
LLM-Based Chatbots for Mining Software Repositories:
Challenges and Opportunities

Samuel Abedu
Concordia University
Montreal, Canada

samuel.abedu@mail.concordia.ca

Ahmad Abdellatif
University of Calgary

Calgary, Canada
ahmad.abdellatif@ucalgary.ca

Emad Shihab
Concordia University
Montreal, Canada

emad.shihab@concordia.ca

ABSTRACT
Software repositories have a plethora of information about soft-
ware development, encompassing details such as code contributions,
bug reports, code reviews, and project documentation. This rich
source of data can be harnessed to enhance not only software qual-
ity and development velocity but also to gain insights into team
collaboration, identify potential bottlenecks, and inform strategic
decision-making throughout the software development lifecycle.
Previous studies show that many stakeholders cannot benefit from
the project information due to the technical knowledge and exper-
tise required to extract the project data.

To lower the barrier to entry by automating the process of ex-
tracting and analyzing repository data, we explored the potential
of using a large language model (LLM) to develop a chatbot for
answering questions related to software repositories. We evaluated
the chatbot on a set of 150 software repository-related questions.
We found that the chatbot correctly answered one question about
the repository. This result prompted us to shift our focus to in-
vestigate the challenges in adopting LLMs for the out-of-the-box
development of software repository chatbots. We identified five
main challenges related to retrieving data, structuring the data,
and generating the answer to the user’s query. Among these chal-
lenges, the most frequent (83.3%) is the inaccurate retrieval of data
to answer questions. In this paper, we share our experience and
challenges in developing an LLM-based chatbot to answer software
repository-related questions within the SE community. We also
provide recommendations on mitigating these challenges. Our find-
ings will serve as a foundation to drive future research aimed at
enhancing LLMs for adoption in extracting useful information from
software repositories, fostering advancements in natural language
understanding, data retrieval, and response generation within the
context of software repository-related questions and analytics.

KEYWORDS
Software Chatbots, Large Language Model, Conversational Devel-
opment Assistant

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2024, June 18–21, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Samuel Abedu, Ahmad Abdellatif, and Emad Shihab. 2024. LLM-Based
Chatbots for Mining Software Repositories: Challenges and Opportunities.
In 28th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2024), June 18–21, 2024, Salerno, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Software repositories play a fundamental role in modern software
development, containing a plethora of diverse information vital to
the software development process. This includes source code, com-
mit histories, bug reports, and documentation. The richness of data
within these repositories offers a valuable opportunity for analysis,
allowing for the derivation of actionable insights aimed at enhanc-
ing software quality and gaining a deeper understanding of the
intricacies of software development processes [43, 19]. Researchers
have extensively explored repository data to uncover various as-
pects of software evolution [8, 34], contribute to improvements in
software quality [5, 46], establish requirement traceability [30], and
analyze patterns in developer collaboration [36].

Extracting data from software repositories requires technical
knowledge and expertise. For example, in a scenario where a stake-
holder wants to identify the commit that caused a particular bug
in a project. To achieve this, the stakeholder must first clone the
code and issue repositories. Subsequently, write a script to extract
and link data from these different sources to obtain the results.
This process poses a significant barrier for non-technical stakehold-
ers, including project managers and product owners [2]. Even if a
stakeholder possesses the necessary skills to undertake such a task,
it remains a time-consuming task. This complexity and technical
nature of data extraction from repositories can impede the involve-
ment of non-technical stakeholders in extracting valuable insights
from the software development process.

Recently, there has been a significant advancement in the uti-
lization of LLMs for various applications in software engineer-
ing[47, 13]. However, LLMs are hindered by their inability to ac-
cess real-time information for knowledge-intensive tasks. Retrieval
Augmented Generation (RAG) has been developed to make LLMs
improve on knowledge-intensive tasks and generate factual up-to-
date responses to queries [24]. RAG retrieves relevant information
from an indexed data store to generate responses to queries. The
RAG approach has been adopted by prior SE studies to improve
code generation, code summarization and automatic program re-
pair [50, 37, 28]. The success of the RAG approach on these SE
tasks motivates us to propose an LLM-based chatbot to automate
the process of extracting information from software repositories
using the RAG approach. Given that software repository data is
dynamic (i.e., updated frequently), using RAG ensures retrieving

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

EASE 2024, June 18–21, 2024, Salerno, Italy Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

Generated Response

Response GeneratorDocument
Retriever

Embedder
Document Processor

User Interaction

Chunk
Data

User Query

Document
Embeddings

Vector Store

Query
Embeddings

User Query
+

Relevant Documents

Similarity

Search

Relevant D
ocuments

Repository
URL

Figure 1: Overview of the Chatbot Components’ Interaction.

and providing the most recent updates in the repository to LLMs
to generate a response based on the most recent data. Our RAG
implementation of the chatbot has 5 main components namely, User
interface, Document Processor, Embedder, Document Retriever and
Response Generator.

We used a set of 150 repository-related questions [2] to evaluate
the effectiveness of the chatbot. We find that out of the 150 ques-
tions posed to the chatbot, only one was answered correctly. Conse-
quently, we shift our focus towards an in-depth investigation of the
challenges associated with designing an LLM-based chatbot using
RAG for extracting data from a software repository. To accomplish
this, we conducted a manual analysis of the generated response
and the output of each component to identify the challenges. This
analysis serves as a crucial step in understanding the bottlenecks
and refining the chatbot to enhance its efficacy in handling software
repository-related queries. We believe that our findings have the
potential to pave the way for future research to develop chatbots
that provide non-technical stakeholders with insights derived from
projects. The paper makes the following contributions:

• We share the challenges we encountered in developing the
LLM chatbot. These are potential areas for improvement to
make LLM more efficient in the field of SE.

• We make recommendations on possible ways to avoid or
mitigate these challenges.

• We make the implementation and dataset publicly available
to enhance the replication of our work1.

Paper Organization. The paper is structured as follows: Section
2 covers our approach; Section 3 details implementation and use
case; Section 4 discusses the challenges; Section 5 discusses findings;
Section 6 addresses validity threats; Section 7 reviews related works;
Section 8 concludes.

2 APPROACH
The initial goal of our study is to lower the barrier to entry for
extracting useful information from software repositories by propos-
ing an LLM-based chatbot to answer questions about software
projects. Figure 1 presents the main components of our approach,
namely (i) User Interface for user interaction with the chatbot, (ii)
Document Processor that collects and preprocesses repository
information, (iii) Embedder, which creates vector embeddings for
1https://zenodo.org/records/10526260

Figure 2: An example of a user conversation with the chatbot.

the processed repository information for storage in a vector store,
and vector embeddings for the user’s query for semantic similarity
search, (iv) Document Retriever that performs a semantic sim-
ilarity search to get the relevant document to answer the user’s
question, and (v) Response Generator that generates responses
from the selected documents using LLM. In this section, we describe
each component in detail.

2.1 User Interface
To facilitate the extraction of software repository data, we intro-
duce the User Interface (UI) component, which enables the user to
interact with the chatbot through natural language. Through the
UI, the user inputs the uniform resource locator (URL) of the target
software repository they want to interact with and it forwards the
URL to the Document Processor component (discussed next). Fur-
thermore, the UI enables the user to pose questions to the chatbot
and view the chatbot’s responses.

Figure 2 shows the UI component where a user queries the chat-
bot in natural language, asking about the number of commits in
the target repository. After the chatbot answers the user’s query,
the user asks the chatbot to return a commit information (message)
from a specific date. To provide the user with the information used
to generate the response, the UI includes a “view source” button that
presents the output of the Document Retriever component (e.g.,
commit hashes and messages).

2.2 Document Processor
Software repositories contain rich and diverse sets of data, which
can be analyzed to discover security vulnerabilities [59], extract
requirements [30], and drive actionable insights about the soft-
ware project [16]. After the user enters the URL through the UI
component, the Document Processor retrieves metadata related to
the repository (e.g., description, branches), commit (e.g., commit
message, modified files) and issues (e.g., issue title, body). Then,
the Document Processor component converts the content of all
retrieved information into JSON format documents.

LLMs have strict token limits, meaning that they can only process
a fixed number of tokens in an input or output sequence. To over-
come this constraint, the Document Processor component splits the
documents into chunks with a few tokens. Specifically, the Docu-
ment Processor splits the retrieved metadata (e.g., commit message)

LLM-Based Chatbots for Mining Software Repositories: Challenges and Opportunities EASE 2024, June 18–21, 2024, Salerno, Italy

into smaller documents, called chunks, to avoid exceeding the to-
ken limit when working with LLMs. Previous work shows that a
fragment size of 350 tokens demonstrated good performance when
utilizing LLMs [56, 39]. Therefore, we configured the Document
Processor component to split the documents into chunks of 350
token size. In addition, we included an overlap of 20 tokens in each
document chunk to maintain continuity of context. In other words,
the overlap ensures that the context at the end of one chunk is
carried over to the beginning of the next, enhancing the model’s
ability to understand and process information that spans across
multiple chunks. Next, the Document Processor indexes all the doc-
uments to track them after embedding them through their index.
After the Document Processor preprocesses and indexes all the col-
lected information, it forwards the chunks to the next component
(Embedder) to create vector embeddings for each chunk.

2.3 Embedder
Vector embeddings and cosine similarity methods have been ex-
tensively used in previous SE studies to identify similar questions
to a query on QA platforms like Stack Overflow [54], similarity
between code snippets [57, 10], and match app reviews to bug
reports [15]. Embeddings are vectors within a vector space that
represent entities such as words, sentences, documents, or other
data. They capture the semantic meaning of these entities, encoding
aspects like context and relationships with other entities. In the
vector space, semantically similar vector embeddings are positioned
closely together, facilitating efficient similarity search [33, 22].

The Embedder component utilizes a transformer-based embed-
ding model to generate embeddings for all chunks. These embed-
dings are then stored in a vector store. It is crucial to highlight that
the Embedder, employing the same embedding model, generates
an embedding for the user’s query. Consequently, it streamlines
an efficient search by the Document Retriever component, seeking
similar embeddings within the repository information (chunks)
that demonstrate high similarity with the user’s query. The next
subsection details the Document Retriever component.

2.4 Document Retriever
The main goal of the Document Retriever is to search among the
document embeddings stored in the Vector store that are similar to
the user’s query embedding. Specifically, the Document Retriever
finds document embeddings in the approximate nearest neighbours
of the query embeddings and performs the semantic similarity
search using the cosine similarity [32] on the document embed-
dings within the approximate nearest neighbourhood of the query
embeddings. This is a more efficient approach compared to perform-
ing the search on the entire vector space. The Document Retriever
then returns the most relevant documents to a query (documents
whose cosine similarity score to the query is closer to 1). The cosine
similarity metric normalizes the length of vectors [32], making it
suitable for our chatbot—similarity searches between queries and
documents with varying lengths. We configured the Document Re-
triever to return the top@4 documents similar to the user’s query.
This decision ensures the most relevant information is presented
to the Response Generator and also adheres to the token limitation

Figure 3: Prompt used in this study.

of LLMs. The retrieved documents serve as context for the query
in the Response Generator.

2.5 Response Generator
The goal of the Response Generator component is to generate
a response to the user’s query based on documents retrieved by
the Document Retriever. To achieve this, the Response Generator
prompts the LLM to generate the response. To construct the prompt,
we adhere to OpenAI’s guidelines and best practices for prompt
engineering2 (e.g., being specific and detailed as possible about
the context, outcome and format). Figure 3 presents the prompts
used in our study. The prompt comprises three main parts: 1) an
instruction to guide the behaviour of the LLM, 2) Context, con-
taining the retrieved documents relevant to the user’s query, and
3) the user’s query. To prevent the LLM from hallucinating, we
instructed it to respond with “I don’t know” if the answer is not
evident in the given context. Once the LLM generates the answer,
the Response Generator component returns it to the UI component
for presentation to the user.

3 CASE STUDY
In this section, we present the software repositories and questions
we use in the evaluation and explain the experimental settings used
to achieve this goal.

3.1 Implementation
Before delving into performance evaluation, we describe the im-
plementation settings of our approach to facilitate its replication
on other datasets. We use Python’s LangChain version 0.0.2163 to
implement the chatbot. Furthermore, we use GitHub’s PyDriller, a
Pythonwrapper for the GitHubAPI [43], in the Document Processor
component to enable the retrieval of all relevant data for answering
the queries as discussed in Section 2.2, such as commits and issues.
For the Embedder implementation, we leverage the embedding-ada-
002 model4 from OpenAI to generate vector embeddings for both
document chunks and user queries, storing them in the Chroma
vector store5. Prior studies show that the embedding-ada-002 em-
bedding model outperforms other specialized embedding models
(e.g., CodeBERT) in code and natural language tasks [10]. To gener-
ate the chatbot’s responses to user queries, the Response Generator

2https://help.openai.com/en/articles/6654000-best-practices-for-prompt-
engineering-with-openai-api
3https://python.langchain.com/docs/get_started/introduction
4https://platform.openai.com/docs/models/embeddings
5https://www.trychroma.com/

EASE 2024, June 18–21, 2024, Salerno, Italy Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

component relies on OpenAI’s GPT3.5-turbo model6. For the imple-
mentation, we select the default configurations of the parameters
of RAG in the LangChain framework to evaluate the RAG under de-
fault configurations and evaluate the performance an average user
would encounter when deploying RAG over software repositories.

3.2 Dataset

Table 1: Statistics of Hibernate and Kafka Projects.

Repository Stars Forks Commits Issues

Hibernate-ORM 5496 3316 16779 6808
Kafka 25481 12861 11470 14124

To determine the efficiency of using the LLM chatbot to answer
software repository-related questions, we perform our experiment
using Hibernate-ORM and Kafka repositories. We selected these
repositories because they are popular open-source projects (more
than 5,000 stars) and have a rich history (each has more than 11,000
commits and 6,000 bugs). Table 1 presents the number of stars, forks,
commits and issues of each repository at the time of collection on
July 30, 2023. Also, these projects have been studied by prior SE
work [2, 44, 7].

For the questions that the chatbot needs to answer, we utilize
the test set employed in prior work by Abdellatif et al. [2]. These
questions were collected from 12 participants inquiring about soft-
ware repository-related questions. In total, the participants asked
165 questions representing 10 distinct. The set contains questions
that inquire about the same intent but in different syntax. For ex-
ample, “Which commits fixed the bug id?” could be asked as “What
are the fixing commits for the bug id?”. It is important to note that
we excluded 15 questions because they were either irrelevant (e.g.,
“What’s your name?”) or ambiguous (e.g., “August 1 till August 2”).
Table 2 presents the intents, their descriptions, examples, and the
distribution of questions corresponding to each intent used in our
evaluation. From the table, it is observed that the intents have a
similar distribution of questions. These intents encompass ques-
tions related to the code repository (e.g., “give me all the commits
for NetworkClientUtils file” from the File Commits intent), issues
(e.g., “which files introduced most bugs” from the Buggy Files in-
tent), or a combination of both code and issues (e.g., “Determine
the buggy commits that happened on Dec 19, 2017” from the Buggy
Fix Commit intent), covering various aspects of software-related
questions in our evaluation.

3.3 Evaluation
To evaluate the chatbot’s capability to correctly answer software
repository questions discussed in Section 3.2, we pose all 150 ques-
tions to the chatbot and record the output of the Document Re-
triever and the Response Generator. Then, we manually check the
generated response of each question to determine if it has been
answered correctly or not based on the oracle. The response is
classified as correct if it matches the oracle and incorrect if the re-
sponse deviates from the oracle or is “I don’t know” as stated in the
6https://platform.openai.com/docs/models/gpt-3-5

prompt. The evaluation is based on the end-to-end performance of
the chatbot, thus if the answer to the query is not contained in the
documents retrieved by the document retriever, it is also labelled
as incorrect. In cases where the chatbot answers incorrectly, we
manually examine the outputs of each component to identify the
reason for returning an incorrect answer.

To identify the challenges, we adopted open card sorting and
multiple validation steps as used by prior work [4]. Specifically,
the first author applied open card sorting to extract themes from
the responses with the retrieved documents for all 150 questions.
The themes represent the challenges faced by the chatbot. To en-
sure the robustness of these themes and reduce bias, the second
author independently reviewed these themes. In cases where there
was a disagreement, both annotators discuss the cases to reach an
agreement. Finally, we discuss the findings with the third author to
eliminate bias from the annotators. It is important to note that this
analysis aims to broaden our comprehension of the challenges fac-
ing practitioners when using LLM over software repositories, rather
than seeking an absolute truth about the most accurate themes in
our data.

4 CHALLENGES
The results show that the LLM-based chatbot correctly answered
one question (“return a commit message on July 20”). In this section,
we shed light on the challenges that hinder the chatbot from an-
swering repository-related questions. We find challenges related to
data retrieval, data structuring, and response generation. Table 3
presents the challenges, their definitions, and the percentage of
occurrence of each challenge in the evaluated questions. It is im-
portant to note that there are instances where we identify multiple
challenges in a single question. In the following subsections, we
detail each of the challenges.

4.1 Challenges Relating to Data Retrieval
Retrieving correct and relevant data is crucial for the chatbot’s
accuracy. In other words, if the retrieved documents are incorrect
or do not include the necessary information to answer the user’s
query, the chatbot’s final response would also be incorrect. Thus,
it negatively impacts the user satisfaction with the chatbot. We
identified two challenges related to data retrieval:

Challenge I. Out-of-the-box embedding models are not
always accurate in tasks related to repository information
retrieval.

The Document Retriever component returns inaccurate docu-
ments for 83.3% of the queries. Upon closer examination, we find
two main reasons behind this observation. First, the Document
Retriever component returns documents that do not capture the
unique identifier specified in the query. For example, when the
question “commit(s) that fixed the bug ticket KAFKA-7354?” is asked,
the Document Retriever component returns documents related to a
different bug, “KAFKA-5716”, leading the Response Generator to
respond with “I don’t know”. The Document Retriever component
uses an embedding model, not specifically trained for repository
information retrieval, which might not distinguish the importance
of repository entities (bug ID or commit hash) from other words in

LLM-Based Chatbots for Mining Software Repositories: Challenges and Opportunities EASE 2024, June 18–21, 2024, Salerno, Italy

Table 2: Intents used in the evaluation adopted from [1].

Intent Definition Example Question Frequency (%)

Buggy Commit Identify the bugs introduced by specific commits. Which are the bugs introduced by
commit Commit Hash? 11 (7.3%)

Buggy Commits By
Date

List the buggy commit(s) within a specific time-
frame.

What is the percentage of bug fixing
commits that introduced bugs in/on
Date?

12 (8.0%)

Buggy Files Identify the most buggy files to refactor. Which are the most bug-
introducing files? 12 (8.0%)

Fix Commit Identify the commit(s) that fix a specific bug. Which commits fixed the bug id? 17 (11.3%)

Buggy Fix Commits Identify the commits that fixed a bug but also intro-
duced a new bug on a specific date.

What are the buggy/fixing commits
that happened in/on Date? 16 (10.7%)

Count Commits By
Dates

Identify the number of commits within a specific
period.

What is the number of commits
in/on Date? 29 (19.3%)

Experienced Dev
Fix Bugs

Identify the developer(s) who have experience fix-
ing bugs related to a specific file.

Which developer(s) fixes the most
bugs related to File Name? 14 (9.3%)

Overloaded Dev Identify the developer(s) with the highest number
of unresolved bugs.

Which developer(s) have the most
unfixed bugs? 13 (8.7%)

File Commits Examine the details about the changes that occurred
on a specific file.

What is/are the latest commit(s) to
File Name? 15 (10.0%)

Commits By Date Identify the commit information on a specific date. What commits were submitted on
Date? 11 (7.33%)

the context when assigning values to capture semantic meaning.
Thus, the embedding model does not capture the contextual rele-
vance of the key details like the Bug ID. In our example (commit(s)
that fixed the bug ticket KAFKA-7354?), the model appears to assign
higher values to terms like “commit” which had more occurrence
in the document pertaining to “KAFKA-5716” than the document
pertaining to “KAFKA-7354”. This led to a higher cosine similar-
ity score for the document pertaining to KAFKA-5716, despite the
query’s explicit reference to KAFKA-7354. This makes the Docu-
ment Retriever component return the information of KAFKA-5716.

Also, the SE domain is a specialized domain with specific termi-
nologies used in a unique manner. For instance, in the SE domain,
the term “bug” refers to an error in the code that requires fixing,
whereas in other domains, it denotes an insect. The second chal-
lenge is related to using out-of-the-box models to embed SE termi-
nologies. To assess the Document Retriever’s capability in returning
the same or similar relevant documents for semantically similar
questions with different SE terms, we randomly selected five ques-
tions and changed terms such as “bugs” to “issues” and “changes”
to “commits”. We then analyzed the documents returned in each
case. We observed that the Document Retriever treats these terms
as distinct words, failing to recognize their semantic equivalence in
the SE context. For instance, the queries “which commit(s) fixed the
bug ticket HHH-11965” and “which commit(s) fixed the issue ticket
HHH-11965” are similar. However, the Document Retriever returns
different documents for each question. Specifically, for the query
with “bug”, the Document retriever returned only commit infor-
mation, while for the query with “issue”, the Document retriever
returned both commit and issue information.

Although there are existing word embedding models fine-tuned
on Stack Overflow and data from GitHub like commit messages and

issue body [11, 49], there is the need for evaluating their potential
in embedding creation since their evaluation has focused mainly
in masked language model (MLM) tasks where masked tokens are
predicted. Furthermore, there is a need for more approaches that
prioritize and understand the synonyms of SE key terms.

Mitigating Strategy. Fine-tuning LLMs with techniques like
few-shot tuning for specific domain tasks has been shown to im-
prove the accuracy of models like flanT5 [31]. As a solution, we rec-
ommend exploring the potential of fine-tuning the LLM/foundation
model (FM) for domain-specific tasks. In the case of this challenge,
an FM could be fine-tuned for sentence embedding specific to the
task of software repository information retrieval.

Challenge II. The constraint on the number of tokens of
LLMs does not permit to provide complete data for response
generation.

LLMs adhere to a strict token limit; for example, the BARTmodel
has a token limit of 1024 [23]. Due to this constraint, we configured
the Document Retriever component to return the top@4 documents
with the highest similarity score to a user’s query, as discussed in
Section 2.4. This limitation hampers the Document Retriever com-
ponent from providing the response generation component with
all the documents required to generate the answer. Specifically,
the Document Retriever component returns incomplete data for
response generation in 49.3% of queries. The questions that require
analyzing more data are particularly prone to this challenge, as
they often require fetching a substantial amount of data to provide
answers. For instance, in the question “Who fixed the most bugs
in HibernateEntityManager.java?”, the Document Retriever compo-
nent needs to retrieve all fixed bug information in the Hibernate
project related to HibernateEntityManager.java. Then, provide

EASE 2024, June 18–21, 2024, Salerno, Italy Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

Table 3: The identified challenges and their definitions.

Category Challenge Definition Frequency (%)

Data Retrieval

Out-of-the-box embedding models are not
always accurate in tasks related to repository
information retrieval

This challenge describes the ability of the
embedding model to create embeddings that
efficiently capture the semantics of SE data.

83.3%

The constraint on the number of tokens of
LLMs does not permit to provide complete
data for response generation

The challenge is about retrieving limited data
for a data-intensive query like the analytical
questions due to LLM token limitation.

49.3%

Data Structuring

Chunking artefacts into smaller sizes to fit
LLM token constraints leads to loss of infor-
mation and relationship.

This challenge involves preserving contex-
tual information and relationships when di-
viding documents into smaller token chunks
to fit LLM token constraints.

24.0%

The ambiguity and lack of clarity in the
repository data affect the chatbot’s response

The challenge is about the LLM’s inability
to comprehend information because of the
ambiguity and lack of clarity in the data.

18.0%

Response Generation
The chatbot occasionally responds incor-
rectly despite retrieving correct contextual
information

The challenge is about the chatbot’s inability
to accurately answer questions based on the
contextual documents provided.

17.3%

the retrieved information to the Response Generator component
to generate an accurate answer. This process involves returning
all commits that fixed a bug in HibernateEntityManager.java,
along with the authors, for the Response Generator to analyze and
formulate a response. However, passing all this information to the
Response Generator may lead to a token constraint error. On the
other hand, returning limited information may not be sufficient
for the Response Generator to generate an accurate response. We
believe this challenge goes beyond the SE community, and practi-
tioners who leverage LLM to perform analytical tasks that require
a vast amount of data will encounter this challenge.

Mitigating Strategy. A solution will be to implement progres-
sive prompting [25].When the Response Generator receives a query
which requires the analysis of a large amount of data, the Docu-
ment Retriever can make this data available on demand. Specifically,
when the Response Generator receives such questions and the data
passed to it appears incomplete, it can request the Document Re-
triever to request additional data.

4.2 Challenges Relating to Data Structuring
The structured nature of software repository data is fundamental
to understanding the development process. Some questions in our
dataset require triangulation of diverse data sources, such as com-
mits and bug information, to answer the user’s query (e.g., which
bugs were introduced as a result of commit hash). However, trian-
gulating these data posed a challenge to the Document Retriever.

Challenge III. Chunking artefacts into smaller sizes to
fit LLM token constraints leads to loss of information and
relationship.

We reiterate that we divided the repository data into smaller
chunks of 350 tokens to address the token constraints of the LLMs,
as discussed in Section 2.2. In contrast to challenge II, where the
top@4 documents passed to the Response Generator may be in-
complete, this challenge pertains to chunking the same document

(e.g., metadata from a single commit) to keep within the token limit.
The challenge with this process is the disconnection of related
information. For example, consider the chunking of data from a
specific commit, where, the commit hash and author details are in
one chunk, and information about the files modified in the commit
in another chunk. The lack of a direct link between the author’s
details and the modified files is a challenge. When the Document
Retriever extracts the author’s information from one chunk, it strug-
gles to associate this data with the corresponding modified file in
another chunk. This issue resulted in the loss of contextual infor-
mation in the documents retrieved, impacting the generation of
responses for 24.0% of the questions posed to the chatbot. Recent
works present methods to overcome this challenge of linking data
in segments [53, 52]. Nevertheless, further investigation is required
by the SE community to validate those approaches in the domain.

Mitigating Strategy. The goal of the document chunking is to
address the token limit constraints of LLMs. As mentioned earlier,
Li et al. [25] proposed progressive prompting to solve this issue.
Also, an issue with the document chunking was maintaining the
continuity of context. We recommend context carryover to resolve
reference to previous chunks [53]. Specifically, design the chunks
such that each chunk will have a summary of the previous chunk.

Challenge IV. The ambiguity and lack of clarity in the
repository data affect the chatbot’s response.

In evaluating our chatbot, we find that the Document Retriever
fails to process the information in the repository data. The main
reason for this challenge is the ambiguity in the repository infor-
mation such as the commit message. For example, in the query
“which commit(s) fixed the bug ticket HHH-11965”, the Document Re-
triever failed to return documents containing commits referencing
the specified bug ID (“HHH-11965”). Although there is a commit
that fixes the mentioned issue, the commit message (“HHH-11965 -
Added test case”) does not reference it as fixing a bug. This makes

LLM-Based Chatbots for Mining Software Repositories: Challenges and Opportunities EASE 2024, June 18–21, 2024, Salerno, Italy

the Document Retriever not recognize it as a fixing commit for the
issue.

Mitigating Strategy. We recommend practitioners preprocess
the data and explicitly link the documents together. For example,
use the SZZ [42] to link the bugs with their fixing commits and
explicitly provide the LLM with the links to generate a response.
Furthermore, provide the LLM with more contextual data in the
prompt to extrapolate the context and answer the user’s query. For
instance, adding the diff of changes will assist the LLM to know the
type of changes being made (e.g. fixing bugs or refactoring code).

4.3 Challenges Relating to Response Generation
Retrieving accurate data to pass to the response generator is fun-
damental to the success of the chatbot. This is because it ensures
that the chatbot can provide factual and reliable responses to user
queries, contributing to a positive user experience. However, gener-
ating accurate responses based on the provided context is equally
essential. The outputs of the Response Generator revealed a chal-
lenge, highlighting an area of improvement.

Challenge V. The chatbot occasionally responds incorrectly
despite retrieving correct contextual information.

Our manual analysis shows that the Response Generator compo-
nent generates incorrect answers for 17.3% of the posed questions,
even though the Document Retriever component passed the cor-
rect context to the Response Generator component. For example,
in the question “changes on JobBatch”, the Document Retriever
correctly extracted documents that included the modification of
the JobBatch.java file, which was provided to the Response Gen-
erator as context. However, the Response Generator replied with
“There is no information provided about any changes specifically made
to the JobBatch”. Another example is “How many commits do we
have?”, where the Response Generator returns “There are a total
of 12 commits”. Although there were five commit hashes in the
documents passed as context to the Response Generator, it failed to
aggregate the commits from the provided contextual information.
We believe that this issue is distinct from hallucination because it
involves the Response Generator producing inaccurate or mislead-
ing answers without fabricating information. Unlike hallucination,
where the model might generate responses based on non-existent
details, in this context, the Response Generator has access to the
details provided as a part of the prompt, as discussed in Section 2.5.
This issue highlights that, although the LLM is a state-of-the-art
technology, it may not be perfect. The LLM appears to struggle to
comprehend the information it was given to deduce the answer
to questions, leading the chatbot to respond incorrectly. Further
investigations by the research community are required to identify
the underlying reasons for this issue. A potential area is to explore
the impact of using different prompting strategies (e.g., chain of
thoughts, few-shot learners) on the LLM’s generated output.

Mitigating Strategy. LLMs are known to be good few-shot
learners [21]. Adapting the approach of Zhang et al. [58], we rec-
ommend storing questions which are answered correctly and using
these stored questions with their context and answers as learning
examples for the LLM. When a user provides a new query, an exam-
ple with the same intent as the user’s query will be retrieved and

used as a learning example for the LLM. That way, the LLM learns
what information to extract from the context to answer correctly.

Also, another solution will be to fine-tune the LLM on software
repository data. However, fine-tuning LLMs is an expensive process
considering the number of trainable parameters. Nonetheless, there
are parameter-efficient fine-tuning (PEFT) techniques like Low-
Rank Adaption (LoRA) [17], which have been proposed to make
the fine-tuning process less expensive.

5 DISCUSSION
LLMs are revolutionizing various areas in the SE domain such as
automated program repairs [20] and code review [27, 48]. However,
its utilization in analyzing software repository data has not become
mainstream [12]. In this study, we use an LLM-based chatbot to ex-
tract and analyze repository information. Our findings suggest that
practitioners and researchers should make careful considerations
when adopting out-of-the-box transformer models and LLMs for
analyzing repository data.

Adopting LLMs to automate analyzing and drawing insights from
software repository data will be beneficial, but it also poses several
challenges. Our findings show that transformer-based embedding
models and LLMs used out-of-the-box struggle with the terminolo-
gies found in the SE domain. The standard training of LLMs and
transformer-based embedding models on a general corpus does
not cover the distinct semantics of words in SE. Furthermore, our
results show that these models often miss the semantic meaning
of these SE terms in a context. This calls for additional effort into
making embedding models and LLMs more accurate for SE tasks
by fine-tuning with SE-specific datasets or researching novel ways
for their adoption.

Moreover, the ambiguity in repository data poses a significant
challenge. For example, commit messages may sometimes be vague
even to humans, lacking the informative details required for LLMs to
make accurate associations with other information in the repository.
This might lead to inaccurate responses, akin to challenges IV
as presented in Section 4.2. This opens up a future avenue for
research, where the chatbot can ask for further clarifications (using
the retrieved data) from the user to help resolve the ambiguity.

In our study, we created a token overlap for the continuity of
context, which has proven to be efficient for the application of LLMs
in other domains [6]. However, it was inefficient when applied to
software repositories. Our results indicate that applying LLMs to
analyze repository data demands a distinctive approach, partic-
ularly due to the unique characteristics of software repositories.
The complexities within code, diverse project structures, and the
intricacies of version control systems (e.g., commit, PRs, issues)
underscore the necessity for specialized strategies in effectively
harnessing LLMs for comprehensive understanding.

The potential for applying LLMs in analyzing repository data
is promising, with prospects of evolving the current manual ways
of mining and analyzing repository data into an efficient, auto-
mated workflow. However, there are challenges that have been
highlighted in this study that need to be addressed. Addressing
these challenges will ensure that LLMs will not only comprehend
the source code of repositories but will understand and analyze the

EASE 2024, June 18–21, 2024, Salerno, Italy Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

associated metadata of the repository that tells a story about the
development process.

6 THREATS TO VALIDITY
In this section, we discuss the threats to our study’s construct,
internal, and external validity.
Construct Validity. A threat to construct validity in our study
arises from instructing the LLM to respond with “I don’t know”
when it is unsure of the answer. LLMs sometimes hallucinate and
we make the assumption that instructing the LLM to respond “I
don’t know” mitigates the risk of hallucinations. Nonetheless, the
adopted RAG approach also reduces hallucinations [41].
Internal Validity. An internal threat to the validity of our study is
the quality of the software repository data that our chatbot utilized.
If the data collected is incomplete, it could lead to the chatbot giving
an incorrect or partial answer. To eliminate this threat, we manually
inspected the repository metadata to ensure that all the answers to
the queries were present.

In our study, we examined the output of the Document Retriever
and the Response Generator for each query to identify the issues
that lead the chatbot to respond incorrectly. A threat to validity is
the personal bias of the annotators during this process. To ensure
that the bias was eliminated, the annotators discussed the issues
identified for the questions to reach a consensus on the challenge
present for the question.
External Validity. Threats to external validity concern the general-
ization of our findings. In the evaluation of our chatbot, we adopted
the settings of Abdellatif et al. [2], meaning we evaluated the chat-
bot on two repositories, Hibernate-ORM and Kafka. A threat from
this decision means our results and findings might not general-
ize to other software repositories. However, the Hibernate-ORM
and Kafka are used by prior SE work and they are relatively large
software repositories which makes it ideal for evaluating our chat-
bot rather than selecting relatively small repositories with fewer
commits and bugs.

Also, we used the default parameters of the RAG implementation
in the LangChain framework and selected chunk size and overlap
based on prior studies. Although these values are selected based
on prior studies, different configurations could potentially lead to
different results, affecting the overall generalizability of our results.
Our ability to experiment with different chunks and overlap sizes
was constrained by the costs involved in running the experiments,
thus limiting the generalizability of our results. Another threat to
external validity is that we used OpenAI’s ada-text-embedding and
gpt-3.5-turbo models in this study. This means our findings might
not generalize when utilizing other embedding models and large
language models.

7 RELATEDWORKS
In this section, we present the studies related to chatbots in the SE
domain and discuss the work that leverages LLMs in the SE domain.
Software Engineering Chatbots. Chatbots have become popular
in software engineering with a dedicated workshop on it [40]. Chat-
bots have been proposed to automate different software engineering
tasks to enhance developers’ and other stakeholders’ experience.

For instance, Abdellatif et al. [2] addresses the challenge of ex-
tracting repository information by implementing MSRBot. MSRBot
simplified the process of extracting relevant information from soft-
ware repositories by allowing the user to input a question/task
in a natural language. Their findings indicated that most partic-
ipants found MSRBot useful, completing tasks faster and more
accurately compared to manual methods. Also, Xu et al. [54] im-
plemented Answerbot, a chatbot which focuses on summarizing
multi-answer posts from technical Q&A sites like Stack Overflow.
AnswerBot effectively retrieves and summarizes relevant answers
for developers, as validated by user studies. Again, Dominic et al.
[9] implemented a chatbot to assist newcomers in contributing
to open-source projects by recommending suitable projects and
resources to them. Okanović et al. [35] introduces PerformoBot, a
chatbot designed to guide developers in configuring and executing
load tests, with positive feedback from users, particularly those less
familiar with performance engineering. Yu et al. [55] introduces
CodeMaster, an approach that employs CodeT5, for answering code
questions. CodeMaster is described as state-of-the-art with its per-
formance on the CodeQA benchmark by answering questions like
What is the length of array X in a code sample. On the quality
assurance of chatbots, López-Morales et al. [29] presents Asymob,
a platform enabling chatbot quality measurement across different
technologies, aiding in detecting quality issues in chatbots.

These studies show the diverse applications of chatbots in soft-
ware engineering. The closest of these chatbots to our work is
MSRBot [2]. However, the MSRBot supports a limited number of
questions. Specifically, MSRBot only supports questionswithin their
defined intents and questions that do not represent these intents
are not supported. Nonetheless, the ability of LLMs to understand
a variety of questions in a zero, one or few-shot setting has been
demonstrated in a multiple choice question answering scenario [38].
With this, we project that using LLMs, we will be able to support a
variety of questions compared to MSRBot [2].
LLMs in Software Engineering. Prior studies on using LLMs for
software engineering tasks mainly focus on program repairs [13,
20], code generation [18, 47, 51], code reviews [26, 27, 48] and code
summarization [3, 14, 45]. Fan et al. [13] studied the potential of
Automated Program Repair (APR) techniques in rectifying errors
in Codex-generated code for LeetCode contests. They highlight
Codex’s better performance over tools like TBar and Recoder. They
recommend enhancing APR tools to overcome constraints in patch
space since LLMs can generate more fixed patterns when trained on
larger datasets. Kang et al. [20] proposed LIBRO, a framework that
leverages LLMs to generate tests from bug reports with success in
the Defects4J benchmark. Wang et al. [51] proposed “CodeT5+”, an
encoder-decoder LLM that supports a variety of downstream code
tasks like natural language to code generation tasks, surpassing
models like OpenAI’s code-cushman-001. Jain et al. [18] developed
“Jigsaw”, a tool focusing on enhancing LLMs’ semantic understand-
ing of code. Tian et al. [47] evaluated ChatGPT as a programming
assistant by assessing its capabilities in code generation, program
repair and code summarization. Tufano et al. [48] fine-tuned a T5
model to automate code reviews. The fine-tuned T5 model was used
to automate code-to-code tasks, code and comment-to-code tasks
and code-to-comment tasks. Li et al. [26] introduced AUGER, a tool
using the T5 model to automate code reviews. It achieves a 37.38%

LLM-Based Chatbots for Mining Software Repositories: Challenges and Opportunities EASE 2024, June 18–21, 2024, Salerno, Italy

improvement in ROUGE-L. Similarly, Li et al. [27] proposed CodeRe-
viewer, a pre-trained model tailored for code review. On code sum-
marization, Geng et al. [14] discussed LLMs’ potential to generate
diverse code comments, surpassing traditional supervised learning
approaches. Ahmed and Devanbu [3] evaluated GPT Codex on code
summarization on project-specific data using few-shot learning.
Also, Sun et al. [45] compared ChatGPT’s performance against lead-
ing code summarization models like CodeBert and CodeT5. Their
findings show that ChatGPT code summarisation performance is
worse compared to the other models.

To the best of our knowledge, this is the first study employing
LLMs to analyze software repository data beyond source code. We
believe that our work paves the way for future research, explor-
ing the use of LLMs in software repositories to provide technical
insights from projects to non-technical stakeholders, akin to inter-
acting with a chatbot.

8 CONCLUSION
Software repositories contain a vast amount of valuable data with
the potential to enhance software projects. However, not all project
stakeholders possess the technical expertise and time required to
extract such data from repositories [2]. In this paper, we aim to
explore the effectiveness of a chatbot powered by an LLM in answer-
ing questions related to software repositories. Therefore, we build
a chatbot using the RAG approach to answer software repository-
related questions. We evaluated the chatbot using a curated set of
150 questions. Our evaluation revealed that the chatbot accurately
answered only one question, providing inaccurate answers for the
remaining queries. These results highlight the limitations of de-
ploying LLMs out-of-the-box for software engineering tasks. To
delve deeper into the challenges associated with utilizing an LLM-
powered chatbot for answering software repository questions, we
manually examine the results. We identified five challenges related
to retrieving data, structuring the data, and generating responses
to user queries. The most recurring challenge pertains to using the
embedding model out-of-the-box which affected the accurate re-
trieval of information to serve as context for the LLM. Additionally,
the data chunking process impacted the chatbot’s performance, and
in some instances, we identified issues with the LLM’s ability to
answer questions based on the information provided as context.
These findings underscore the complexities involved in implement-
ing LLMs for specific software engineering tasks and point to the
need for tailored solutions to enhance their performance in the
context of software repositories.

We believe that our study provides valuable lessons for the com-
munity. Our findings will serve as a cautionary insight, informing
practitioners to exercise caution when adopting LLMs for tasks
involving SE-specific terminologies. The challenges observed in
our study underscore the importance of understanding the context-
specific nature of SE language when integrating LLMs into such
applications. For researchers, our findings present an opportunity
to open future research avenues in investigating ways to enhance
the performance of LLMs for SE-specific tasks, particularly in the
context of answering repository-related questions. Addressing the
challenges identified in our study could lead to the development
of more effective and specialized chatbots tailored to the specific

needs of software engineering tasks. In future work, we will focus
on evaluating the impact of different parameters on the results.
Specifically, we will evaluate the impact of different chunk sizes
and overlaps on the results

ACKNOWLEDGMENTS
The icons used in Figures 1 and 2 are freely provided by Freepik (http
s://www.flaticon.com/authors/freepik) and Smashicons (https://ww
w.flaticon.com/authors/smashicons) on https://www.flaticon.com.

REFERENCES
[1] Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab. 2022.

A Comparison of Natural Language Understanding Platforms for Chatbots in
Software Engineering. IEEE Transactions on Software Engineering, 48, 8, (Aug.
2022), 3087–3102.

[2] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. 2020. MSRBot: Using bots
to answer questions from software repositories. Empirical Software Engineering,
25, 3, (May 2020), 1834–1863.

[3] Toufique Ahmed and Premkumar Devanbu. 2022. Few-shot training LLMs for
project-specific code-summarization. (Sept. 2022). arXiv: 2207.04237 [cs].

[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,
Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: A Case Study. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP). (May 2019), 291–300.

[5] Justus Bogner and Manuel Merkel. 2022. To type or not to type? a systematic
comparison of the software quality of JavaScript and typescript applications on
GitHub. In Proceedings of the 19th International Conference on Mining Software
Repositories (MSR ’22). Association for Computing Machinery, New York, NY,
USA, (Oct. 2022), 658–669.

[6] Sebastian Borgeaud et al. 2022. Improving Language Models by Retrieving
from Trillions of Tokens. In Proceedings of the 39th International Conference on
Machine Learning. PMLR, (June 2022), 2206–2240.

[7] Aleksandr Chueshev, Julia Lawall, Reda Bendraou, and Tewfik Ziadi. 2020.
Expanding the Number of Reviewers in Open-Source Projects by Recommend-
ing Appropriate Developers. In 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). (Sept. 2020), 499–510.

[8] Malinda Dilhara, Ameya Ketkar, and Danny Dig. 2021. Understanding Software-
2.0: A Study of Machine Learning Library Usage and Evolution. ACM Transac-
tions on Software Engineering and Methodology, 30, 4, (July 2021), 1–42.

[9] James Dominic, Jada Houser, Igor Steinmacher, Charles Ritter, and Paige
Rodeghero. 2020. Conversational Bot for Newcomers Onboarding to Open
Source Projects. In Proceedings of the IEEE/ACM 42nd International Conference
on Software Engineering Workshops (ICSEW’20). Association for Computing
Machinery, New York, NY, USA, (Sept. 2020), 46–50.

[10] Shihan Dou et al. 2023. Towards Understanding the Capability of Large Lan-
guage Models on Code Clone Detection: A Survey. (Aug. 2023). arXiv: 2308.01
191 [cs].

[11] Vasiliki Efstathiou, Christos Chatzilenas, and Diomidis Spinellis. 2018. Word
Embeddings for the Software Engineering Domain. In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR). (May 2018),
38–41.

[12] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sen-
gupta, Shin Yoo, and Jie M. Zhang. 2023. Large Language Models for Software
Engineering: Survey and Open Problems. (Oct. 2023). arXiv: 2310.03533 [cs].

[13] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated Repair of Programs from Large Language Models. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
(May 2023), 1469–1481.

[14] Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi Jin,
Xiaoguang Mao, and Xiangke Liao. 2023. Large Language Models are Few-
Shot Summarizers: Multi-Intent Comment Generation via In-Context Learning.
(June 2023). arXiv: 2304.11384 [cs].

[15] Marlo Haering, Christoph Stanik, andWalidMaalej. 2021. Automatically Match-
ing Bug Reports With Related App Reviews. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE). (May 2021), 970–981.

[16] Ahmed E. Hassan. 2008. The road ahead for Mining Software Repositories. In
2008 Frontiers of Software Maintenance. (Sept. 2008), 48–57.

[17] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li,
Shean Wang, Lu Wang, and Weizhu Chen. 2021. LoRA: Low-Rank Adaptation
of Large Language Models. (Oct. 2021). arXiv: 2106.09685 [cs].

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com
https://arxiv.org/abs/2207.04237
https://arxiv.org/abs/2308.01191
https://arxiv.org/abs/2308.01191
https://arxiv.org/abs/2310.03533
https://arxiv.org/abs/2304.11384
https://arxiv.org/abs/2106.09685

EASE 2024, June 18–21, 2024, Salerno, Italy Samuel Abedu, Ahmad Abdellatif, and Emad Shihab

[18] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2022. Jigsaw: large lan-
guage models meet program synthesis. In Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, (July 2022), 1219–1231.

[19] Yasutaka Kamei and Andy Zaidman. 2020. Guest editorial: Mining software
repositories 2018. Empirical Software Engineering, 25, 3, (May 2020), 2055–2057.

[20] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are
few-shot testers: exploring llm-based general bug reproduction. In Proceedings
of the 45th International Conference on Software Engineering (ICSE ’23). IEEE
Press, Melbourne, Victoria, Australia, 2312–2323.

[21] Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. Advances in
Neural Information Processing Systems, 35, (Dec. 2022), 22199–22213.

[22] Quoc Le and TomasMikolov. 2014. Distributed representations of sentences and
documents. In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32 (ICML’14). JMLR.org, Beijing,
China.

[23] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. (Oct. 2019). arXiv: 1910.13461 [cs, stat].

[24] Patrick Lewis et al. 2021. Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. (Apr. 2021). arXiv: 2005.11401 [cs].

[25] Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2023. The Hitchhiker’s
Guide to Program Analysis: A Journey with Large Language Models. (July
2023). arXiv: 2308.00245 [cs].

[26] Lingwei Li, Li Yang, Huaxi Jiang, Jun Yan, Tiejian Luo, Zihan Hua, Geng Liang,
and Chun Zuo. 2022. AUGER: automatically generating review comments with
pre-training models. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE 2022). Association for Computing Machinery, New York,
NY, USA, (Nov. 2022), 1009–1021.

[27] Zhiyu Li et al. 2022. Automating code review activities by large-scale pre-
training. In Proceedings of the 30th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
(Nov. 2022), 1035–1047.

[28] Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow, and Yang Liu. 2021. Retrieval-
Augmented Generation for Code Summarization via Hybrid GNN. (May 2021).
arXiv: 2006.05405 [cs].

[29] Jose María López-Morales, Pablo C. Cañizares, Sara Pérez-Soler, Esther Guerra,
and Juan de Lara. 2022. Asymob: a platform for measuring and clustering chat-
bots. In Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, (Oct. 2022), 16–20.

[30] Yijing Lyu, Heetae Cho, Pilsu Jung, and Seonah Lee. 2023. A Systematic Litera-
ture Review of Issue-Based Requirement Traceability. IEEE Access, 11, 13334–
13348.

[31] Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun Chen, and Shaowei Wang.
2024. LLMParser: an exploratory study on using large language models for
log parsing. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering (ICSE ’24). ACM, New York, NY, USA.

[32] Christopher Manning, Prabhakar Raghavan, and Hinrich Schuetze. 2009. Intro-
duction to Information Retrieval.

[33] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. (Sept. 2013). arXiv: 1301
.3781 [cs].

[34] Lloyd Montgomery, Clara Lüders, and Walid Maalej. 2022. An alternative
issue tracking dataset of public Jira repositories. In Proceedings of the 19th
International Conference on Mining Software Repositories (MSR ’22). Association
for Computing Machinery, New York, NY, USA, (Oct. 2022), 73–77.

[35] Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino,
André van Hoorn, and Fabian Beck. 2020. Can a Chatbot Support Software
Engineers with Load Testing? Approach and Experiences. In Proceedings of
the ACM/SPEC International Conference on Performance Engineering (ICPE ’20).
Association for Computing Machinery, New York, NY, USA, (Apr. 2020), 120–
129.

[36] Gabriel P. Oliveira, Ana Flávia C. Moura, Natércia A. Batista, Michele A.
Brandão, Andre Hora, and Mirella M. Moro. 2023. How do developers col-
laborate? Investigating GitHub heterogeneous networks. Software Quality
Journal, 31, 1, (Mar. 2023), 211–241.

[37] Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2021. Retrieval Augmented Code Generation and Summa-
rization. (Sept. 2021). arXiv: 2108.11601 [cs].

[38] Joshua Robinson, ChristopherMichael Rytting, and DavidWingate. 2023. Lever-
aging Large Language Models for Multiple Choice Question Answering. (Mar.
2023). arXiv: 2210.12353 [cs].

[39] Junxiao Shen, John Dudley, and Per Ola Kristensson. 2023. Encode-Store-
Retrieve: Enhancing Memory Augmentation through Language-Encoded Ego-
centric Perception. (Aug. 2023). arXiv: 2308.05822 [cs].

[40] Emad Shihab, Stefan Wagner, and Marco Aurélio Gerosa. 2021. Summary of
the 2nd International Workshop on Bots in Software Engineering (BotSE 2020).
ACM SIGSOFT Software Engineering Notes, 46, 1, (Feb. 2021), 20–22.

[41] Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. 2021.
Retrieval Augmentation Reduces Hallucination in Conversation. (Apr. 2021).
arXiv: 2104.07567 [cs].

[42] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes? ACM SIGSOFT Software Engineering Notes, 30, 4, (May
2005), 1–5.

[43] Davide Spadini, Maurício Aniche, andAlberto Bacchelli. 2018. PyDriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE 2018). Association
for Computing Machinery, New York, NY, USA, (Oct. 2018), 908–911.

[44] Murali Sridharan, Mika Mäntylä, Maëlick Claes, and Leevi Rantala. 2022. SoC-
CMiner: a source code-comments and comment-context miner. In Proceedings
of the 19th International Conference on Mining Software Repositories (MSR ’22).
Association for Computing Machinery, New York, NY, USA, (Oct. 2022), 242–
246.

[45] Weisong Sun et al. 2023. Automatic Code Summarization via ChatGPT: How
Far Are We? (May 2023). arXiv: 2305.12865 [cs].

[46] Patanamon Thongtanunam and Ahmed E. Hassan. 2021. Review Dynamics and
Their Impact on Software Quality. IEEE Transactions on Software Engineering,
47, 12, (Dec. 2021), 2698–2712.

[47] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F. Bissyandé. 2023. Is ChatGPT the Ultimate Program-
ming Assistant – How far is it? (Apr. 2023). arXiv: 2304.11938 [cs].

[48] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using pre-trained models to boost
code review automation. In Proceedings of the 44th International Conference on
Software Engineering (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, (July 2022), 2291–2302.

[49] Julian von der Mosel, Alexander Trautsch, and Steffen Herbold. 2023. On the
Validity of Pre-Trained Transformers for Natural Language Processing in the
Software Engineering Domain. IEEE Transactions on Software Engineering, 49,
4, (Apr. 2023), 1487–1507.

[50] Weishi Wang, Yue Wang, Shafiq Joty, and Steven C.H. Hoi. 2023. RAP-Gen:
Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program
Repair. In Proceedings of the 31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2023). Association for Computing Machinery, New York, NY, USA, (Nov. 2023),
146–158.

[51] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and
Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code
Understanding and Generation. (May 2023). arXiv: 2305.07922 [cs].

[52] Kai Wei et al. 2021. Attentive Contextual Carryover for Multi-Turn End-to-End
Spoken Language Understanding. In 2021 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU). (Dec. 2021), 837–844.

[53] Chunyang Wu, Yongqiang Wang, Yangyang Shi, Ching-Feng Yeh, and Frank
Zhang. 2020. Streaming Transformer-basedAcousticModels Using Self-attention
with Augmented Memory. (May 2020). arXiv: 2005.08042 [cs, eess].

[54] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Auto-
mated generation of answer summary to developers’ technical questions. In
2017 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). (Oct. 2017), 706–716.

[55] Tingrui Yu, Xiaodong Gu, and Beijun Shen. 2022. Code Question Answering
via Task-Adaptive Sequence-to-Sequence Pre-training. In 2022 29th Asia-Pacific
Software Engineering Conference (APSEC). (Dec. 2022), 229–238.

[56] Yuheng Zha, Yichi Yang, Ruichen Li, and Zhiting Hu. 2023. AlignScore: Eval-
uating Factual Consistency with a Unified Alignment Function. (May 2023).
arXiv: 2305.16739 [cs].

[57] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi
Mao, Jian-Guang Lou, and Weizhu Chen. 2023. RepoCoder: Repository-Level
Code Completion Through Iterative Retrieval and Generation. (Oct. 2023).
arXiv: 2303.12570 [cs].

[58] Jieyu Zhang, Ranjay Krishna, Ahmed H. Awadallah, and Chi Wang. 2023.
EcoAssistant: Using LLM Assistant More Affordably and Accurately. (Oct.
2023). arXiv: 2310.03046 [cs].

[59] Jiayuan Zhou, Michael Pacheco, Zhiyuan Wan, Xin Xia, David Lo, Yuan Wang,
and Ahmed E. Hassan. 2021. Finding A Needle in a Haystack: Automated
Mining of Silent Vulnerability Fixes. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). (Nov. 2021), 705–716.

https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2308.00245
https://arxiv.org/abs/2006.05405
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2108.11601
https://arxiv.org/abs/2210.12353
https://arxiv.org/abs/2308.05822
https://arxiv.org/abs/2104.07567
https://arxiv.org/abs/2305.12865
https://arxiv.org/abs/2304.11938
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2005.08042
https://arxiv.org/abs/2305.16739
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2310.03046

	Abstract
	1 Introduction
	2 Approach
	2.1 User Interface
	2.2 Document Processor
	2.3 Embedder
	2.4 Document Retriever
	2.5 Response Generator

	3 Case Study
	3.1 Implementation
	3.2 Dataset
	3.3 Evaluation

	4 Challenges
	4.1 Challenges Relating to Data Retrieval
	4.2 Challenges Relating to Data Structuring
	4.3 Challenges Relating to Response Generation

	5 Discussion
	6 Threats to Validity
	7 Related Works
	8 Conclusion
	Acknowledgments

