
Empirical Analysis of Security Vulnerabilities in
Python Packages

Mahmoud Alfadel, Diego Elias Costa, Emad Shihab
Data-driven Analysis of Software (DAS) Lab

Concordia University
Montreal, Canada

{mahmoud.alfadel, diego.costa, emad.shihab}@concordia.ca

Abstract—Software ecosystems play an important role in
modern software development, providing an open platform of
reusable packages that speed up and facilitate development tasks.
However, this level of code reusability supported by software
ecosystems also makes the discovery of security vulnerabilities
much more difficult, as software systems depend on an increas-
ingly high number of packages. Recently, security vulnerabilities
in the npm ecosystem, the ecosystem of Node.js packages, have
been studied in the literature. As different software ecosystems
embodied different programming languages and particularities,
we argue that it is also important to study other popular
programming languages to build stronger empirical evidence
about vulnerabilities in software ecosystems.

In this paper, we present an empirical study of 550 vulnerabil-
ity reports affecting 252 Python packages in the Python ecosystem
(PyPi). In particular, we study the propagation and life span of
security vulnerabilities, accounting for how long they take to
be discovered and fixed. Our findings show that the discovered
vulnerabilities in Python packages are increasing over time, and
they take more than 3 years to be discovered. The majority of
these vulnerabilities (50.55%) are only fixed after being publicly
announced, giving ample time for attackers exploitation. We
find similarities in some characteristics of vulnerabilities in PyPi
and npm and divergences that can be attributed to specific
PyPi policies. By leveraging our findings, we provide a series
of implications that can help the security of software ecosystems
by improving the process of discovering, fixing and managing
package vulnerabilities.

Index Terms—python, pypi, packages, vulnerabilities, empiri-
cal studies.

I. INTRODUCTION

Modern software systems increasingly depend on external
reusable code. This reusable code takes the form of packages
(e.g., libraries) and is available from online repositories and
often delivered by package management systems, such as npm
for Node.js packages and PyPi for Python packages. The col-
lection of packages that are reused by a community, together
with their users and contributors is denoted as a software
ecosystem. While software ecosystems have many benefits,
providing an open platform with a large number of reusable
packages that speed up and facilitate development tasks, such
openness and large scale leads to the spread of vulnerabilities
through package network, making the vulnerability discovery
much more difficult, given the heavy dependence on such
packages and their potential security problems [1].

Many software applications depend on vulnerable pack-
ages [2]. The two most critical aspects in dealing with package
vulnerabilities are how fast developers can discover and fix
the vulnerability, and how fast the applications update their
packages to accommodate the fixed versions. The delay be-
tween discovering a package vulnerability and releasing its
fix may expose the applications to threats and increase the
likelihood of an exploit being developed. Heartbleed, a secu-
rity vulnerability in OpenSSL package, is perhaps the most
infamous example. The vulnerability was introduced in 2012
and remained uncovered until April 2014. After its disclosure,
researchers found more than 692 different sources of attacks
attempting to exploit the vulnerability in applications that used
the OpenSSL package [3].

Hence, studying how vulnerabilities propagate, get discov-
ered and fixed is essential for the health of ecosystems. Recent
studies [4]–[6] analysed the impact of vulnerabilities in the
npm ecosystem. Decan et al. [5] found that it takes 24 months
to discover 50% of npm package vulnerabilities, whilst 82% of
the discovered vulnerabilities are fixed before being publicly
announced, where they are less likely to be exploited.

While npm is one of the largest software ecosystems to
date [7], the investigation of npm vulnerabilities provides an
important but restricted view of the software development
ecosystems. How much of the findings are particular to npm’s
development culture and how much of it can be generalized
to other ecosystems? We argue that it is important to study
other software ecosystems to contrast with npm and draw
more generalizable empirical evidence about vulnerabilities in
software ecosystems. Our argument is supported by previous
studies (e.g., [8]–[11]) that show differences across ecosys-
tems. For instance, Decan et al. [11] found that PyPi ecosystem
has a less complex and intertwined network than ecosystems
such as npm and CRAN. This is partially due to Python’s
robust standard library, which discourage developers of using
too many external packages in contrast to JavaScript and R
ecosystems.

This motivated us to take a new look and provide a wider
picture by studying security vulnerabilities in the PyPi ecosys-
tem. Furthermore, Python is a major programming language
in the current development landscape, used by 44.1% of
professional developers according to the 2020 Stack-Overflow



survey [12]. We conduct an exploratory research to study se-
curity vulnerabilities prevalence and their respective discovery
and fix timeline in the Python ecosystem. Inspired by the study
on the npm ecosystem [5], we aim to answer the following
research questions (RQs):

• RQ1: How are vulnerabilities distributed in the PyPi
ecosystem?

• RQ2: How long does it take to discover a vulnerability
in the PyPi ecosystem?

• RQ3: When are vulnerabilities fixed in the PyPi ecosys-
tem?

• RQ4: How long does it take to fix a vulnerability in the
PyPi ecosystem?

Also, we compare our study, where applicable, to the npm
ecosystem [5].

To answer our research questions, we analyzed 550 vulner-
ability reports that affect 252 Python packages of which 7,536
package versions are affected. We observed several interesting
findings. In some aspects, our study yields similar findings
to the ones observed in the npm study [5]. For example,
vulnerabilities in both ecosystems take a significantly long
time to be discovered, approximately 2 years in the npm and
3 years in the PyPi ecosystem.

However, in other aspects, our results show a drastic de-
parture from npm’s reported findings. For example, unlike
npm, the majority of PyPi vulnerabilities (50.55%) were only
fixed after being publicly announced, which may increase the
chances of having the vulnerability exploited by attackers.
Our further investigation attributes such observation to the
particularities of the PyPi ecosystem’s protocol of disclosing
and publishing vulnerabilities.

Based on our empirical findings, we offer several important
implications to researchers and practitioners to help them
provide a more secure environment for software ecosystems.
To summarize, this paper makes the following contributions:

• We perform the first empirical study to analyse security
vulnerabilities in the Python ecosystem. Our study covers
12 years of PyPi reported vulnerabilities, affecting 252
Python packages.

• We compare the findings of our study to a previous
study conducted on the npm ecosystem. We also provide
implications that aim at a more secure development
environment for software ecosystems.

• We make our dataset of this study publicly available to
facilitate reproducibility and future research [13].

Paper organization.
Section II describes the terminology and the process of col-
lecting and curating our dataset. In Section III, we dive into
our study by motivating and describing the methods used to
investigate each research question, as well as presenting the
findings obtained in our study. We discuss the results and
implications of our study in Section IV. We state the threats
to validity and limitations to our study in Section V. Related
work is presented in Section VI. Finally, Section VII concludes
our paper.

II. METHODOLOGY

In this section, we present an overview of software vulner-
abilities and the terminology adopted throughout this study.
We also explain how we collect and prepare the data used to
investigate our research questions.

A. Terminology

A software vulnerability is a weakness that allows unau-
thorized actions and/or malformed access to a given software
project [14]. The lifetime of a vulnerability typically goes
through various stages, according to when a vulnerability was
first introduced, discovered and publicly announced. To ground
our study, we use the various stages and define dates specific
to a package vulnerability:

• package vulnerability introduction date indicates when
the vulnerability was first introduced in the affected
package, i.e., the release date of the first affected version
by the package vulnerability.

• package vulnerability discovery date indicates the date
in which the package vulnerability was discovered and
reported to the maintainer of the package.

• package vulnerability publication date marks the date
when the vulnerability information was publicly an-
nounced.

• package vulnerability fix date indicates the release date
of the first fixed version of the package vulnerability.

Next, we explain how we collect and process the data used
to answer our RQs.

B. Data Collection and Processing

Data Collection. To conduct our study, we collect two
datasets: (1) the Python (PyPi) packages and (2) the security
vulnerabilities that affect those PyPi packages. We obtain the
information of PyPi packages from Libraries.io [15], and the
security vulnerabilities from the Snyk.io dataset [16].

To collect the PyPi packages, we use the service Libraries.io
since it provides the PyPi packages along with their respective
metadata. The metadata provides detailed information about
each package such as, the existing versions and the creation
timestamps of those versions. Such data is needed to map the
affected versions given by our vulnerabilities dataset. Also, we
need the versions timestamps to perform time-based analyses,
such as the time it takes to discover and fix a vulnerability
with respect to the first affected package version.

To collect the vulnerabilities for the PyPi packages, we
resort to the dataset provided by Snyk.io [17]. Snyk.io is a
platform that monitors security reports to provide a dataset for
different package ecosystems, including PyPi, and publishes a
series of information about vulnerabilities. We show in Table I
an example of a security report extracted from Snyk.io dataset
for the package pillow. For each affected package, the dataset
specifies the type of vulnerability, the vulnerability constraint
(this helps us to specify the affected versions) and the fixed
versions (remediation range). Moreover, the report contains
the dates when the vulnerability was discovered and the date
when it was published on Snyk.io dataset. Severity level



TABLE I: Example of a security report extracted from Snyk.io
for the pillow package.

Information Example

Vulnerability type Buffer Overflow
Affected package name pillow
Platform type PyPi
Vulnerable constraint (affected versions) < 6.2.2
Vulnerability Discovery date 03 Jan, 2020
Vulnerability Published date 10 Jan, 2020
Severity level High
Remediation ≥ 6.2.2

has three possible values, high, medium, and low, which are
assigned manually by the Snyk.io team based on the Common
Vulnerability Scoring System (CVSS) [18].

Data Processing. As a pre-processing step, we need to
determine all the vulnerable packages and their associated ver-
sions. First, we obtain the list of all versions of all vulnerable
packages from the Libraries.io dataset. Then, we determine
the affected versions of the vulnerable packages by cross-
referencing the vulnerability constraint of the Snyk.io report
(e.g., < 6.2.2) and resolving the versions by using the SemVer
tool [19]. In the particular example of Table I, we resolve the
constraint < 6.2.2 to a list of 68 versions of the pillow

package affected by the Buffer Overflow vulnerability.
We want to analyze the time needed to discover a package

vulnerability, hence, we need to identify the version that was
first affected by a vulnerability. To that aim, once we identify
the list of affected versions, we consider the first affected
version as the oldest version of the vulnerable package. In the
example of Table I, the first affected version was the package
version 1.0.0.

We also aim to investigate the time it takes to fix a
package vulnerability once the vulnerability is discovered.
This requires that we identify the first fixed version of the
package vulnerability. Similar to the identification of the first
affected version, once we resolve the remediation range by
using the SemVer tool, we collect a list of versions in which
the vulnerability is considered fixed. We then assign the first
fixed version as the oldest package version present in the list
of fixed versions. In the example of Table I, the first fixed
version is the package 6.2.2.

Our initial dataset contains 622 vulnerability reports on the
PyPi packages. From this original set, 62 vulnerabilities do
not match any packages in the Libraries.io database and were
removed from our analysis. Following the filtration process
applied by Decan et al. [5], we also removed 10 vulnerabilities
of type “Malicious Package”, because they do not really
introduce vulnerable code. These vulnerabilities are packages
with names close to popular packages (a.k.a. typo-squatting)
in an attempt to deceive users at installing their harmful
packages. At the end of this filtering process, our dataset
contains 550 vulnerability reports. Such reports affect 252
Python packages in PyPi. Note that these 252 Python packages
have released a total of 12,210 versions, in which, according
to the vulnerable constraint of reports, 7,536 versions (61.7%)

TABLE II: Descriptive statistics of the PyPi dataset.

Source Stats #

Libraries.io PyPi packages 116,527
Versions of PyPi packages 893,978

Snyk.io

Security reports on PyPi 550
Corresponding vulnerable packages 252
Versions of vulnerable packages 12,210
Affected versions by vulnerability 7,536

contain at least one reported vulnerability. Table II shows the
descriptive statistics of our dataset.

As part of our study goal is to compare our results to
the npm study, we verify how our dataset compares with the
one used by Decan et al. [5]. The npm dataset contains 399
vulnerabilities which affect 269 npm packages with a similar
number of versions (14,931) and similar number of affected
versions (6,752). Both datasets are comparable in terms of the
number of vulnerability reports and the number of affected
packages and versions. Finally, note that we collect our dataset
in the similar timeline as the npm study in order to make our
study comparable and to perform a relatively fair comparison
between our findings and the ones reported from npm [5], i.e.,
we collect all vulnerability reports that were published before
Jan. 2018.

III. RESULTS

In this section, we present the findings of our empirical
study. For each RQ, we present a motivation, describe the
approach used to tackle the research question and discuss the
results of our analysis.

A. RQ1: How are vulnerabilities distributed in the PyPi
ecosystem?

Motivation. Prior work reported a steady growth of
packages in software ecosystems [11], [20]. This growth
may have serious repercussions for package vulnerabilities,
facilitating their spread to high number of packages and
applications, and magnifying their potential for exploitation.
Therefore, in this RQ we investigate how software package
vulnerabilities are distributed in the PyPi ecosystem. We
examine the distribution from three perspectives: a) the trend
of discovered vulnerabilities over time; b) how many versions
of packages are affected by vulnerabilities; and c) what are
the most commonly identified types of vulnerabilities in PyPi.

Approach. To shed light on the distribution of software
vulnerabilities in the PyPi software ecosystem, we leverage
the following approaches:

In the first analysis, we focus on investigating the trend of
discovered vulnerabilities over time in the PyPi ecosystem. In
essence, we want to investigate how the number of discovered
vulnerabilities change and how many packages are affected
as the ecosystem grows? To do that, we group the discovered
vulnerabilities by the time they were reported, and present



Years

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s/

pa
ck

ag
es

2006 2008 2010 2012 2014 2016

0

20

40

60

80

100

120

140 Vulnerabilities
Packages

Fig. 1: Introduction of vulnerabilities and packages being
affected per year.

the evolution of the number of vulnerabilities and packages
affected per year. We also break the analysis per severity level,
provided by Snyk.io, to help us quantify the level of threat of
newly discovered vulnerabilities in the ecosystem.

In the second analysis, we investigate the vulnerabilities
distribution over package versions. A single vulnerability can
impact many versions of a package, making it harder for
dependents to select a version unaffected by this vulnerability.
To that aim, we utilize the vulnerability constraint provided
by the Snyk.io dataset (mentioned in Table I, Section II-B) to
identify the list of affected versions by a vulnerability.

The third analysis has the goal of reporting the most
commonly identified vulnerability types in the PyPi
ecosystem. The Snyk.io dataset associates each vulnerability
report with a Common Weakness Enumeration (CWE) [21],
aiming at categorizing vulnerabilities based on the explored
software weaknesses (e.g. Buffer Overflow). Currently, CWE
contains a community-developed list of 700 common software
weaknesses. We examine the frequency of vulnerability types
to establish a profile of the vulnerabilities in the PyPi
ecosystem. In adittion, we also break our analysis by severity
level to investigate how the threat levels are distributed in
each vulnerability type.

Findings. Figure 1 shows the number of discovered vulnera-
bilities as well as the number of packages being affected over
the years. We observe a steady increase in the number
of vulnerable packages, accompanying the PyPi ecosystem
growth. In 2012, in the middle of this ecosystem lifetime,
27 packages were discovered to be vulnerable, in 2016 this
number increased three-fold, i.e., 90 vulnerable packages were
newly discovered.

Figure 2 presents the introduction of vulnerabilities over
time by the severity level, showing that the majority of newly
discovered vulnerabilities are of medium and high severity.
Overall, the vulnerabilities classified with medium severity
make the bulk of 71.64% of all vulnerabilities, followed
by high severity vulnerabilities representing 20.73% of our
dataset. These findings are worrisome to the PyPi community,

Years

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

2006 2008 2010 2012 2014 2016

0

20

40

60

80

100 High
Medium
Low

Fig. 2: Introduction of vulnerabilities per year by the severity
levels: high, medium, and low.

0
10

0
20

0
30

0
40

0
50

0

Packages

N
um

be
r o

f v
er

si
on

s

(a) Number of ver-
sions.

0
10

0
20

0
30

0

Packages

N
um

be
r o

f a
ffc

et
ed

 v
er

si
on

s

(b) Number of af-
fected versions.

0
20

40
60

80
10

0

Packages

Vu
ln

er
ab

le
 v

er
si

on
s 

in
 p

ac
ka

ge
s 

(%
)

(c) Percentage of af-
fected versions.

Fig. 3: Distribution of versions and affected versions of the
252 vulnerable packages of our dataset. In median, packages
have 29 versions and 18 affected versions once a vulnerability
is discovered.

as such critical vulnerabilities have a higher chance of being
exploited, i.e., allow an attacker to execute malicious code and
damage the software.

Figure 3 shows bean plots of three distributions: the number
of versions of the 252 vulnerable PyPi packages in our dataset
(Figure 3a), the number of affected versions in such vulner-
able packages (Figure 3b), and the percentages of vulnerable
versions in the packages (Figure 3c). We observe that most
packages have dozens of versions (median number of versions
is 29), and tend to have, on median, 18 vulnerable versions.
The affected versions represent an alarmingly high proportion
of all versions in a package, considering the package versions
available at discovery time of the vulnerability. Figure 3c
shows that half of the packages have at least 68% of their
versions affected by a vulnerability, when a vulnerability is
first discovered. In 15% of the packages, the share of vulner-
able versions can represent 90% of all released versions at the
time the vulnerability was discovered. The result indicates that
vulnerabilities are not limited to a few versions of a package,
making it difficult for dependents to rollback to an unaffected



TABLE III: Ranking of the 5 most commonly found vulnera-
bility types (CWE) in PyPi.

Rank Vulnerability type (CWE) Freq. Frequency by severity
High Medium Low

1 Cross-Site-Scripting (XSS) 130 4 118 8
2 Denial of Service (DoS) 72 11 59 2
3 Arbitrary Code Execution 66 39 26 1
4 Information Exposure 60 8 44 8
5 Access Restriction Bypass 34 10 23 1

version if a fix is not available at the time of the vulnerability
discovery.

Since vulnerabilities can have different types (e.g.,
Buffer Overflow and SQL injection), we examine the
different vulnerability types given by the Common Weakness
Enumeration (CWE) that PyPi packages have. While we
found that packages in the PyPi ecosystem are affected
by 90 distinct CWEs, the majority of the discovered
vulnerabilities (65.82%) are concentrated on 5 main
types. Table III shows the distribution of the vulnerabilities
over the 5 most commonly found CWEs. As we can see,
XSS is the most common CWE with 130 vulnerabilities.
Also, we observe that most of the XSS vulnerabilities are of
medium severity. For the remaining CWEs, the proportion
in each type varies from 72 vulnerabilities of type Denial
of Service (DoS) to 34 of type Access Restriction Bypass
CWE. Breaking down the proportions of vulnerabilities by
severity shows that the majority of vulnerabilities from these
types are of medium and high severity, indicating that they
represent a serious threat to affected applications. This is
particularly severe for the vulnerabilities of Arbitrary Code
Execution type, where we found a higher frequency of high
severity vulnerabilities than of medium and low severity
levels combined.

Comparison to the npm ecosystem. The vulnerabilities found
in npm [5] followed a similar distribution to our findings in the
PyPi ecosystem. In npm, a) the new discovered vulnerabilities
are increasing over the time, and the majority of those vulner-
abilities are also of medium and high severity; b) such npm
vulnerabilities are not limited to a few versions, i.e., 75% of
vulnerable packages have more than 90% of their versions
being affected by a vulnerability at the discovery time; c)
XSS was also found to be the most common vulnerability
among npm vulnerabilities (i.e., 105 occurrences out of 399
vulnerabilities overall).

The number of vulnerabilities is increasing over time
in the PyPi ecosystem accompanying the growth of the
ecosystem. Newly reported vulnerabilities tend to be
of medium and high severity and affect the majority
of versions of a software package. The majority of
vulnerabilities are concentrated on five vulnerability
types, with Cross-Site-Scripting (XSS) being the most
common.

B. RQ2: How long does it take to discover a vulnerability in
the PyPi ecosystem?

Motivation. This question aims to investigate how long it
takes to discover package vulnerabilities in the PyPi ecosys-
tem. Answering this question is relevant since the longer a
vulnerability remains undiscovered, the higher the chances it
will be exploited by attackers. Also, since security maintainers
need to discover vulnerabilities as soon as possible to mitigate
the harmful impact, providing them with information regarding
the life cycle of a vulnerability discovery is vital. Therefore,
in this question, we study how long does it take to discover
a vulnerability since it was first introduced in the package’s
source-code?

Approach. Our goal is to calculate the time required to
discover a vulnerability in the PyPi ecosystem. To do so, we
collect the discovery dates of all the vulnerabilities from the
Snyk.io dataset. Then, we obtain the timestamps of the vul-
nerabilities introduction date from Libraries.io (as described
in Section II-B). Note that the vulnerability introduction date
is the release date of the first affected version by the package
vulnerability. We then calculate the time difference between
the vulnerabilities discovery date and the vulnerabilities intro-
duction date.

To gain more insight about the time it takes to discover the
vulnerabilities, we conduct a survival analysis method (a.k.a.
event history analysis) [22]. The survival analysis is a non-
parametric statistic used to measure the survival function from
lifetime data where the outcome variable is the “time until
the occurrence of an event of interest”. For example, it may
be used to measure the time duration an employee remains
unemployed after a job loss. In the context of our study, we
are interested in the time it takes to discover a vulnerability.
We use the non-parametric Kaplan-Meier estimator [23] to
conduct the survival analysis, as used in previous studies [5],
[24].

Findings. Figure 4 presents the survival probability for the
vulnerability before it gets discovered. The Left-side plot of
Figure 4 reveals that the probability that a PyPi package
vulnerability takes 37 months to be discovered is 50%.
In practice, this shows that vulnerabilities are not discovered
early in the project development. Also, this long process for
discovering vulnerabilities explays why a single vulnerability
tends to affect dozens of package versions once it is first
discovered (RQ1).

Since vulnerabilities impact packages at different
severity levels, we break down the analysis of discovered
vulnerabilities by their severity. The right-side plot of Figure 4
presents the survival probability for the event “vulnerability
is discovered” by their severity and depicts no significant
differences among the severity levels. We confirm this result
by using the log-rank statistical method [25] to investigate
the statistical significance of the results with a confidence
level 95% (p-value = 0.94). PyPi vulnerabilities take a
substantial long time to be discovered and reported,



0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y
Severity All

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y

Severity High Medium Low

Fig. 4: Kaplan-Meier survival probability for package vulner-
abilities to get discovered for all vulnerabilities (left-side plot)
and for vulnerabilities broken by severity (right-side plot).

independently of their severity.

Comparison to the npm ecosystem. We found a significant
difference on the time it takes to discover a vulnerability
between the PyPi and npm packages. Vulnerabilities are dis-
covered with a median of 24 months in the npm ecosystem,
considerably sooner than the 37 months required for PyPi
package vulnerabilities. Given the popularity of Javascript pro-
grams, npm became a prime target for attackers [6], which may
have contributed to a faster identification of vulnerabilities.
Overall, npm and PyPi vulnerabilities still take considerably
long time to discover vulnerabilities, indicating an issue in the
process of testing and detecting vulnerabilities in open source
packages.

Package vulnerabilities in the PyPi ecosystem take, on
median, more than 3 years to get discovered, regardless
of their severity.

C. RQ3: When are vulnerabilities fixed in the PyPi ecosystem?

Motivation. Vulnerable packages remain affected even after
they are discovered [5], [26]. In fact, in many cases, a method
of exploitation is reported when the vulnerability is made
public, which increases the chances of the vulnerability being
exploited by attackers [27]. Therefore, it is of paramount
importance that developers release a fix of the package vulner-
ability quickly. In open-source ecosystems, a quick fix is the
only weapon at developers disposal for minimising the risk
of exploitation. Hence, in this question we provide package
maintainers and users with information about at which stage a
vulnerability fix is released in the PyPi ecosystem with respect
to its discovery and publication date, i.e., we investigate
whether a vulnerability fixed version is released before or
after the vulnerability becomes publicly announced to better
understand the threat level of PyPi package vulnerability.

Approach. Our goal is to study when vulnerabilities are fixed.
To that aim, we categorise a vulnerability fix based on the
stages of a vulnerability lifecycle. In other words, we analyse if

ALL High Medium Low

FixBeforeDisc
FixBetweenDiscPub
FixAfterPub
Never Fixed

Severity

Pe
rc

en
ta

ge
 o

f v
ul

ne
ra

bi
lit

ie
s

0

20

40

60

80

100

Fig. 5: Percentages of vulnerabilities according to the release
time of the first fixed version by severity.

the fix version was released before the vulnerability discovery
time, in between the discovery time and publication time, or
after the vulnerability is made public.

To achieve our goal, we obtain, for each vulnerability, the
date of the first fixed version and compare it to the discov-
ery and publication dates. The fix can then be categorized
as: “before the vulnerability has been discovered” or short
FixBeforeDisc, “between discovery and publication date” or
short FixBetweenDiscPub, “after the vulnerability has been
made public” or short FixAfterPub, and “Never Fixed”. We
then report the frequencies of fixes in each category.

Findings. Figure 5 shows the distribution of vulnerabilities
according to the four stages in which the first fixed version
was released. We can observe that 50.55% of vulnerabilities
were fixed after the vulnerability has been made public,
with the observation being more noticeable for vulnerabilities
of medium and low severity (H = 35.96%, M = 54.57%, and L
= 52.38%). Such results indicate that the majority of the PyPi
package vulnerabilities become public before having any patch
addressed to fix them.

For the remaining vulnerabilities, 30.36% of all vulnera-
bilities were already fixed even before their discovery. One
possible explanation is that the maintainers of such affected
packages prefer to disclose the vulnerability and report its
information while working in silence on a fix to mitigate its
impact and reduce the chances of being exploited by potential
attackers. Finally, 17.09% of the vulnerabilities were fixed
between the vulnerability discovery date and the vulnerability
publication date.

Comparison to the npm ecosystem. Unlike npm, our findings
show that PyPi package vulnerabilities tend to be fixed only
after publication. In npm, 82% of vulnerabilities are fixed
after the vulnerability discovery time and before its publication
time. Our findings for PyPi show a different picture, with the
close majority of vulnerabilities (50.55%) being fixed after
their publication. Such differences can be attributed to com-
munity practices and policies in each ecosystem for reporting
and disclosing vulnerabilities. We discuss these policies, their



limitations, and how to better control them in section IV.

The majority of vulnerabilities (50.55%) are only fixed
after the vulnerability is made public, while 30.36%
are fixed before the vulnerability is first discovered,
and 17.09% are fixed between the discovery and
publication dates.

D. RQ4: How long does it take to fix a vulnerability in the
PyPi ecosystem?

Motivation. So far, we have observed that the majority of
vulnerabilities are fixed after the vulnerability is reported to
be discovered, either in between discovery and publication
(17.09%) or after the vulnerability publication (50.55%). In
this question, we focus on those vulnerabilities and investigate
how long it takes for a fix patch to be released after a vulnera-
bility is reported to be discovered. Vulnerabilities that remain
un-patched for a long time after being reported and discovered
can leave an open channel for successful attacks. Also, a
healthy open source package should have a quick response to
most vulnerability reports. Therefore, answering this question
will give us important insights about the prioritization of fixing
vulnerabilities of a package.

Approach. To achieve our goal, we focus now on only those
vulnerabilities that get fixed after being discovered, i.e., we
omit vulnerabilities that have their fixed versions before the
discovery date (30.36%). For the remaining vulnerabilities, we
conduct the survival analysis method to provide information
about how long it takes to fix a vulnerability after being
discovered. We calculate the time difference between the
release date of the first fixed version and the vulnerability
discovery date. Similarly to the analysis conducted in Sec-
tion III-B, we use the Kaplan-Meier estimator [23] for the
survival analysis. Furthermore, to understand if the severity
level of a vulnerability has any impact on the time required to
fix a vulnerability, we also conduct the previous analysis per
severity level.

Findings. Figure 6 presents the survival probability for the
vulnerabilities to be fixed after being discovered. As we can
observe from the left-side plot, the probability that a
vulnerability is fixed 4 months following its discovery is
50%. Also, we can observe that there is a small share (8.37%)
of those vulnerabilities that still take more than a year to get
fixed after being discovered.

The right-side plot of Figure 6 presents the previous analysis
per severity level. Using the log-rank statistical method [25],
we found no statistically significant difference in the time to
fix vulnerabilities of different severities with a confidence level
95% (p-value = 0.41).

We further analyse the vulnerable PyPi packages that took
more than a year for their vulnerabilities to be fixed after
the discovery date, to gain insights as to why they take such
a long time to address potentially impactful vulnerabilities.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y

Severity All

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y

Severity High Medium Low

Fig. 6: Kaplan-Meier survival probability for vulnerable pack-
ages to get fixed after being discovered.

Upon close manual inspection, we found that 64.7% of these
packages are not popular (i.e., have less than 1000 downloads)
and are not actively maintained, with the latest version been
released two years ago, in 2018. We expect the developers
of those vulnerable packages to be unresponsive to security
reports.

Comparison to the npm ecosystem. Our findings show that
PyPi package vulnerabilities overall take longer to be fixed
than those found in npm. In npm, it takes a median of one
month to fix vulnerabilities, regardless of their severity. In
PyPi, we found that PyPi vulnerabilities take a median of
4 months to release a fix after the vulnerability has been
discovered.

Vulnerabilities in PyPi take, on median, 4 months to be
fixed. The severity level of a PyPi vulnerability does
not make a statistically significant difference for the
time needed to fix the reported vulnerabilities.

IV. DISCUSSION AND IMPLICATIONS

In this section, we discuss more details about our results
with comparison to the npm ecosystem (Section IV-A). Then,
we highlight the implications of our study to researchers and
practitioners (Section IV-B).

A. Comparison to the npm ecosystem

As shown in our comparison to the npm, some of our
findings generalized also to the npm ecosystem, while others
did not. Therefore, in this section, we delve into some of the
reasons both ecosystems exhibit some similar characteristics
as well as explanations about the divergent findings.

Vulnerability distribution. Both studies found that the num-
ber of newly discovered vulnerabilities are growing over time.
We attribute the reason for this increase to the increasing
popularity of open source components combined with the
awareness of vulnerabilities in such components [2]. At first
sight, this is a healthy sign of both ecosystems. The increase in
the number of reported vulnerabilities is a result of coordinated
efforts in increasing awareness and continuous process testing



packages to identify the vulnerabilities before they can be
exploited. However, the growth of the ecosystem calls also for
the continuous and comprehensive effort for analysing package
vulnerabilities to mitigate their negative impact.

We observed that the vast majority of the vulnerabilities
identified in the npm and PyPi ecosystems are of medium
severity.We believe that this observation is due to the fact
that many of the tools used by security package maintainers
to discover vulnerabilities in open source packages are not
qualified to find more complex and critical issues although
they are good at discovering new vulnerabilities. Robust tools
that combine exhaustive techniques like program analysis,
testing, and verification are required to find high-hanging
vulnerabilities [28].

We observed that Cross-Site-Scripting (XSS type or CWE-
79), is the most common vulnerability found in both ecosys-
tems. The dominance of the XSS CWE vulnerability can be
justified by 1) its effectiveness in granting unauthorized access
into a system and the ease in which the attack method can be
applied on a web application [29], [30]; and 2) the community
efforts in taming this well-known vulnerability, as identifying
XSS has been a top concern by OWASP [31] for more than 15
years. We conjecture that other types of vulnerabilities might
be not as easily detectable, or easy to exploit, taking away the
incentive of attackers in searching such vulnerabilities in the
PyPi and npm ecosystems.
Vulnerabilities discovery, publication, and fix. In npm, the
majority of reported vulnerabilities (82%) were fixed after
they were discovered and before the publication date [5].
Contrasting to these findings, we found 50.55% of the PyPi
package vulnerabilities to be fixed after the vulnerability has
been made public. A possible reason for this is that 3 out of 4
vulnerabilities in PyPi get published right after their discovery,
which reduces the time window for a vulnerability to be fixed.

To gain more insights, we investigate the protocol and
policies in place for reporting and publishing vulnerabilities of
both npm and PyPi ecosystems. We find that npm ecosystem
has a protocol for reporting and publishing vulnerabilities,
which enforces a 45 days waiting time before the publication
of a vulnerability [32], aiming to give package developers a
time window to fix the vulnerability. In PyPi, however, If a
vulnerability is assessed to have low risk of being exploited
or causing damage, the PyPi security team prefers to publish
the vulnerability right after its discovery [33]. We noticed that
most vulnerabilities (74.55%) are published as soon as they
are discovered, effectively reducing the time window for a
vulnerability to be fixed before publication.

An example of that, is a security issue that was found in
elementtree package [34]. In this issue, the vulnerability could
cause serious problems (high-severity level) through a Use-
After-Free (UAF) [35] vulnerability related to incorrect use of
dynamic memory, where the attacker causes the program to
crash by accessing the memory after it has been freed. Yet,
the PyPi security team stated that in this specific case, an
attacker could not exploit this vulnerability because it requires
a privileged position that is not often possible from the attacker

side. Such specificities and polices is a supportive reason
behind having majority of vulnerabilities being fixed after the
public disclosure. Note that the risk assessment conducted by
the PyPi security team is different from the CVSS severity
level assigned to a vulnerability in the Snyk.io dataset [36].

B. Implications

In the following, we highlight the most important impli-
cations driven by our findings. We provide implications to
both researchers and practitioners by discussing the aspects
that the development community needs to address in order to
provide a more secure development environment for package
ecosystems.
There is a dire need for more effective process to detect
vulnerabilities in open source packages. Our findings
show that vulnerabilities in Python packages are hidden,
on median, 3 years before being first discovered (RQ2).
These findings point to inadequacy process of testing open
source packages against vulnerabilities. In fact, both npm
and PyPi allows to publish a package release to the registry
with no security checks exist before publishing the package.
An open avenue for future research is the development of
a process that ensures some basic security checks (code
vetting) before publishing a release of a package. Inspired
by other ecosystems, such as mobile application stores [37],
[38], npm and PyPi could enforce some testing before
publishing a new release of a package. Recently, there have
been several research attempts to improve the security of
the packages uploaded and distributed via the ecosystems,
e.g., [39], [40] for PyPi, and Synode [41], NoRegrets [42]
for npm. The vetting process can start with the most
popular packages and move gradually, given the growth
of the software ecosystems. Also, the code vetting process
can focus on specific categories of security issues, e.g.,
malicious code or code that steals sensitive information
from users, which is triggered by performing XSS attacks,
the most common vulnerability found in npm and PyPi (RQ1).

PyPi needs to employ a better protocol of publishing
package vulnerabilities. The current process of disclosing
and publishing a package vulnerability in Python seems to
remain ad-hoc. Our findings show that over 50% of PyPi
package vulnerabilities were unfixed when they were first
publicly announced (RQ3), and took a couple of months to
be fixed and released (RQ4). To better control the process of
reporting and disclosing package vulnerability information
and limit its leakage, practitioners should refine the process
to balance the advantages from an early and public-disclosure
process of a vulnerability versus private-disclosure process.
A possible improvement could be by forestalling the
vulnerability publication until valued package users and
vendors are privately notified about the vulnerability to
give them a little some time to prepare properly before the
vulnerability is publicly disclosed. Such controlled process
is adopted by various internet networking software packages
like BIND 9 and DHCP [43]. The npm ecosystem defines



to some extent a strict timeline for reporting a vulnerability
providing only 45 days for package maintainers to fix their
vulnerabilities before publishing them. Yet, its efficacy is not
known.

PyPi should deprecate packages that suffer continuously
from vulnerabilities. In our study, we observed that the vast
majority of packages that take longer to fix vulnerabilities
are due to project inactivity (RQ4). A relatively new idea
introduced by Pashchenko et al. [44] is the concept of “halted
package”, which is a package where the time to release the
latest version surpasses by a large margin the time maintainers
took to release previous versions of the package. This concept
can be used to identify packages that are becoming less
maintained over time, and therefore, should be replaced by a
better maintained alternative in the software ecosystem.

PyPi and npm should provide package users with
vulnerability information to support them with the
selection process of packages. Previous work [45] has
studied several factors that influence the adoption of packages
by developers. Researchers report that the occurrence of
vulnerabilities and the number of vulnerabilities not quickly
fixed in the packages are two important security-related
factors. Currently, both npm [46] and PyPi [47] package
managers provide basic quality metrics on package popularity
for each package such as, list of versions, downloads count,
stars count, and number of open issues. However, they lack
any information on security issues. A methodology, similar
to the one used in our study, could be employed to define
a lightweight security metrics, to support developers when
selecting their packages. An example of such metrics is to
calculate the average time to patch a package vulnerability
after been reported to be discovered (RQ4). This metric will
give package users insights about the prioritization of fixing
vulnerabilities of the package.

PyPi should employ tools to audit vulnerabilities when
installing the packages. Our findings show that package
vulnerabilities remain unfixed for a few months even after
being publicly announced. Hence, Python applications that
make use of such vulnerable packages could be exposed to
vulnerabilities through their dependencies. Therefore, develop-
ers should be aware of vulnerabilities in their packages before
installing them. Similar to the security audit tool provided by
npm (i.e., npm audit) [48], which warn developers when
installing a known vulnerable package, PyPi community could
employ a similar tool that instantly warns developers about
vulnerable packages once the vulnerable package version is
installed. Recently, GitHub acquired DependaBot tool [49],
a tool that tracks vulnerabilities in several ecosystems. Re-
searchers should work on evaluating such tools to understand
their effectiveness and uncover their limitations.

V. THREATS TO VALIDITY

In this section, we state some threats to validity that our
study is subject to, as well as the actions we took to mitigate
these threats.

A. Internal Validity

The internal validity is related to the validity of the vulnera-
bilities dataset used in our analysis. Our dataset is restricted to
a limited number of vulnerabilities (i.e., 550 security reports).
We believe that many vulnerable packages may have been
discovered and fixed but not yet reported. However, since Snyk
team monitors more widely used packages [50], we expect our
results to be representative of high-quality Python packages.

Also, we collect the PyPi vulnerabilities reports that were
published before Jan. 2018. Results might differ if we consider
vulnerability reports published after Jan. 2018. However, since
a key point of our study is to compare our findings to the ones
reported from npm, we collect our dataset in the same timeline
as the npm study in order to make our study comparable.
Furthermore, our vulnerability dataset contains more than 500
reports that cover 12 years of PyPi reported vulnerabilities,
and many of these reports are related to a popular and most
used Python packages (e.g., Django, Flask, requests).

Finally, in our analysis, we used the vulnerability severity
level provided by Snyk.io to quantify their impact. However,
the severity level published by Snyk.io is not necessarily
uncontested, as discussed in Section IV-A, PyPi security
advisories might have had different assessments on the severity
of some vulnerabilities. Unfortunately, the severity analysis
data provided by the PyPi ecosystem is not publicly available,
therefore, we had to rely on the Snyk.io dataset as the
only source of information for the severity of vulnerabilities.
Also, vulnerability sources other than Snyk could be used,
however, our choice of Snyk is influenced by several previous
studies [5], [51], [52]

B. External Validity

External validity concerns the generalization of our results
to other software ecosystems and programming languages. As
shown in our comparison to the npm, some of our findings
generalized also to the npm ecosystem, while other findings
did not. Although our methodology and approach could be
applied to other software ecosystems, results might be (and
unsurprisingly so) quite different from PyPi, due to charac-
teristics such as policies, community practices, programming
language features and other factors belonging to software
ecosystems [10], [53]. Therefore, a replication of our work
using packages written in programming languages other than
PyPi and npm is required to establish a more complete view
of vulnerabilities in software ecosystems.

VI. RELATED WORK

In this section, we discuss the related literature by focusing
on studies that investigate software ecosystems in general, and
studies that approach the link of security-related issues and
software ecosystems.



Software Ecosystems. Several aspects of Software Ecosystems
have been subject of great interest in the related literature. For
example, some works analysed the ecosystem’s growth [54],
[55]. Fard et al. [54] showed that the number of dependencies
in npm projects is 6 on average and the number is always in
a growing trend.

Other works qualitatively studied the fragility and breaking
changes in software ecosystems. Bogart et al. [53] compared
Eclipse, CRAN, and npm in terms of practices that are used by
developers to decide about causes of API breaking changes.
They found that all three ecosystems are significantly different
in terms of practices towards breaking changes, due to some
particular community values in each ecosystem.

A few studies conducted a comparison across software
ecosystems. Decan et al. [9], [11] empirically compared the
dependency network evolution in 7 ecosystems (including
npm). They discovered some differences across ecosystems
that can be attributed to ecosystems’ policies. For instance,
the CRAN ecosystem has a policy called “rolling release”,
where packages should always be compatible with the latest
release of their dependencies since CRAN can only install
the latest release automatically. Hence, developers could face
issues when updating because a change in one package can
affect many others.

While the aforementioned work served as a motivation to
our investigation, the focus of our study is fundamentally
different. Our work can be used as to complement previous
work by providing a view on another important quality metric
of software ecosystems: security vulnerabilities.

Security Vulnerabilities in Ecosystems. The potential
fragility of the ecosystems shown in previous studies (e.g., [8],
[53]) has motivated researchers to examine security vulnerabil-
ities, as vulnerabilities are one of the most problematic aspects
of software ecosystems [1]. A study by Pham et al. [56]
presented an empirical study to analyse vulnerabilities in the
source code, and found that most vulnerabilities are recurring
due to software code reuse and package adoption.

Other studies focused on analysing vulnerabilities in soft-
ware ecosystems. Hejderup et al. [4] analysed 19 npm vulner-
able packages, and found that the number of vulnerabilities
is growing over time. Zimmermann et al. [6] studied the
security risk of the npm ecosystem dependencies and showed
that individual packages could impact large parts of the entire
ecosystem. They also observed that a very small number of
maintainers (20 accounts) could be used to inject malicious
code into thousands of npm packages, a problem that has
been increasing over time. Zerouali et al. [57] identified that
vulnerabilities that affect npm packages are common in official
Docker containers. A study by Zapata et al. [58] found that
73.3% of the 60 studied projects were actually safe because
they did not make use of the vulnerable functionality.

The management of package vulnerabilities was also studied
in other ecosystems like packages written in Java. Kula et
al. [59] explored how developers respond to the available
security awareness mechanisms such as library migration, and

found that developers were unaware of most vulnerabilities in
dependencies and prefer to use outdated versions to reduce
the risks of breaking changes. Ruohomen [60] conducted a
release-based time series analysis for vulnerabilities in Python
web applications, and found the appearance probabilities
of vulnerabilities in different versions of the applications
followed the Markov model property. Also, Pashchenko et
al. [61] conducted interviews with developers of C/C++, Java,
JavaScript, and Python to understand how they manage their
packages with respect to security vulnerabilities. The results
indicated a high demand for high-level metrics to show how
maintained and secure is a package. Our study methodology
(as suggested in Section IV-B) can be employed to provide
developers with such metrics for package selection process.

Ponta et al. [62], [63] proposed a code-centric approach to
detect and mitigate open source vulnerabilities for Java and
Python industry grade applications. Pashchenko et al. [64],
[65] proposed an approach that addresses the over-estimation
problem of approaches that report vulnerable dependencies
in the Java ecosystem. The authors highlighted that many of
the vulnerable dependencies were not actually deployed, and
hence, their impact was neglected.

The work that is most close to our study is the npm study by
Decan et al. [5]. Their work focused on analysing vulnerability
in the npm package ecosystem. Inspired by their study, and
supported by the fact that different ecosystems have different
characteristics, we conducted our study to examine security
vulnerabilities in the PyPi ecosystem. We studied several
aspects related to vulnerability propagation, their discovery
and fix timeliness. By comparing our findings with the ones
reported by Decan et al. [5], we identified some particularities
of the PyPi ecosystem and devise important recommendations
to improve the safety of PyPi.

VII. CONCLUSION

In this paper, we conduct an empirical study of security
vulnerabilities in the PyPi ecosystem, evaluating over than 500
package vulnerabilities that affect 252 packages. In particular,
we explore vulnerabilities propagation, discovery, and fixes.
Also, we compare our findings with the npm ecosystem [5].

Our results show that PyPi vulnerabilities are increasing
over time, affecting the large majority of package versions.
Moreover, our findings reveal shortcomings in the process of
discovering vulnerabilities in PyPi packages, i.e., they take
more than 3 years to discover them. Additionally, we observe
that the timing of vulnerability patches does not closely align
with the public disclosure date, leaving open windows and
chances for an attacker exploitation. We note that over 50%
of the vulnerabilities were patched only after public disclosure.
Finally, our comparison to npm vulnerabilities reveals in some
aspects a departure from the npm’s findings, which can be
attributed to ecosystems polices.

Future work should focus on broadening our study to other
ecosystems and work on the development of package security
tools that help practitioners at selecting and using secure
software packages.



REFERENCES

[1] H. H. Thompson, “Why security testing is hard,” IEEE Security &
Privacy, vol. 1, no. 4, pp. 83–86, 2003.

[2] J. Williams and A. Dabirsiaghi, “The unfortunate reality of insecure
libraries,” Asp. Secur. Inc, pp. 1–26, 2012.

[3] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter
of heartbleed,” in Proceedings of the 2014 conference on internet
measurement conference, 2014, pp. 475–488.

[4] J. Hejderup, “In dependencies we trust: How vulnerable are dependen-
cies in software modules?” 2015.

[5] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in 2018
IEEE/ACM 15th International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2018, pp. 181–191.

[6] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,”
in 28th USENIX Security Symposium (USENIX Security 19), 2019, pp.
995–1010.

[7] “Libraries - the open source discovery service,” (Accessed on
01/10/2021). [Online]. Available: http://libraries.io/

[8] C. Bogart, C. Kästner, and J. Herbsleb, “When it breaks, it breaks: How
ecosystem developers reason about the stability of dependencies,” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), Nov 2015, pp. 86–89.

[9] A. Decan, T. Mens, and M. Claes, “On the topology of package
dependency networks: A comparison of three programming language
ecosystems,” in Proccedings of the 10th European Conference on
Software Architecture Workshops, 2016, pp. 1–4.

[10] ——, “An empirical comparison of dependency issues in oss packaging
ecosystems,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2017, pp. 2–
12.

[11] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empirical Software Engineering, vol. 24, no. 1, pp. 381–416, 2019.

[12] “Stack overflow developer survey 2020,”
https://insights.stackoverflow.com/survey/2020#
technology-programming-scripting-and-markup-languages-all-respondents,
(Accessed on 01/10/2021).

[13] E. S. M. Alfadel, D. Costa, “Dataset: Empirical analysis of security
vulnerabilities in python packages — zenodo,” https://zenodo.org/record/
4158611, October 2020, (Accessed on 10/29/2020).

[14] M. Dowd, J. McDonald, and J. Schuh, The art of software security
assessment: Identifying and preventing software vulnerabilities. Pearson
Education, 2006.

[15] A. Nesbitt and B. Nickolls, “Libraries.io Open Source Repository and
Dependency Metadata. v1.2.0,” https://doi.org/10.5281/zenodo.808273,
2018, [Online; accessed 10/10/2020].

[16] Snyk.io, “The state of open-source security,” 2017, [Online;
Available: https://snyk.io/]. [Online]. Available: \url{https://snyk.io/
stateofossecurity/pdf/The%20State%20of%20Open%20Source.pdf}

[17] “Vulnerability db — snyk,” https://snyk.io/vuln, (Accessed on
10/10/2020).

[18] L. Allodi and F. Massacci, “Comparing vulnerability severity and
exploits using case-control studies,” ACM Transactions on Information
and System Security (TISSEC), vol. 17, no. 1, pp. 1–20, 2014.

[19] “semver · pypi,” https://pypi.org/project/semver/, (Accessed on
10/10/2020).

[20] A. Decan, T. Mens, and E. Constantinou, “On the evolution of technical
lag in the npm package dependency network,” in 2018 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2018, pp. 404–414.

[21] MITRE, “Cwe,” https://cwe.mitre.org/about/index.html, (Accessed on
10/10/2020).

[22] O. Aalen, O. Borgan, and H. Gjessing, Survival and event history
analysis: a process point of view. Springer Science & Business Media,
2008.

[23] E. L. Kaplan and P. Meier, “Nonparametric estimation from incomplete
observations,” Journal of the American statistical association, vol. 53,
no. 282, pp. 457–481, 1958.

[24] A. Decan and T. Mens, “What do package dependencies tell us about
semantic versioning?” IEEE Transactions on Software Engineering,
2019.

[25] V. Bewick, L. Cheek, and J. Ball, “Statistics review 12: survival
analysis,” Critical care, vol. 8, no. 5, 2004.

[26] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2201–2215.

[27] C. Sabottke, O. Suciu, and T. Dumitras, , “Vulnerability disclosure in
the age of social media: Exploiting twitter for predicting real-world
exploits,” in 24th {USENIX} Security Symposium ({USENIX} Security
15), 2015, pp. 1041–1056.

[28] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: whitebox fuzzing for
security testing,” Communications of the ACM, vol. 55, no. 3, pp. 40–44,
2012.

[29] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand, “Security slicing
for auditing common injection vulnerabilities,” Journal of Systems and
Software, vol. 137, pp. 766–783, 2018.

[30] R. Johari and P. Sharma, “A survey on web application vulnerabilities
(sqlia, xss) exploitation and security engine for sql injection,” in 2012
International Conference on Communication Systems and Network Tech-
nologies. IEEE, 2012, pp. 453–458.

[31] OWASP, “Owasp,” https://www.owasp.org/index.php/Main Page, 2019,
(Accessed on 10/10/2020).

[32] “Reporting a vulnerability in an npm package — npm documentation,”
https://docs.npmjs.com/reporting-a-vulnerability-in-an-npm-package,
(Accessed on 10/10/2020).

[33] PyPi, “Security · pypi,” https://pypi.org/security/, 2018, (Accessed on
10/10/2020).

[34] “Issue 27863: multiple issues in elementtree module - python tracker,”
https://bugs.python.org/issue27863, (Accessed on 10/10/2020).

[35] “Cwe - cwe-416: Use after free (3.3),” https://cwe.mitre.org/data/
definitions/416.html, (Accessed on 10/10/2020).

[36] “Scoring security vulnerabilities 101: Introduc-
ing cvss for cves — snyk,” https://snyk.io/blog/
scoring-security-vulnerabilities-101-introducing-cvss-for-cve/,
(Accessed on 10/10/2020).

[37] “Android – google play protect,” https://www.android.com/intl/en ca/
play-protect/, (Accessed on 10/27/2020).

[38] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security,
2012, pp. 229–240.

[39] D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta, “Ty-
posquatting and combosquatting attacks on the python ecosystem,” in
2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). IEEE, 2020, pp. 509–514.

[40] ——, “Poster: Towards using source code repositories to identify soft-
ware supply chain attacks,” in CCS ’20, 2020.

[41] C.-A. Staicu, M. Pradel, and B. Livshits, “Understanding and automat-
ically preventing injection attacks on node. js,” Tech. Rep. TUD-CS-
2016-14663, TU Darmstadt, Department of Computer Science, Tech.
Rep., 2016.

[42] G. Mezzetti, A. Møller, and M. T. Torp, “Type regression testing
to detect breaking changes in node. js libraries,” in 32nd European
Conference on Object-Oriented Programming (ECOOP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[43] “Internet systems consortium,” https://www.isc.org/#, (Accessed on
10/10/2020).

[44] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2018, pp. 1–10.

[45] E. Larios-Vargas, M. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting third-party libraries: The practitioners’ perspective,” arXiv
preprint arXiv:2005.12574, 2020.

[46] “lodash - npm,” https://www.npmjs.com/package/lodash, (Accessed on
10/10/2020).

[47] “Pillow · pypi,” https://pypi.org/project/Pillow/, (Accessed on
10/10/2020).

[48] “Auditing package dependencies for security vulnera-
bilities — npm documentation,” https://docs.npmjs.com/
auditing-package-dependencies-for-security-vulnerabilities, (Accessed
on 10/10/2020).

[49] “Dependabot,” https://github.com/dependabot, (Accessed on
10/28/2020).



[50] “How snyk finds out about new vulnerabilities – knowledge
center — snyk,” https://support.snyk.io/hc/en-us/articles/
360003923877-How-Snyk-finds-out-about-new-vulnerabilities,
(Accessed on 10/24/2020).

[51] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and
A. Ihara, “Towards smoother library migrations: A look at vulnerable
dependency migrations at function level for npm javascript packages,”
in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2018, pp. 559–563.

[52] B. Chinthanet, R. G. Kula, S. McIntosh, T. Ishio, A. Ihara, and
K. Matsumoto, “Lags in the release, adoption, and propagation of npm
vulnerability fixes,” Empirical Software Engineering, 2019.

[53] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 109–120.

[54] A. M. Fard and A. Mesbah, “Javascript: The (un) covered parts,”
in Software Testing, Verification and Validation (ICST), 2017 IEEE
International Conference on. IEEE, 2017, pp. 230–240.

[55] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of
the javascript package ecosystem,” in 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). IEEE, 2016, pp.
351–361.

[56] N. H. Pham, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Detection
of recurring software vulnerabilities,” in Proceedings of the IEEE/ACM
international conference on Automated software engineering. ACM,
2010, pp. 447–456.

[57] A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-
Barahona, “On the impact of outdated and vulnerable javascript pack-
ages in docker images,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2019, pp. 619–623.

[58] R. E. Zapata, R. G. Kula, B. Chinthanet, T. Ishio, K. Matsumoto, and
A. Ihara, “Towards smoother library migrations: A look at vulnerable
dependency migrations at function level for npm javascript packages,”
in 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2018, pp. 559–563.

[59] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[60] J. Ruohonen, “An empirical analysis of vulnerabilities in python pack-
ages for web applications,” in 2018 9th International Workshop on
Empirical Software Engineering in Practice (IWESEP). IEEE, 2018,
pp. 25–30.

[61] I. Pashchenko, D.-L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” Proc. of CCS’20,
2020.

[62] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric
and usage-based analysis of known vulnerabilities in open-source soft-
ware,” in 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2018, pp. 449–460.

[63] ——, “Detection, assessment and mitigation of vulnerabilities in open
source dependencies,” Empirical Software Engineering, vol. 25, no. 5,
pp. 3175–3215, 2020.

[64] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vuln4real: A methodology for counting actually vulnerable dependen-
cies,” IEEE Transactions on Software Engineering, 2020.

[65] ——, “Vulnerable open source dependencies: Counting those that mat-
ter,” in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2018, pp. 1–10.


