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Abstract—Software repositories contain a wealth of data about
the software development process, such as source code, documen-
tation, issue tracking, and commit histories. However, accessing
and extracting meaningful insights from these data is time-
consuming and requires technical expertise, posing challenges
for software practitioners, especially non-technical stakeholders
like project managers. Existing solutions, such as software engi-
neering chatbots leveraging LLMs, have demonstrated significant
limitations in retrieving relevant data to answer user questions.
In this paper, we introduce RepoChat, a web-based tool designed
to answer repository-related questions by synergizing LLMs with
knowledge graphs. RepoChat operates in two steps: (1) the Data
Ingestion step, where it collects and constructs a knowledge
graph from repository metadata, such as commits, issues, files
and users; and (2) the Interaction step, where it takes the users
natural language question, translates it into graph queries using
an LLM, executes these queries against the knowledge graph, and
generates a user-friendly response to the question using the query
results as context. We evaluate RepoChat by conducting a user
study in which participants asked a series of repository-related
questions representing common developer intents. RepoChat
achieved an accuracy of 90%, correctly answering 36 out of 40
questions, demonstrating its effectiveness in accurately retrieving
relevant information to answer user’s questions. RepoChat is
available at https://repochattool.streamlit.app/, and its source
code is accessible on Zenodo [1].
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I. INTRODUCTION

Software repositories contain a plethora of information
essential to the software development process. Data such
as source code, documentation, issue tracking records, and
commit histories [2] offer valuable insights aimed at improving
software quality when harnessed effectively [3]. Software
practitioners are interested in analyzing specific questions
about their projects that require mining and interpreting
repository data [4], [5]. However, accessing and extracting
meaningful insights from repositories is often time-consuming
and demands significant technical expertise [6], [7].

Prior studies have addressed this challenge by developing
a chatbot that provides intuitive natural language interfaces
to software repositories [6], [8]. For instance, Abdellatif
et al. [6], proposed a chatbot relying on the natural lan-
guage understanding (NLU) approach to answer repository-
related questions. A challenge with the NLU approach in

chatbot development is accurately interpreting user queries
and mapping them to appropriate data retrieval actions [9].
Also, intents in the NLU approach are mapped to specific
predefined actions [10]. Recent progress in large language
models (LLMs) has demonstrated improved capabilities in
understanding natural language queries and identifying user
intents [11]. However, leveraging LLMs to build chatbots for
repository question answering (QA) has proven challenging.
Abedu et al. [8] found that LLM-based chatbots using the
retrieval augmented generation (RAG) approach often fail to
retrieve accurate data for repository-related questions, which
was observed in 83.3% in their evaluated questions.

To address these challenges, we introduce RepoChat, a
web-based tool for answering repository-related questions
based on our approach in [12]. RepoChat synergizes LLMs
and knowledge graphs to enhance the accuracy of LLM-
based chatbots for software repository question-answering. Re-
poChat operates in two steps: Data Ingestion and Interaction.
In the Data Ingestion step, the tool constructs a knowledge
graph from repository data by collecting information such as
commits, issues, and files. The knowledge graph models the
complex relationships inherent in software repositories and
store in a graph database for querying. In the Interaction step,
RepoChat translates natural language questions into graph
queries, executes these queries against the knowledge graph,
and generates coherent, user-friendly answers.

To evaluate RepoChat, we defined a set of 10 tasks rep-
resenting the intent of questions commonly asked by soft-
ware practitioners [13] and conducted a user study to assess
the tool’s performance. Our evaluation shows that RepoChat
achieves a 90% accuracy in providing correct answers to
repository-related questions. We make available the source
code for RepoChat at [1] to facilitate reproducibility and
advance the field. RepoChat is also accessible online at https:
//repochattool.streamlit.app.

The remainder of the paper is organized as follows: Sec-
tion II details the design of RepoChat, including its Data
Ingestion and interaction steps. Section III describes the tech-
nologies used for the implementation of the tool. Section IV
presents the evaluation methodology and results. Section V
reviews related work, and Section VI concludes the paper and
discusses future work.

https://repochattool.streamlit.app/
https://repochattool.streamlit.app
https://repochattool.streamlit.app


II. TOOL DESIGN

RepoChat is a web-based application that enables users
to interact with the metadata of their software repositories
using natural language. Figure 1 overviews the architecture
of RepoChat. The tool implements the approach presented
in [12]. The design follows a two-step approach: (1) the Data
Ingestion step, where the knowledge graph is constructed for
the repository data, and (2) the Interaction step, where the user
provides the question and gets a natural language response.

In the Data Ingestion step, RepoChat constructs a knowl-
edge graph from the repository’s metadata. It first collects the
relevant data such as commit history, issues, pull requests, files
and collaborator information of the project from GitHub. After
the data collection, it identifies the bug-fixing commits by
searching for the bug ID in the change log of the commits and
then uses the SZZ algorithm [14] to identify the changes that
introduced the bugs before constructing the knowledge graph.
The knowledge graph is a structured representation of entities
within the repository. It includes entities such as commits,
issues, files, pull requests and users and their relationships
based on the official GitHub schema 1. By leveraging knowl-
edge graph, the tool models complex interconnections within
the repository, which facilitates analysis and inference [15],
enabling the tool to answer complex repository-related ques-
tions. The knowledge graph follows established practices in
knowledge representation by capturing multi-relational data
in the form of triple facts (head entity, relationship, tail
entity) [16]

In the Interaction step, RepoChat translates user questions
into graph queries to retrieve the relevant information from
the knowledge graph and generate a user-friendly response.
The Interaction step has three components: Query Generator,
Query Executor and Response Generator. The Query Gener-
ator component utilizes an LLM to generate a graph query
corresponding to the user’s natural language question. The
prompt for the LLM in the Query Generator incorporates
prompt engineering best practices and guidelines [17] to guide
the LLM produce accurate and efficient queries that align
with the knowledge graph’s schema. Once the graph query is
generated, the Query Executor extracts the graph query from
the text generated by the Query Generator and executes it
against the stored knowledge graph, retrieving relevant data
to answer the user’s question. The Response Generator then
interprets the results and generates a natural language response
to the user’s question.

III. IMPLEMENTATION

RepoChat is implemented as a web application with a
backend API consisting of two endpoints—the Data Ingestion
endpoint and the chat endpoint—and a frontend interface that
allows users to interact with it. The implementation is done
with the Langchain framework, a framework that facilitates
the building of LLM applications 2 and Streamlit, a Python

1https://docs.github.com/en/graphql/overview/public-schema
2https://www.langchain.com/

framework for frontend development 3. Figure 2 demonstrates
the workflow of the data ingestion process, and Figure 3 shows
the workflow of the interaction process.

A. Backend

In the backend, the Data Ingestion endpoint collects data
from GitHub and constructs the knowledge graph, and the
Chat endpoint interacts with repository data.

1) Ingest endpoint: The ingest endpoint accepts user inputs
which include the repository URL, GitHub personal access to-
ken with permissions to query the GitHub GraphQL API4, and
the graph database credentials (URI, username, and password).

The Data Ingestion process begins by cloning the specified
repository and extracting commit information using Git com-
mands executed in a Z shell (zsh). It then utilizes the GitHub
GraphQL API to collect detailed repository metadata, includ-
ing descriptions, issues, and collaborators. To identify bug-
fixing and bug-introducing commits, it searches for the Bug
ID in the change log of the commits to identify the bug-fixing
commits and uses the R-SZZ variant of the SZZ algorithm to
identify the bug-introducing commits [18]. After collecting the
data, it constructs the knowledge graph by mapping the entities
and relationships as described in Section II. The constructed
knowledge graph is then stored in a Neo4j database. Upon
completion of the ingestion process, the endpoint returns a
status indicating the success or failure of the process.

2) Chat endpoint: The chat endpoint facilitates the Inter-
action step, handling the user’s question and generating the
relevant response. The chat endpoint accepts as input the
user’s question and OpenAI’s API key. It uses the GPT-4o
model to generate the Cypher query for the user’s question
and also generate a final response from the retrieved data.
The temperature of the GPT-4o for generating the Cypher
query is set to zero to reduce the randomness in the LLMs
generation [19]. That for generating the final response is set
to the default temperature of 0.7. Before generating the Cypher
query, the conversation history is retrieved from a Redis cache
and added to the prompt to give the LLM additional context
about the user’s previous questions and interactions. The
question is incorporated into a Cypher prompt template, which
includes the schema of the knowledge graph to guide the
language model in generating a corresponding Cypher query.
The prompt follows best practices in prompt engineering [17],
ensuring that the language model produces accurate and rele-
vant queries. Once the language model generates the Cypher
query, it is parsed through a regular expression matching to
extract only the Cypher query. This step addresses potential
issues where the model includes additional text alongside the
query, which could lead to execution errors. The extracted
Cypher query is then executed against the Neo4j database
using the Neo4j Python driver. The results retrieved from the
database are passed to a response generation model, which
constructs a natural language answer to the user’s question.

3https://streamlit.io/
4https://docs.github.com/en/graphql/guides/forming-calls-with-graphql
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The endpoint returns this user-friendly response, completing
the interaction cycle.

B. Frontend

On the front end, RepoChat provides two user interfaces: the
Data Ingestion UI and the interaction UI. The Data Ingestion
UI allows users to input the necessary information for the
ingestion process, such as repository details and authenti-
cation credentials. It communicates with the Data Ingestion
endpoint to initiate the data collection and knowledge graph
construction. The interaction UI offers a chat-like environment
where users can input their questions and receive responses. It
manages session variables and interacts with the chat endpoint,
providing a seamless and intuitive user experience. Figure 4
shows the user interface of the interaction step with RepoChat.

C. Deployment

RepoChat is deployed as a web application accessible
on https://repochattool.streamlit.app/ through standard web
browsers. Both the backend and frontend components are
hosted on a server. Also, it is available publicly on Zenodo [1]
for users to clone and run locally on their projects.

RepoChat Frontend RepoChat Backend

Redis Cache

Neo4j Database

Question Question

ResultsCypher

ResponseResponse

Conversation
History

Conversation
Thread

User

Fig. 3. Overview of Interaction workflow

IV. EVALUATION

In this section, we evaluate the accuracy of RepoChat in an-
swering software repository-related questions. Our evaluation
focuses on the tool’s ability to provide correct answers to user
queries. We did not assess user experience in this study.

We evaluated RepoChat by conducting a user study to
get real-world users to interact with the tool. We begin the
evaluation by constructing a knowledge graph of a GitHub
project to allow the users to interact with the tool. The
approach implemented in RepoChat is generalizable to GitHub
software projects that include issue IDs specified in the commit
logs of their bug-fixing commits (e.g., “fixes issue #123”),
which is necessary for the execution of the SZZ algorithm [18].
We randomly selected the “management-sdk-js” project for our
evaluation. This project meets the criteria of having issue IDs
specified in the commit logs of bug-fixing commits and is a
real-world project. We first completed the Data Ingestion step
of our approach, collecting the commit history, issue data, files,
and user information for the “management-sdk-js” project. We

https://repochattool.streamlit.app/


Fig. 4. UI showing a user’s question, the response from the chatbot, and the
context. The question was asked on the “management-sdk-js” project

then constructed the knowledge graph for the repository and
stored it in a graph database.

We evaluated RepoChat’s accuracy in responding to user
questions by conducting a user study with four participants
during the Interaction step of RepoChat. These participants are
graduate students with a median of four years of experience
working with GitHub repositories. Each participant was asked
to complete ten tasks, which represent the intents in repository-
related questions presented by Abdellatif et al. [13]. Each par-
ticipant asked ten questions corresponding to the ten tasks. We
logged the questions, the generated Cypher queries, the results
from executing the Cypher queries, and the final responses
generated to the questions. We compared the responses to the
actual information in the repository to evaluate the accuracy
of RepoChat.

RepoChat achieved an accuracy of 90%, correctly answering
36 out of the 40 questions. The four questions that RepoChat
failed to answer were the Task 8 questions posed by all four
participants, which sought to identify the developer with the
highest number of unfixed bugs. For this question, we intended
to find developers who have been assigned bugs that are still
open. However, the language model in RepoChat interpreted
the query as finding users who have created issues that are
open, leading to incorrect answers.

Overall, the 90% accuracy achieved by RepoChat demon-
strates its capability to accurately answer repository-related
questions.

V. RELATED WORKS

Chatbots have been developed to automate various software
engineering tasks. For instance, Xu et al. [20] and Cai et
al. [21] both proposed a bot, AnswerBot, to provide an-
swer summary from multiple StackOverflow posts to users’
questions. Abdellatif et al. [6] introduced MSRbot, a chatbot
layered on top of software repositories to answer common
development and maintenance questions. Similarly, Farhour et
al. [22] proposed AlphaBot, which automates the query anno-
tation process using weak supervision, improving the natural
language understanding (NLU) component of SE chatbots and
enhancing their performance. Abedu et al. [8] evaluated an
LLM-based chatbot for answering repository-related questions
and found that the approach inaccurately retrieved data for
response generation, leading to poor performance.

Recent research suggests that integrating knowledge graphs
with LLMs can enhance their capabilities by providing struc-
tured, factual knowledge that LLMs often lack [23]. In the
software engineering domain, knowledge graphs have been
used to model software repositories, enabling complex queries
and deeper insights [24], [25]. Abu-Rasheed et al. [26]
demonstrated that using knowledge graphs as a source of
factual context for LLM prompts reduces hallucinations and
improves the precision of generated content. This work is an
implementation of our approach in [12].

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced RepoChat, a web-based tool
designed to answer repository-related questions by synergiz-
ing large language models (LLMs) with knowledge graphs.
RepoChat addresses the limitations of LLM-based chatbots
for software repository-related questions by accurately in-
terpreting user questions and retrieving relevant data from
software repositories to answer them. RepoChat operates in
two steps—the Data Ingestion step and the Interaction step—to
effectively collect repository metadata, construct a comprehen-
sive knowledge graph, and utilize LLMs to translate natural
language questions into executable graph queries.

Our evaluation of RepoChat achieved a 90% accuracy in
providing correct answers to repository-related questions. This
high level of accuracy highlights the effectiveness of combin-
ing LLMs with knowledge graphs to enhance the responses
in software repository question answering. The tool not only
simplifies the process of accessing and extracting meaningful
insights from repository data but also makes this information
more accessible to non-technical stakeholders who may lack
expertise in using APIs or complex query languages.

For future work, we plan to extend RepoChat’s capabilities
by integrating LLM agents into the tool. This enhancement
will enable RepoChat to perform actions such as opening and
closing issues, as well as assisting in the code review process
of the project.
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