00011

Begel, A., Khoo, Y. P., & Zimmermann, T. (2010, May). Codebook: discovering and exploiting

relationships in software repositories. In 2010 acm/ieee 32nd international conference on

software engineering (Vol. 1, p. 125-134). doi: 10.1145/1806799.1806821

Begel, A., & Zimmermann, T. (2014a). Analyze this! 145 questions for data scientists in software

engineering. In Proceedings of the 36th international conference on software engineering (pp.

12–23). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2568225.2568233 doi: 10.1145/2568225.2568233

154

http://doi.acm.org/10.1145/2597073.2597083
http://doi.acm.org/10.1145/2597073.2597083
http://dl.acm.org/citation.cfm?id=2819289.2819301
http://dl.acm.org/citation.cfm?id=2819289.2819301
https://doi.org/10.1145/3338906.3340442
https://doi.org/10.1145/3338906.3340442
https://doi.ieeecomputersociety.org/10.1109/BotSE52550.2021.00011
https://doi.ieeecomputersociety.org/10.1109/BotSE52550.2021.00011
http://doi.acm.org/10.1145/2568225.2568233
http://doi.acm.org/10.1145/2568225.2568233

Begel, A., & Zimmermann, T. (2014b). Appendix to analyze this! 145 questions for data

scientists in software engineering - microsoft research. https://www.microsoft.com/en-

us/research/publication/appendix-to-analyze-this-145-questions-for-data-scientists-in-

software-engineering. ((Accessed on 12/20/2018))

Beschastnikh, I., Lungu, M. F., & Zhuang, Y. (2017). Accelerating software engineering re-

search adoption with analysis bots. In Proceedings of the 39th international conference on

software engineering: New ideas and emerging results track (p. 3538). IEEE Press. Re-

trieved from https://doi.org/10.1109/ICSE-NIER.2017.17 doi: 10.1109/

ICSE-NIER.2017.17

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003, March). Latent dirichlet allocation. The Journal

of Machine Learning Research, 3, 993–1022. Retrieved from http://dl.acm.org/

citation.cfm?id=944919.944937

Boiteux, M. (2018). Messenger at f8 2018 - messenger developer blog. https://blog

.messengerdevelopers.com/messenger-at-f8-2018-44010dc9d2ea.

((Accessed on 12/21/2019))

BotSE. (2019). 1st international workshop on bots in software engineering. http://botse

.org/. ((Accessed on 11/19/2019))

Bradley, N. C., Fritz, T., & Holmes, R. (2018). Context-aware conversational developer assistants.

In Proceedings of the 40th international conference on software engineering (p. 9931003).

New York, NY, USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/3180155.3180238 doi: 10.1145/3180155.3180238

Braun, D., Hernandez Mendez, A., Matthes, F., & Langen, M. (2017, August). Evaluat-

ing natural language understanding services for conversational question answering systems.

In Proceedings of the 18th annual SIGdial meeting on discourse and dialogue (pp. 174–

185). Saarbrücken, Germany: Association for Computational Linguistics. Retrieved from

https://aclanthology.org/W17-5522 doi: 10.18653/v1/W17-5522

Braun, D., Hernandez-Mendez, A., Matthes, F., & Langen, M. (2017, August). Evaluating natural

155

https://doi.org/10.1109/ICSE-NIER.2017.17
http://dl.acm.org/citation.cfm?id=944919.944937
http://dl.acm.org/citation.cfm?id=944919.944937
https://blog.messengerdevelopers.com/messenger-at-f8-2018-44010dc9d2ea
https://blog.messengerdevelopers.com/messenger-at-f8-2018-44010dc9d2ea
http://botse.org/
http://botse.org/
https://doi.org/10.1145/3180155.3180238
https://doi.org/10.1145/3180155.3180238
https://aclanthology.org/W17-5522

language understanding services for conversational question answering systems. In Proceed-

ings of the 18th annual sigdial meeting on discourse and dialogue (pp. 174–185). Saar-

brcken, Germany: Association for Computational Linguistics. Retrieved from http://

www.aclweb.org/anthology/W17-3622

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in

psychology, 3(2), 77–101.

Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., . . . Anderljung, M. (2020).

Toward trustworthy ai development: Mechanisms for supporting verifiable claims.

Cameron, G., Cameron, D., Megaw, G., Bond, R., Mulvenna, M., O’Neill, S., . . . McTear, M.

(2018). Best practices for designing chatbots in mental healthcare: A case study on ihelpr. In

Proceedings of the 32nd international bcs human computer interaction conference. Swin-

don, GBR: BCS Learning & Development Ltd. Retrieved from https://doi.org/

10.14236/ewic/HCI2018.129 doi: 10.14236/ewic/HCI2018.129

Canonico, M., & De Russis, L. (2018). A comparison and critique of natural language understanding

tools. CLOUD COMPUTING 2018, 120.

Care, P. (2020). Florence - your health assistant. https://www.florence.chat/. ((Ac-

cessed on 01/08/2020))

Carvalho, A., Luz, W., Marcilio, D., Bonifácio, R., Pinto, G., & Canedo, E. D. (2020). C-3pr: A

bot for fixing static analysis violations via pull requests.

Casagrande, M. (2019). node.js - how to store and retrieve the chat history of the dialogflow?

- stack overflow. https://stackoverflow.com/questions/49665510/how

-to-store-and-retrieve-the-chat-history-of-the-dialogflow. ((Ac-

cessed on 12/21/2019))

Cerf, V. (1973). Rfc0439: Parry encounters the doctor. USA: RFC Editor.

Chen, G., Chen, C., Xing, Z., & Xu, B. (2016, Sep.). Learning a dual-language vector space for

domain-specific cross-lingual question retrieval. In 2016 31st ieee/acm international confer-

ence on automated software engineering (ase) (p. 744-755).

Chun-Ting Lin, S.-P. M., & Huang, Y.-W. (2020). Msabot: A chatbot framework for assisting

in the development and operation of microservice-based systems. In Proceedings of the 2nd

156

http://www.aclweb.org/anthology/W17-3622
http://www.aclweb.org/anthology/W17-3622
https://doi.org/10.14236/ewic/HCI2018.129
https://doi.org/10.14236/ewic/HCI2018.129
https://www.florence.chat/
https://stackoverflow.com/questions/49665510/how-to-store-and-retrieve-the-chat-history-of-the-dialogflow
https://stackoverflow.com/questions/49665510/how-to-store-and-retrieve-the-chat-history-of-the-dialogflow

international workshop on bots in software engineering. IEEE Press.

Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological

Bulletin, 114, 494-509.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological

Measurement, 20(1), 37-46. doi: 10.1177/001316446002000104

Conference, T. C. (2019). The chatbot conference. https://www.chatbotconference

.com/. ((Accessed on 11/09/2019))

Cornu, B., Durieux, T., Seinturier, L., & Monperrus, M. (2015). Npefix: Automatic runtime

repair of null pointer exceptions in java. CoRR, abs/1512.07423. Retrieved from http://

arxiv.org/abs/1512.07423

Cruzes, D. S., & Dyba, T. (2011, Sep.). Recommended steps for thematic synthesis in software

engineering. In 2011 international symposium on empirical software engineering and mea-

surement (p. 275-284). doi: 10.1109/ESEM.2011.36

Damir. (2020, 03). Natural language processing. https://stackoverflow

.com/questions/4115526/natural-language-processing. ((Accessed on

03/09/2020))

Daniel, G., & Cabot, J. (2021). The software challenges of building smart chatbots. In 2021

ieee/acm 43rd international conference on software engineering: Companion proceedings

(icse-companion) (p. 324-325). doi: 10.1109/ICSE-Companion52605.2021.00138

Daniel, G., Cabot, J., Deruelle, L., & Derras, M. (2020). Xatkit: A multimodal low-code chatbot

development framework. IEEE Access, 8, 15332-15346.

Dependabot. (2020). Dependabot. https://dependabot.com/. ((Accessed on 08/26/2020))

DeployBot. (2020). Code deployment tools. https://deploybot.com/. ((Accessed on

08/27/2020))

Dialogflow. (2020a). Developer entities. https://dialogflow.com/docs/entities/

developer-entities. ((Accessed on 03/10/2020))

Dialogflow. (2020b). History — dialogflow documentation. https://cloud.google.com/

dialogflow/docs/history. ((Accessed on 02/07/2020))

Dialogflow. (2020c). Training phrases. https://dialogflow.com/docs/intents/

157

https://www.chatbotconference.com/
https://www.chatbotconference.com/
http://arxiv.org/abs/1512.07423
http://arxiv.org/abs/1512.07423
https://stackoverflow.com/questions/4115526/natural-language-processing
https://stackoverflow.com/questions/4115526/natural-language-processing
https://dependabot.com/
https://deploybot.com/
https://dialogflow.com/docs/entities/developer-entities
https://dialogflow.com/docs/entities/developer-entities
https://cloud.google.com/dialogflow/docs/history
https://cloud.google.com/dialogflow/docs/history
https://dialogflow.com/docs/intents/training-phrases
https://dialogflow.com/docs/intents/training-phrases

training-phrases. ((Accessed on 02/24/2020))

Dialogflow, G. (2020). Build an agent. https://cloud.google.com/dialogflow/

docs/quick/build-agent. ((Accessed on 01/16/2020))

Digkas, G., Lungu, M., Chatzigeorgiou, A., & Avgeriou, P. (2017). The evolution of technical debt

in the apache ecosystem. In Software architecture (pp. 51–66). Cham: Springer International

Publishing.

Docs, M. (2020). Good example utterances. https://docs.microsoft.com/en-us/

azure/cognitive-services/luis/luis-concept-utterance. ((Accessed

on 09/30/2021))

Dominic, J., Houser, J., Steinmacher, I., Ritter, C., & Rodeghero, P. (2020a). Conversational

bot for newcomers onboarding to open source projects. In Proceedings of the ieee/acm 42nd

international conference on software engineering workshops (p. 4650). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

3387940.3391534 doi: 10.1145/3387940.3391534

Dominic, J., Houser, J., Steinmacher, I., Ritter, C., & Rodeghero, P. (2020b). Conversational bot

for newcomers onboarding to open source projects. In Proceedings of the 2nd international

workshop on bots in software engineering. IEEE Press.

Dopierre, T., Gravier, C., & Logerais, W. (2021). Protaugment: Unsupervised diverse short-texts

paraphrasing for intent detection meta-learning. In The 59th annual meeting of the association

for computational linguistics and the 11th international joint conference on natural language

processing (Vol. abs/2105.12995).

”Dutta, S., Joyce, G., & Brewer, J. (”2018”). ”utilizing chatbots to increase the efficacy of in-

formation security practitioners”. In D. ”Nicholson (Ed.), ”advances in human factors in

cybersecurity” (pp. ”237–243”). ”Springer International Publishing”.

Efstathiou, V., Chatzilenas, C., & Spinellis, D. (2018). Word embeddings for the software engineer-

ing domain. In Proceedings of the 15th international conference on mining software reposito-

ries (p. 3841). New York, NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/3196398.3196448 doi: 10.1145/3196398.3196448

Epskamp, S. (2019a). Reproducibility and replicability in a fast-paced methodological world.

158

https://dialogflow.com/docs/intents/training-phrases
https://dialogflow.com/docs/intents/training-phrases
https://cloud.google.com/dialogflow/docs/quick/build-agent
https://cloud.google.com/dialogflow/docs/quick/build-agent
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-utterance
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-utterance
https://doi.org/10.1145/3387940.3391534
https://doi.org/10.1145/3387940.3391534
https://doi.org/10.1145/3196398.3196448

Advances in Methods and Practices in Psychological Science, 2(2), 145-155. Re-

trieved from https://doi.org/10.1177/2515245919847421 doi: 10.1177/

2515245919847421

Epskamp, S. (2019b). Reproducibility and replicability in a fast-paced methodological world.

Advances in Methods and Practices in Psychological Science, 2(2), 145-155. doi: 10.1177/

2515245919847421

Erlenhov, L., de Oliveira Neto, F. G., Scandariato, R., & Leitner, P. (2019). Current and future

bots in software development. In Proceedings of the 1st international workshop on bots

in software engineering (p. 711). IEEE Press. Retrieved from https://doi.org/10

.1109/BotSE.2019.00009 doi: 10.1109/BotSE.2019.00009

Erlenhov, L., Neto, F. G. d. O., & Leitner, P. (2020). An empirical study of bots in software

development–characteristics and challenges from a practitioner’s perspective. In Proceedings

of the 2020 27th acm sigsoft international symposium on foundations of software engineer-

ing.

Exchange, S. (2019). Stack exchange data dump. https://archive.org/details/

stackexchange. ((Sept. 2019))

Facebook. (2019). Wit.ai. https://wit.ai/. ((Accessed on 12/12/2019))

Feng, D., Shaw, E., Kim, J., & Hovy, E. (2006). An intelligent discussion-bot for answering student

queries in threaded discussions. In Proceedings of the 11th international conference on intel-

ligent user interfaces (pp. 171–177). New York, NY, USA: ACM. Retrieved from http://

doi.acm.org/10.1145/1111449.1111488 doi: 10.1145/1111449.1111488

Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation

coefficient as measures of reliability. Educational and Psychological Measurement, 33(3),

613-619. doi: 10.1177/001316447303300309

Fritz, T., & Murphy, G. C. (2010). Using information fragments to answer the questions developers

ask. In Proceedings of the 32nd acm/ieee international conference on software engineering -

volume 1 (pp. 175–184). New York, NY, USA: ACM. Retrieved from http://doi.acm

.org/10.1145/1806799.1806828 doi: 10.1145/1806799.1806828

G, C. N. (2019). botframework - how to add custom choices displayed through prompt

159

https://doi.org/10.1177/2515245919847421
https://doi.org/10.1109/BotSE.2019.00009
https://doi.org/10.1109/BotSE.2019.00009
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://wit.ai/
http://doi.acm.org/10.1145/1111449.1111488
http://doi.acm.org/10.1145/1111449.1111488
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/1806799.1806828

options inside cards & trigger actions on choice click in bot v4 using c#? -

stack overflow. (https://stackoverflow.com/questions/56280689/

how-to-add-custom-choices-displayed-through-prompt-options

-inside-cards-

trigge(Accessed on 01/16/2020))

G, T. (2016). Artificial intelligence - comparison between luis.ai vs api.ai vs

wit.ai? https://stackoverflow.com/questions/37215188/comparison

-between-luis-ai-vs-api-ai-vs-wit-ai. ((Accessed on 04/11/2020))

Gao, J., Chen, J., Zhang, S., He, X., & Lin, S. (2019, March). Recognizing biomedical named

entities by integrating domain contextual relevance measurement and active learning. In 2019

ieee 3rd information technology, networking, electronic and automation control conference

(itnec) (p. 1495-1499). doi: 10.1109/ITNEC.2019.8728991

Gensim. (2019). gensim: Topic modelling for humans. https://radimrehurek.com/

gensim/. ((Accessed on 12/03/2019))

Git client - glo boards — gitkraken. (2019). https://www.gitkraken.com/. ((Accessed on

03/04/2019))

Google. (2019a). Dialogflow. https://dialogflow.com/. ((Accessed on 01/09/2019))

Google. (2019b). query - dialogflow. https://dialogflow.com/docs/reference/

agent/query. ((Accessed on 10/10/2019))

Google. (2019c). Training — dialogflow. https://dialogflow.com/docs/training.

((Accessed on 02/16/2019))

Google. (2020a). Dialogflow. https://dialogflow.com/. ((Accessed on 01/16/2020))

Google. (2020b). Dialogflow. https://dialogflow.com/. ((Accessed on 02/05/2020))

Google. (2020). Dialogflow agent validation. https://cloud.google.com/

dialogflow/es/docs/agents-validation. ((Accessed on 09/02/2020))

Google. (2020a). Google assistant, your own personal google. https://assistant.google

.com/. ((Accessed on 01/08/2020))

Google. (2020b). Integrations-dialogflow documentation. https://cloud.google.com/

dialogflow/docs/integrations/. ((Accessed on 01/16/2020))

160

https://stackoverflow.com/questions/56280689/how-to-add-custom-choices-displayed-through-prompt-options-inside-cards-
https://stackoverflow.com/questions/56280689/how-to-add-custom-choices-displayed-through-prompt-options-inside-cards-
https://stackoverflow.com/questions/56280689/how-to-add-custom-choices-displayed-through-prompt-options-inside-cards-
trigge
https://stackoverflow.com/questions/37215188/comparison-between-luis-ai-vs-api-ai-vs-wit-ai
https://stackoverflow.com/questions/37215188/comparison-between-luis-ai-vs-api-ai-vs-wit-ai
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://www.gitkraken.com/
https://dialogflow.com/
https://dialogflow.com/docs/reference/agent/query
https://dialogflow.com/docs/reference/agent/query
https://dialogflow.com/docs/training
https://dialogflow.com/
https://dialogflow.com/
https://cloud.google.com/dialogflow/es/docs/agents-validation
https://cloud.google.com/dialogflow/es/docs/agents-validation
https://assistant.google.com/
https://assistant.google.com/
https://cloud.google.com/dialogflow/docs/integrations/
https://cloud.google.com/dialogflow/docs/integrations/

Greenkeeper. (2019). Automate your npm dependency management. https://greenkeeper

.io/. ((Accessed on 03/10/2020))

Gregori, E. (2017). Evaluation of modern tools for an omscs advisor chatbot.

Gupta, M., Sureka, A., & Padmanabhuni, S. (2014). Process mining multiple repositories for

software defect resolution from control and organizational perspective. In Proceedings of

the 11th working conference on mining software repositories (pp. 122–131). New York, NY,

USA: ACM. Retrieved from http://doi.acm.org/10.1145/2597073.2597081

doi: 10.1145/2597073.2597081

Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier Science.

Retrieved from https://books.google.ca/books?id=pQws07tdpjoC

Han, J., Shihab, E., Wan, Z., Den, S., & Xia, X. (2019). What do programmers discuss about deep

learning frameworks. Empirical Software Engineering (EMSE), To Appear.

Hassan, A. E. (2008, Sept). The road ahead for mining software repositories. In 2008 frontiers of

software maintenance (p. 48-57). doi: 10.1109/FOSM.2008.4659248

Höst, M., Regnell, B., & Wohlin, C. (2000, Nov 01). Using students as subjects—a compar-

ative study of students and professionals in lead-time impact assessment. Empirical Soft-

ware Engineering, 5(3), 201–214. Retrieved from https://doi.org/10.1023/A:

1026586415054 doi: 10.1023/A:1026586415054

Hovel, M. (2017). node.js - how to start a conversation from nodejs client to microsoft bot -

stack overflow. https://stackoverflow.com/questions/46183295/how-to

-start-a-conversation-from-nodejs-client-to-microsoft-bot. ((Ac-

cessed on 12/20/2019))

IBM. (2019a). IBM Watson. https://www.ibm.com/watson. ((Accessed on 11/20/2019))

IBM. (2019b). Watson assistant v1. https://cloud.ibm.com/apidocs/assistant

-v1. ((Accessed on 11/18/2019))

IBM. (2019c). Watson conversation. https://www.ibm.com/watson/services/

conversation/. ((Accessed on 01/09/2019))

IBM. (2020a). Creating entities. https://cloud.ibm.com/docs/services/

assistant?topic=assistant-entities#entities. ((Accessed on

161

https://greenkeeper.io/
https://greenkeeper.io/
http://doi.acm.org/10.1145/2597073.2597081
https://books.google.ca/books?id=pQws07tdpjoC
https://doi.org/10.1023/A:1026586415054
https://doi.org/10.1023/A:1026586415054
https://stackoverflow.com/questions/46183295/how-to-start-a-conversation-from-nodejs-client-to-microsoft-bot
https://stackoverflow.com/questions/46183295/how-to-start-a-conversation-from-nodejs-client-to-microsoft-bot
https://www.ibm.com/watson
https://cloud.ibm.com/apidocs/assistant-v1
https://cloud.ibm.com/apidocs/assistant-v1
https://www.ibm.com/watson/services/conversation/
https://www.ibm.com/watson/services/conversation/
https://cloud.ibm.com/docs/services/assistant?topic=assistant-entities#entities
https://cloud.ibm.com/docs/services/assistant?topic=assistant-entities#entities

03/11/2020))

IBM. (2020b). Defining intents. https://cloud.ibm.com/docs/services/

assistant?topic=assistant-intents#intents-entity-references.

((Accessed on 02/24/2020))

IBM. (2020c). Entities. https://cloud.ibm.com/docs/services/assistant-icp

?topic=assistant-private-entities#entity-described. ((Accessed on

01/09/2020))

Ilmania, A., Abdurrahman, Cahyawijaya, S., & Purwarianti, A. (2018). Aspect detection and sen-

timent classification using deep neural network for indonesian aspect-based sentiment anal-

ysis. In 2018 international conference on asian language processing (ialp) (p. 62-67). doi:

10.1109/IALP.2018.8629181

The impact of conversational bots in the customer experience -

good rebels. (2020). https://www.goodrebels.com/

theimpactofconversationalbotsinthecustomerexperience. ((Accessed

on 08/05/2020))

Jha, S. (2019, June). Chatbot application life cycle - data driven investor - medium.

https://medium.com/datadriveninvestor/chatbot-application

-life-cycle-8b2d083650a8. ((Accessed on 12/16/2019))

Jira client — atlassian marketplace. (2019). https://marketplace.atlassian.com/

apps/7070/jira-client?hosting=server&tab=overview. ((Accessed on

03/04/2019))

Jurafsky, D., & Martin, J. H. (2009). Speech and language processing (2nd edition). Upper Saddle

River, NJ, USA: Prentice-Hall, Inc.

Kabinna, S., Bezemer, C.-P., Shang, W., & Hassan, A. E. (2016). Logging library migrations:

A case study for the apache software foundation projects. In Proceedings of the 13th inter-

national conference on mining software repositories (pp. 154–164). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/2901739.2901769 doi:

10.1145/2901739.2901769

162

https://cloud.ibm.com/docs/services/assistant?topic=assistant-intents#intents-entity-references
https://cloud.ibm.com/docs/services/assistant?topic=assistant-intents#intents-entity-references
https://cloud.ibm.com/docs/services/assistant-icp?topic=assistant-private-entities#entity-described
https://cloud.ibm.com/docs/services/assistant-icp?topic=assistant-private-entities#entity-described
https://www.goodrebels.com/theimpactofconversationalbotsinthecustomerexperience
https://www.goodrebels.com/theimpactofconversationalbotsinthecustomerexperience
https://medium.com/datadriveninvestor/chatbot-application-life-cycle-8b2d083650a8
https://medium.com/datadriveninvestor/chatbot-application-life-cycle-8b2d083650a8
https://marketplace.atlassian.com/apps/7070/jira-client?hosting=server&tab=overview
https://marketplace.atlassian.com/apps/7070/jira-client?hosting=server&tab=overview
http://doi.acm.org/10.1145/2901739.2901769

Khomh, F., Adams, B., Dhaliwal, T., & Zou, Y. (2015, Apr 01). Understanding the im-

pact of rapid releases on software quality. Empirical Software Engineering, 20(2), 336–

373. Retrieved from https://doi.org/10.1007/s10664-014-9308-x doi:

10.1007/s10664-014-9308-x

Koetter, F., Blohm, M., Kochanowski, M., Goetzer, J., Graziotin, D., & Wagner, S. (2018). Motiva-

tions, classification and model trial of conversational agents for insurance companies. In 11th

international conference on agents and artificial intelligence.

Kubernetes. (2016). k8s-ci-robot (kubernetes prow robot). https://github.com/k8s-ci

-robot. ((Accessed on 03/10/2020))

Kumar, R., Bansal, C., Maddila, C., Sharma, N., Martelock, S., & Bhargava, R. (2019). Building

sankie: An ai platform for devops. In Proceedings of the 1st international workshop on

bots in software engineering (pp. 48–53). Piscataway, NJ, USA: IEEE Press. Retrieved

from https://doi.org/10.1109/BotSE.2019.00020 doi: 10.1109/BotSE.2019

.00020

Larson, S., Mahendran, A., Peper, J. J., Clarke, C., Lee, A., Hill, P., . . . Mars, J. (2019, Novem-

ber). An evaluation dataset for intent classification and out-of-scope prediction. In Pro-

ceedings of the 2019 conference on empirical methods in natural language processing and

the 9th international joint conference on natural language processing (emnlp-ijcnlp) (pp.

1311–1316). Hong Kong, China: Association for Computational Linguistics. Retrieved from

https://aclanthology.org/D19-1131 doi: 10.18653/v1/D19-1131

Lastra, D. (2016). The impact of conversational bots in the customer experience. https://www

.goodrebels.com/the-impact-of-conversational-bots-in-the. ((Ac-

cessed on 04/21/2020))

Lebeuf, C., Storey, M., & Zagalsky, A. (2018c, January). Software bots. In (Vol. 35, p. 18-23). doi:

10.1109/MS.2017.4541027

Lebeuf, C., Storey, M., & Zagalsky, A. (2018d, January/February). Software bots. IEEE Soft-

ware, 35(1), 18-23. Retrieved from doi.ieeecomputersociety.org/10.1109/

MS.2017.4541027 doi: 10.1109/MS.2017.4541027

Lebeuf, C., Storey, M.-A., & Zagalsky, A. (2018a). Software bots. IEEE Software, 35(1), 18-23.

163

https://doi.org/10.1007/s10664-014-9308-x
https://github.com/k8s-ci-robot
https://github.com/k8s-ci-robot
https://doi.org/10.1109/BotSE.2019.00020
https://aclanthology.org/D19-1131
https://www.goodrebels.com/the-impact-of-conversational-bots-in-the
https://www.goodrebels.com/the-impact-of-conversational-bots-in-the
doi.ieeecomputersociety.org/10.1109/MS.2017.4541027
doi.ieeecomputersociety.org/10.1109/MS.2017.4541027

doi: 10.1109/MS.2017.4541027

Lebeuf, C., Storey, M.-A., & Zagalsky, A. (2018b). Software bots. IEEE Software, 35(1), 18-23.

doi: 10.1109/MS.2017.4541027

Lebeuf, C., Zagalsky, A., Foucault, M., & Storey, M.-A. (2019a). Defining and classifying soft-

ware bots: A faceted taxonomy. In Proceedings of the 1st international workshop on bots in

software engineering (p. 16). IEEE Press. doi: 10.1109/BotSE.2019.00008

Lebeuf, C., Zagalsky, A., Foucault, M., & Storey, M.-A. (2019b). Defining and classifying software

bots: A faceted taxonomy. In Proceedings of the 1st international workshop on bots in soft-

ware engineering (p. 16). IEEE Press. Retrieved from https://doi.org/10.1109/

BotSE.2019.00008 doi: 10.1109/BotSE.2019.00008

Lebeuf, C. R. (2018). A taxonomy of software bots: towards a deeper understanding of software

bot characteristics (Unpublished doctoral dissertation).

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Human factors related challenges in software

engineering: An industrial perspective. In Proceedings of the eighth international workshop

on cooperative and human aspects of software engineering (pp. 43–49). Piscataway, NJ,

USA: IEEE Press.

Levenshtein, V. I. (1966, February). Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady, 10, 707.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., . . . Zettlemoyer,

L. (2020, July). BART: Denoising sequence-to-sequence pre-training for natural lan-

guage generation, translation, and comprehension. In Proceedings of the 58th annual meet-

ing of the association for computational linguistics (pp. 7871–7880). Online: Associa-

tion for Computational Linguistics. Retrieved from https://aclanthology.org/

2020.acl-main.703 doi: 10.18653/v1/2020.acl-main.703

Liu, X., Zhang, S., Wei, F., & Zhou, M. (2011). Recognizing named entities in tweets. In Pro-

ceedings of the 49th annual meeting of the association for computational linguistics: Hu-

man language technologies - volume 1 (pp. 359–367). Stroudsburg, PA, USA: Association

for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm

?id=2002472.2002519

164

https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.1109/BotSE.2019.00008
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
http://dl.acm.org/citation.cfm?id=2002472.2002519
http://dl.acm.org/citation.cfm?id=2002472.2002519

Luis (language understanding) cognitive services microsoft azure. (2019). https://www.luis

.ai/home. ((Accessed on 02/20/2019))

Malandrakis, N., Shen, M., Goyal, A., Gao, S., Sethi, A., & Metallinou, A. (2019, November). Con-

trolled text generation for data augmentation in intelligent artificial agents. In Proceedings

of the 3rd workshop on neural generation and translation (pp. 90–98). Hong Kong: Asso-

ciation for Computational Linguistics. Retrieved from https://aclanthology.org/

D19-5609 doi: 10.18653/v1/D19-5609

Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., & Hartmann, B. (2011). Design lessons

from the fastest QA site in the west. In Proceedings of the sigchi conference on human

factors in computing systems (pp. 2857–2866). New York, NY, USA: ACM. doi: 10.1145/

1978942.1979366

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The

Stanford CoreNLP natural language processing toolkit. In Association for computational

linguistics (acl) system demonstrations (pp. 55–60). Retrieved from http://www.aclweb

.org/anthology/P/P14/P14-5010

Marbot. (2019). marbot - incident management for aws. https://marbot.io/. ((Accessed

on 12/18/2019))

Marbot. (2020). Chatbot for aws monitoring. https://marbot.io/. ((Accessed on

08/20/2020))

Marivate, V., & Sefara, T. (2020). Improving short text classification through global augmentation

methods. In A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. Weippl (Eds.), Machine learning

and knowledge extraction (pp. 385–399). Cham: Springer International Publishing.

Martin, L., Fan, A., de la Clergerie, É., Bordes, A., & Sagot, B. (2021). Muss: Multilingual unsu-

pervised sentence simplification by mining paraphrases. arXiv preprint arXiv:2005.00352.

Martinez, M., & Monperrus, M. (2016). Astor: A program repair library for java (demo). In Pro-

ceedings of the 25th international symposium on software testing and analysis (p. 441444).

New York, NY, USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/2931037.2948705 doi: 10.1145/2931037.2948705

Mastropaolo, A., Scalabrino, S., Cooper, N., Nader Palacio, D., Poshyvanyk, D., Oliveto, R., &

165

https://www.luis.ai/home
https://www.luis.ai/home
https://aclanthology.org/D19-5609
https://aclanthology.org/D19-5609
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://marbot.io/
https://marbot.io/
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/2931037.2948705

Bavota, G. (2021). Studying the usage of text-to-text transfer transformer to support code-

related tasks. In 2021 ieee/acm 43rd international conference on software engineering (icse)

(p. 336-347). doi: 10.1109/ICSE43902.2021.00041

Matthies, C., Dobrigkeit, F., & Hesse, G. (2019). An additional set of (automated) eyes: Chatbots

for agile retrospectives. In Proceedings of the 1st international workshop on bots in soft-

ware engineering (p. 3437). IEEE Press. Retrieved from https://doi.org/10.1109/

BotSE.2019.00017 doi: 10.1109/BotSE.2019.00017

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit. http://mallet

.cs.umass.edu/. ((Accessed on 12/03/2019))

McHugh, M. (2012, 10). Interrater reliability: The kappa statistic. Biochemia medica, 22, 276-82.

doi: 10.11613/BM.2012.031

Microsoft. (2019a). Good example utterances - language understanding - azure cog-

nitive services. https://docs.microsoft.com/en-us/azure/cognitive

-services/luis/luis-concept-utterance. ((Accessed on 11/19/2019))

Microsoft. (2019b). Luis: Language understanding intelligent service. https://www.luis

.ai/home. ((Accessed on 01/09/2019))

Microsoft. (2019c). Prediction scores - language understanding - azure cognitive services.

https://docs.microsoft.com/en-us/azure/cognitive-services/

luis/luis-concept-prediction-score. ((Accessed on 11/10/2019))

Microsoft. (2020a). Entity types - language understanding - azure cognitive services.

https://docs.microsoft.com/en-us/azure/cognitive-services/

luis/luis-concept-entity-types. ((Accessed on 03/10/2020))

Microsoft. (2020b). Microsoft bot framework. https://dev.botframework.com/. ((Ac-

cessed on 01/16/2020))

Microsoft. (2020c). Quickstart: Create a new app in the luis portal - azure cogni-

tive services — microsoft docs. https://docs.microsoft.com/en-us/azure/

cognitive-services/luis/get-started-portal-build-app. ((Accessed

on 01/16/2020))

Microsoft. (2021a, 05). Language understanding - bot service. https://docs

166

https://doi.org/10.1109/BotSE.2019.00017
https://doi.org/10.1109/BotSE.2019.00017
http://mallet.cs.umass.edu/
http://mallet.cs.umass.edu/
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-utterance
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-utterance
https://www.luis.ai/home
https://www.luis.ai/home
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-prediction-score
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-prediction-score
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-entity-types
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-entity-types
https://dev.botframework.com/
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/get-started-portal-build-app
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/get-started-portal-build-app
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0#best-practices-for-language-understanding
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0#best-practices-for-language-understanding

.microsoft.com/en-us/azure/bot-service/bot-builder-concept

-luis?view=azure-bot-service-4.0#best-practices-for-language

-understanding. ((Accessed on 07/09/2021))

Microsoft. (2021b, 09). Luis (language understanding) - cognitive services. https://www

.luis.ai/. ((Accessed on 07/09/2021))

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations

of words and phrases and their compositionality. In Proceedings of the 26th international

conference on neural information processing systems - volume 2 (pp. 3111–3119). USA:

Curran Associates Inc. Retrieved from http://dl.acm.org/citation.cfm?id=

2999792.2999959

Milenkovic, M. (2019, Oct.). The future is now - 37 fascinating chatbot statistics. https://

www.smallbizgenius.net/by-the-numbers/chatbot-statistics/. ((Ac-

cessed on 12/18/2019))

Miller, G. A. (1995, November). Wordnet: A lexical database for english. Commun. ACM, 38(11),

3941. Retrieved from https://doi.org/10.1145/219717.219748 doi: 10.1145/

219717.219748

Mohit, B. (2014). Named entity recognition. In I. Zitouni (Ed.), Natural language processing of

semitic languages. Springer, USA.

Monperrus, M. (2019). Explainable software bot contributions: Case study of automated bug fixes.

In Proceedings of the 1st international workshop on bots in software engineering (p. 1215).

IEEE Press. Retrieved from https://doi.org/10.1109/BotSE.2019.00010 doi:

10.1109/BotSE.2019.00010

Mordinyi, R., & Biffl, S. (2017, Sept). Exploring traceability links via issues for detailed require-

ments coverage reports. In 2017 ieee 25th international requirements engineering conference

workshops (rew) (p. 359-366). doi: 10.1109/REW.2017.69

Munir, H., Wnuk, K., & Runeson, P. (2016, Apr 01). Open innovation in software engineer-

ing: a systematic mapping study. Empirical Software Engineering, 21(2), 684–723. Re-

trieved from https://doi.org/10.1007/s10664-015-9380-x doi: 10.1007/

s10664-015-9380-x

167

https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0#best-practices-for-language-understanding
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0#best-practices-for-language-understanding
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0#best-practices-for-language-understanding
https://docs.microsoft.com/en-us/azure/bot-service/bot-builder-concept-luis?view=azure-bot-service-4.0#best-practices-for-language-understanding
https://www.luis.ai/
https://www.luis.ai/
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics/
https://www.smallbizgenius.net/by-the-numbers/chatbot-statistics/
https://doi.org/10.1145/219717.219748
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1007/s10664-015-9380-x

Munoz, S., Araque, O., Llamas, A. F., & Iglesias, C. A. (2018, Aug). A cognitive agent for mining

bugs reports, feature suggestions and sentiment in a mobile application store. In 2018 4th

international conference on big data innovations and applications (innovate-data) (p. 17-24).

doi: 10.1109/Innovate-Data.2018.00010

Murgia, A., Janssens, D., Demeyer, S., & Vasilescu, B. (2016a). Among the machines: Human-bot

interaction on social q&a websites. In Proceedings of the 2016 chi conference extended

abstracts on human factors in computing systems (pp. 1272–1279). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/2851581.2892311 doi:

10.1145/2851581.2892311

Murgia, A., Janssens, D., Demeyer, S., & Vasilescu, B. (2016b). Among the machines: Human-

bot interaction on social q&a websites. In Proceedings of the 2016 chi conference extended

abstracts on human factors in computing systems (pp. 1272–1279). New York, NY, USA:

ACM. doi: 10.1145/2851581.2892311

Nadi, S., Krüger, S., Mezini, M., & Bodden, E. (2016). Jumping through hoops: Why do

java developers struggle with cryptography apis? In Proceedings of the 38th international

conference on software engineering (pp. 935–946). New York, NY, USA: ACM. Re-

trieved from http://doi.acm.org/10.1145/2884781.2884790 doi: 10.1145/

2884781.2884790

Ni, L., Lu, C., Liu, N., & Liu, J. (2017). Mandy: Towards a smart primary care chatbot application.

In Knowledge and systems sciences (pp. 38–52). Singapore: Springer Singapore.

Nick. (2018). NLP - build chatbot for education purporse. https://stackoverflow.com/

questions/52206324/build-chatbot-for-education-purporse. ((Ac-

cessed on 11/25/2019))

(NLTK), N. L. T. (2019a). Natural language toolkit - nltk 3.4.5 documentation. https://

www.nltk.org/. ((Accessed on 12/12/2019))

(NLTK), N. L. T. (2019b). Nltk’s list of english stopwords. https://gist.github.com/

sebleier/554280. ((Accessed on 12/23/2019))

Overflow, S. (2017). python - dataset to train mitie ner model - stack over-

flow. https://stackoverflow.com/questions/46602495/dataset-to

168

http://doi.acm.org/10.1145/2851581.2892311
http://doi.acm.org/10.1145/2884781.2884790
https://stackoverflow.com/questions/52206324/build-chatbot-for-education-purporse
https://stackoverflow.com/questions/52206324/build-chatbot-for-education-purporse
https://www.nltk.org/
https://www.nltk.org/
https://gist.github.com/sebleier/554280
https://gist.github.com/sebleier/554280
https://stackoverflow.com/questions/46602495/dataset-to-train-mitie-ner-model
https://stackoverflow.com/questions/46602495/dataset-to-train-mitie-ner-model

-train-mitie-ner-model. ((Accessed on 01/13/2020))

Overflow, S. (2019a). nlp - is there a dataset that provides shopping conversations?

- stack overflow. https://stackoverflow.com/questions/55324833/is

-there-a-dataset-that-provides-shopping-conversations. ((Accessed

on 01/13/2020))

Overflow, S. (2019b). Stack overflow developer survey 2019. https://insights

.stackoverflow.com/survey/2019. ((Accessed on 01/09/2020))

Paikari, E., Choi, J., Kim, S., Baek, S., Kim, M., Lee, S., . . . et al. (2019). A chatbot for conflict

detection and resolution. In Proceedings of the 1st international workshop on bots in software

engineering (p. 2933). IEEE Press. doi: 10.1109/BotSE.2019.00016

Paikari, E., & van der Hoek, A. (2018). A framework for understanding chatbots and their future.

In 2018 ieee/acm 11th international workshop on cooperative and human aspects of software

engineering (chase) (p. 13-16).

Phaithoon, S., Wongnil, S., Pussawong, P., Choetkiertikul, M., Ragkhitwetsagul, C., Sunetnanta,

T., . . . Matsumoto, K. (2021). Fixme: A github bot for detecting and monitoring on-hold

self-admitted technical debt. In Proceedings of the 36th ieee/acm international conference on

automated software engineering (ase’21).

Qasse, I. A., Mishra, S., & Hamdaqa, M. (2021). icontractbot: A chatbot for smart contracts’

specification and code generation. In 2021 ieee/acm third international workshop on bots in

software engineering (botse).

Rasa. (2019a). Confidence and fallback intents. https://rasa.com/docs/rasa/api/

http-api/. ((Accessed on 11/18/2019))

Rasa. (2019b). Duckling. https://duckling.wit.ai/. ((Accessed on 12/07/2019))

Rasa. (2019c). multiple entity recognition issue #427. https://github.com/RasaHQ/

rasa nlu/issues/427. ((Accessed on 11/19/2019))

Rasa. (2019d). rasa/crf entity extractor.py at master rasahq/rasa. https://

github.com/RasaHQ/rasa/blob/master/rasa/nlu/extractors/

crf entity extractor.py. ((Accessed on 11/25/2019))

169

https://stackoverflow.com/questions/46602495/dataset-to-train-mitie-ner-model
https://stackoverflow.com/questions/46602495/dataset-to-train-mitie-ner-model
https://stackoverflow.com/questions/55324833/is-there-a-dataset-that-provides-shopping-conversations
https://stackoverflow.com/questions/55324833/is-there-a-dataset-that-provides-shopping-conversations
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://rasa.com/docs/rasa/api/http-api/
https://rasa.com/docs/rasa/api/http-api/
https://duckling.wit.ai/
https://github.com/RasaHQ/rasa_nlu/issues/427
https://github.com/RasaHQ/rasa_nlu/issues/427
https://github.com/RasaHQ/rasa/blob/master/rasa/nlu/extractors/crf_entity_extractor.py
https://github.com/RasaHQ/rasa/blob/master/rasa/nlu/extractors/crf_entity_extractor.py
https://github.com/RasaHQ/rasa/blob/master/rasa/nlu/extractors/crf_entity_extractor.py

Rasa. (2020a). Frequently asked questions. https://rasa.com/docs/nlu/faq/. ((Ac-

cessed on 02/18/2020))

Rasa. (2020b). Rasa: Open source conversational ai. https://rasa.com/. ((Accessed on

02/20/2020))

Rasa. (2020c). Training data format. https://rasa.com/docs/nlu/0.13.8/

dataformat/. ((Accessed on 03/10/2020))

Rasa. (2021, 06). Introduction to rasa x. https://rasa.com/docs/rasa-x/. ((Accessed

on 07/09/2021))

Rasa. (August, 2021). Open source conversational ai — rasa. https://rasa.com/. ((Accessed

on 08/22/2021))

Ratan. (2017). Rasa nlu parse request giving wrong intent result - stack overflow.

https://stackoverflow.com/questions/46466222/rasa-nlu-parse

-request-giving-wrong-intent-result. ((Accessed on 12/20/2019))

Ratinov, L., & Roth, D. (2009). Design challenges and misconceptions in named entity recognition.

In Proceedings of the thirteenth conference on computational natural language learning (pp.

147–155). Stroudsburg, PA, USA: Association for Computational Linguistics. Retrieved

from http://dl.acm.org/citation.cfm?id=1596374.1596399

Rizos, G., Hemker, K., & Schuller, B. (2019). Augment to prevent: Short-text data augmentation

in deep learning for hate-speech classification. In Proceedings of the 28th acm international

conference on information and knowledge management (p. 9911000). New York, NY, USA:

Association for Computing Machinery. Retrieved from https://doi.org/10.1145/

3357384.3358040 doi: 10.1145/3357384.3358040

Robillard, M. P., Marcus, A., Treude, C., Bavota, G., Chaparro, O., Ernst, N., . . . Wong, E. (2017,

Sept). On-demand developer documentation. In 2017 ieee international conference on soft-

ware maintenance and evolution (icsme) (p. 479-483). doi: 10.1109/ICSME.2017.17

Röder, M., Both, A., & Hinneburg, A. (2015). Exploring the space of topic coherence measures.

In Proceedings of the eighth acm international conference on web search and data mining

(pp. 399–408). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/2684822.2685324 doi: 10.1145/2684822.2685324

170

https://rasa.com/docs/nlu/faq/
https://rasa.com/
https://rasa.com/docs/nlu/0.13.8/dataformat/
https://rasa.com/docs/nlu/0.13.8/dataformat/
https://rasa.com/docs/rasa-x/
https://rasa.com/
https://stackoverflow.com/questions/46466222/rasa-nlu-parse-request-giving-wrong-intent-result
https://stackoverflow.com/questions/46466222/rasa-nlu-parse-request-giving-wrong-intent-result
http://dl.acm.org/citation.cfm?id=1596374.1596399
https://doi.org/10.1145/3357384.3358040
https://doi.org/10.1145/3357384.3358040
http://doi.acm.org/10.1145/2684822.2685324
http://doi.acm.org/10.1145/2684822.2685324

Romano, J., Kromrey, J. D., Coraggio, J., & Skowronek, J. (2006). Appropriate statistics for ordinal

level data: Should we really be using t-test and cohen’sd for evaluating group differences

on the nsse and other surveys. In annual meeting of the florida association of institutional

research (pp. 1–33).

Romero, R., Parra, E., & Haiduc, S. (2020a). Experiences building an answer bot for gitter. In

Proceedings of the 2nd international workshop on bots in software engineering. IEEE Press.

Romero, R., Parra, E., & Haiduc, S. (2020b). Experiences building an answer bot for gitter. In Pro-

ceedings of the ieee/acm 42nd international conference on software engineering workshops

(p. 6670). New York, NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/3387940.3391505 doi: 10.1145/3387940.3391505

Rosen, C., & Shihab, E. (2016, June). What are mobile developers asking about? a large scale

study using stack overflow. Empirical Software Engineering, 21(3), 1192–1223. Retrieved

from http://dx.doi.org/10.1007/s10664-015-9379-3 doi: 10.1007/s10664

-015-9379-3

Rychalska, B., Glabska, H., & Wroblewska, A. (2018a, Oct). Multi-intent hierarchical nat-

ural language understanding for chatbots. In 2018 fifth international conference on so-

cial networks analysis, management and security (snams) (p. 256-259). doi: 10.1109/

SNAMS.2018.8554770

Rychalska, B., Glabska, H., & Wroblewska, A. (2018b, Oct). Multi-intent hierarchical nat-

ural language understanding for chatbots. In 2018 fifth international conference on so-

cial networks analysis, management and security (snams) (p. 256-259). doi: 10.1109/

SNAMS.2018.8554770

Salman, I., Misirli, A. T., & Juristo, N. (2015, May). Are students representatives of professionals

in software engineering experiments? In 2015 ieee/acm 37th ieee international conference

on software engineering (Vol. 1, p. 666-676). doi: 10.1109/ICSE.2015.82

Sankar, G. R., Greyling, J., Vogts, D., & du Plessis, M. C. (2008). Models towards a hybrid conver-

sational agent for contact centres. In Proceedings of the 2008 annual research conference of

the south african institute of computer scientists and information technologists on it research

in developing countries: Riding the wave of technology (pp. 200–209). New York, NY, USA:

171

https://doi.org/10.1145/3387940.3391505
http://dx.doi.org/10.1007/s10664-015-9379-3

ACM. Retrieved from http://doi.acm.org/10.1145/1456659.1456683 doi:

10.1145/1456659.1456683

Sawant, A. A., & Bacchelli, A. (2017, Jun 01). fine-grape: fine-grained api usage extractor – an

approach and dataset to investigate api usage. Empirical Software Engineering, 22(3), 1348–

1371. Retrieved from https://doi.org/10.1007/s10664-016-9444-6 doi: 10

.1007/s10664-016-9444-6

Şerban, D., Golsteijn, B., Holdorp, R., & Serebrenik, A. (2021, June 4). Saw-bot: Proposing

fixes for static analysis warnings with github suggestions. In Proceedings - 2021 ieee/acm

3rd international workshop on bots in software engineering, botse 2021 (pp. 26–30). United

States: IEEE Computer Society. doi: DOI10.1109/BotSE52550.2021.00013

Sharma, V. S., Mehra, R., & Kaulgud, V. (2017). What do developers want?: An advisor ap-

proach for developer priorities. In Proceedings of the 10th international workshop on co-

operative and human aspects of software engineering (pp. 78–81). Piscataway, NJ, USA:

IEEE Press. Retrieved from https://doi.org/10.1109/CHASE.2017.14 doi:

10.1109/CHASE.2017.14

Shihab, A. A. D. C. K. B. R. A. E. (2020). Dataset. https://zenodo.org/record/

3610714. ((Accessed on 01/16/2020))

Shihab, E., Jiang, Z. M., Adams, B., Hassan, A. E., & Bowerman, R. (2011). Prioritizing the

creation of unit tests in legacy software systems. Software: Practice and Experience, 41(10),

1027-1048. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10

.1002/spe.1053 doi: https://doi.org/10.1002/spe.1053

Shridhar, K., Dash, A., Sahu, A., Pihlgren, G. G., Alonso, P., Pondenkandath, V., . . . Liwicki,

M. (2019, Jul). Subword semantic hashing for intent classification on small datasets. 2019

International Joint Conference on Neural Networks (IJCNN). Retrieved from http://dx

.doi.org/10.1109/IJCNN.2019.8852420 doi: 10.1109/ijcnn.2019.8852420

Shridhar, K., Jain, H., Agarwal, A., & Kleyko, D. (2020, November). End to end binarized neu-

ral networks for text classification. In Proceedings of sustainlp: Workshop on simple and

efficient natural language processing (pp. 29–34). Online: Association for Computational

Linguistics. Retrieved from https://aclanthology.org/2020.sustainlp-1.4

172

http://doi.acm.org/10.1145/1456659.1456683
https://doi.org/10.1007/s10664-016-9444-6
https://doi.org/10.1109/CHASE.2017.14
https://zenodo.org/record/3610714
https://zenodo.org/record/3610714
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1053
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.1053
http://dx.doi.org/10.1109/IJCNN.2019.8852420
http://dx.doi.org/10.1109/IJCNN.2019.8852420
https://aclanthology.org/2020.sustainlp-1.4

doi: 10.18653/v1/2020.sustainlp-1.4

Shuvro, M. (2019). python - how to resume or restart paused conversation in rasa - stack over-

flow. https://stackoverflow.com/questions/57365685/how-to-resume

-or-restart-paused-conversation-in-rasa. ((Accessed on 12/20/2019))

Siddiqui, T., & Ahmad, A. (2018). Data mining tools and techniques for mining software reposito-

ries: A systematic review. In V. B. Aggarwal, V. Bhatnagar, & D. K. Mishra (Eds.), Big data

analytics (pp. 717–726). Singapore: Springer Singapore.

Sillito, J., Murphy, G. C., & Volder, K. D. (2008, July). Asking and answering questions during a

programming change task. IEEE Transactions on Software Engineering, 34(4), 434-451. doi:

10.1109/TSE.2008.26

Śliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes? In Proceedings

of the 2005 international workshop on mining software repositories (pp. 1–5). New York, NY,

USA: ACM. Retrieved from http://doi.acm.org/10.1145/1082983.1083147

doi: 10.1145/1082983.1083147

Snyk. (2019). Snyk bot. https://github.com/snyk-bot?tab=repositories. ((Ac-

cessed on 03/10/2020))

Spacy. (2021, July). Industrial-strength natural language processing in python. https://spacy

.io/. ((Accessed on 07/03/2021))

Spearman. (2008). Spearman rank correlation coefficient. In The concise encyclopedia of statistics

(pp. 502–505). New York, NY: Springer New York. Retrieved from https://doi.org/

10.1007/978-0-387-32833-1 379 doi: 10.1007/978-0-387-32833-1 379

StackOverflow. (2019). PHP mysqli query returns empty error message. https://

stackoverflow.com/questions/25941078/php-mysqli-query-returns

-empty-error-message. ((Accessed on 07/20/2020))

StackOverflow. (2020). Chatbot dialogflow returning answers with confidence score below ml

classification threshold. https://stackoverflow.com/questions/54218274/

dialogflow-returning-answers-with-confidence-score-below-ml

-classification-thres. ((Accessed on 08/19/2020))

StackOverflow. (2020). Dialogflow matches irrelevant phrases to existing intents.

173

https://stackoverflow.com/questions/57365685/how-to-resume-or-restart-paused-conversation-in-rasa
https://stackoverflow.com/questions/57365685/how-to-resume-or-restart-paused-conversation-in-rasa
http://doi.acm.org/10.1145/1082983.1083147
https://github.com/snyk-bot?tab=repositories
https://spacy.io/
https://spacy.io/
https://doi.org/10.1007/978-0-387-32833-1_379
https://doi.org/10.1007/978-0-387-32833-1_379
https://stackoverflow.com/questions/25941078/php-mysqli-query-returns-empty-error-message
https://stackoverflow.com/questions/25941078/php-mysqli-query-returns-empty-error-message
https://stackoverflow.com/questions/25941078/php-mysqli-query-returns-empty-error-message
https://stackoverflow.com/questions/54218274/dialogflow-returning-answers-with-confidence-score-below-ml-classification-thres
https://stackoverflow.com/questions/54218274/dialogflow-returning-answers-with-confidence-score-below-ml-classification-thres
https://stackoverflow.com/questions/54218274/dialogflow-returning-answers-with-confidence-score-below-ml-classification-thres

https://stackoverflow.com/questions/49560851/dialogflow

-matches-irrelevant-phrases-to-existing-intents. ((Accessed on

08/27/2020))

Storey, M.-A., & Zagalsky, A. (2016a). Disrupting developer productivity one bot at a time. In

Proceedings of the 2016 24th acm sigsoft international symposium on foundations of software

engineering (pp. 928–931). New York, NY, USA: ACM. Retrieved from http://doi.acm

.org/10.1145/2950290.2983989 doi: 10.1145/2950290.2983989

Storey, M.-A., & Zagalsky, A. (2016b). Disrupting developer productivity one bot at a time. In

Proceedings of the 2016 24th acm sigsoft international symposium on foundations of software

engineering (pp. 928–931). New York, NY, USA: ACM. Retrieved from http://doi.acm

.org/10.1145/2950290.2983989 doi: 10.1145/2950290.2983989

Storey, M.-A., & Zagalsky, A. (2016c). Disrupting developer productivity one bot at a time.

In Proceedings of the 2016 24th acm sigsoft international symposium on foundations of

software engineering (p. 928931). New York, NY, USA: Association for Computing Ma-

chinery. Retrieved from https://doi.org/10.1145/2950290.2983989 doi:

10.1145/2950290.2983989

Storey, M.-A., & Zagalsky, A. (2016d). Disrupting developer productivity one bot at a time.

In Proceedings of the 2016 24th acm sigsoft international symposium on foundations of

software engineering (p. 928931). New York, NY, USA: Association for Computing Ma-

chinery. Retrieved from https://doi.org/10.1145/2950290.2983989 doi:

10.1145/2950290.2983989

Sumo. (2020). 5 ecommerce chatbots (plus how to build your own in 15 minutes). https://sumo

.com/stories/ecommerce-chatbot-marketing. ((Accessed on 01/08/2020))

TechCrunch. (2017). Wit.ai is shutting down bot engine as facebook rolls nlp into

its updated messenger platform. (https://techcrunch.com/2017/07/27/

wit-ai-is-shutting-down-bot-engine-as-facebook-rolls-nlp-into

-its-updated-

messenger-platform (Accessed on 12/12/2019))

Tian, Y., Thung, F., Sharma, A., & Lo, D. (2017a). APIBot: Question answering bot for api

174

https://stackoverflow.com/questions/49560851/dialogflow-matches-irrelevant-phrases-to-existing-intents
https://stackoverflow.com/questions/49560851/dialogflow-matches-irrelevant-phrases-to-existing-intents
http://doi.acm.org/10.1145/2950290.2983989
http://doi.acm.org/10.1145/2950290.2983989
http://doi.acm.org/10.1145/2950290.2983989
http://doi.acm.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://doi.org/10.1145/2950290.2983989
https://sumo.com/stories/ecommerce-chatbot-marketing
https://sumo.com/stories/ecommerce-chatbot-marketing
https://techcrunch.com/2017/07/27/wit-ai-is-shutting-down-bot-engine-as-facebook-rolls-nlp-into-its-updated-
https://techcrunch.com/2017/07/27/wit-ai-is-shutting-down-bot-engine-as-facebook-rolls-nlp-into-its-updated-
https://techcrunch.com/2017/07/27/wit-ai-is-shutting-down-bot-engine-as-facebook-rolls-nlp-into-its-updated-
messenger-platform

documentation. In Proceedings of the 32nd ieee/acm international conference on automated

software engineering (pp. 153–158). IEEE Press.

Tian, Y., Thung, F., Sharma, A., & Lo, D. (2017b). Apibot: Question answering bot for api

documentation. In Proceedings of the 32nd ieee/acm international conference on automated

software engineering (pp. 153–158). Piscataway, NJ, USA: IEEE Press. Retrieved from

http://dl.acm.org/citation.cfm?id=3155562.3155585

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the conll-2003 shared task:

Language-independent named entity recognition. In Proceedings of the seventh conference

on natural language learning at hlt-naacl 2003 - volume 4 (pp. 142–147). Stroudsburg, PA,

USA: Association for Computational Linguistics. Retrieved from https://doi.org/

10.3115/1119176.1119195 doi: 10.3115/1119176.1119195

Tmbo. (2017). multiple entity recognition issue #427 rasahq/rasa. https://github.com/

RasaHQ/rasa/issues/427. ((Accessed on 09/30/2021))

Toxtli, C., Monroy-Hernández, A., & Cranshaw, J. (2018). Understanding chatbot-mediated task

management. In Proceedings of the 2018 chi conference on human factors in computing

systems (pp. 58:1–58:6). New York, NY, USA: ACM. Retrieved from http://doi.acm

.org/10.1145/3173574.3173632 doi: 10.1145/3173574.3173632

Treude, C., Barzilay, O., & Storey, M.-A. (2011). How do programmers ask and answer questions

on the web? (nier track). In Proceedings of the 33rd international conference on software

engineering (pp. 804–807). New York, NY, USA: ACM. Retrieved from http://doi

.acm.org/10.1145/1985793.1985907 doi: 10.1145/1985793.1985907

Urli, S., Yu, Z., Seinturier, L., & Monperrus, M. (2018a). How to design a program repair bot?:

Insights from the repairnator project. In Proceedings of the 40th international conference on

software engineering: Software engineering in practice (pp. 95–104). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/3183519.3183540 doi:

10.1145/3183519.3183540

Urli, S., Yu, Z., Seinturier, L., & Monperrus, M. (2018b). How to design a program repair bot?:

Insights from the repairnator project. In Proceedings of the 40th international conference on

software engineering: Software engineering in practice (pp. 95–104). New York, NY, USA:

175

http://dl.acm.org/citation.cfm?id=3155562.3155585
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195
https://github.com/RasaHQ/rasa/issues/427
https://github.com/RasaHQ/rasa/issues/427
http://doi.acm.org/10.1145/3173574.3173632
http://doi.acm.org/10.1145/3173574.3173632
http://doi.acm.org/10.1145/1985793.1985907
http://doi.acm.org/10.1145/1985793.1985907
http://doi.acm.org/10.1145/3183519.3183540

ACM. doi: 10.1145/3183519.3183540

Vale, L. d. N., & Maia, M. d. A. (2021). Towards a question answering assistant for software

development using a transformer-based language model. In 2021 ieee/acm third international

workshop on bots in software engineering (botse).

Valtolina, S., Barricelli, B. R., & Gaetano, S. D. (2020). Communicability of traditional interfaces vs

chatbots in healthcare and smart home domains. Behaviour & Information Technology, 39(1),

108-132. Retrieved from https://doi.org/10.1080/0144929X.2019.1637025

doi: 10.1080/0144929X.2019.1637025

van Dyk, D. A., & Meng, X.-L. (2001). The art of data augmentation. Journal of Computational and

Graphical Statistics, 10(1), 1–50. Retrieved from http://www.jstor.org/stable/

1391021

van Tonder, R., & Goues, C. L. (2019). Towards s/engineer/bot: Principles for program repair bots.

In Proceedings of the 1st international workshop on bots in software engineering (p. 4347).

IEEE Press. Retrieved from https://doi.org/10.1109/BotSE.2019.00019 doi:

10.1109/BotSE.2019.00019

Vasconcelos, M., Candello, H., Pinhanez, C., & dos Santos, T. (2017, 10). Boa: A language and

infrastructure for analyzing ultra-large-scale software repositories. In Brazilian symposium

on human factors in computing systems.

von der Mosel, J., Trautsch, A., & Herbold, S. (2021). On the validity of pre-trained transformers

for natural language processing in the software engineering domain.

Wallace, R. (1995). Artificial linguistic internet computer entity (alice). City.

Wan, Z., Xia, X., & Hassan, A. E. (2019). What is discussed about blockchain? a case study on the

use of balanced lda and the reference architecture of a domain to capture online discussions

about blockchain platforms across the stack exchange communities. IEEE Transactions on

Software Engineering, 1-1. doi: 10.1109/TSE.2019.2921343

Wei, J., & Zou, K. (2019, November). EDA: Easy data augmentation techniques for boosting

performance on text classification tasks. In Proceedings of the 2019 conference on empirical

methods in natural language processing and the 9th international joint conference on natural

language processing (emnlp-ijcnlp) (pp. 6382–6388). Hong Kong, China: Association for

176

https://doi.org/10.1080/0144929X.2019.1637025
http://www.jstor.org/stable/1391021
http://www.jstor.org/stable/1391021
https://doi.org/10.1109/BotSE.2019.00019

Computational Linguistics. Retrieved from https://aclanthology.org/D19-1670

doi: 10.18653/v1/D19-1670

Weizenbaum, J. (1966, January). Eliza-a computer program for the study of natural language

communication between man and machine. Commun. ACM, 9(1), 36-45. Retrieved from

https://doi.org/10.1145/365153.365168 doi: 10.1145/365153.365168

Wessel, M., de Souza, B. M., Steinmacher, I., Wiese, I. S., Polato, I., Chaves, A. P., & Gerosa,

M. A. (2018a, November). The power of bots: Characterizing and understanding bots in

oss projects. Proc. ACM Hum.-Comput. Interact., 2(CSCW). Retrieved from https://

doi.org/10.1145/3274451 doi: 10.1145/3274451

Wessel, M., de Souza, B. M., Steinmacher, I., Wiese, I. S., Polato, I., Chaves, A. P., & Gerosa,

M. A. (2018b, November). The power of bots: Characterizing and understanding bots in

oss projects. Proc. ACM Hum.-Comput. Interact., 2(CSCW), 182:1–182:19. Retrieved from

http://doi.acm.org/10.1145/3274451 doi: 10.1145/3274451

Wessel, M., & Steinmacher, I. (2020). The inconvenient side of software bots on pull requests. In

Proceedings of the 2nd international workshop on bots in software engineering. IEEE Press.

West, P., Lu, X., Holtzman, A., Bhagavatula, C., Hwang, J. D., & Choi, Y. (2021, August).

Reflective decoding: Beyond unidirectional generation with off-the-shelf language mod-

els. In Proceedings of the 59th annual meeting of the association for computational lin-

guistics and the 11th international joint conference on natural language processing (vol-

ume 1: Long papers) (pp. 1435–1450). Online: Association for Computational Linguis-

tics. Retrieved from https://aclanthology.org/2021.acl-long.114 doi:

10.18653/v1/2021.acl-long.114

Woodman, L. (2018). Facebook chat bot (php webhook) sending multiple replies - stack over-

flow. https://stackoverflow.com/questions/36609549/facebook-chat

-bot-php-webhook-sending-multiple-replies. ((Accessed on 12/20/2019))

Wyrich, M., & Bogner, J. (2019). Towards an autonomous bot for automatic source code refactoring.

In Proceedings of the 1st international workshop on bots in software engineering (p. 2428).

IEEE Press. doi: 10.1109/BotSE.2019.00015

177

https://aclanthology.org/D19-1670
https://doi.org/10.1145/365153.365168
https://doi.org/10.1145/3274451
https://doi.org/10.1145/3274451
http://doi.acm.org/10.1145/3274451
https://aclanthology.org/2021.acl-long.114
https://stackoverflow.com/questions/36609549/facebook-chat-bot-php-webhook-sending-multiple-replies
https://stackoverflow.com/questions/36609549/facebook-chat-bot-php-webhook-sending-multiple-replies

Xu, A., Liu, Z., Guo, Y., Sinha, V., & Akkiraju, R. (2017). A new chatbot for customer service on so-

cial media. In Proceedings of the 2017 chi conference on human factors in computing systems

(p. 35063510). New York, NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/3025453.3025496 doi: 10.1145/3025453.3025496

Xu, B., Xing, Z., Xia, X., & Lo, D. (2017a). AnswerBot: Automated generation of answer sum-

mary to developers technical questions. In Proceedings of the 32nd ieee/acm international

conference on automated software engineering (pp. 706–716). Piscataway, NJ, USA: IEEE

Press.

Xu, B., Xing, Z., Xia, X., & Lo, D. (2017b). Answerbot: Automated generation of answer summary

to developersź technical questions. In Proceedings of the 32nd ieee/acm international confer-

ence on automated software engineering (pp. 706–716). Piscataway, NJ, USA: IEEE Press.

Retrieved from http://dl.acm.org/citation.cfm?id=3155562.3155650

Xu, S., Semnani, S. J., Campagna, G., & Lam, M. S. (2020). Autoqa: From databases to qa

semantic parsers with only synthetic training data. In In proceedings of the 2020 conference

on empirical methods in natural language processing.

Xuan, J., Martinez, M., DeMarco, F., Clment, M., Marcote, S. L., Durieux, T., . . . Monperrus, M.

(2017, Jan). Nopol: Automatic repair of conditional statement bugs in java programs. IEEE

Transactions on Software Engineering, 43(1), 34-55. doi: 10.1109/TSE.2016.2560811

Yang, X.-L., Lo, D., Xia, X., Wan, Z.-Y., & Sun, J.-L. (2016, Sep 01). What security questions

do developers ask? a large-scale study of stack overflow posts. Journal of Computer Science

and Technology, 31(5), 910–924.

Ye, D., Xing, Z., Foo, C. Y., Ang, Z. Q., Li, J., & Kapre, N. (2016, March). Software-specific named

entity recognition in software engineering social content. In 2016 ieee 23rd international

conference on software analysis, evolution, and reengineering (saner) (Vol. 1, p. 90-101).

doi: 10.1109/SANER.2016.10

Zamanirad, S., Benatallah, B., Chai Barukh, M., Casati, F., & Rodriguez, C. (2017). Programming

bots by synthesizing natural language expressions into api invocations. In Proceedings of

the 32nd ieee/acm international conference on automated software engineering (p. 832-837).

IEEE Press.

178

https://doi.org/10.1145/3025453.3025496
http://dl.acm.org/citation.cfm?id=3155562.3155650

Zamora, J. (2017). I’m sorry, dave, i’m afraid i can’t do that: Chatbot perception and expectations.

In Proceedings of the 5th international conference on human agent interaction (pp. 253–

260). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

3125739.3125766 doi: 10.1145/3125739.3125766

Zhang, Q., Fu, J., Liu, X., & Huang, X. (2018). Adaptive co-attention network for named entity

recognition in tweets.. Retrieved from https://www.aaai.org/ocs/index.php/

AAAI/AAAI18/paper/view/16432

Zhang, Y., Baldridge, J., & He, L. (2019). PAWS: Paraphrase Adversaries from Word Scrambling.

In Proc. of naacl.

Zhou, J., Gong, H., & Bhat, S. (2020). Pie: A parallel idiomatic expression corpus for idiomatic

sentence generation and paraphrasing. In The joint conference of the 59th annual meeting of

the association for computational linguistics and the 11th international joint conference on

natural language processing (acl-ijcnlp 2021), mwe workshop, 2021.

Zhou, Z.-H. (2017, 08). A brief introduction to weakly supervised learning. National Science

Review, 5(1), 44-53. Retrieved from https://doi.org/10.1093/nsr/nwx106 doi:

10.1093/nsr/nwx106

Zhu, X., & Goldberg, A. (2009).

179

http://doi.acm.org/10.1145/3125739.3125766
http://doi.acm.org/10.1145/3125739.3125766
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16432
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16432
https://doi.org/10.1093/nsr/nwx106

	List of Figures
	List of Tables
	Introduction and Research Statement
	Introduction
	Problem Statement
	Thesis Organization
	Thesis Overview
	Thesis Contributions

	Background and Related Work
	Background
	Software Bots
	Using Chatbots to Assist Developers
	Visions for the Future Use of Chatbots
	Chapter Summary

	Understanding the challenges of chatbot development
	Introduction
	Organization of the Chapter

	Methodology
	Case Study Results
	RQ1: What topics are chatbot developers asking about?
	RQ2: What types of questions are chatbot developers asking?
	RQ3: Which topics are the most difficult to answer?

	Discussion & Implications
	Chatbot Topics Evolution
	Chatbot Compared to Other SE Fields
	Implications

	Threats to validity
	Chapter Summary

	Determining the value of SE-context chatbots
	Introduction
	Organization of the Chapter

	MSRBot Framework
	Case Study Setup
	Questions Supported by the Bot
	Study Participants
	Questionnaire Survey
	Evaluating the Bot

	Case Study Results
	RQ1: How useful are the bot's answers to users' questions?
	RQ2: How quickly can users complete their tasks using the bot?
	RQ3: How accurate are the bot's answers?

	Discussion
	Bots Evaluation
	Study Implications

	Threats to validity
	Chapter Summary

	Can we help developers to design more effective chatbots for the SE domain?
	Introduction
	Organization of the Chapter

	Background
	Definitions
	Explanatory Example

	Case Study Setup
	Evaluated NLUs
	SE Tasks and Data Corpora
	Performance Evaluation of NLUs

	Case Study Results
	Intents Classification
	NLUs Confidence scores
	Entity Extraction
	Concluding Remarks

	Discussion
	Examining the Impact of the Confidence Score Threshold on NLU Performance
	Unique Entities
	Recommendations

	Threats to validity
	Conclusion & Future Work

	Improving the SE chatbot's accuracy
	Introduction
	Organization of the Chapter

	Background
	Approach
	Case Study Setup
	Datasets
	NLU
	BART tuning
	Evaluation Settings
	Performance Evaluation

	Case Study Results
	RQ1: Can ChatMent improve the NLU's performance?
	RQ2: Does ChatMent increase the NLU's confidence in its classification?

	Discussion
	Lessons Learned
	Threats to Validity
	Conclusion & Future Work

	Summary, Contributions and Future Work
	Summary
	Future Work
	Improving User-Chatbot Interaction
	Exploring the Use of Chatbots in Other Software Engineering Tasks
	Supporting more Users' Questions
	Enhancing the Unique Entities Extraction
	Investigating the Impact of Using Chatbots on the Developers' Social Aspects
	Evaluating the Performance of Transformers for Augmenting SE Dataset

	Appendix Appendix-A
	Appendix Appendix-B
	Bibliography

