
Assessing and Enhancing the Security of Software
Packages

Mahmoud Alfadel

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Software Engineering) at

Concordia University

Montréal, Québec, Canada

December 2021

© Mahmoud Alfadel, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mahmoud Alfadel

Entitled: Assessing and Enhancing the Security of Software Packages

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Sbastien Le Beux

External Examiner
Dr. Kevin Schneider

Examiner
Dr. Nikolaos Tsantalis

Examiner
Dr. Tse-Hsun (Peter) Chen

Examiner
Dr. Mohammad Mannan

Supervisor
Dr. Emad Shihab

Approved by
Dr. Lata Narayanan, Chair

2021
Dr. Mourad Debbabi, Dean
Gina Cody School of Engineering and Computer Science

Abstract

Assessing and Enhancing the Security of Software Packages

Mahmoud Alfadel, Ph.D.

Concordia University, 2022

Modern software applications are developed with increasing reliance on open source software

packages (i.e., dependencies). This dependence on open source packages is highly beneficial to

software development, since it speeds up development tasks and improves software quality. How-

ever, it also has implications to the security of software applications. Dependencies with security

vulnerabilities have the potential to expose hundreds of applications to security breaches, potentially

causing huge financial and reputation damages. Hence, it is essential to build a solid understanding

of the security health of software packages and how developers react once the vulnerabilities are

found in the packages they depend on.

To this end, in this thesis, we conduct empirical studies that shed light on the security state

of software packages from two aspects. In the first aspect, we study the lifecycle of security

vulnerabilities in packages. We analyse how long it takes to discover and fix security vulnerabilities

that affect software packages, to better evaluate the response of software ecosystems to security

vulnerabilities. Once the vulnerability is discovered, it is also critical to mitigate its impact on

software applications. Therefore, in the second aspect, we evaluate the effectiveness of existing

mechanisms in mitigating the impact of package vulnerabilities. We assess the role of two popular

mechanisms (i.e., the code review process and software bots) for tackling security vulnerabilities in

software packages. The insights from our studies in this thesis can help researchers and practitioners

better understand the security implications of adopting software packages. Also, leveraging our

findings in the studies, we provide a series of implications that can help improve the process of

discovering, fixing and managing package vulnerabilities. Finally, the implications of our work

lead us to build several prototype tools to increase developers’ awareness to vulnerable packages

iii

that affect their projects, and help them better plan the maintenance of their software packages from

a security perspective.

iv

Statement of Originality

I, Mahmoud Alfadel, hereby declare that I am the sole author of this thesis. All ideas and

inventions attributed to others have been properly referenced. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners. I understand that my thesis

may be made electronically available to the public.

v

Dedications

To my family.

vi

Acknowledgments

I would like to express my greatest gratitude to my supervisor, Dr. Emad Shihab, for his

guidance and unconditional support. This thesis would have been impossible to complete without

his aid and support. Emad, thank you for giving me the opportunity to tackle this challenge, for

believing in me. You were there every time I hesitated to take the next step and guided me to

success. I have learned a great deal from you beyond as a researcher.

I want to thank my committee members, Drs. Nikolaos Tsantalis, Tse-Hsun (Peter) Chen,

Mohammad Mannan, and Kevin Schneider for taking the time to read and critique my work and

for their valuable suggestions and comments.

To all my lab mates, thank you, you made this experience more enjoyable. I wish you all the

success through your journey.

vii

Contents

List of Figures xii

List of Tables xv

1 Introduction and Research Statement 1

1.1 Introduction . 1

1.2 Research Statement . 3

1.3 Thesis Overview . 3

1.3.1 Chapter 2: Background and Literature Review 4

1.3.2 Chapter 3: Analysing the Lifecycle of Package Vulnerabilities 4

1.3.3 Chapter 4: Examining the Discoverability of Package Vulnerabilities Im-

pacting Software Applications . 5

1.3.4 Chapter 5: Studying The Role of Code Review in Enhancing Package Security 5

1.3.5 Chapter 6: Evaluating the Use of Dependabot for Patching Package Vulner-

abilities . 6

1.4 Thesis Contributions . 7

1.5 Related Publications . 8

1.6 Thesis organization . 8

2 Background and Literature Review 10

2.1 Terminology . 11

2.2 Literature review . 11

viii

2.2.1 Work Related to Software Packages and Vulnerabilities 12

2.2.2 Work Related to Solutions for Mitigating the Impact of Vulnerable Packages 14

2.3 Chapter Summary . 16

3 Analysing the Lifecycle of Package Vulnerabilities 18

3.1 Introduction . 18

3.2 Study Design . 21

3.2.1 Terminology . 22

3.2.2 Data Collection and Processing . 22

3.3 Study Results . 25

3.4 Discussion and Implications . 36

3.4.1 Comparison to the npm ecosystem . 36

3.4.2 Implications . 38

3.5 Tool Support: Dep-Health . 40

3.6 Threats to Validity . 42

3.7 Related Work . 43

3.8 Chapter Summary . 44

4 Examining the Discoverability of Package Vulnerabilities Impacting Software Appli-

cations 46

4.1 Introduction . 47

4.2 NPM Dependency Management . 50

4.3 Classifying Vulnerabilities . 51

4.3.1 Vulnerability Lifecycle . 51

4.3.2 Discoverability Levels . 52

4.4 Study Design . 52

4.4.1 Research Questions . 53

4.4.2 Data Collection . 53

4.5 Approach . 56

4.6 Study Results . 58

ix

4.7 Discussion . 67

4.7.1 Severity levels of public vulnerabilities 67

4.7.2 Project evolution vs. discoverability levels 68

4.8 Tool Support: Dep-Reveal . 69

4.9 Implications . 71

4.10 Threats to Validity . 73

4.11 Related Work . 74

4.12 Chapter Summary . 76

5 Studying The Role of Code Review in Enhancing Package Security 77

5.1 Introduction . 78

5.2 Study Design . 80

5.2.1 Project selection . 81

5.2.2 Identification of PR candidates . 82

5.2.3 Manual validation of the identified PR candidates 85

5.3 Study Results . 87

5.4 Discussion and Implications . 100

5.4.1 Comparison with advisories dataset . 101

5.4.2 Implications . 103

5.5 Threats to Validity . 106

5.6 Related Work . 107

5.7 Chapter Summary . 108

6 Evaluating the Use of Dependabot for Patching Package Vulnerabilities 110

6.1 Introduction . 111

6.2 Background . 113

6.3 Study Design . 115

6.4 Study Results . 117

6.5 Implications . 132

6.5.1 Implications to practitioners . 132

x

6.5.2 Implications to Dependabot maintainers 133

6.6 Tool Support: Dep-Combine . 134

6.7 Threats to validity . 136

6.8 Related Work . 137

6.9 Chapter Summary . 139

7 Conclusion and Future Work 140

7.1 Conclusion . 140

7.1.1 Analysing the Lifecycle of Package Vulnerabilities 141

7.1.2 Examining the Discoverability of Package Vulnerabilities Impacting Soft-

ware Applications . 141

7.1.3 Studying The Role of Code Review in Enhancing Package Security 142

7.1.4 Evaluating the Use of Dependabot for Patching Package Vulnerabilities . . 142

7.2 Future Work . 143

7.2.1 Examining Fine-Grained Solutions to Address Package Vulnerability in Soft-

ware Applications . 143

7.2.2 Exploring Different Data Sources for Package Vulnerabilities 144

7.2.3 Replication in an Industrial Setting . 144

7.2.4 Evaluating the Proposed Tools . 145

7.2.5 Understanding Developers Perception on the Studied Aspects 145

7.2.6 Other Languages of Software Ecosystems 145

Bibliography 146

References 146

xi

List of Figures

Figure 3.1 Introduction of vulnerabilities and packages being affected per year. 27

Figure 3.2 Introduction of vulnerabilities per year by the severity levels: high, medium,

and low. 27

Figure 3.3 Distribution of versions and affected versions of the 252 vulnerable packages

of our dataset. In median, packages have 29 versions and 18 affected versions once

a vulnerability is discovered. 28

Figure 3.4 Kaplan-Meier survival probability for package vulnerabilities to get discov-

ered for all vulnerabilities (left-side plot) and for vulnerabilities broken by severity

(right-side plot). 31

Figure 3.5 Percentages of vulnerabilities according to the release time of the first fixed

version by severity. 33

Figure 3.6 Kaplan-Meier survival probability for vulnerable packages to get fixed after

being discovered. 35

Figure 3.7 Screen-shot of the DEPHEALTH website showing its main page (Dep Health

— Home, 2021). The columns’ names that appeared inside the red-colored borders

are the main metrics calculated for each vulnerable package. 41

Figure 3.8 A Screen-shot showing some meta-data for vulnerabilities in the Accesscon-

trol package. 42

Figure 4.1 Illustration of the methodology for classifying the discoverability level of a

single vulnerable dependency (Package A) for an application. 56

xii

Figure 4.2 Approach for identifying and classifying JavaScript applications affected by

vulnerable dependencies. 57

Figure 4.3 Bar-plots showing the share of the examined applications with one or more

(1+) vulnerable dependency, overall and per discoverability levels. 60

Figure 4.4 Box-plots showing the distributions of the percentages of vulnerable depen-

dencies in the applications, per discoverability level. 61

Figure 4.5 Kaplan-Meier survival probability for affected applications with a publicly

known vulnerability. 65

Figure 4.6 Scatter plot showing the correlation analysis of number of commits vs. num-

ber of days. 66

Figure 4.7 Screen-shot of the DepReveal website showing its interface and the recently

analysed repositories. 70

Figure 4.8 Screen-shot of the generated Dependency Discoverability Graph for the atom

application using DEPREVEAL. 70

Figure 4.9 Screen-shot of the generated report Period of Discoverability for the atom

application using DEPREVEAL. 71

Figure 5.1 An overview of our study approach. 80

Figure 5.2 Example of a security issue raised during code review. 86

Figure 6.1 An example of Dependabot security PR. 115

Figure 6.2 Violin-plot showing the distribution of the amount of time for Dependabot

security PRs to be processed (merged and not merged). Note the logarithmic scale

on the x-axis. 119

Figure 6.3 Example of Dependabot PR closed for being superseded by another Depend-

abot PR (R1). 122

Figure 6.4 Example of Dependabot PR closed because the dependency was already

updated (R2). 122

xiii

Figure 6.5 Example of a Dependabot PR closed due to Dependabot’s error in the re-

solved version (R6). As the PR title shows, the affected dependency Cryptiles

should be updated from 3.1.2 to 4.1.3, while the diff change shows a different

version update from 3.1.2 to 3.1.3. 123

Figure 6.6 Screen-shot of the DEPCOMBINE website showing its main interface (Dep-

Combine — Home, 2021). 134

Figure 6.7 Screen-shot of the DEPCOMBINE website showing the fetched Dependabot

pull requests. 135

Figure 6.8 Screen-shot showing the new PR created by the tool DEPCOMBINE, which

combines the selected PRs in the analysed repository (Pull Request #5 by mahmoud-alfadel/test,

2021). 136

xiv

List of Tables

Table 2.1 Definition of terms used in the thesis. 11

Table 3.1 Example of a security report extracted from Snyk.io for the pillow package. 23

Table 3.2 Descriptive statistics of the PyPi dataset. 25

Table 3.3 Ranking of the 5 most commonly found vulnerability types (CWE) in PyPi. 29

Table 4.1 Statistics of the 6,546 studied JavaScript applications. 54

Table 4.2 Descriptive statistics on the npm advisories dataset. 56

Table 4.3 The percentage of vulnerabilities caused by the lack of available fix patch

(Package-to-blame) vs. caused by the lack of dependencies update (Application-to-blame). 63

Table 4.4 The share of applications with one or more (1+) public dependency vulnera-

bilities per severity levels. 67

Table 4.5 The percentage of vulnerable applications at different historical snapshots,

per discoverability level. 68

Table 5.1 Overview of Projects. 83

Table 5.2 List of refined security-related keywords. 85

Table 5.3 Distribution of security-related issues distributed at different granularities, per

project. 88

Table 5.4 Types of security issues identified during code review and their frequency. . . 91

Table 5.5 Response themes for handling the 171 identified security issues. 96

Table 5.6 Cross-reference the types of security issues identified during code review with

advisories dataset for the studied projects. The values in parentheses represent the

number of affected projects. 102

xv

Table 6.1 Statistics of the 2,904 studied JavaScript projects. 117

Table 6.2 Analysis of the merged and not merged Dependabot security PRs. 118

Table 6.3 The manually extracted reasons for not merging Dependabot security PRs. . 121

Table 6.4 The 15 features selected to model the time to merge Dependabot security PRs. 127

Table 6.5 Results of the mixed-effects logistic model - sorted by χ2 in descending order. 130

xvi

Chapter 1

Introduction and Research Statement

1.1 Introduction

Modern software systems increasingly depend on open source software (OSS) packages. These

packages (e.g., dependencies) are available from online repositories and often delivered and man-

aged by package management systems, such as npm for JavaScript packages and PyPi for Python

packages. The collection of packages that are reused by a community, together with their history

and contributors is denoted as a software ecosystem.

While software ecosystems have many benefits, providing an open platform with a large number

of reusable packages that speed up development tasks, such openness may lead to the spread of

vulnerabilities through a package network, making the vulnerability discovery and fixing much

more difficult. A vulnerability is a flaw that allows unauthorized actions and/or malformed access

to a given software project, if exploited (Dowd, McDonald, & Schuh, 2006). For example, Contrast

Security, a software security company, reported that 80% of the code written in todays applications

depend on external packages, and approximately one fourth of package downloads have known

vulnerabilities (Williams & Dabirsiaghi, 2012).

These vulnerabilities can impact an organization if exploited. In fact, there are many examples

of such cases. One such example is the Equifax cybersecurity incident (Equifax, 2017), where

a vulnerability in the Apache Struts package led to unauthorized access to consumers personal

information and credit card numbers. Prior studies, e.g., (Zimmermann, Staicu, Tenny, & Pradel,

1

2019a) showed that a significant proportion (up to 40%) of all npm packages depend on code with

at least one publicly known vulnerability, which increases the risk of a vulnerable package in a

software application.

Hence, among the most critical aspects in dealing with package vulnerabilities is how fast

developers can discover and fix the vulnerability, and how fast the applications update their packages

to incorporate the fixed versions. The delay between discovering a package vulnerability and

releasing its fix may increase the likelihood of an exploit. Heartbleed, a security vulnerability in

OpenSSL package, is perhaps the most infamous example. The vulnerability was introduced in

2012 and remained uncovered until April 2014. After its disclosure, researchers found more than

692 different sources of attacks attempting to exploit the vulnerability in applications that used the

OpenSSL package (Durumeric et al., 2014).

Therefore, it is vital to provide developers with information regarding the lifecycle of vul-

nerability discovery and fix. Once the package vulnerability is discovered and reported, it is also

essential to mitigate its harmful impact, and hence, understanding the effectiveness of existing

solutions in addressing the security of open-source packages is also important, to uncover the

possible issues in these solutions to improve them.

To this end, the goal of our research is to assess and enhance the security of open source software

packages in software ecosystems. To achieve this goal, we address the following two aspects:

(1) Understand the lifecycle of package vulnerabilities. For this goal, we perform two studies, as

follows:

(a) A study to understand the lifecycle of vulnerability discovery and fix, e.g., how long

vulnerabilities take to be discovered and fixed?

(b) Vulnerable packages have a large negative impact on software applications that rely on

them. Hence, we study the impact of vulnerable packages on dependent applications,

e.g., how often and for how long are applications exposed to vulnerable packages?

(2) Assess the role of existing mechanisms in improving package security. For this goal, we

evaluate two mechanisms:

2

(a) We explore the role of code review process in finding and mitigating security issues that

affect software packages.

(b) We evaluate the role of a popular software bot, called Dependabot, in tracking and fixing

vulnerable packages that affect the software application.

1.2 Research Statement

Recent studies have shown that the use of packages boosts productivity and software quality,

reducing time-to-market (Inoue, Sasaki, Xia, & Manabe, 2012). However, packages also introduce

major problems, as they may increase the impact of security vulnerabilities (Lim, 1994a). A security

vulnerability in a highly-used package may directly impact hundreds of applications, leading to

significant financial costs and reputation loss. These concerns and motivations led to the formulation

of this thesis problem statement, which is stated as follows:

With the popularity of software packages and given the fact that modern software sys-

tems are increasingly depending on packages, we hypothesize that it is challenging for

developers to manage the security when depending on packages. We conduct empirical

studies to advance our understanding and assessment of package security vulnerabilities

and understand the effectiveness of existing mechanisms to mitigate the impact of these

vulnerabilities. We use our findings to propose tool prototypes to improve the mainte-

nance of software packages in software projects.

1.3 Thesis Overview

In this section, we provide a brief overview of the thesis. The rest of the thesis consists of

six chapters, which can be classified into three main parts. In the first part (Chapter 2), we provide

background and related work to the thesis. In the second part (Chapters 3, 4, 5, and & 6), we present

four empirical studies related to the two aspects aforementioned in Section 1.1. Finally, Chapter 7

concludes the thesis and discusses avenues for future work.

3

1.3.1 Chapter 2: Background and Literature Review

This chapter contains two main sections. The first section presents a background and terminol-

ogy related to the concept of package management systems. The second section presents existing

work that is related to this thesis. In particular, we focus on studies that investigate software

packages in general, and studies that approach the security-related issues in package. Also, we

discuss work related to existing studies that evaluate mechanisms used to enhance the package

security.

1.3.2 Chapter 3: Analysing the Lifecycle of Package Vulnerabilities

Security vulnerabilities are among the most pressing problems in open source software pack-

ages. It may take a long time to discover and fix vulnerabilities in packages.

To better understand how software packages in ecosystems are impacted by security vulnerabil-

ities, in Chapter 3, we present an empirical study of 550 vulnerability reports affecting 252 Python

packages in the Python ecosystem (PyPi). In particular, we study the propagation and life span of

security vulnerabilities, accounting for how long they take to be discovered and fixed. Our findings

show that the discovered vulnerabilities in Python packages are increasing over time, and often

take more than 3 years to be discovered. The majority of these vulnerabilities (50.55%) are only

fixed after being publicly announced, giving ample time for attackers exploitation. We compare

the findings in our study to a similar study on the npm ecosystem. We find similarities in some

characteristics of vulnerabilities in PyPi and npm. Yet, we observe some divergences that can be

attributed to specific PyPi policies. By leveraging our findings, we provide a series of implications

that can enhance the security of software ecosystems by improving the process of discovering, fixing

and managing package vulnerabilities. Finally, we support our analysis by building a tool (called

DEPHEALTH) that aims to help software developers when selecting their packages, e.g., we employ

some of the study analysis and provide it to developers through a public web site. Such a tool can

give package users insights about the prioritization of discovering and fixing package vulnerabilities.

This work was published in the IEEE International Conference on Software Analysis, Evolution

and Re-engineering (SANER) and was invited to submit an extended version of the manuscript for

4

a special issue of the Empirical Software Engineering journal (EMSE).

1.3.3 Chapter 4: Examining the Discoverability of Package Vulnerabilities Impact-

ing Software Applications

The reliance on vulnerable packages (i.e., dependencies) is a major threat to software systems.

Software applications that rely on packages with publicly known vulnerabilities are exposed to a

higher risk, since the vulnerability is known to the community and the level of exploitation reaches

its peak.

To better understand the impact of a package vulnerability on a software application, in Chapter

4, we examine the package vulnerabilities based on their disclosure timeline (i.e., discoverability

aspect). First, we define three discoverability levels for dependency vulnerabilities based on their

timeline: hidden (unknown), reported, and public. Then, we conduct a large-scale empirical study

involving 6,546 active and mature open-source JavaScript applications. Our results show that 67.9%

of the examined applications depend on at least one vulnerable package. Taking discoverability

into account, we found that although the majority of the affected applications (99.42%) depend on

packages with hidden vulnerabilities at the time of analysis, 206 (4.63%) applications were still

exposed to dependencies with public vulnerabilities. The major culprit for the applications being

affected by public vulnerabilities is the lack of dependency updates, i.e., in 90.8% of the vulnerable

packages, a fix for the vulnerable dependency is available but not patched in the application. More-

over, we find that applications remain affected by public dependency vulnerabilities often for a long

time (103 days), which can put their software systems at risk. Finally, we devise DEPREVEAL,

a tool that reports the historical exposure of JavaScript projects to dependency vulnerabilities, to

help developers better plan the maintenance of their software project. This work was submitted

and currently under review at the ACM Transactions on Software Engineering and Methodology,

TOSEM. 2021.

1.3.4 Chapter 5: Studying The Role of Code Review in Enhancing Package Security

Modern code review is a widely-used practice that project maintainers adopt to improve the

overall quality of software. Much of prior work has shown that code review has an important role

5

in improving software quality, however, in-depth analysis on the effectiveness of code review in

relation with security issues is limited.

Therefore, in Chapter 5, we explore the role of code review in finding and mitigating security

issues. In particular, we investigate 10 active and popular JavaScript projects to understand what

types of security issues are raised during code review, and what kind of mitigation strategies are

employed by project maintainers to address them. We study 171 pull-requests (PRs) with raised

security concerns, which represent a small fraction of all PRs in the studied projects. However, we

find that such issues are discussed at length by project maintainers. Moreover, we found that code

review is effective at identifying certain types of issues, e.g., Race Condition, Access Control, and

ReDOS; we observe that dealing with such issues require in-depth knowledge of the project domain

and implementation specifics of the issue. When analysing how maintainers respond to the raised

security issues, we found that ∼ 55% of the issues are frequently addressed and mitigated. In other

cases, security issues ended up not being fixed or are ignored by project maintainers, which may

put the project users at risk. Leveraging our findings, we offer several implications that support the

role of reviewing code for security concerns.

1.3.5 Chapter 6: Evaluating the Use of Dependabot for Patching Package Vulnera-

bilities

As software projects depend on multiple external dependencies, developers struggle to con-

stantly track and check for corresponding security vulnerabilities that affect their project depen-

dencies. To help mitigate this issue, Dependabot has been created, a bot that issues pull-requests

(PRs) to automatically update vulnerable dependencies. However, little is known about the degree

to which developers adopt Dependabot to help them update vulnerable dependencies.

In Chapter 6, we investigate 2,904 JavaScript open-source GitHub projects that subscribed to

Dependabot. Our results show that the vast majority (65.42%) of the created security-related PRs

are accepted, often merged within a day. Through manual analysis, we identify 7 main reasons

for Dependabot security PRs being not merged, mostly related to concurrent modifications of the

affected dependencies rather than Dependabot failures. Interestingly, only 3.2% of the manually

examined PRs suffered from build breakages. Finally, we model the time it takes to merge a

6

Dependabot security pull-request using characteristics from projects, the fixed vulnerabilities and

issued PRs. Our model reveals 5 significant features to explain merge times, e.g., projects that

have relevant experience with Dependabot security PRs are most likely to be associated with rapid

merges. Surprisingly, the severity of the dependency vulnerability and the potential risk of breaking

changes are not strongly associated with the merge time. Our findings indicate that Dependabot

provides an effective platform for increasing awareness to dependency vulnerabilities and help

developers mitigate vulnerability threats in JavaScript projects. Leveraging some implications of

our findings, we build DEPCOMBINE, a tool on top of Dependabot, to improve the process of

tracking and merging Dependabot security PRs in GitHub repositories. This work was published in

the IEEE International Conference on Mining Software Repositories (MSR).

1.4 Thesis Contributions

The main contributions of this thesis are the following:

• We perform an empirical study to analyse the lifecycle of security vulnerabilities in the

Python ecosystem. Our study covers 12 years of reported vulnerabilities, affecting 252 Python

packages.

• We conduct an empirical study on 6,546 open-source JavaScript applications to determine the

prevalence of affected applications that rely on vulnerable dependencies taking into consid-

eration the discoverability aspect. We also examine why these applications end up depending

on vulnerable versions of the package in order to better understand how we can mitigate such

issues.

• We investigate security issues that are identified through code reviews of popular JavaScript

projects. Also, we manually build and validate a code review dataset that contains security-related

reviews in the studied project.

• We provide empirical evidence for understanding developers adoption of Dependabot security

automated PRs in open source JavaScript projects.

7

• Leverging our findings in the above studies, we provide actionable implications and sugges-

tions for practitioners and researchers. Besides, we develop several tool prototypes that aim

at increasing developers awareness to the security aspects we analysed in our studies, and

support developers with the process of maintaining vulnerable packages in their projects.

1.5 Related Publications

Most of the work presented in this thesis has been previously published or submitted to different

venues, as follows:

• Mahmoud Alfadel, Diego Elias Costa and Emad Shihab. “Empirical Analysis of Security

Vulnerabilities in Python Packages”. In IEEE International Conference on Software Analysis,

Evolution and Reengineering, SANER. 2021. [Invited to a paper extension in EMSE]

• Mahmoud Alfadel, Diego Elias Costa, Emad Shihab and Mouafak Mkhallalati. “On the

Use of Dependabot Security Pull Requests”. In IEEE/ACM 18th International Conference on

Mining Software Repositories, MSR. 2021.

• Mahmoud Alfadel, Diego Elias Costa, Emad Shihab and Bram Adams. “On the Discover-

ability of Vulnerabilities Impacting JavaScript Projects”. In ACM Transactions on Software

Engineering and Methodology, TOSEM. 2021. [Under Review]

• Mahmoud Alfadel, Nicholas Nagy, Diego Elias Costa, Emad Shihab, and Rabe Abdalka-

reem. “The Role of Code Review in Enhancing Projects Security”. In ACM Transactions on

Software Engineering and Methodology, TOSEM. 2021. [Under review]

1.6 Thesis organization

The rest of the thesis consists of six chapters that are organized as follows: Chapter 2 provides

terminology related to the concept of package management systems, and research related to software

packages and vulnerabilities. Chapters 3, 4, 5, and 6 present the results of four empirical studies

8

related to the aspects analysed in this thesis. Finally, Chapter 7 summarizes the thesis and discusses

some directions of future work.

9

Chapter 2

Background and Literature Review

The concept of package reuse is becoming an important topic in the field of software engineering

research. With the emergence of COTS (components off the shelf) in 2000s, the research started to

conduct studies on the evolution and management of software packages (Bohner, 2002; Maiden &

Ncube, 1998). These studies advocated the need for building software ecosystems with powerful

package managers and repositories to improve the process of package reuse (Frakes & Kang,

2005). Nowadays, software ecosystems have become very popular and most software systems

today have many dependencies. A recent industrial report has shown that 96% of the analyzed

applications in the study depend heavily on external packages, by making use of them in more

than 50% of the application code-base (Synopsys, 2019). However, while package are beneficial

for productivity, they have a security implications; a recent report by Snyk.io showed that 83% of

organizations use vulnerable packages and that 77% of the 430,000 websites crawled by them, run

at least one vulnerable JavaScript package (Snyk report, accessed on 12/10/2021). These reported

figures are worrisome given our everyday dependence on software systems. That said, much of the

aforementioned reports motivated us to assess software packages examining vulnerabilities in them.

First, in this chapter, we present an overview of the relevant terminology to our research. We

then present the related works of our thesis, including related studies on: a) software packages and

their vulnerabilities; b) existing mechanisms to mitigate the impact of package vulnerabilities.

10

2.1 Terminology

In this section, we present the main terms used throughout our studies. Inspired by (Decan,

Mens, & Grosjean, 2019; Zerouali, 2019), Table 2.1 defines the main terms used in this thesis.

Table 2.1: Definition of terms used in the thesis.

Term Definition
Package Manager A coherent collection of software tools that automate the process of installing,

configuring, upgrading or removing software packages on a computer’s
operating system in a consistent manner. The node package manager (or short
npm) is the package manager that supports JavaScript developers with reusable
code packages. PyPi is the package manager for Python packages.

Package/Library A computer program providing specific functionalities that are available from
online repositories and often delivered by a package manager. A package
usually exists in many versions which are called releases.

Package Release A specific version of a package that can be accessed from a package repository
and installed through the package manager. It includes what is needed to build,
configure and deploy the package version.

Package Vulnerability Is a vulnerability that affects the code of a package version.
Package Vulnerability
Advisories

a centralized source of vulnerability reports specific to a package manager, e.g.,
npm advisories are a source of vulnerability reports that are specific to npm
packages.

Dependency A package that is used in an application to compile and build its binaries is
called a dependency.

Application/Dependent
Application

While packages are a set of computer programs that can be reused in other
programs and published by the software ecosystem, Applications are computer
programs that use packages to facilitate their development and are NOT
published in a software ecosystem.

Dependency Semantic
Versioning (SemVer)

A condition that is used by a dependency to restrict the supported versions of
the target package.

2.2 Literature review

In this section, we discuss the related literature by focusing on: a) studies that investigate

software ecosystems in general and studies that approach the link of security-related issues and

software ecosystems; b) studies that evaluate or propose solutions to mitigate the impact of vulner-

able packages.

11

2.2.1 Work Related to Software Packages and Vulnerabilities

Software Ecosystems. Several aspects of Software Ecosystems have been subject of great interest in

the related literature. For example, some works analysed the ecosystem’s growth (Fard & Mesbah,

2017; Wittern, Suter, & Rajagopalan, 2016). Fard et al. (Fard & Mesbah, 2017) showed that the

number of dependencies in npm projects is 6 on average and the number is always in a growing

trend.

Other works qualitatively studied the fragility and breaking changes in software ecosystems.

Bogart et al. (Bogart, Kästner, Herbsleb, & Thung, 2016) compared the ecosystems Eclipse, CRAN,

and npm in terms of practices that are used by developers to decide about causes of API breaking

changes. They found that all three ecosystems are significantly different in terms of practices

towards breaking changes, due to some particular community values in each ecosystem. Rae-

maekers et al. (Raemaekers, Van Deursen, & Visser, 2014) studied the impact of dependency

constraint on the breaking changes. They suggested that developers may need to carefully select

and adhere to dependency constraint (semver). A recent study by Decan et al. (Decan & Mens,

2019) empirically compared four ecosystems (Cargo, npm, Packagist and Rubygems) with respect

to semver compliance. They concluded that the degree of semver compliance is increasing over

time, and this can be partially attributed to the ecosystem-specific policies and characteristics.

Others focused on analysing a special types of packages, what is so-called trivial packages.

Abdalkareem et al. (Abdalkareem, Nourry, Wehaibi, Mujahid, & Shihab, 2017) investigated why

developers use trivial packages as a dependency in the npm ecosystem, and they showed that

this practice is popular among developers. While interviewed developers did not consider those

packages as harmful, they were found to be less tested than other packages. Kula et al. (Kula, Ouni,

German, & Inoue, 2017) studied the impact of the same type of packages in the npm ecosystem.

They found that some micro-packages have long dependency chains and incur just as much usage

costs as other npm packages.

A few studies conducted a comparison across software ecosystems. Decan et al. (Decan, Mens,

& Claes, 2016; Decan et al., 2019) empirically compared the dependency evolution in 7 ecosystems

(including npm). They discovered some differences across ecosystems that can be attributed to

12

ecosystems’ policies. For instance, the CRAN ecosystem has a policy called “rolling release”,

where packages should always be compatible with the latest release of their dependencies since

CRAN can only install the latest release automatically. Hence, developers could face issues when

updating because a change in one package can affect many others.

While the aforementioned work served as a motivation to our investigation, the focus of our

studies in this thesis is fundamentally different. Our work can be used to complement previous

work by providing a view on another important quality metric of software ecosystems: security

vulnerabilities.

Security Vulnerabilities in Packages. The potential fragility of the ecosystems shown in previous

studies (e.g., (Bogart et al., 2016; Bogart, Kstner, & Herbsleb, 2015)) has motivated researchers

to examine security vulnerabilities, as vulnerabilities are one of the most problematic aspects of

software ecosystems (Thompson, 2003). A study by Pham et al. (Pham, Nguyen, Nguyen, &

Nguyen, 2010) presented an empirical study to analyse vulnerabilities in the source code, and found

that most vulnerabilities are recurring due to software code reuse and package adoption.

Other studies focused on analysing vulnerabilities in software ecosystems. Hejderup et al.

analysed 19 npm vulnerable packages, and found that the number of vulnerabilities is growing

over time (Hejderup, 2015). Zimmermann et al. (Zimmermann et al., 2019a) studied the security

risk of the npm ecosystem dependencies and showed that individual packages could impact large

parts of the entire ecosystem. They also observed that a very small number of maintainers (20

accounts) could be used to inject malicious code into thousands of npm packages, a problem that

has been increasing over time. A study by Zapata et al. (Zapata et al., 2018) assessed the danger of

having vulnerabilities in npm packages by analyzing function calls of the vulnerable functions, and

found that 73.3% of the 60 studied projects were actually safe because they did not make use of the

vulnerable functionality.

The management of package vulnerabilities was also studied in other ecosystems like packages

written in Java. Kula et al. (Kula, German, Ouni, Ishio, & Inoue, 2018) explored how develop-

ers respond to the available security awareness mechanisms such as library migration, and found

that developers were unaware of most vulnerabilities in dependencies and prefer to use outdated

13

versions to reduce the risks of breaking changes. Ponta et al. (Ponta, Plate, & Sabetta, 2018,

2020) proposed a code-centric approach to detect and mitigate open source vulnerabilities for Java

industry grade applications. Pashchenko et al. (Pashchenko, Plate, Ponta, Sabetta, & Massacci,

2018, 2020) proposed an technique that addresses the over-estimation problem of approaches that

report vulnerable dependencies in the Java ecosystem. The authors highlighted that many of the

vulnerable dependencies were not actually deployed, and hence, their impact was neglected.

Inspired by previous studies, and supported by the fact that different ecosystems have different

characteristics and policies, we conducted a study (in Chapter 3) to examine security vulnerabilities

in the PyPi ecosystem. We studied several aspects related to the lifecycle of vulnerability discovery

and fix. Moreover, little is known about the impact of using vulnerable packages on the dependent

application, i.e., how often and for how long are applications exposed to dependencies through

the application development history? Therefore, we study (in Chapter 4) the impact of vulnerable

packages on software applications, by introducing a new classification for package vulnerabilities

based on the vulnerability disclosure timeline.

2.2.2 Work Related to Solutions for Mitigating the Impact of Vulnerable Packages

The Role of Code Review to Prevent Security Issues. A plethora of work on code review topic

studied the effect of code review process on finding defects. Thongtanunam et al. found that

developers are often most concerned about documentation and structure to enhance evolvability, and

fix functional issues (Thongtanunam, McIntosh, Hassan, & Iida, 2015). Beller et al. revealed that

most changes of open-source systems in code review are indeed related to the functionality aspect

(Beller, Bacchelli, Zaidman, & Juergens, 2014). The study by Bacchelli and Bird (Bacchelli &

Bird, 2013) showed that most changes of open-source systems in code review are also related to the

functionality aspect. The work by (Mäntylä & Lassenius, 2008) reported similar outcomes for other

industrial and academic projects. McIntosh et al. (McIntosh, Kamei, Adams, & Hassan, 2014,

2016) examined the impact of code review coverage and participation on the code review quality.

They found that projects with low code review coverage and participation are estimated to produce

more post-release defects, meaning that poor code review negatively impacts the software quality.

Spadini et al. (Spadini et al., 2019) examined the impact of a code review practice called

14

Test-Driven Code Review (TDR), where a reviewer inspects patches by examining the changed test

code before the changed production code. Their experiments show that developers adopting TDR

find more defects than ones found through examining production code. Spadini at al. (Spadini,

Aniche, Storey, Bruntink, & Bacchelli, 2018) also examined how code review is used for ensuring

the quality of test code. They find that developers tend to discuss test files significantly less

than production files. The paper recommends that the project should set aside sufficient time for

reviewing test files.

Other most relevant work to our work in this thesis focused on security code review (Bacchelli

& Bird, 2013; Bosu, 2014; di Biase, Bruntink, & Bacchelli, 2016; Paul, Turzo, & Bosu, 2021). For

example, Bacchelli and Bird (Bacchelli & Bird, 2013) observed (based on interviews and surveys)

that code review is mainly motivated for finding defects and formatting issues while missing the

fact that there were security issues. Di Biase et al. (di Biase et al., 2016) analyzed the Chromium

system to understand the factors that may lead to find security issues during code review, and found,

for example, that reviews conducted by more than 2 reviewers are being more successful at finding

security issues. Also, they found that reviewers tend to find domain-specific security issues (e.g.,

Cross-Site Scripting XSS) more than language-specific issues (e.g., C++ issues).

Common to these studies is that they investigate security issues identified through code review

of software projects. One of the main objectives of this thesis is to conduct an empirical study to

assess the role of code review in identifying security issues in projects that have been published

as packages in software ecosystems. Moreover, we aim to understand the mitigation strategies

employed by project maintainers to tackle the issues.

Package management tools for security vulnerabilities. Previous studies (e.g., (Kula et al., 2018;

Zerouali, Constantinou, Mens, Robles, & González-Barahona, 2018)) have shown that projects

are slow in terms of responding to security vulnerabilities that are publicly announced, which is

sometimes due to factors related to resources and process management. The software development

community has proposed several tools that help developers be aware of dependency updates and

vulnerabilities. For example, Cadariu (Cadariu, Bouwers, Visser, & van Deursen, 2015) developed

a Vulnerability Alert Service (VAS), which scans Maven dependencies against vulnerabilities using

15

the Common Vulnerabilities and Exposures (CVE) database. Apiwave (Hora & Valente, 2015)

is another tool that tracks API migrations in order to help developers be aware of their project

dependency updates. The current version of the Apiwave tool provides data for 650 Java projects,

from which 320K APIs were extracted. One limitation of these tools is that they only send alerts to

notify developers about the vulnerable dependencies without being able to automatically fix them.

Other works focused on identifying dependency vulnerabilities at a more fine-grain level. For

example, Ponta et al. (Ponta et al., 2018) proposed a code-centric tool to detect and mitigate

dependency vulnerabilities for Java industry applications used in the SAP organization. Also, a

study by Bodin et al. (Chinthanet et al., 2020) showed that the code-centric detection tool is viable,

however, there are several challenges related to the JavaScript language and the complexity of the

application dependencies.

Dependabot (Dependabot, accessed on 12/10/2021) is a bot (acquired by GitHub in 2019) that

creates pull requests to monitor project dependencies and help developers automatically integrate

dependency updates and vulnerability fixes. Also, it provides information about the vulnerability,

such as its severity, versions affected, information about the issue from the advisory report, which

developers can analyze to consider the risks of not updating. Moreover, the PR contains information

about the compatibility of the PR with the project, calculated based on the outcome of updates done

by similar projects (Dependabot Score, accessed on 12/10/2021).

While previous works propose several solutions to help developers be aware of vulnerable pack-

ages in their projects, little is known about to which extent such tools can convince developers to

upgrade out-of-date dependencies in their projects. Given that dependency updates for vulnerability

fixes have a critical impact, one of the main goals of this thesis (Chapter 6) is to specifically focus

on evaluating a very popular dependency tool (e.g., Dependabot) at coping with security updates in

dependencies.

2.3 Chapter Summary

In this chapter, we present a literature review on studies that investigate software packages and

vulnerabilities. Also, we review prior research on some existing mechanisms for mitigating the

16

impact of vulnerable packages. From the literature review, we find that the majority of prior studies

focus on analysing software packages in popular software ecosystems, e.g., npm. To complement

previous research, and as different software ecosystems embodied different programming languages

and particularities, we argue that it is also important to study other popular programming languages

to build stronger empirical evidence about vulnerabilities in software ecosystems. Hence, in Chap-

ter 3, we take a new look and provide a wider picture by studying security vulnerabilities in the PyPi

ecosystem, and compare our results with the npm ecosystem. Moreover, to our best knowledge,

none of the previous studies specifically investigated the impact of a package vulnerability that

affects a dependent application. In Chapter 4, we propose a novel methodology to study the

presence of package vulnerabilities in JavaScript applications. To mitigate the impact of package

vulnerabilities, prior work proposed several mechanisms, e.g., the literature shows that the code

review process has an important role in improving software quality, but in-depth analysis on the

effectiveness of code review in relation with security issues is limited. In Chapter 5, we explore the

role of code review in finding and mitigating security issues in JavaScript projects. Finally, we find

that previous research has created several software bots to mitigate the harmful impact of vulnerable

packages. However, little is known about their effectiveness. In Chapter 6, we perform an empirical

study to evaluate a popular software bot, called Dependabot, for patching package vulnerabilities

that affect JavaScript projects.

17

Chapter 3

Analysing the Lifecycle of Package

Vulnerabilities

Software ecosystems play an important role in modern software development, providing an

open platform of reusable packages that speed up and facilitate development tasks. However, this

level of code reusability supported by software ecosystems also makes the discovery and fix of

security vulnerabilities much more difficult, as software systems depend on an increasingly high

number of packages. To better understand the impact of security vulnerabilities in packages, this

chapter presents an empirical study of 550 vulnerability reports affecting 252 Python packages in the

Python ecosystem (PyPi). Taking into account the severity of vulnerabilities, we analyse how and

when these vulnerabilities are discovered and fixed. We report our findings and provide guidelines

for package maintainers and tool developers to improve the process of dealing with security issues

in software packages.

3.1 Introduction

Modern software systems increasingly depend on external reusable code. This reusable code

takes the form of packages (e.g., libraries) and is available from online repositories and often

delivered by package management systems, such as npm for JavaScript packages and PyPi for

Python packages. The collection of packages that are reused by a community, together with their

18

users and contributors is denoted as a software ecosystem. While software ecosystems have many

benefits, providing an open platform with a large number of reusable packages that speed up and

facilitate development tasks, such openness and large scale leads to the spread of vulnerabilities

through package network, making the vulnerability discovery much more difficult, given the heavy

dependence on such packages and their potential security problems (Thompson, 2003).

Many software applications depend on vulnerable packages (Williams & Dabirsiaghi, 2012).

The two most critical aspects in dealing with package vulnerabilities are how fast developers can

discover and fix the vulnerability, and how fast the applications update their packages to accommo-

date the fixed versions. The delay between discovering a package vulnerability and releasing its fix

may expose the applications to threats and increase the likelihood of an exploit being developed.

Heartbleed, a security vulnerability in OpenSSL package, is perhaps the most infamous example.

The vulnerability was introduced in 2012 and remained uncovered until April 2014. After its

disclosure, researchers found more than 692 different sources of attacks attempting to exploit the

vulnerability in applications that used the OpenSSL package (Durumeric et al., 2014).

Hence, studying how vulnerabilities propagate, get discovered and fixed is essential for the

health of ecosystems. Recent studies (Decan, Mens, & Constantinou, 2018b; Hejderup, 2015)

analysed the impact of vulnerabilities in the npm ecosystem. Decan et al. (Decan, Mens, &

Constantinou, 2018b) found that it takes 24 months to discover 50% of npm package vulnerabilities,

whilst 82% of the discovered vulnerabilities are fixed before being publicly announced, where they

are less likely to be exploited.

While npm is one of the largest software ecosystems to date (Libraries.io - The Open Source

Discovery Service, 2021), the investigation of npm vulnerabilities provides an important but re-

stricted view of the software development ecosystems. How much of the findings are particular

to npm’s development culture and how much of it can be generalized to other ecosystems? We

argue that it is important to study other software ecosystems to contrast with npm and draw more

generalizable empirical evidence about vulnerabilities in software ecosystems. Our argument is

supported by previous studies (e.g., (Bogart, Kstner, & Herbsleb, 2015; Decan et al., 2016; Decan,

Mens, & Claes, 2017; Decan et al., 2019)) that show differences across ecosystems. For instance,

Decan et al. Decan et al. (2019) found that PyPi ecosystem has a less complex and intertwined

19

network than ecosystems such as npm and CRAN. This is partially due to Python’s robust standard

library, which discourages developers of using too many external packages in contrast to JavaScript

and R ecosystems.

This motivated us to take a new look and provide a wider picture by studying security vul-

nerabilities in the PyPi ecosystem. Furthermore, Python is a major programming language in the

current development landscape, used by 44.1% of professional developers according to the 2020

Stack-Overflow survey (Stack Overflow Developer Survey, 2020). We conduct an exploratory re-

search to study security vulnerabilities prevalence and their respective discovery and fix timeline in

the Python ecosystem. Inspired by the study on the npm ecosystem (Decan, Mens, & Constantinou,

2018b), we aim to answer the following research questions (RQs):

• RQ1: How are vulnerabilities distributed in the PyPi ecosystem?

• RQ2: How long does it take to discover a vulnerability in the PyPi ecosystem?

• RQ3: When are vulnerabilities fixed in the PyPi ecosystem?

• RQ4: How long does it take to fix a vulnerability in the PyPi ecosystem?

Also, we compare our study, where applicable, to the npm ecosystem (Decan, Mens, & Constanti-

nou, 2018b).

To answer our research questions, we analyzed 550 vulnerability reports that affect 252 Python

packages of which 7,536 package versions are affected. We observed several interesting findings.

In some aspects, our study yields similar findings to the ones observed in the npm study (Decan,

Mens, & Constantinou, 2018b). For example, vulnerabilities in both ecosystems take a significantly

long time to be discovered, approximately 2 years in the npm and 3 years in the PyPi ecosystem.

However, in other aspects, our results show a drastic departure from npm’s reported findings.

For example, unlike npm, the majority of PyPi vulnerabilities (50.55%) were only fixed after

being publicly announced, which may increase the chances of having the vulnerability exploited

by attackers. Our further investigation attributes such observation to the particularities of the PyPi

ecosystem’s protocol of disclosing and publishing vulnerabilities.

20

Based on our empirical findings, we offer several important implications to researchers and

practitioners to help them provide a more secure environment for software ecosystems. Besides,

employing our study methodology, we developed a tool called DEPHEALTH to provide developers

with metrics related to the timespan of vulnerability discovery and fix, which help for the package

selection process.

To summarize, this chapter makes the following contributions:

• We perform the first empirical study to analyse security vulnerabilities in the Python ecosys-

tem. Our study covers 12 years of PyPi reported vulnerabilities, affecting 252 Python pack-

ages.

• We compare the findings of our study to a previous study conducted on the npm ecosystem.

We also provide implications that aim at a more secure development environment for software

ecosystems.

• We make our scripts and dataset of this study publicly available to facilitate reproducibility

and future research (M. Alfadel, 2019).

Chapter organization.

This chapter is organized as following: Section 3.2 describes the terminology and the process of col-

lecting and curating our dataset. In Section 3.3, we dive into our study by motivating and describing

the methods used to investigate each research question, as well as presenting the findings obtained in

our study. We discuss the results and implications of our study in Section 3.4. Section 3.5 presents

our tool. We state the threats to validity and limitations to our study in Section 3.6. Related work is

presented in Section 3.7. Finally, Section 3.8 concludes our study.

3.2 Study Design

In this section, we present an overview of software vulnerabilities and the terminology adopted

throughout this study. We also explain how we collect and prepare the data used to investigate our

research questions.

21

3.2.1 Terminology

The lifetime of a vulnerability typically goes through various stages, according to when a

vulnerability was first introduced, discovered and publicly announced. To ground our study, we

use the various stages and define dates specific to a package vulnerability:

• package vulnerability introduction date indicates when the vulnerability was first intro-

duced in the affected package, i.e., the release date of the first affected version by the package

vulnerability.

• package vulnerability discovery date indicates the date in which the package vulnerability

was discovered and reported to the maintainer of the package.

• package vulnerability publication date marks the date when the vulnerability information

was publicly announced.

• package vulnerability fix date indicates the release date of the first fixed version of the

package vulnerability.

Next, we explain how we collect and process the data used to answer our RQs.

3.2.2 Data Collection and Processing

Data Collection. To conduct our study, we collect two datasets: (1) the Python (PyPi) packages

and (2) the security vulnerabilities that affect those PyPi packages. We obtain the information of

PyPi packages from Libraries.io (Nesbitt & Nickolls, 2018), and the security vulnerabilities from

the Snyk.io dataset (Snyk.io, 2017).

To collect the PyPi packages, we use the service Libraries.io since it provides the PyPi pack-

ages along with their respective metadata. The metadata provides detailed information about each

package such as, the existing versions and the creation timestamps of those versions. Such data

is needed to map the affected versions given by our vulnerabilities dataset. Also, we need the

versions timestamps to perform time-based analyses, such as the time it takes to discover and fix a

vulnerability with respect to the first affected package version.

22

Table 3.1: Example of a security report extracted from Snyk.io for the pillow package.

Information Example

Vulnerability type Buffer Overflow
Affected package name pillow
Platform type PyPi
Vulnerable constraint (affected versions) < 6.2.2
Vulnerability Discovery date 03 Jan, 2020
Vulnerability Published date 10 Jan, 2020
Severity level High
Remediation ≥ 6.2.2

To collect the vulnerabilities for the PyPi packages, we resort to the dataset provided by Snyk.io

(Snyk.io, 2017). Snyk.io is a platform that monitors security reports to provide a dataset for different

package ecosystems, including PyPi, and publishes a series of information about vulnerabilities. We

show in Table 3.1 an example of a security report extracted from Snyk.io dataset for the package

pillow. For each affected package, the dataset specifies the type of vulnerability, the vulnerability

constraint (this helps us to specify the affected versions) and the fixed versions (remediation range).

Moreover, the report contains the dates when the vulnerability was discovered and the date when

it was published on Snyk.io dataset. Severity level has three possible values, high, medium, and

low, which are assigned manually by the Snyk.io team based on the Common Vulnerability Scoring

System (CVSS) (Allodi & Massacci, 2014).

Data Processing. As a pre-processing step, we need to determine all the vulnerable packages

and their associated versions. First, we obtain the list of all versions of all vulnerable packages from

the Libraries.io dataset. Then, we determine the affected versions of the vulnerable packages by

cross-referencing the vulnerability constraint of the Snyk.io report (e.g., < 6.2.2) and resolving the

versions by using the SemVer tool (semver PyPI, 2020). In the particular example of Table 3.1, we

resolve the constraint < 6.2.2 to a list of 68 versions of the pillow package affected by the Buffer

Overflow vulnerability.

We want to analyze the time needed to discover a package vulnerability, hence, we need to

identify the version that was first affected by a vulnerability. To that aim, once we identify the list

of affected versions, we consider the first affected version as the oldest version of the vulnerable

package. In the example of Table 3.1, the first affected version was the package version 1.0.0.

23

We also aim to investigate the time it takes to fix a package vulnerability once the vulnerability is

discovered. This requires that we identify the first fixed version of the package vulnerability. Similar

to the identification of the first affected version, once we resolve the remediation range by using the

SemVer tool, we collect a list of versions in which the vulnerability is considered fixed. We then

assign the first fixed version as the oldest package version present in the list of fixed versions. In the

example of Table 3.1, the first fixed version is the package 6.2.2.

Our initial dataset contains 622 vulnerability reports on the PyPi packages. From this original

set, 62 vulnerabilities do not match any packages in the Libraries.io database and were removed

from our analysis. Following the filtration process applied by Decan et al. (Decan, Mens, &

Constantinou, 2018b), we also removed 10 vulnerabilities of type “Malicious Package”, because

they do not really introduce vulnerable code. These vulnerabilities are packages with names close

to popular packages (a.k.a. typo-squatting) in an attempt to deceive users at installing their harmful

packages. At the end of this filtering process, our dataset contains 550 vulnerability reports. Such

reports affect 252 Python packages in PyPi. Note that these 252 Python packages have released a

total of 12,210 versions, in which, according to the vulnerable constraint of reports, 7,536 versions

(61.7%) contain at least one reported vulnerability. Table 3.2 shows the descriptive statistics of our

dataset.

As part of our study goal is to compare our results to the npm study, we verify how our

dataset compares with the one used by Decan et al. (Decan, Mens, & Constantinou, 2018b). The

npm dataset contains 399 vulnerabilities which affect 269 npm packages with a similar number of

versions (14,931) and similar number of affected versions (6,752). Both datasets are comparable

in terms of the number of vulnerability reports and the number of affected packages and versions.

Finally, note that we collect our dataset in the similar timeline as the npm study in order to make

our study comparable and to perform a relatively fair comparison between our findings and the ones

reported from npm (Decan, Mens, & Constantinou, 2018b), i.e., we collect all vulnerability reports

that were published before Jan. 2018.

24

Table 3.2: Descriptive statistics of the PyPi dataset.

Source Stats #

Libraries.io
PyPi packages 116,527
Versions of PyPi packages 893,978

Snyk.io

Security reports on PyPi 550
Corresponding vulnerable packages 252
Versions of vulnerable packages 12,210
Affected versions by vulnerability 7,536

3.3 Study Results

In this section, we present the findings of our empirical study. For each RQ, we present a

motivation, describe the approach used to tackle the research question and discuss the results of our

analysis.

RQ1: How are vulnerabilities distributed in the PyPi ecosystem?

Motivation. Prior work reported a steady growth of packages in software ecosystems (Decan,

Mens, & Constantinou, 2018a; Decan et al., 2019). This growth may have serious repercussions

for package vulnerabilities, facilitating their spread to high number of packages and applications,

and magnifying their potential for exploitation. Therefore, in this RQ we investigate how software

package vulnerabilities are distributed in the PyPi ecosystem. We examine the distribution from

three perspectives: a) the trend of discovered vulnerabilities over time; b) how many versions of

packages are affected by vulnerabilities; and c) what are the most commonly identified types of

vulnerabilities in PyPi.

Approach. To shed light on the distribution of software vulnerabilities in the PyPi software ecosys-

tem, we leverage the following approaches:

In the first analysis, we focus on investigating the trend of discovered vulnerabilities over time in

the PyPi ecosystem. In essence, we want to investigate how the number of discovered vulnerabilities

change and how many packages are affected as the ecosystem grows? To do that, we group the

25

discovered vulnerabilities by the time they were reported, and present the evolution of the number

of vulnerabilities and packages affected per year. We also break the analysis per severity level,

provided by Snyk.io, to help us quantify the level of threat of newly discovered vulnerabilities in

the ecosystem.

In the second analysis, we investigate the vulnerabilities distribution over package versions. A

single vulnerability can impact many versions of a package, making it harder for dependents to

select a version unaffected by this vulnerability. To that aim, we utilize the vulnerability constraint

provided by the Snyk.io dataset (mentioned in Table 3.1, Section 3.2.2) to identify the list of affected

versions by a vulnerability.

The third analysis has the goal of reporting the most commonly identified vulnerability types

in the PyPi ecosystem. The Snyk.io dataset associates each vulnerability report with a Common

Weakness Enumeration (CWE) (CWE list, accessed on 12/10/2021), aiming at categorizing vulnera-

bilities based on the explored software weaknesses (e.g. Buffer Overflow). Currently, CWE contains

a community-developed list of 700 common software weaknesses. We examine the frequency of

vulnerability types to establish a profile of the vulnerabilities in the PyPi ecosystem. In adittion, we

also break our analysis by severity level to investigate how the threat levels are distributed in each

vulnerability type.

Results. Figure 3.1 shows the number of discovered vulnerabilities as well as the number of pack-

ages being affected over the years. We observe a steady increase in the number of vulnerable

packages, accompanying the PyPi ecosystem growth. In 2012, in the middle of this ecosystem

lifetime, 27 packages were discovered to be vulnerable, in 2016 this number increased three-fold,

i.e., 90 vulnerable packages were newly discovered.

Figure 3.2 presents the introduction of vulnerabilities over time by the severity level, showing

that the majority of newly discovered vulnerabilities are of medium and high severity. Overall,

the vulnerabilities classified with medium severity make the bulk of 71.64% of all vulnerabilities,

followed by high severity vulnerabilities representing 20.73% of our dataset. These findings are

worrisome to the PyPi community, as such critical vulnerabilities have a higher chance of being

exploited, i.e., allow an attacker to execute malicious code and damage the software.

26

Years

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s/

pa
ck

ag
es

2006 2008 2010 2012 2014 2016

0

20

40

60

80

100

120

140 Vulnerabilities
Packages

Figure 3.1: Introduction of vulnerabilities and packages being affected per year.

Years

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

2006 2008 2010 2012 2014 2016

0

20

40

60

80

100 High
Medium
Low

Figure 3.2: Introduction of vulnerabilities per year by the severity levels: high, medium, and low.

Figure 3.3 shows bean plots of three distributions: the number of versions of the 252 vulnerable

PyPi packages in our dataset (Figure 3.3a), the number of affected versions in such vulnerable

packages (Figure 3.3b), and the percentages of vulnerable versions in the packages (Figure 3.3c).

We observe that most packages have dozens of versions (median number of versions is 29), and

27

0
10

0
20

0
30

0
40

0
50

0

Packages

N
um

be
r

of
 v

er
si

on
s

(a) Number of versions.

0
10

0
20

0
30

0

Packages

N
um

be
r

of
 a

ffc
et

ed
 v

er
si

on
s

(b) Number of affected versions.

0
20

40
60

80
10

0

Packages

V
ul

ne
ra

bl
e

ve
rs

io
ns

 in
 p

ac
ka

ge
s

(%
)

(c) Percentage of affected versions.

Figure 3.3: Distribution of versions and affected versions of the 252 vulnerable packages of our
dataset. In median, packages have 29 versions and 18 affected versions once a vulnerability is
discovered.

tend to have, on median, 18 vulnerable versions. The affected versions represent an alarmingly high

proportion of all versions in a package, considering the package versions available at discovery

time of the vulnerability. Figure 3.3c shows that half of the packages have at least 68% of their

versions affected by a vulnerability, when a vulnerability is first discovered. In 15% of the

packages, the share of vulnerable versions can represent 90% of all released versions at the time

the vulnerability was discovered. The result indicates that vulnerabilities are not limited to a few

versions of a package, making it difficult for dependents to rollback to an unaffected version if a fix

is not available at the time of the vulnerability discovery.

Since vulnerabilities can have different types (e.g., Buffer Overflow and SQL injection), we

examine the different vulnerability types given by the Common Weakness Enumeration (CWE)

that PyPi packages have. While we found that packages in the PyPi ecosystem are affected by 90

distinct CWEs, the majority of the discovered vulnerabilities (65.82%) are concentrated on

5 main types. Table 3.3 shows the distribution of the vulnerabilities over the 5 most commonly

found CWEs. As we can see, XSS is the most common CWE with 130 vulnerabilities. Also,

we observe that most of the XSS vulnerabilities are of medium severity. For the remaining CWEs,

28

Table 3.3: Ranking of the 5 most commonly found vulnerability types (CWE) in PyPi.

Rank Vulnerability type (CWE) Freq. Frequency by severity
High Medium Low

1 Cross-Site-Scripting (XSS) 130 4 118 8
2 Denial of Service (DoS) 72 11 59 2
3 Arbitrary Code Execution 66 39 26 1
4 Information Exposure 60 8 44 8
5 Access Restriction Bypass 34 10 23 1

the proportion in each type varies from 72 vulnerabilities of type Denial of Service (DoS) to 34

of type Access Restriction Bypass CWE. Breaking down the proportions of vulnerabilities by

severity shows that the majority of vulnerabilities from these types are of medium and high severity,

indicating that they represent a serious threat to affected applications. This is particularly severe for

the vulnerabilities of Arbitrary Code Execution type, where we found a higher frequency of high

severity vulnerabilities than of medium and low severity levels combined.

Comparison to the npm ecosystem. The vulnerabilities found in npm (Decan, Mens, & Constanti-

nou, 2018b) followed a similar distribution to our findings in the PyPi ecosystem. In npm, a) the new

discovered vulnerabilities are increasing over the time, and the majority of those vulnerabilities are

also of medium and high severity; b) such npm vulnerabilities are not limited to a few versions, i.e.,

75% of vulnerable packages have more than 90% of their versions being affected by a vulnerability

at the discovery time; c) XSS was also found to be the most common vulnerability among npm

vulnerabilities (i.e., 105 occurrences out of 399 vulnerabilities overall).

The number of vulnerabilities is increasing over time in the PyPi ecosystem accompany-

ing the growth of the ecosystem. Newly reported vulnerabilities tend to be of medium

and high severity and affect the majority of versions of a software package. The majority

of vulnerabilities are concentrated on five vulnerability types, with Cross-Site-Scripting

(XSS) being the most common.

29

RQ2: How long does it take to discover a vulnerability in the PyPi ecosystem?

Motivation. This question aims to investigate how long it takes to discover package vulnerabilities

in the PyPi ecosystem. Answering this question is relevant since the longer a vulnerability remains

undiscovered, the higher the chances it will be exploited by attackers. Also, since security main-

tainers need to discover vulnerabilities as soon as possible to mitigate the harmful impact, providing

them with information regarding the life cycle of a vulnerability discovery is vital. Therefore, in

this question, we study how long does it take to discover a vulnerability since it was first introduced

in the package’s source-code?

Approach. Our goal is to calculate the time required to discover a vulnerability in the PyPi

ecosystem. To do so, we collect the discovery dates of all the vulnerabilities from the Snyk.io

dataset. Then, we obtain the timestamps of the vulnerabilities introduction date from Libraries.io

(as described in Section 3.2.2). Note that the vulnerability introduction date is the release date of the

first affected version by the package vulnerability. We then calculate the time difference between

the vulnerabilities discovery date and the vulnerabilities introduction date.

To gain more insight about the time it takes to discover the vulnerabilities, we conduct a survival

analysis method (a.k.a. event history analysis) (Aalen, Borgan, & Gjessing, 2008). The survival

analysis is a non-parametric statistic used to measure the survival function from lifetime data where

the outcome variable is the “time until the occurrence of an event of interest”. For example, it may

be used to measure the time duration an employee remains unemployed after a job loss. In the

context of our study, we are interested in the time it takes to discover a vulnerability. We use the

non-parametric Kaplan-Meier estimator (Kaplan & Meier, 1958) to conduct the survival analysis,

as used in previous studies (Decan & Mens, 2019; Decan, Mens, & Constantinou, 2018b).

Results. Figure 3.4 presents the survival probability for the vulnerability before it gets discovered.

The Left-side plot of Figure 3.4 reveals that the probability that a PyPi package vulnerability

takes 37 months to be discovered is 50%. In practice, this shows that vulnerabilities are not

30

discovered early in the project development. Also, this long process for discovering vulnerabili-

ties explays why a single vulnerability tends to affect dozens of package versions once it is first

discovered (RQ1).

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y

Severity All

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y

Severity High Medium Low

Figure 3.4: Kaplan-Meier survival probability for package vulnerabilities to get discovered for all
vulnerabilities (left-side plot) and for vulnerabilities broken by severity (right-side plot).

Since vulnerabilities impact packages at different severity levels, we break down the analysis of

discovered vulnerabilities by their severity. The right-side plot of Figure 3.4 presents the survival

probability for the event “vulnerability is discovered” by their severity and depicts no significant

differences among the severity levels. We confirm this result by using the log-rank statistical

method (Bewick, Cheek, & Ball, 2004) to investigate the statistical significance of the results with

a confidence level 95% (p-value = 0.94). PyPi vulnerabilities take a substantial long time to be

discovered and reported, independently of their severity.

Comparison to the npm ecosystem. We found a significant difference on the time it takes to

discover a vulnerability between the PyPi and npm packages. Vulnerabilities are discovered with a

median of 24 months in the npm ecosystem, considerably sooner than the 37 months required for

PyPi package vulnerabilities. Given the popularity of Javascript programs, npm became a prime

target for attackers (Zimmermann et al., 2019a), which may have contributed to a faster identifi-

cation of vulnerabilities. Overall, npm and PyPi vulnerabilities still take considerably long time to

31

discover vulnerabilities, indicating an issue in the process of testing and detecting vulnerabilities in

open source packages.

Package vulnerabilities in the PyPi ecosystem take, on median, more than 3 years to get

discovered, regardless of their severity.

RQ3: When are vulnerabilities fixed in the PyPi ecosystem?

Motivation. Vulnerable packages remain affected even after they are discovered (Decan, Mens,

& Constantinou, 2018b; Li & Paxson, 2017). In fact, in many cases, a method of exploitation is

reported when the vulnerability is made public, which increases the chances of the vulnerability

being exploited by attackers (Sabottke, Suciu, & Dumitra, 2015). Therefore, it is of paramount

importance that developers release a fix of the package vulnerability quickly. In open-source

ecosystems, a quick fix is the only weapon at developers disposal for minimising the risk of ex-

ploitation. Hence, in this question we provide package maintainers and users with information about

at which stage a vulnerability fix is released in the PyPi ecosystem with respect to its discovery and

publication date, i.e., we investigate whether a vulnerability fixed version is released before or after

the vulnerability becomes publicly announced to better understand the threat level of PyPi package

vulnerability.

Approach. Our goal is to study when vulnerabilities are fixed. To that aim, we categorise a

vulnerability fix based on the stages of a vulnerability lifecycle. In other words, we analyse if

the fix version was released before the vulnerability discovery time, in between the discovery time

and publication time, or after the vulnerability is made public.

To achieve our goal, we obtain, for each vulnerability, the date of the first fixed version and

compare it to the discovery and publication dates. The fix can then be categorized as: “before

the vulnerability has been discovered” or short FixBeforeDisc, “between discovery and publication

date” or short FixBetweenDiscPub, “after the vulnerability has been made public” or short Fix-

AfterPub, and “Never Fixed”. We then report the frequencies of fixes in each category.

32

ALL High Medium Low

FixBeforeDisc
FixBetweenDiscPub
FixAfterPub
Never Fixed

Severity

Pe
rc

en
ta

ge
 o

f v
ul

ne
ra

bi
lit

ie
s

0

20

40

60

80

100

Figure 3.5: Percentages of vulnerabilities according to the release time of the first fixed version by
severity.

Results. Figure 3.5 shows the distribution of vulnerabilities according to the four stages in which

the first fixed version was released. We can observe that 50.55% of vulnerabilities were fixed

after the vulnerability has been made public, with the observation being more noticeable for

vulnerabilities of medium and low severity (H = 35.96%, M = 54.57%, and L = 52.38%). Such

results indicate that the majority of the PyPi package vulnerabilities become public before having

any patch addressed to fix them.

For the remaining vulnerabilities, 30.36% of all vulnerabilities were already fixed even before

their discovery. One possible explanation is that the maintainers of such affected packages prefer

to disclose the vulnerability and report its information while working in silence on a fix to mitigate

its impact and reduce the chances of being exploited by potential attackers. Finally, 17.09% of the

vulnerabilities were fixed between the vulnerability discovery date and the vulnerability publication

date.

Comparison to the npm ecosystem. Unlike npm, our findings show that PyPi package vulnera-

bilities tend to be fixed only after publication. In npm, 82% of vulnerabilities are fixed after the

vulnerability discovery time and before its publication time. Our findings for PyPi show a different

33

picture, with the close majority of vulnerabilities (50.55%) being fixed after their publication. Such

differences can be attributed to community practices and policies in each ecosystem for reporting

and disclosing vulnerabilities. We discuss these policies, their limitations, and how to better control

them in Discussion.

The majority of vulnerabilities (50.55%) are only fixed after the vulnerability is made

public, while 30.36% are fixed before the vulnerability is first discovered, and 17.09%

are fixed between the discovery and publication dates.

RQ4: How long does it take to fix a vulnerability in the PyPi ecosystem?

Motivation. So far, we have observed that the majority of vulnerabilities are fixed after the vul-

nerability is reported to be discovered, either in between discovery and publication (17.09%) or

after the vulnerability publication (50.55%). In this question, we focus on those vulnerabilities

and investigate how long it takes for a fix patch to be released after a vulnerability is reported

to be discovered. Vulnerabilities that remain un-patched for a long time after being reported and

discovered can leave an open channel for successful attacks. Also, a healthy open source package

should have a quick response to most vulnerability reports. Therefore, answering this question will

give us important insights about the prioritization of fixing vulnerabilities of a package.

Approach. To achieve our goal, we focus now on only those vulnerabilities that get fixed after being

discovered, i.e., we omit vulnerabilities that have their fixed versions before the discovery date

(30.36%). For the remaining vulnerabilities, we conduct the survival analysis method to provide

information about how long it takes to fix a vulnerability after being discovered. We calculate

the time difference between the release date of the first fixed version and the vulnerability discovery

date. Similarly to the analysis conducted in Section 3.3, we use the Kaplan-Meier estimator (Kaplan

& Meier, 1958) for the survival analysis. Furthermore, to understand if the severity level of a

vulnerability has any impact on the time required to fix a vulnerability, we also conduct the previous

analysis per severity level.

34

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y

Severity All

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
Time (in months)

Su
rv

iva
l p

ro
ba

bi
lit

y

Severity High Medium Low

Figure 3.6: Kaplan-Meier survival probability for vulnerable packages to get fixed after being
discovered.

Results. Figure 3.6 presents the survival probability for the vulnerabilities to be fixed after being

discovered. As we can observe from the left-side plot, the probability that a vulnerability is

fixed 4 months following its discovery is 50%. Also, we can observe that there is a small share

(8.37%) of those vulnerabilities that still take more than a year to get fixed after being discovered.

The right-side plot of Figure 3.6 presents the previous analysis per severity level. Using the

log-rank statistical method (Bewick et al., 2004), we found no statistically significant difference in

the time to fix vulnerabilities of different severities with a confidence level 95% (p-value = 0.41).

We further analyse the vulnerable PyPi packages that took more than a year for their vulnera-

bilities to be fixed after the discovery date, to gain insights as to why they take such a long time to

address potentially impactful vulnerabilities. Upon close manual inspection, we found that 64.7% of

these packages are not popular (i.e., have less than 1000 downloads) and are not actively maintained,

with the latest version been released two years ago, in 2018. We expect the developers of those

vulnerable packages to be unresponsive to security reports.

Comparison to the npm ecosystem. Our findings show that PyPi package vulnerabilities overall

take longer to be fixed than those found in npm. In npm, it takes a median of one month to fix

vulnerabilities, regardless of their severity. In PyPi, we found that PyPi vulnerabilities take a median

35

of 4 months to release a fix after the vulnerability has been discovered.

Vulnerabilities in PyPi take, on median, 4 months to be fixed. The severity level of a PyPi

vulnerability does not make a statistically significant difference for the time needed to fix

the reported vulnerabilities.

3.4 Discussion and Implications

In this section, we discuss more details about our results with comparison to the npm ecosystem

(Section 3.4.1). Then, we highlight the implications of our study to researchers and practitioners

(Section 3.4.2).

3.4.1 Comparison to the npm ecosystem

As shown in our comparison to the npm, some of our findings generalized also to the npm

ecosystem, while others did not. Therefore, in this section, we delve into some of the reasons both

ecosystems exhibit some similar characteristics as well as explanations about the divergent findings.

Vulnerability distribution. Both studies found that the number of newly discovered vulnerabilities

are growing over time. We attribute the reason for this increase to the increasing popularity of open

source components combined with the awareness of vulnerabilities in such components (Williams

& Dabirsiaghi, 2012). At first sight, this is a healthy sign of both ecosystems. The increase in

the number of reported vulnerabilities is a result of coordinated efforts in increasing awareness and

continuous process testing packages to identify the vulnerabilities before they can be exploited.

However, the growth of the ecosystem calls also for the continuous and comprehensive effort for

analysing package vulnerabilities to mitigate their negative impact.

We observed that the vast majority of the vulnerabilities identified in the npm and PyPi ecosys-

tems are of medium severity.We believe that this observation is due to the fact that many of the

tools used by security package maintainers to discover vulnerabilities in open source packages are

not qualified to find more complex and critical issues although they are good at discovering new

36

vulnerabilities. Robust tools that combine exhaustive techniques like program analysis, testing, and

verification are required to find high-hanging vulnerabilities (Godefroid, Levin, & Molnar, 2012).

We observed that Cross-Site-Scripting (XSS type or CWE-79), is the most common vulnera-

bility found in both ecosystems. The dominance of the XSS CWE vulnerability can be justified by

1) its effectiveness in granting unauthorized access into a system and the ease in which the attack

method can be applied on a web application (Johari & Sharma, 2012; Thomé, Shar, Bianculli, &

Briand, 2018); and 2) the community efforts in taming this well-known vulnerability, as identifying

XSS has been a top concern by OWASP (OWASP, 2019) for more than 15 years. We conjecture

that other types of vulnerabilities might be not as easily detectable, or easy to exploit, taking away

the incentive of attackers in searching such vulnerabilities in the PyPi and npm ecosystems.

Vulnerabilities discovery, publication, and fix. In npm, the majority of reported vulnerabilities

(82%) were fixed after they were discovered and before the publication date (Decan, Mens, &

Constantinou, 2018b). Contrasting to these findings, we found 50.55% of the PyPi package vulner-

abilities to be fixed after the vulnerability has been made public. A possible reason for this is that

3 out of 4 vulnerabilities in PyPi get published right after their discovery, which reduces the time

window for a vulnerability to be fixed.

To gain more insights, we investigate the protocol and policies in place for reporting and

publishing vulnerabilities of both npm and PyPi ecosystems. We find that npm ecosystem has

a protocol for reporting and publishing vulnerabilities, which enforces a 45 days waiting time

before the publication of a vulnerability (Reporting a vulnerability in an npm package, accessed

on 12/10/2021), aiming to give package developers a time window to fix the vulnerability. In PyPi,

however, If a vulnerability is assessed to have low risk of being exploited or causing damage, the

PyPi security team prefers to publish the vulnerability right after its discovery (PyPi, 2018). We

noticed that most vulnerabilities (74.55%) are published as soon as they are discovered, effectively

reducing the time window for a vulnerability to be fixed before publication.

An example of that, is a security issue that was found in elementtree package (Issue 27863,

accessed on 12/10/2021). In this issue, the vulnerability could cause serious problems (high-severity

level) through a Use-After-Free (UAF) (CWE-416, accessed on 12/10/2021) vulnerability related

to incorrect use of dynamic memory, where the attacker causes the program to crash by accessing

37

the memory after it has been freed. Yet, the PyPi security team stated that in this specific case,

an attacker could not exploit this vulnerability because it requires a privileged position that is

not often possible from the attacker side. Such specificities and policies is a supportive reason

behind having majority of vulnerabilities being fixed after the public disclosure. Note that the risk

assessment conducted by the PyPi security team is different from the CVSS severity level assigned

to a vulnerability in the Snyk.io dataset (CVSS for CVEs — Snyk, accessed on 12/10/2021).

3.4.2 Implications

In the following, we highlight the most important implications driven by our findings. We

provide implications to both researchers and practitioners by discussing the aspects that the devel-

opment community needs to address in order to provide a more secure development environment

for package ecosystems.

There is a dire need for more effective process to detect vulnerabilities in open source pack-

ages. Our findings show that vulnerabilities in Python packages are hidden, on median, 3 years

before being first discovered (RQ2). These findings point to inadequacy process of testing open

source packages against vulnerabilities. In fact, both npm and PyPi allows to publish a package

release to the registry with no security checks exist before publishing the package. An open avenue

for future research is the development of a process that ensures some basic security checks (code

vetting) before publishing a release of a package. Inspired by other ecosystems, such as mobile

application stores (Android Google Play Protect, accessed on 12/10/2021; Lu, Li, Wu, Lee, &

Jiang, 2012), npm and PyPi could enforce some testing before publishing a new release of a package.

Recently, there have been several research attempts to improve the security of the packages uploaded

and distributed via the ecosystems, e.g., (Vu, Pashchenko, Massacci, Plate, & Sabetta, 2020a,

2020b) for PyPi, and Synode (Staicu, Pradel, & Livshits, 2016), NoRegrets (Mezzetti, Møller,

& Torp, 2018) for npm. The vetting process can start with the most popular packages and move

gradually, given the growth of the software ecosystems. Also, the code vetting process can focus on

specific categories of security issues, e.g., malicious code or code that steals sensitive information

from users, which is triggered by performing XSS attacks, the most common vulnerability found in

npm and PyPi (RQ1).

38

PyPi needs to employ a better protocol of publishing package vulnerabilities. The current

process of disclosing and publishing a package vulnerability in Python seems to remain ad-hoc.

Our findings show that over 50% of PyPi package vulnerabilities were unfixed when they were

first publicly announced (RQ3), and took a couple of months to be fixed and released (RQ4).

To better control the process of reporting and disclosing package vulnerability information and

limit its leakage, practitioners should refine the process to balance the advantages from an early

and public-disclosure process of a vulnerability versus private-disclosure process. A possible im-

provement could be by forestalling the vulnerability publication until valued package users and

vendors are privately notified about the vulnerability to give them a little some time to prepare

properly before the vulnerability is publicly disclosed. Such controlled process is adopted by various

internet networking software packages like BIND 9 and DHCP (Internet Systems Consortium,

accessed on 12/10/2021). The npm ecosystem defines to some extent a strict timeline for reporting

a vulnerability providing only 45 days for package maintainers to fix their vulnerabilities before

publishing them. Yet, its efficacy is not known.

PyPi should deprecate packages that suffer continuously from vulnerabilities. In our study, we

observed that the vast majority of packages that take longer to fix vulnerabilities are due to project

inactivity (RQ4). A relatively new idea introduced by Pashchenko et al. (Pashchenko et al., 2018)

is the concept of “halted package”, which is a package where the time to release the latest version

surpasses by a large margin the time maintainers took to release previous versions of the package.

This concept can be used to identify packages that are becoming less maintained over time, and

therefore, should be replaced by a better maintained alternative in the software ecosystem.

PyPi and npm should provide package users with vulnerability information to support them

with the selection process of packages. Previous work (Larios-Vargas, Aniche, Treude, Bruntink,

& Gousios, 2020) has studied several factors that influence the adoption of packages by developers.

Researchers report that the occurrence of vulnerabilities and the number of vulnerabilities not

quickly fixed in the packages are two important security-related factors. Currently, both npm and

39

PyPi package managers provide basic quality metrics on package popularity for each package such

as, list of versions, downloads count, stars count, and number of open issues. However, they

lack any information on security issues. A methodology, similar to the one used in our study,

could be employed to define a lightweight security metrics, to support developers when selecting

their packages. An example of such metrics is to calculate the average time to patch a package

vulnerability after been reported to be discovered (RQ4). This metric will give package users

insights about the prioritization of fixing vulnerabilities of the package.

PyPi should employ tools to audit vulnerabilities when installing the packages. Our findings

show that package vulnerabilities remain unfixed for a few months even after being publicly an-

nounced. Hence, Python applications that make use of such vulnerable packages could be exposed

to vulnerabilities through their dependencies. Therefore, developers should be aware of vulnerabil-

ities in their packages before installing them. Similar to the security audit tool provided by npm

(i.e., npm audit) (npm audit, accessed on 12/10/2021), which warn developers when installing

a known vulnerable package, PyPi community could employ a similar tool that instantly warns

developers about vulnerable packages once the vulnerable package version is installed. Recently,

GitHub acquired DependaBot tool (Dependabot tool, accessed on 12/10/2021), a tool that tracks

vulnerabilities in several ecosystems. Researchers should work on evaluating such tools to under-

stand their effectiveness and uncover their limitations.

3.5 Tool Support: Dep-Health

A critical issue of vulnerabilities that affect software packages is the lack of developers aware-

ness to them (Kula et al., 2018). Developers should at least understand the security health of the

adopted packages in their projects, i.e., how timely package maintainers discover and fix reported

vulnerabilities. Moreover, a recent survey with developers indicated a high demand for high-level

metrics to assess the maintainability and security of software packages (Pashchenko, Vu, & Mas-

sacci, 2020).

To address this problem, we build a tool called DEPHEALTH, which uses the approach described

40

Figure 3.7: Screen-shot of the DEPHEALTH website showing its main page (Dep Health — Home,
2021). The columns’ names that appeared inside the red-colored borders are the main metrics
calculated for each vulnerable package.

in Section 3.2 to generate a report for security vulnerabilities that affect Python packages, i.e., we

provide developers with metrics related to the life cycle of vulnerability discovery and fix, which

help to show how maintained and secure the packages are.

Our tool generates two main metrics to help developers understand: 1) the discovery timespan

of package vulnerabilities, and 2) the fix timespan of package vulnerabilities. The tool also presents

the data of the metrics broken by the severity level of package vulnerabilities. Figure 3.7 shows a

screen-shot of the DepHealth’s interface. As shown in the figure, each row represents the relevant

vulnerability data of a vulnerable package.

To facilitate using the tool, the tool provides the user with an option to search for a specific

package to view its data, by using the search box in the top-right of Figure 3.7. Also, the user can

download (using the button CSV) a complete version of the data presented in the website. It is also

possible to download the data for selective packages, by pressing command key + a mouse click to

select the desired package rows.

Moreover, the tool provides meta-data for the vulnerable package, e.g., number of total vulner-

abilities in the package. By clicking on the package name, more details about each vulnerability

41

Figure 3.8: A Screen-shot showing some meta-data for vulnerabilities in the Accesscontrol package.

report can be shown, e.g., a reference to the report, as shown in Figure 3.8.

Finally, note that to avoid the out-of-date analysis, our pipeline for analysing the data is com-

pletely automated, which helps to easily update the website periodically.

3.6 Threats to Validity

In this section, we state some threats to validity that our study is subject to, as well as the actions

we took to mitigate these threats.

Internal Validity The internal validity is related to the validity of the vulnerabilities dataset used

in our analysis. Our dataset is restricted to a limited number of vulnerabilities (i.e., 550 security

reports). We believe that many vulnerable packages may have been discovered and fixed but not

yet reported. However, since Snyk team monitors more widely used packages (How Snyk finds out

about new vulnerabilities, accessed on 12/10/2021), we expect our results to be representative of

high-quality Python packages.

Also, we collect the PyPi vulnerabilities reports that were published before Jan. 2018. Results

might differ if we consider vulnerability reports published after Jan. 2018. However, since a key

point of our study is to compare our findings to the ones reported from npm, we collect our dataset

in the same timeline as the npm study in order to make our study comparable. Furthermore,

our vulnerability dataset contains more than 500 reports that cover 12 years of PyPi reported

vulnerabilities, and many of these reports are related to a popular and most used Python packages

42

(e.g., Django, Flask, Requests).

Finally, in our analysis, we used the vulnerability severity level provided by Snyk.io to quantify

their impact. However, the severity level published by Snyk.io is not necessarily uncontested, as

discussed in Section 3.4.1, PyPi security advisories might have had different assessments on the

severity of some vulnerabilities. Unfortunately, the severity analysis data provided by the PyPi

ecosystem is not publicly available, therefore, we had to rely on the Snyk.io dataset as the only

source of information for the severity of vulnerabilities. Also, vulnerability sources other than Snyk

could be used, however, our choice of Snyk is influenced by several previous studies (Chinthanet et

al., 2019; Decan, Mens, & Constantinou, 2018b; Zapata et al., 2018)

External Validity External validity concerns the generalization of our results to other software

ecosystems and programming languages. As shown in our comparison to the npm, some of our find-

ings generalized also to the npm ecosystem, while other findings did not. Although our methodology

and approach could be applied to other software ecosystems, results might be (and unsurprisingly

so) quite different from PyPi, due to characteristics such as policies, community practices, program-

ming language features and other factors belonging to software ecosystems (Bogart et al., 2016;

Decan et al., 2017). Therefore, a replication of our work using packages written in programming

languages other than PyPi and npm is required to establish a more complete view of vulnerabilities

in software ecosystems.

3.7 Related Work

We reviewed prior research on software packages and vulnerabilities in Chapter 2. In this

section, we discuss the work that is most closely related to this chapter.

Hejderup et al. (Hejderup, 2015) conducted an empirical study on the impact of security vul-

nerabilities in the npm ecosystem. They analysed 19 npm vulnerable packages, and found that

the number of vulnerabilities is growing over time. Neuhaus and Zimmermann (Neuhaus &

Zimmermann, 2009) analysed vulnerabilities that affect RedHat packages and their dependencies

and build a model to predict packages with vulnerabilities. Ruohomen (Ruohonen, 2018) conducted

a release-based time series analysis for vulnerabilities in Python web applications, and found the

43

appearance probabilities of vulnerabilities in different versions of the applications followed the

Markov model property. Also, Pashchenko et al. (Pashchenko, Vu, & Massacci, 2020) conducted

interviews with developers of C/C++, Java, JavaScript, and Python to understand how they manage

their packages with respect to security vulnerabilities. The results indicated a high demand for

high-level metrics to show how maintained and secure the package is, when selecting an external

package. Our study methodology (in Section 3.4.2) and the tool (in Section 3.5) can be employed

to provide developers with such metrics for package selection process.

The work that is most close to our study is the npm study by Decan et al. (Decan, Mens, &

Constantinou, 2018b). Their work focused on analysing vulnerability in the npm package ecosys-

tem. Inspired by their study, and supported by the fact that different ecosystems have different

characteristics, we conducted our study to examine security vulnerabilities in the PyPi ecosystem.

We studied several aspects related to vulnerability propagation, their discovery and fix timeline.

By comparing our findings with the ones reported by Decan et al. (Decan, Mens, & Constantinou,

2018b), we identified some particularities of the PyPi ecosystem and devise important recommen-

dations to improve the safety of PyPi.

3.8 Chapter Summary

In this chapter, we conduct an empirical study of security vulnerabilities in the PyPi ecosystem,

evaluating over than 500 package vulnerabilities that affect 252 packages. In particular, we explore

vulnerabilities propagation, discovery, and fixes. Also, we compare our findings with the npm

ecosystem (Decan, Mens, & Constantinou, 2018b). Our results show that PyPi vulnerabilities are

increasing over time, affecting the large majority of package versions. Moreover, our findings reveal

shortcomings in the process of discovering vulnerabilities in PyPi packages, i.e., they take more

than 3 years to discover them. Additionally, we observe that the timing of vulnerability patches

does not closely align with the public disclosure date, leaving open windows and chances for an

attacker exploitation. We note that over 50% of the vulnerabilities were patched only after public

disclosure. Finally, our comparison to npm vulnerabilities reveals in some aspects a departure from

the npm’s findings, which can be attributed to ecosystems policies. Finally, we build a tool called

44

DEPHEALTH, which uses the analysis approach in our study to generate analytical report of security

vulnerabilities that affect Python packages, i.e., we provide developers with metrics related to the

lifecycle of vulnerability discovery and fix, to help show how maintained and secure the packages

are.

The focus of this chapter is to study security vulnerabilities that affect software packages. How-

ever, package vulnerabilities may propagate to dependent applications that rely on such packages,

making them vulnerable too. In the next chapter, we shift our focus to examine software applications

that rely on packages to study the degree that applications rely on vulnerable dependencies and

understand how threatening such vulnerable dependencies really are.

45

Chapter 4

Examining the Discoverability of

Package Vulnerabilities Impacting

Software Applications

Many software applications depend on external packages. These packages can threaten the de-

pendent software applications if exploited. Package vulnerabilities are common and remain hidden

for years. However, once the vulnerability is discovered and publicly known to the community, the

risk of exploitation reaches its peak, and developers have to work fast to remediate the problem.

While there has been a lot of research to characterize vulnerabilities in software ecosystems, none

have explored the problem taking the discoverability into account, i.e., how often and for how long

are applications exposed to dependencies with public vulnerabilities? In this chapter, we focus

on applications that use vulnerable packages and define three discoverability levels for package

vulnerabilities impacting the application based on their disclosure lifecycle. Then, we conduct

an empirical study on 6,546 open-source JavaScript applications to determine the prevalence of

affected applications that rely on vulnerable dependencies taking into consideration the discov-

erability levels. We also study for how long these the application take before the vulnerabilities

are mitigated. Our results show that 67.9% of the examined applications depend on at least one

vulnerable package. Taking discoverability into account, we found that although the majority of

46

the affected applications (99.42%) depend on packages with hidden vulnerabilities at the time of

analysis, 206 (4.63%) applications were still exposed to dependencies with public vulnerabilities.

Moreover, we find that in the case of applications affected by public package vulnerabilities, it is

the application’s lack of updating that makes them vulnerable, i.e., it is not the existence of the

vulnerability that is the real problem. Finally, we present DepReveal, a tool prototype to report the

historical exposure of JavaScript projects to dependency vulnerabilities, to help developers better

plan the maintenance of their software project.

4.1 Introduction

Modern software systems are developed with increasingly reliance on open source software

packages (dependencies). This dependence on open source packages is highly beneficial to software

development, as it speeds up development tasks and improves software quality (Basili, Briand, &

Melo, 1996a; Lim, 1994a), but has implications to the security of those systems. Dependencies with

security vulnerabilities have the potential to expose hundreds of applications to security breaches,

causing huge financial and reputation damages. One such example is the Equifax incident (Equifax,

2017), where a vulnerability on a single dependency of Equifax (the Apache Struts package) led to

unauthorized access to hundreds of millions of consumers’ personal information and credit card

numbers.

The recent popularity of software packages has only magnified the problem. For example, npm

(the main package manager used by JavaScript applications) hosts more than 1.73M npm packages

available for the JavaScript community. Prior studies (e.g. (Zimmermann et al., 2019a)) showed

that a significant proportion (up to 40%) of all npm packages use code with at least one publicly

known vulnerability, which increases the risk of a vulnerable package in a software application.

In fact, an essential factor to evaluate the impact of vulnerable packages in an application is the

discoverability of vulnerabilities, i.e, how publicly known is the package vulnerability (OWASP,

2020 (accessed 10/10/2020)). As an example, the vulnerability that caused the Heartbleed incident

was hidden in the OpenSSL package for years (Heartbleed Bug, accessed on 12/10/2021), but once

published, more than 4 thousand exploit attempts were registered by researchers (Durumeric et

47

al., 2014). While hidden (unknown) vulnerabilities can be exploited by attackers who are aware

of the breach, once vulnerabilities become public, the chances of exploitation reach its peak and

developers need to act fast to mitigate the security risks.

To our best knowledge, none of the previous studies has explored the problem taking the

discoverability into account, considering the application development history. Hence, to shed light

on this aspect and better understand the impact of a dependency vulnerability on an application,

we examine the vulnerabilities based on their discoverability. To achieve this goal, we classify

software vulnerabilities into three discoverability levels: hidden, indicating that a vulnerability that

affects a dependency was not discovered (reported) yet at a specific point in the application lifetime;

reported, indicating that a vulnerability was discovered and reported but not yet published; public,

indicating that a vulnerability has been published and/or a proof-of-concept of how to exploit it is

given. Note that this is a post-mortem classification, using information only available after the fact,

for the purpose of evaluating dependency vulnerabilities impacting the applications.

We use our discoverability levels and perform an empirical study involving 6,546 active and ma-

ture open source JavaScript applications. First, to better understand the threat of dependencies on the

software applications, we examine (RQ1) how the discoverability levels of vulnerable dependencies

are distributed in the studied applications. Our findings show that although the majority (99.42%) of

the affected applications (in one of their latest versions) are classified as having hidden dependency

vulnerabilities, 4.63% of these applications depended on a public dependency vulnerability, where

the discoverability is at its highest. This means that those applications depend on vulnerable versions

of dependencies even after the vulnerability reports have been published.

Therefore, to better understand the reason for the existence of the threat due to the public

dependency vulnerability (i.e., is it the application that did not update a dependency or is it the

package that did not provide a fixing update), we examine the responsibility for the dependence on

public vulnerabilities in (RQ2). We find that the vast majority (90.8%) of the public dependency

vulnerabilities were due to lack of dependency updates from applications, i.e., vulnerable depen-

dencies had an available vulnerability fix (patch) but developers did not update their application to

a newer (safer) version of the vulnerable dependency.

It is critical that applications patch public dependency vulnerabilities as soon as possible to

48

avoid potential exploits. Hence, to understand how fast vulnerable dependencies are patched in the

applications, we examine (RQ3) how long does it take for public dependency vulnerabilities to be

removed from the applications? We find that the applications take substantially long time (103 days)

before public dependency vulnerabilities are fixed in the applications.

Finally, levering the findings in this study, we develop DEPREVEAL, a tool that informs de-

velopers of the historical exposition to public vulnerabilities in their JavaScript application. Our

tool generates historical analytical reports to increase developers awareness to the discoverability of

their JavaScript application dependencies.

In summary, this chapter makes the following main contributions:

• We define three discoverability levels for software dependency vulnerabilities based on their

disclosure timeline.

• To the best of our knowledge, we conduct the first empirical study on 6,546 open-source

JavaScript applications to determine the prevalence of affected applications that rely on vul-

nerable dependencies taking into consideration the discoverability levels. We also examine

why these applications end up depending on vulnerable versions of the package in order to

better understand how we can mitigate such issues.

• We develop DEPREVEAL, a tool that generates historical analytical reports to increase devel-

opers awareness to the discoverability of their JavaScript application dependencies.

Chapter organization.

The rest of this chapter is organized as follows: Section 4.2 describes how npm manages depen-

dencies in JavaScript applications. Section 4.3 introduces our vulnerability classification used in

this study. Section 4.4 describes our study design. Section 4.5 explains how we identify and

classify vulnerable dependencies in JavaScript applications. Our results are presented in Section 4.6.

Section 4.7 discusses our results further. Section 4.8 presents our tool. Section 4.9 discusses the

implications of our findings. Section 4.10 presents the threats to validity. Section 4.11 discusses the

related work. Section 4.12 concludes our study.

49

4.2 NPM Dependency Management

Since determining vulnerable dependencies in JavaScript applications heavily relies on the

management of the dependencies and how they are resolved (i.e., the dependency constraints), in

this section, we highlight how npm dependency management works.

Node Packages Manager (npm) is the de-facto package manager used by JavaScript applications

to handle their dependencies (npm, accessed on 12/10/2021). npm has a registry where packages

are published and maintained. To date, npm registry hosts more than 1.3M packages, and has had

the highest growth rate in terms of packages amongst all known programming languages (npm -

Libraries.io, 2021).

To determine the discoverability of vulnerable dependencies in JavaScript applications, we need

to understand two important mechanisms of the npm ecosystem: 1) how JavaScript applications

specify their npm dependencies and 2) how npm resolves a dependency version, i.e., find the

dependency version to install in a JavaScript application. JavaScript applications specify their

dependencies in a JSON-format file, called package.json, which lists the dependencies and their ver-

sioning constraints. The versioning constraint is a convention to specify the dependency version(s)

of the package that an application is willing to depend upon. The version constraints can be static,

requiring a specific version of the dependency (e.g., “P:1.0.0”), or dynamic specifying a range

of versions of the dependency (e.g., “P:>1.0.0”). Typically, developers use dynamic versioning

constraints if they want to install the latest version of a dependency, allowing them to get the latest

updates/security fixes of the package. When a dynamic version is used, the resolved version (i.e.,

the actual version) corresponds to the latest installable version that satisfies the constraint (Cogo,

Oliva, & Hassan, 2019).

JavaScript applications can specify two sets of dependencies in their package.json file: develop-

ment and production dependencies. Development dependencies are installed only on development

environments, and consequently, issues that may arise from them (e.g., vulnerabilities and bugs)

have no impact on production environments. On the other hand, production dependencies (also

called runtime dependencies) are installed on both production and development environments. In

our work, we only consider direct production dependencies since they are the ones that impact the

50

production environment (Decan, Mens, & Grosjean, 2018).

4.3 Classifying Vulnerabilities

In this section, we explain the stages of a vulnerability lifecycle and how that influences the

levels of discoverability we investigate in our study.

4.3.1 Vulnerability Lifecycle

Typically, a vulnerability goes through a number of different stages (A Day in the Life of npm

Security, accessed on 12/10/2021; Disclosure of security vulnerabilities, accessed on 12/10/2021).

• Introduction. This is when the software vulnerability is first introduced into the package

code. At this stage, no one really knows about its existence, assuming that the introduction is

not malicious.

• Report. When a vulnerability is discovered, it must be reported to the npm security team.

The npm team investigates to ensure that the reported vulnerability is legitimate. At this stage,

only the security team and the reporter of the vulnerability know about its existence.

• Notification. Once the reported vulnerability is confirmed, the security team triages the

vulnerability and notifies the vulnerable package maintainers. At this stage, only the reporter,

npm team, and package maintainers know about the vulnerability.

• Publication without a known fix. Once the package maintainers are notified, they have 45

days before npm publishes the vulnerability publicly. Alongside with publishing the vulnera-

bility, the npm team may also publish a proof-of-concept showing how the vulnerability can

be exploited (npm publications, accessed on 12/10/2021). At this stage, the vulnerability is

known publicly and its potential risk is higher.

• Publication with a fix. Another (and more common) way that a vulnerability can be pub-

lished is when a fix is provided by the package maintainers. If a fix is provided (before 45

days), then npm publishes the vulnerability along with the version of the package that fixes

the vulnerability.

51

4.3.2 Discoverability Levels

The different stages of a vulnerability significantly impact its chance to be discovered by an

attacker. Our study is based on the idea that vulnerabilities should be examined while taking their

discoverability into consideration to better assess their potential for exploitation. We use the various

stages to ground our argument and define three specific levels:

(1) Hidden: before report. Since very little (or nothing at all) is known about a vulnerability

before it is found and reported, i.e., dependency vulnerabilities are hidden in the applica-

tions, we believe that the chances of being exploited are low. We classify all dependency

vulnerabilities in the application at this stage as hidden dependency vulnerabilities.

(2) Reported: after report & before publication. Once a vulnerability has been discovered

and reported, the general public is not yet aware of the vulnerability, as the process is con-

ducted internally by the npm team. Still, there is a chance that others may know about the

vulnerability and has the capability to exploit, so we consider the chances of exploit to be

at a medium level. We classify dependency vulnerabilities in the application at this stage as

reported dependency vulnerabilities.

(3) Public: after publication. After publication the chance of exploitability is at its highest. A

proof-of-concept is often published (npm publications, accessed on 12/10/2021) alongside

the vulnerability report, explaining how the vulnerability could be exploited. The threat of this

vulnerability can only be mitigated once package maintainers release another version fixing

the vulnerability and the application developers update their dependency accordingly. Failing

to perform both these tasks in a timely fashion may put the application at higher security risk.

We classify dependency vulnerabilities in the application at this stage as public dependency

vulnerabilities.

4.4 Study Design

In this section, we describe the research questions (RQs) that drive our investigation and our

process to collect a dataset of mature and active JavaScript applications for our study.

52

4.4.1 Research Questions

We leverage the collected data to answer the following research questions:

• RQ1: How often JavaScript applications depend on vulnerable dependencies? How discover-

able are their vulnerable dependencies?

• RQ2: Who is responsible for the dependence on publicly known dependency vulnerabilities?

• RQ3: For how long do applications depend on publicly known dependency vulnerabilities?

4.4.2 Data Collection

Our study examines vulnerable dependencies in JavaScript applications, particularly applica-

tions that use the Node Packages Manager (npm) as dependency management (npm, accessed on

12/10/2021). We opt to focus on JavaScript applications due to its popularity and importance in

the current development landscape. JavaScript is currently the most popular programming language

in the world (SOF, 2020) with a vibrant and fast growing ecosystem of reusable software pack-

ages (npm - Libraries.io, 2021).

To perform our study, we leverage two datasets: (1) JavaScript applications that use npm to

manage their dependencies, and (2) Security vulnerabilities that affect npm packages. To do so, we

(i) obtain the JavaScript applications from GitHub, (ii) extract their dependencies, and (iii) obtain

the security vulnerabilities for npm packages from npm advisories (npm, 2021).

(i) Applications Dataset. To analyse a large number of open source JavaScript applications that

depend on npm packages, we mine the GHTorrent dataset (Gousios, 2013) and extract information

about all JavaScript applications hosted on GitHub. The GHTorrent dataset contains a total of

7,863,361 JavaScript projects hosted on GitHub, of which 2,289,130 use npm as their package

management platform (i.e., these projects contain a file called package.json). Moreover, since

both JavaScript packages and applications can use GitHub as their development repository, and our

applications dataset should only contain JavaScript applications, we filter out the GitHub projects

53

Table 4.1: Statistics of the 6,546 studied JavaScript applications.

Metric Min. Median(x̄) Mean(µ) Max.

Commits 100 326 1035.47 77,271
Dependencies 3 23 27.93 134
Developers 3 5 6.33 62
Age (in years) 5 7.24 7.53 12.81

that are actually npm packages by checking their GitHub URL on the npm registry. The main reason

that we focused on applications and not packages is that packages become exploitable when used

and deployed in an application. This filtering excludes 328,343 projects from our list of GitHub

projects as they are identified as packages and not JavaScript applications.

As shown in previous studies (Kalliamvakou et al., 2014; Kula et al., 2018), projects in GitHub

are not always representative of mature software projects we aim to investigate. Hence, we refined

the dataset to focus on projects that are active and more likely to be mature software projects, by

including applications that satisfy the following criteria:

• Non-forked applications, as we do not want to have duplicated project history to bias our

analysis.

• Applications that depend on more than two dependencies.

• Applications that have at least 100 commits by more than two contributors, which indicates a

minimal level of commit activity.

• Applications that have had their creation date (first commit) before January 1st 2017. Since

vulnerabilities take on median 3 years to be discovered (Decan, Mens, & Constantinou,

2018b), applications in our dataset need to have a development history long enough to have

had a chance for their vulnerabilities to be discovered.

• Applications that have at least one commit after January 1st 2020, as we want to analyze

applications that had some level of development activity recently.

After applying these refinement criteria, we end up with 6,546 JavaScript applications that

make use of npm packages. Table 4.1 shows the descriptive statistics on the selected JavaScript

54

applications in our dataset. Overall, the applications in our dataset have a rich development history

(a median of 326 commits made by 5 developers and 7.24 years of development lifespan) and make

ample use of external dependencies (a median of 23 dependencies).

(ii) Application Dependencies. After obtaining the applications dataset, we extract the history of

dependency changes of all applications. This is necessary to identify the exact dependency versions

that would be installed by the JavaScript application at any specific point-in-time. JavaScript

applications specify their dependencies in a JSON-format file, called package.json, which contains

the dependency list, a list of the depended upon packages and their respective version constraints.

A version constraint is a configuration that specifies the dependency version(s) of the package that

an application is willing to depend upon (Semantic Versioning 2.0.0, 2021). Hence, we extract

all changes that touched the package.json file and associate each commit hash and commit date

to their respective package.json dependency list, creating a history of dependency changes for all

applications. Note that these dependencies are not yet resolved, that is, we only have the version

constraints (not the versions) for the dependencies of each application.

(iii) npm Advisories Dataset. To identify the JavaScript applications that depend on vulnerable

packages, we need to collect information on npm vulnerable packages. We resort to the npm

advisories registry to obtain the required information about all npm vulnerable packages (npm,

2021). The npm advisories dataset is the official registry for all vulnerability reports related to

JavaScript packages. This dataset provides some key information on vulnerable packages, such as

the affected package, the affected package versions, and the first version in which the vulnerability

has been fixed (safe version), if available. This dataset also contains the vulnerability discovery

(report) time and publication time, which we use in our approach for identifying and classifying

vulnerabilities (Section 4.5).

Our initial dataset contains 1,456 security reports that cover 1,234 vulnerable packages. Follow-

ing the criteria filtration process applied by Decan et al. (Decan, Mens, & Constantinou, 2018b), we

removed 312 vulnerable packages of the type “Malicious Package”, because they do not actually

introduce vulnerable code. These vulnerabilities are packages with names close to popular packages

55

Table 4.2: Descriptive statistics on the npm advisories dataset.

Vulnerability reports 1,144
Vulnerable packages 925
Versions of vulnerable packages 38,562
Affected versions by vulnerability 20,206

(a.k.a. typo-squatting) in an attempt to deceive users at installing harmful packages. The 312

vulnerable packages account for 312 vulnerability reports. At the end of this filtering process,

we are left with 1,144 security vulnerabilities reports affecting 925 distinct vulnerable packages.

These packages have combined 38,562 distinct package versions of which 20,206 are affected by

vulnerabilities from our report. The collected advisories dataset covers vulnerability reports created

between October 2015 and May 2020. Table 4.2 shows the summary statistics for vulnerability

reports on npm packages.

4.5 Approach

In this section, we explain how we classify the discoverability levels of vulnerable dependencies

and how we use these levels to classify JavaScript applications.

Application
Timeline

Package A
Timeline

Hidden Reported Public

Vulnerability
Introduced

Vulnerability
Reported

Vulnerability
Published

v 1.1.1 v 1.1.2

Vulnerability
Fixed

Dependency
update

Dependency
update

Application
Dependencies

npm Advisories
Dataset

Figure 4.1: Illustration of the methodology for classifying the discoverability level of a single
vulnerable dependency (Package A) for an application.

We illustrate our methodology in 4.1, on an example of an application with a single vulnerable

dependency. As we can observe, the timelines of the discoverability levels of both the vulnerable

package and the application are different. In the example of 4.1, the application is only affected

by a vulnerable dependency once it starts depending on the first vulnerable version (v 1.1.1).

Similarly, even if the package latest release contains a fix to the vulnerability, the application can

56

Applications
Dataset

Extract
dependencies and
resolve versions

Identify vulnerable
dependency

versions

Identify
discoverability

levels

Figure 4.2: Approach for identifying and classifying JavaScript applications affected by vulnerable
dependencies.

only benefit from it once it updates to the fixed version (v 1.1.2). This is different for the changes

of discoverability levels once the vulnerability is made public. Due to the open nature of open

source software, as soon as a vulnerability is published, any attacker in potential can identify that

the application depends on the vulnerable version of Package A.

The goal of our study is to investigate how often JavaScript applications depend on vulnerabil-

ities that are hidden, reported and public. To make our analysis feasible, we focus on classifying

applications at one specific point in time of the application development history, which we call the

analyzed snapshot time. We accomplish this by leveraging a 3-step approach. Figure 4.2 provides

an overview of our approach, which we detail below:

Step 1. Extract dependencies and resolve versions. The goal of this step is to extract the

application dependencies and find the dependency version that would be installed at the analyzed

snapshot time. For each application, we extract the dependency list (with the versioning constraints)

at that snapshot time from the history of dependency changes. After that, to find the actual version

of each dependency at the analyzed snapshot, we utilize the semver tool (semver, 2021). This tool is

used by npm to resolve versioning constraint in JavaScript applications. We included one additional

restriction to semver, that the satisfying version should have been released (in the npm registry)

before the analyzed snapshot time. For example, an application can specify a versioning constraint

(“P:>1.0.0”) at the snapshot May 1st 2016. Hence, the actual installed version is the latest version

that is greater than 1.0.0 and also has been released in the npm registry before May 1st 2016. This

step allows us to find the installed version of the dependency at the analyzed snapshot time.

57

Step 2. Identify vulnerable dependency versions. After determining the resolved (and presum-

ably installed) version at the analyzed snapshot time, we check whether the resolved version is

vulnerably or not. To do so, we cross-reference the resolved versions with the advisories dataset.

If the resolved version is covered by the advisories dataset, we label it as a vulnerable dependency

version. We skip the whole next step if the dependency version has not been mentioned in any

advisory, i.e., the dependency version is not known to be vulnerable.

Step 3. Identify discoverability levels of vulnerable versions. Once we identify the vulnerable

dependency versions at the analyzed snapshot time, we classify each vulnerable dependency version

using one of the discoverability levels we defined in Section 4.3.2. To that aim, for each vulnera-

ble version, we compare its vulnerability discovery (report) and publication time to the analyzed

snapshot time. As we stated previously (in Section 4.3.2), if the vulnerability was made public

before the snapshot time, we mark the dependency version as having a public vulnerability. If

the vulnerability of the dependency was not published but only discovered (reported) before the

application’s snapshot time, the vulnerable dependency version is considered to have a reported

vulnerability. And finally, if the vulnerability was neither published nor discovered (reported) before

the analyzed snapshot time, then we classify the dependency version as a hidden vulnerability. In

cases where more than one vulnerability affects the vulnerable dependency version, we label the

vulnerable dependency version with the highest level. For example, if we find that the vulnerable

version of the dependency is affected by two vulnerabilities, one classified as hidden and the

other classified as public, we label the dependency version as having a public vulnerability, at that

snapshot time.

4.6 Study Results

In this section, we present the motivation, the approach and the findings that answers our 3

research questions (RQs).

58

RQ1: How often JavaScript applications depend on vulnerable dependencies? How

discoverable are their vulnerable dependencies?

Motivation: Previous studies have shown that security vulnerabilities are very common in the

npm ecosystem, with nearly 40% of all npm packages relying on code with known vulnerabili-

ties (Zimmermann, Staicu, Tenny, & Pradel, 2019b). However, vulnerable dependencies can only

be exploited once deployed in applications: how many of our studied applications depend on

vulnerable dependencies? Moreover, given that the discoverability is essential in assessing the

threat of a security vulnerability (OWASP, 2020 (accessed 10/10/2020)), we want to quantify how

many studied JavaScript applications depend on hidden (low risk), reported (medium risk), and

public vulnerabilities (high risk), at the analyzed time. Answering these questions will give us a

better assessment on the exposure of JavaScript applications to dependency vulnerabilities.

Approach: To reduce the biases in our analysis, we need to account for the time it takes to discover

a vulnerability. Prior work showed that vulnerabilities in npm packages take on median 3 years

to be discovered and publicly announced (Decan, Mens, & Constantinou, 2018b). Consequently,

selecting snapshots of our applications in 2021 will paint an incomplete picture, as most vulnerabil-

ities recently introduced in the package’s code could remain hidden for a median of 3 years. Since

our collected applications contain their latest commits between Jan 2020 and May 2020, we chose

to evaluate our applications as of May 1st 2016 (more than 3 years prior), which ensures that at least

half the dependency vulnerabilities introduced in the applications are reported in the current npm

advisories dataset.

Then, we answer our RQ in two steps. In the first step, we examine if the selected snapshot of

the application had at least one dependency that contains a vulnerability (irrespective of its discover-

ability level). In the second step, we analyze only the applications containing at least one vulnerable

dependency and use the methodology described in Section 4.5 to classify the discoverability levels

of all vulnerable dependencies. In addition, since some applications have more than one vulnerable

dependency, we further analyze the distribution of vulnerable dependencies in the applications under

each discoverability level.

59

4,445 (67.9%) depend on vulnerable
dependencies

From 6,546 Node.js applications

4,419 (99.42%) applications depend on 1+ hidden vulnerable dependency

45 (1.02%) applications depend on 1+ reported vulnerable dependency

206 (4.63%) applications depend on 1+ public vulnerable dependency

From the 4,445 applications with vulnerable dependencies

Figure 4.3: Bar-plots showing the share of the examined applications with one or more (1+)
vulnerable dependency, overall and per discoverability levels.

Results: As shown in Figure 4.3, we found that of the 6,546 studied applications 4,445 (67.90%)

applications depend on at least one vulnerable dependency. From the 4,445 affected applica-

tions, we break down the dependency vulnerabilities by the discoverability levels and evaluate how

many applications contain one or more hidden, reported and public dependency vulnerabilities. We

show this break down also in Figure 4.3. Note that the total percentage of hidden, reported and

public surpasses 100%, as one application might contain dependency vulnerabilities on different

discoverability levels. We observe that the majority of the affected applications, 4,419 (99.42%),

depend on one or more dependency vulnerabilities that were hidden at the analyzed snapshot time.

In fact, on 94.26% of the cases (4,190 applications), the applications were affected only by hidden

vulnerabilities. Still, 206 (4.63%) applications depended on at least one package with a public

vulnerability and 45 (1.02%) applications depended on packages with a vulnerability reported to

package maintainers.

Given that applications may have multiple vulnerable dependencies, we analyze proportion of

vulnerable dependencies in each application. Figure 4.4 shows the distribution of the percentage of

vulnerable dependencies per application in each discoverability level (public, reported, hidden). For

instance, if an application has 10 dependencies, of which only 2 contained public vulnerabilities,

this application would have 20% of its dependencies affected by public vulnerabilities.

In terms of public vulnerabilities, the 206 applications with at least one public dependency

60

0 1 2 5 10 20 50 100

Hidden

Reported

Public

Percentage of Vulnerable Dependencies

Figure 4.4: Box-plots showing the distributions of the percentages of vulnerable dependencies in
the applications, per discoverability level.

vulnerability had, on median, 6.25% of their dependencies affected by a public vulnerability, or, 1

out of 16 dependencies. The majority (80.1%) of the 206 applications depend on a single vulnerable

dependency with a public vulnerability. For example, one of the applications affected by a public

dependency vulnerability is the project Atom, a popular text editor, which has more than 40 depen-

dencies but it was affected by a public vulnerability on a package called marked (marked@v0.3.4,

2020 accessed on 12/10/2021). Upon close inspection we found that, while the 206 applications

depended on a total of 2,438 different packages, the public dependency vulnerabilities were found

in only 17 packages. That is, the public dependency vulnerabilities occurred in less than 1% of

total dependencies, but could, nevertheless represent the highest threat of exploitation on those

applications. Several of these packages are very popular dependencies in the npm ecosystem, such

as semver, express, moment, sequelize, marked, tar.

Also, from Figure 4.4 we can observe that reported vulnerabilities are present in only 45

applications (1% of the affected applications). The median rate of dependencies with reported

vulnerabilities in these 45 applications is 5.5% (1 out of 18 dependencies). It is notable that we

find such a small share of applications that depend on reported dependency vulnerabilities. This

is attributed to the npm policy for managing vulnerabilities: the policy states that the reported

period of a vulnerability lasts at most 45 days, i.e., the vulnerability is published after 45 days

of being reported to maintainers (AppSec on Dependency Management, 2020 (accessed 2020)).

This limits how long a vulnerability can remain reported, thus, explaining the small occurrence of

61

vulnerabilities at this stage.

Finally, Figure 4.4 shows that half of the 4,419 applications had at least 13.63% of their de-

pendencies affected by hidden vulnerabilities. That is, on median, 3 out of 22 dependencies are

affected by a hidden vulnerability that would be reported and published after May 2016.

Our findings show that 67.9% of the studied applications depend on vulnerable packages.

The majority (94.26%) depended only on hidden dependency vulnerabilities. Still, 206

applications (4.63%) depended on packages with public vulnerabilities.

RQ2: Who is responsible for the dependence on publicly known dependency vulnera-

bilities?

Motivation: While most of the affected applications depend on dependencies with hidden vulner-

abilities at the studied snapshot time (RQ1), there is a sizeable number of the affected applications

(206 applications = 4.63%) that depend on packages with public vulnerabilities.

In such cases, the developers of the applications could know about the presence of the vulnera-

bility in the affected dependency, and hence, should avoid using that vulnerable version, if a fix is

available. Specifically, in this question we want to know who is to blame - the package maintainers

for not providing a version that fixes a public vulnerability - or the application maintainers for not

keeping their applications up-to-date. Answering this will help us pinpoint the causes for public

vulnerabilities in JavaScript applications and develop further strategies to solve this problem.

Approach: To perform our investigation and answer who is responsible for the public vulnerabilities

in applications, we check - for each vulnerable package - the availability of a safe (non-vulnerable)

version of the package at the analyzed snapshot time. Note that we analyze this RQ at the same

snapshot that we analyzed in RQ1 (i.e., May 2016). Depending on such availability, our analysis

has one of two outcomes:

• Package-to-blame: if at the analyzed snapshot, no safe version has been provided by the

62

Table 4.3: The percentage of vulnerabilities caused by the lack of available fix patch
(Package-to-blame) vs. caused by the lack of dependencies update (Application-to-blame).

Snapshot Package-to-blame Application-to-blame

1st May 2016 9.24% 90.76%

package maintainers for the public vulnerability. As the publication of a vulnerability comes

after a period of 45 days, we consider the package maintainers the responsible for the depen-

dency public vulnerability in applications.

• Application-to-blame: if there is already a released safe version of the vulnerable package

but the application continues to rely on an (old) version with a public vulnerability. Appli-

cation developers should monitor their dependencies and update to releases without public

vulnerabilities, hence, we consider the application maintainers responsible for depending on

a vulnerable package version.

Results: Table 4.3 shows the percentage of public vulnerabilities based on our responsibility anal-

ysis. We observe that for public dependency vulnerabilities, the application is to blame in

90.76% of the cases. That means that in 9 out of 10 cases the public vulnerability had an available

fix, but developers did not update their application dependencies accordingly to receive the latest fix

patch.

Therefore, and perhaps counter-intuitively, applications are not exposed to public vulnerabilities

because packages have unfixed vulnerabilities. Instead, the real cause is the fact that application

developers fail to keep up or at least to inform themselves well enough about a given dependency

version. Hence, a major implication of our study is that application developers struggle with keeping

their dependencies up-to-date, which may have serious effects in the security of their systems.

To have a better understanding of our results, we investigate how much effort would developers

need to migrate to a safe version of their packages. npm adopts a semantic version scheme (semver,

2021) where package maintainers are encouraged to specify the extent of their updates in three

different levels: 1) patch release, which indicates backward compatible bug fixes, 2) minor release,

which indicates backward compatible updates and 3) major release, which informs developers of

63

backwards incompatible changes in the package release. Hence, patch and minor updates are

deemed backwards compatible and may be performed at a lower migration cost, while major release

updates incur on a high migration cost, as developers have to adapt their code to the new package

API.

Once we take the update levels into consideration, we found that, in 43.07% of the public

vulnerabilities, the fix is only available in another major release of the package. For instance,

an application depends on P:1.0.0, and the fix patch was only released for a major version 2.0.0.

Hence, to benefit from a fix patch in such a case, developers are required to adapt their code, im-

posing significant migration costs, especially for large projects that depend on dozens of packages.

Furthermore, this shows that relying on automatic updates at the level of patch and minor releases (as

recommended by npm (Semantic Versioning 2.0.0, (accessed 2020))) does not completely prevent

public vulnerabilities for affecting JavaScript applications.

In 9 out of 10 cases, the main cause of dependence on packages with public vulnerabilities

is the lack of dependency updates. However, in 43% of the cases, the fix is only available

on another major version of the package, incurring in significant migration costs for

application developers.

RQ3: For how long do applications depend on publicly known dependency vulnera-

bilities?

Motivation: Previous RQs show that a small but significant number of applications are exposed

to public dependency vulnerabilities, mostly due to lack of dependency updates. It is not clear,

however, for how long the applications remain affected by a public dependency vulnerability. Public

dependency vulnerabilities that affect the dependent application for a long time can leave an open

channel for successful attacks, as shown in cases such as the Heartbleed incident (Durumeric et al.,

2014). Hence, we investigate how long applications remain depending on a package version affected

by a public vulnerability. Answering this question will give us insights about the prioritization of

64

0%

25%

50%

75%

100%

0 100 200 300 400
Time (in days)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Figure 4.5: Kaplan-Meier survival probability for affected applications with a publicly known
vulnerability.

patching public dependency vulnerabilities that affect an application.

Approach: We continue to focus our analysis on the 206 applications that depend on public

dependency vulnerabilities. Then, for each application, we measure the time period (in days) of

which the application remained affected by a public dependency vulnerability. We constrain our

analysis to one year, from Jan 1st, 2016 to the December 31st, 2016, to have an easy to interpret

and comparable time-frame. Note that an application could have been affected by different public

vulnerabilities in different segments, e.g., from 1st May 2016 to 1st June 2016 and then from 1st

Sept. 2016 to 1st December 2016. In such cases, we sum all such periods (i.e., add up the number

of days).

To present this analysis, we conduct a survival analysis method (a.k.a. event history analy-

sis) (Aalen et al., 2008). The survival analysis is a non-parametric statistic method used to measure

the survival function from lifetime data where the outcome variable is the time until the occurrence

of an event of interest. In the context of our study, we are interested in the time period that

an application remains (survives) depending on a public dependency vulnerability. We use the

non-parametric Kaplan-Meier estimator (Kaplan & Meier, 1958) to conduct the survival analysis,

as used in previous studies (Decan & Mens, 2019; Decan, Mens, & Constantinou, 2018b).

Results: Figure 4.5 presents the survival probability for the applications depending on a public

dependency vulnerability in the year of 2016. As we can observe, half the applications remain

65

0

100

200

300

0 100 200 300
Commits

D
ay

s

Figure 4.6: Scatter plot showing the correlation analysis of number of commits vs. number of days.

exposed to a public dependency vulnerability for at least 103 days. Such a long exposure of

applications is deeply concerning, as it gives a considerable time window for attackers’ exploitation.

One possible reason that such applications had not fixed the public vulnerability for a long time

is that those applications are not actively being developed during the year of 2016. To investigate

this possibility, we examine the development activity of applications during the period that they

remained affected by public vulnerabilities. To do so, we measure the application activity by

counting the number of commits an application had during the time being affected by a public

vulnerability. For example, if an application was affected by a public dependency vulnerability

between May 1st 2016 and August 15th 2016, then we calculate the total number of commits within

that period. Then, we plot both the number of commits and the number of days during which an

application had been affected by a public vulnerability.

Figure 4.6 shows the scatter plot of both variables number of commits vs. number of days

(affected by a public vulnerability). We draw a trendline in Figure 4.6 in order to study the

relationship between the variables. We can observe that there is no clear pattern of the dots,

indicating no correlation between the application activity and the duration of which an application

had been affected by a public dependency vulnerability (Pearson corr = -0.066).

In a period of a year, half of the applications with public dependency vulnerabilities

remain exposed for a long time (103 days) before vulnerabilities are removed from the

applications.

66

Table 4.4: The share of applications with one or more (1+) public dependency vulnerabilities per
severity levels.

Severity Levels Affected Applications

Low 172 (83.49%)
Medium 167 (81.06%)
High 140 (67.96%)
Critical 59 (28.64%)

4.7 Discussion

In this section, we discuss our results further by reflecting two aspects: the severity of public

dependency vulnerabilities and the evolution of discoverability levels in the studied applications.

4.7.1 Severity levels of public vulnerabilities

As we observed in all our RQs, around 5% of the affected applications depend on public

dependency vulnerabilities at a specific point in time, however, what is the severity of these vulner-

abilities? Our study is centered on the discoverability of vulnerabilities in software dependencies,

that is, their potential for being exploited. However, a public vulnerability can have a high chance of

exploitation according to our classification but cause a low impact if exploited (low severity level).

Hence, we discuss the severity of the public vulnerabilities to better understand the potential impact

of these cases.

The npm advisories associates each package vulnerability report with its severity level (npm

advisories, (accessed 2020)). Severity level has four possible levels, Low, Medium, High, and

Critical, which are assigned manually by the npm team. Vulnerabilities clasified as High or Critical

are considered of high impact and need to be addressed immediately by software maintainers (npm

advisories, (accessed 2020)). By cross-referencing our dataset with the severity reports, we report

in Table 4.4 the distribution of the severity levels of the 206 application with public dependency

vulnerabilities. Once again, the total percentage of Low, Moderate, High and Critical surpasses

100%, as some applications contain multiple dependency vulnerabilities on different severity levels.

As shown in Table 4.4, of the 206 applications that are affected by public dependency vulnerabilities,

172 (83.49%) applications are affected by at least one vulnerable dependency of low severity. Still,

67

Table 4.5: The percentage of vulnerable applications at different historical snapshots, per
discoverability level.

Application
Snapshot

Affected
Applications

Applications
Hidden Reported Public

20% 4,215 (64.39%) 4,202 16 101
40% 4,277 (65.34%) 4,261 27 122
60% 4,372 (66.79%) 4,352 32 142
80% 4,421 (67.54%) 4,398 41 171
100% 4,445 (67.90%) 4,419 45 206

a majority of 140 (67.96%) applications are affected by public vulnerabilities classified as high

severity. In 59 (28.64%) applications, the public vulnerability was classified as critical, given

their potential for exploitation. These results dismiss the idea that applications only depend on

public dependency vulnerability with low impact of exploitability. More than 140 applications

had dependencies with public vulnerabilities where analysts classified them as of high and critical

impact, a dangerous combination for the health of those software projects.

4.7.2 Project evolution vs. discoverability levels

Our study thus far has been conducted on one snapshot of the examined applications (RQ1).

However, our results might change if the study would be performed at different stages of a projects

development cycle. We would like to determine whether our results generalize to different historical

snapshots of the application development. Hence, we investigate the evolution of discoverability

levels across different snapshots of applications’ development.

Since each application has different lifespans, we want to find a measure that makes comparing

them feasible. To do so, we normalize the applications by segmenting the lifetime of each appli-

cation into five equal intervals (each containing 20% of an application’s lifetime by time in days).

Then, we perform the same analysis conducted in RQ1 on the last snapshot of these five intervals.

For this analysis, we only consider the 4,445 applications with at least one vulnerable dependency,

as identified in RQ1.

Table 4.5 shows the percentage of applications that have at least one vulnerable dependency

for the 5 analyzed snapshots across their lifetime, along with the distribution of their discoverability

68

levels. We recall that the snapshot of 100% represents applications analyzed on May 2016, the same

snapshot analyzed in RQ1. Overall, we found that the proportion of applications with one vulnerable

package remain steady between 64 to 67% of the analyzed applications. The major findings in RQ1

holds for all snapshots, there is a predominance of applications with hidden vulnerabilities, followed

by a small share with public and even smaller share with reported dependency vulnerabilities. While

the number of affected applications have increased as the applications evolve, it is noteworthy that

the number of applications exposed to public vulnerabilities more than doubled since the snapshot

20% (from 101 to 206 applications). To conclude, our complementary analysis shows that the trends

observed in RQ1 hold at different stages of the projects.

4.8 Tool Support: Dep-Reveal

A major problem of vulnerabilities in software dependencies is the lack of developers awareness

to security vulnerabilities in their dependencies (Kula et al., 2018). Developers need better tools to

help them identify the occurrence of vulnerabilities and how timely package maintainers respond

to reported vulnerabilities, which affects the discoverability we studied in this work. To address

this problem, we build a tool called DEPREVEAL, which uses the approach described in Figure 4.5

to generate analytical reports of dependency discoverability levels for a GitHub JavaScript project.

DEPREVEAL is open-source, publicly available, and can be easily integrated in any GitHub npm

project.

Our tool generates 4 different reports to help developers understand: 1) the discoverability level

of dependency vulnerabilities, 2) the frequency of dependency vulnerabilities per discoverability

level, 3) the period of package exposition to discoverability levels, and 4) what package versions

account for those dependency vulnerabilities. Figure 4.7 shows a screen-shot of the DepReveal’s

interface.

Next, we explain 2 of the most insightful reports generated by our tool. Inspired by the Github’s

Contributions Activity Graph, DEPREVEAL generates a Dependency Discoverability Graph, which

69

Figure 4.7: Screen-shot of the DepReveal website showing its interface and the recently analysed
repositories.

Figure 4.8: Screen-shot of the generated Dependency Discoverability Graph for the atom
application using DEPREVEAL.

shows the historical exposure of the application to dependency vulnerabilities. We show in Fig-

ure 4.8 a screenshot of this report generated for the atom application. Each cell represents a day in

the history of the application during a year and the colors represent the discoverability level, with

dark red indicating exposure to public vulnerabilities. In the example, it is easy to see that atom was

exposed for 14 weeks to public dependency vulnerabilities in 2016, by seeing how many columns

show the darker red color. Users can get more information about the date by hovering the mouse

over the cell.

Period of Package Discoverability is another report generated by DEPREVEAL to show the

time period (in days) in which a vulnerable package affected the application, per discoverability

level. Figure 4.9 shows a screenshot of this report, generated also for the atom application. From

the Figure, we can observe, for example, that the package jquery was affected by a public, reported

and hidden vulnerabilities through the project lifetime. Hovering the mouse over the tip of the red

70

Figure 4.9: Screen-shot of the generated report Period of Discoverability for the atom application
using DEPREVEAL.

bar for the jquery package, it is possible to notice that the application remained depending on a

public vulnerability in the jquery for 145 days through the entire application lifetime. Users can

also enable/disable one of the discoverability levels by clicking on the legends at the right-side of

the report plot.

Furthermore, the tool generates a CSV file that contains the analysis details for the entire

application lifetime to help a further investigation. Finally, note that we provide a command-line

version of the DEPREVEAL, which is available from our open-source GitHub repository (Alfadel,

2021). We also provide a web user-interface for the tool to facilitate using and interacting with

it (DepReveal, 2021).

4.9 Implications

In this section, we discuss some implications of our findings to researchers and practitioners.

Research should account for the discoverability of vulnerabilities to better assess the threats

of dependencies in a software ecosystem. A public vulnerability poses a much higher threat

of being exploited than an undisclosed (not-published) vulnerability. However, research so far

has mainly focused on the occurrence of vulnerabilities in software packages (Decan, Mens, &

Constantinou, 2018b; report, (accessed 2020)), which outputs a low-grained worst-case scenario.

Our methodology is completely automated and can be replicated. Researchers can use our proposed

approach to study the prevalence of vulnerable dependencies and how harmful they are in the

71

applications taking the vulnerability timeline into account. Future studies could contrast our findings

with a similar investigation on different ecosystems (Python, Go, Java) to provide a more complete

picture of the problem of vulnerable dependencies.

Developers should not solely depend on semantic versioning (SemVer) to catch security up-

dates in dependencies. Our results show that using semantic versioning for automatic updates

at the level of patch and minor releases is not a silver bullet to prevent public vulnerabilities of

dependencies in JavaScript applications. Our manual inspection (RQ2) revealed that in many cases

the vulnerability fix is only available in a major release of the package, which comes at the cost

of “breaking changes”. To overcome this problem, DependaBot (Dependabot Page, accessed on

12/10/2021), an automated dependency tool, has proposed a way to estimate the migration cost

of security updates for dependencies. It provides a measure for the compatibility of the version

update with the application, which is calculated based on the outcome of similar updates that were

already done by other applications. A high compatibility score may give developers confidence to

upgrade their dependencies without incurring in further maintenance costs due to breaking changes.

Other techniques can work at the application source code level to provide an estimate of how much

existing code would break due to that change. These challenges emphasize the need for further

research on software updating mechanisms.

Developers should adopt automated dependency tools to help them keep their dependencies

secure. Our study reveals that application developers rather than package maintainers are the main

responsible for the exposure to public dependency vulnerabilities (RQ2), and they often take a long

time before updating to a fixed version (RQ3). Hence, developers need to constantly track and fix

vulnerable dependences. Automated dependency tools (e.g., DependaBot) can be of great help to

catch security updates as short as possible (Alfadel, Costa, Shihab, & Mkhallalati, 2021).

Our tool provides developers with a fine-grain look at vulnerable dependencies through the

application history. We developed a tool (DEPREVEAL) that goes into a fine-grained level of

dependency analysis for vulnerabilities by considering the entire lifetime of the application. Out

72

tool can be used by developers to identify the discoverability levels of the project dependencies

to help them partially observe and monitor their dependencies and understand the dependency

health through the application history. For example, (i) our tool can be used by developers to

identify vulnerable dependencies with respect to the discoverability levels (as defined in our study)

and present their distribution across the application lifetime; (ii) our tool can also be used by

developers to identify how long applications have become vulnerable because of publicly known

vulnerabilities; (iii) our tool lists the packages that causes the publicly disclosed vulnerabilities

along with the used version constraint through the application lifetime, this can also help developers

prioritize their work for monitoring specific vulnerable dependencies that exposed the application

to the risk of a high threat vulnerability in the past.

4.10 Threats to Validity

Internal Validity considers the relationship between theory and observation. Our dataset contains

925 vulnerability report available in the npm advisories dataset. There might be other vulnerable

packages that have been discovered but not yet reported. However, we leveraged up-to-date dataset

from npm advisories, which we believe contains the most accurate information about the vulnerable

packages reported to them.

This study only considered direct dependencies. Our results may vary if indirect dependencies

are considered, however, due to very intensive computation requirements, we focused on the direct

dependencies of applications. Indirect dependencies are usually out of the control of the application

developer, hence, the problem would even be more serious, which needs to be addressed in the fu-

ture. Our technique can be extended to analyse indirect dependencies considering the discoverability

levels. We did not consider whether the vulnerable functionality in the package actually affects the

application, i.e., whether the applications use the vulnerable code of the package. Considering

this would be challenging, since our dataset is composed of thousands of applications. That said,

our analysis is in line with prior work in the area of software ecosystems, which also examine

dependencies in the package.json file to associate packages to applications.

Finally, note that our study relies heavily on the coverage of vulnerability advisories in npm, as

73

well as on the consistent application of semantic versioning, which may lead to an under-approximation

that supports the argument of our study. However, our main argument is that similar studies that use

similar datasets to tackle the same aspect paint a less accurate picture of the studied aspect.

External Validity is related to the generalizability of our findings. Our study is based on JavaScript

applications that use npm. Hence our results may not generalize to applications written in other

languages. However, the key concepts and design of our study can be applied to other package

dependency networks to expand the investigation on vulnerable dependencies. Our dataset contains

6,546 JavaScript applications that use npm packages. Our dataset might be considered small when

it is compared to the whole population of JavaScript applications. However, our dataset is of high

quality, since we filtered out applications that are immature and have less development history, by

using the filtering criteria used by Kalliamvakou et al. (Kalliamvakou et al., 2014). Also, to our

knowledge, our dataset is considered to be among the largest number of JavaScript applications

analyzed.

4.11 Related Work

In this section, we discus the work that is related to the study in this chapter.

Pashchenko et al. (Pashchenko et al., 2018; Pashchenko, Plate, et al., 2020) studied the vul-

nerability impact of 200 open-source Java libraries commonly used in SAP organisation (SAP,

1972), and found that 20% of the vulnerable dependencies are not deployed, and hence, they are

not exploitable in practice. Pashchenko et al. (Pashchenko, Vu, & Massacci, 2020) indicated (based

on interviews with developers) a high demand for high-level metrics to assess the maintainability

and security of software packages. Our proposed tool DEPREVEAL partially fulfils such a demand

since it generates analytical reports to inform developers how vulnerable their dependences are,

considering the discoverability levels.

More specifically, several studies focused on analyzing the impact of security vulnerabilities

in the npm ecosystem (Chinthanet et al., 2020; Decan, Mens, & Constantinou, 2018b). Recently,

Bodin et al. (Chinthanet et al., 2021) analysed npm packages to study lags of vulnerable release

and its fixing release, and found that the fixing release is rarely released on its own; 85.72% of the

74

bundled commits in the fixing release are unrelated to a fix. Similar to npm packages, Wang et

al. (Wang et al., 2020) found that Java packages contained dependencies which lag for a long time

and never been updated. Our study complements previous studies by analysing npm vulnerable

dependencies throughout the JavaScript application lifetime, aggregating the vulnerability lifecycle

through the discoverability level metric.

Other studies perform a code-based analysis to assess the danger of dependency vulnerabil-

ities (Pashchenko et al., 2018; Plate, Ponta, & Sabetta, 2015; Ponta et al., 2020; Zapata et al.,

2018). A study by Zapata et al. (Zapata et al., 2018) manually analysed 60 projects that depend

on vulnerable npm packages, and found that 73.3% of them were actually safe because they did

not make use of the vulnerable functionality, showing that there is an overestimation on previous

reports. Our study includes another aspect that impacts vulnerable dependencies in applications, by

including the discoverability levels.

There were several efforts to assess the impact of vulnerable dependencies in dependent ap-

plications (Plate et al., 2015; Ponta et al., 2020). Plate et al. (Plate et al., 2015; Ponta et al., 2020)

proposed a code-centric tool that determines whether or not a Java application executes the fragment

of the dependency where the vulnerable code is located. Their proposed approach is implemented

in a tool called, Eclipse Steady (aka VULAS), which is an official software used by SAP to scan its

Java code. Furthermore, Ponta et al. (Ponta et al., 2018, 2020) built upon their previous approach

in (Plate et al., 2015) to generalize their vulnerability detection approach by using static and dynamic

analysis to determine whether the vulnerable code in the library is reachable through the application

call paths. Bodin et al. (Chinthanet et al., 2020) implemented an extension of the Eclipse-Steady tool

to support JavaScript. They analysed analysed 42 applications to find their vulnerable constructs,

showing that a code-centric approach is viable, yet, there are challenges given the dynamic nature

of the JavaScript and the complexity of the npm dependencies (Chinthanet et al., 2020). Our tool

(DEPREVEAL) complements these tools by looking at vulnerable dependencies through the history

of a JavaScript application. DEPREVEAL aims to increase developers awareness on how often their

application project is exposed to vulnerable dependencies.

Our tool could be extended to include a code-centric analysis and report the vulnerable con-

structs per discoverability analysis. However, the analysis at this level is indeed problematic due to

75

execution costs needed to analyse the code. Other automated code analysis tools work on vetting

the changes in the releases of packages to analyse their lines of code. Recently, there were several

efforts for auditing npm security vulnerabilities, both from academia (Gong, 2018; Staicu, Pradel, &

Livshits, 2018) and from industry practitioners (DeepScan, (accessed 2020); R2C, (accessed 2020)).

4.12 Chapter Summary

The goal of the study in this chapter is to examine vulnerable dependencies in JavaScript

applications based on their disclosure lifecycle. First, we define three discoverability levels for

dependency vulnerabilities in JavaScript applications. Then, we perform an empirical study on

6,546 JavaScript applications to assess how discoverable vulnerable dependencies are. Our findings

show that 67.9% of the examined applications depend on at least one vulnerable package. 99.42%

of the affected applications depend on hidden dependency vulnerabilities. Though, 206 (4.63%)

applications were still affected by a public dependency vulnerability, and they often remain affected

for a substantial long time (103 days) during the application lifetime. Moreover, we examined why

these applications end up depending on public dependency vulnerabilities. We observed that the

application developers are mostly to blame, i.e., a fix for the vulnerable dependency is available

but not patched in the application. Our findings indicate that understanding the discoverability

of dependency vulnerabilities that exist in applications is key. That said, we developed a tool

that supports our analysis approach for npm projects, to help developers better understand and

characterize package vulnerabilities that affect their applications. Leveraging our findings, we also

provide some implications to practitioners and future work.

In the previous two chapters (Chapters 3, 4), we have focused on understanding the impact of

security vulnerabilities in software packages and dependent applications. While the previous studies

provide tremendous knowledge that developers can use to understand security vulnerabilities that

impact software packages, it is also essential to mitigate the risk of these vulnerabilities. Thus,

it is important to study the effectiveness of existing mechanisms that aim to mitigate the impact

of security vulnerabilities in software packages. In the following chapter, we turn our attention to

examine the role of a popular mechanism (i.e., code review) in enhancing package security.

76

Chapter 5

Studying The Role of Code Review in

Enhancing Package Security

Modern code review has been found to be effective in improving the overall quality of soft-

ware. However, the effectiveness of code review at finding and mitigating security issues remains

unknown. In this chapter, we explore the role of code review process in enhancing package security.

In particular, we investigate 10 active and popular JavaScript projects to understand what types of

security issues are raised during code review, and what kind of mitigation strategies are employed

by project maintainers to address them. Our study examines 171 security issues identified in the

projects during code review. We find that such issues are affecting a small fraction of project files

(0.25% - 3.63%). However, raised security issues are discussed at length by project maintainers.

Our investigation showed 14 types of security issues raised in code review. Issue type varies from

common issues across the projects, e.g., Race Condition, Access Control, XSS, Documentation, and

Overflow, to other types more frequently affecting specific projects, e.g., ReDOS, SQL injection,

and Authentication. We found that most of the issue (∼55%) are frequently addressed and mitigated.

In other cases, security concerns ended up not being fixed or are ignored by project maintainers,

which may put the project users at risk. Based on our findings, we offer several suggestions that

aim to motivate improvements at the process of reviewing code for security concerns.

77

5.1 Introduction

Security vulnerabilities have a large negative impact on the software systems. In fact, the

impact of vulnerabilities is only magnified if they are identified in production, i.e., after the project

version is released, which increases the chance for exploitation. An example of that is the Equifax

cybersecurity incident, caused by a web-server vulnerability in Apache Struts library, which led to

illegally access sensitive information from almost half of the US population (143 million American

citizens) (Equifax, 2017). Therefore, project maintainers must check their code against security

issues and vulnerabilities before being introduced to the project repository in order to reduce their

impact as much as possible.

Nowadays, modern code review is a well-adopted practice in industrial and open source projects,

especially with the support of the pull-based development model, for the purpose of ensuring

software development quality. Pull Requests (PRs) are a major collaborative feature in GitHub,

which allows multiple users to work simultaneously on a project and make changes and contribute

to a GitHub project, and allows other contributors in the project to review, discuss, and even

push follow-up commits (Chacon & Straub, 2014; Git - Contributing to a Project, accessed on

12/10/2021).

Previous research (e.g., (Dey & Mockus, 2020; McIntosh et al., 2016; Yu, Wang, Yin, & Wang,

2016)) provided evidence on the effect of code review process on the overall software quality level.

For example, Dey and Mockuse (Dey & Mockus, 2020) examined the impact of code review

characteristics on accepting PRs in the npm packages, and found that some measures (e.g., PR

author and reviewer experience) could influence the PR quality. Little is known, however, of the

effect of code review in relation to software security issues. In addition, studying this is important

to increase the awareness of project maintainers and researchers to the role of code review in

identifying and dealing with security issues. Moreover, it is important to understand how security

issues are being tackled during code review by project maintainers.

Therefore, to shed light on the role of code review from a security perspective, our study aims to

analyse code reviews in a set of 10 active, mature, and popular JavaScript GitHub projects. For those

projects, we mine the security issues being discovered during code reviews of PRs in the projects,

78

and manually examine more than 4K discussion and review comments in the projects. With these

data, we explore three main questions:

(1) RQ1: How often are security issues identified during code review?

Out of the studied 10 projects, we find 9 projects in which security issues are raised during

code review, with 171 PRs containing evidence of security discussion. Moreover, we observe

that such issues are raised in a small fraction of PRs (0.25% - 3.63%), affecting also a small

fraction of project files (0.25% - 3.63%). However, project maintainers discuss the issues at

length in the PRs, i.e., 4.82% - 28% of all PR comments are related specifically to the security

related concerns.

(2) RQ2: What types of security issues are identified during code review?

Our manual investigation shows that the identified security issues in the projects belong to

14 types. The types of these issues range from more common types across the projects,

e.g., Race Condition, Access Control, Sensitive Data Exposure, XSS, Documentation, and

Overflow. Other types (e.g., ReDOS, SQL-injection, and Authentication) are more frequently

affecting specific projects.

(3) RQ3: How do developers respond to the identified security issues during code review?

We find that the majority (54.96%) of the raised security issues are fixed and mitigated.

However, many of the issues seem to be considered as having less threats (28.65%). In a

few cases, we find that the project maintainers decided not to fix the issues (8.18%) or even

respond to them (4.67%). We also find some issues that are not directly related to the reviewed

PRs but still discussed during code review (3.54%).

In summary, the work in this chapter makes the following main contributions:

• We investigate security issues that are identified through code reviews of PRs in popular

JavaScript projects.

• We manually build and validate PRs dataset that contains security-related reviews in the

studied project.

79

Figure 5.1: An overview of our study approach.

• Based on our findings, we offer some suggestions and implications that support the role of

code review for the security of open-source projects.

Chapter organization.

This chapter is organized as following: Section 5.2 describes our study methodology. Section 5.3

presents the results of our study. Section 5.4 presents our discussion and discuss how our findings

lead to implications to practitioners and future research. Section 5.5 presents the threats to validity.

Section 5.6 presents the related work. Section 5.7 concludes our study.

5.2 Study Design

The main goal of our study is to examine the role that code review plays in identifying and fixing

security issues that exist in open source software projects.

To achieve our goal, we resort to analyzing the discussion of code reviews through the devel-

opment of open source JavaScript projects. Our study focuses on analyzing JavaScript projects

that have been published as packages in the Node Package Manager (npm ecosystem). We mine

and analyse Pull-Requests (PRs) that exist in the projects. Developers use the PR feature in the

GitHub project as a platform for code reviews. To this end, we first (a) collect a representative set

of JavaScript GitHub projects. Then, (b) we identify candidates for security-related PRs. Finally,

we (c) manually validate the identified PRs, which we use for our study analysis.

Figure 5.1 provides an overview of our general approach, detailed in the remainder of the

section.

80

5.2.1 Project selection

We analyze code review discussions in JavaScript projects that develop packages published in

the npm package ecosystem. We chose to focus on JavaScript projects due to its wide popularity

amongst the development community as JavaScript has consolidated itself as the most popular

programming language (Stack Overflow Developer Survey, accessed on 12/10/2021). The npm

ecosystem is the largest software package ecosystem to date, surpassing 1.9M packages published

in the ecosystem (npm - Libraries.io, accessed on 12/10/2021), with popular packages being used in

thousands of program applications (Zerouali, Mens, Decan, & De Roover, 2021). Its popularity and

reach, makes the npm ecosystem a prime target for attackers, and maintainers of JavaScript projects

have to act fast to identify and remediate software vulnerabilities before they are exploited (Alfadel,

Costa, & Shihab, 2021). Consequently, npm has a well-renowned advisory for reporting security

vulnerabilities that affect its projects (npm advisory reports, accessed on 12/10/2021).

We collect all npm projects available in the npm advisories dataset. These projects have some

level of popularity and are known to have concerns about security as vulnerabilities have been

identified and remediated in their code base. Our initial dataset contains 1,219 unique projects.

Then, we filter out projects that do not have links to their repository. Of these projects, only 666

projects had links to GitHub repositories. Furthermore, to further curate the dataset for our manual

analysis, we apply a filtration process on the projects. We select projects that satisfy all the following

filtration criteria:

• Security concern: we choose projects that have a minimum number of 2 vulnerability advi-

sories, as we want to include projects that have had a history of identifying vulnerabilities and

hence, should be discussing security in their development history (Walden, 2020). Applying

this filtration step leaves us with a dataset of 89 projects.

• Popularity: we choose projects with over 10,000 downloads per month, as popular projects

are critical to the community, and many developers rely on them for their software develop-

ment projects (Synopsys, 2019). Upon applying this criteria, our dataset contains 67 projects.

• Recent activity: we choose projects with at least ten commits made in the last month prior to

the time of collecting our dataset (i.e., August, 2020), as we want to avoid projects that are no

81

longer active or relevant. Relevancy and activity are essential ways to ensure that the projects

we are using for our analysis are current and modern (Kalliamvakou et al., 2014). This step

ends us with 37 projects.

It is important to note that our study analysis is very time consuming, given that such projects

contain thousands of PRs, and authors need to recognize the context in which the security issues

in the PRs are being identified. The in-depth analysis of the role of code review requires extensive

manual work, across multiple rounds and verified at least by two investigators. Hence, we refine

our projects dataset further by selecting the top 10 most active projects our of the 37 projects (recent

activity criteria) since such projects tend to be rich in pull requests, and consequently have better

chances for finding and discussing security issues (Walden, 2020). The size of our projects dataset is

inline with related studies that has performed similar work (Bosu, 2014; Ebert, Castor, Novielli, &

Serebrenik, 2019; Paul et al., 2021); the number of analysed projects in these studies varies between

one to ten projects.

Table 5.1 depicts the selected ten projects for our study. For each project, we present the

project’s domain, the programming languages used through the development lifetime, the age, and

the total number of the PRs in the project. As seen, these projects cover multiple languages and

application domains. Furthermore, the projects have a considerable long development lifespan and

most projects have thousands of PRs in the project repository.

5.2.2 Identification of PR candidates

The goal of this phase is to identify PRs with security-related reviews in the selected projects.

To that aim, we conduct a three-step methodology: 1) we elicit a set of security-related keywords,

2) we refine this list of keywords, and 3) we use the refined list to identify the set of PRs with

security-related reviews . In the following, we describe each step in details.

1) Obtaining initial dataset of security-related keywords. To identify relevant PRs that are of

interest to our study, we use security-related keywords. Influenced by the related literature, we

initially adopt a dataset of 48 security-related keywords used in the previous studies (Bosu, 2014;

Paul et al., 2021). We use this initial set of keywords and apply each of them, using a regular

82

Table 5.1: Overview of Projects.

Project Project Description Language Age (in years) # PRs

Marked A low-level compiler for parsing markdown without
caching or blocking for long periods of time (marked -
npm, accessed on 12/10/2021).

JavaScript, HTML 10 years 758

Moment A lightweight date library for parsing, validating,
manipulating, and formatting dates (moment - npm,
accessed on 12/10/2021).

JavaScript 10 years 1,812

Parse-Server An open source backend that can be deployed to any
infrastructure that can run JavaScript (parse-server -
npm, accessed on 12/10/2021).

JavaScript 5 years 2,869

Sequelize A promise-based JavaScript ORM for Postgres,
MySQL, MariaDB, SQLite and Microsoft SQL Server
(sequelize - npm, accessed on 12/10/2021).

JavaScript, TypeScript 11 years 3,359

Node-Red A framework that provides a browser-based editor
that makes it easy to write APIs and online services
(node-red - npm, accessed on 12/10/2021).

JavaScript 8 years 1,140

Strapi A fully customizable open-source software that pro-
vides a headless content management system (strapi
- npm, accessed on 12/10/2021).

JavaScript 6 years 2,878

Infor-Design A framework-independent UI library consisting of CSS
and JS that provides tools to create user experiences
(infor-design - npm, accessed on 12/10/2021).

JavaScript, TypeScript,
HTML, CSS

5 years 2,524

Electron A framework that helps build cross-platform desktop
apps with JavaScript, HTML, and CSS (electron - npm,
accessed on 12/10/2021).

JavaScript, TypeScript,
C++, Python, HTML

8 years 11,794

React A library for building user interfaces (react - npm,
accessed on 12/10/2021).

JavaScript, TypeScript,
C++, CSS, HTML

8 years 9,673

Uglify-js A parser, minifier, compressor and beautifier toolkit
(uglify-js - npm, accessed on 12/10/2021).

JavaScript, HTML,
Shell

9 years 1,197

expression, to identify security-related reviews. This regular expression identifies all keywords by

exact match that have whitespace delimiting it before the keyword. To this aim, we collect all

the comments and discussions from all the PRs in the projects and identify PRs that contain any

keyword from our previously selected keywords dataset. After running the 48 keywords against all

the PRs (i.e., 38,004 PRs), we identify 3,503 PRs as candidates for our study.

2) Refining the list of keywords. We identify 3,503 candidates of PRs, however, through a

preliminary manual inspection of the identified PRs, we observe that a considerable share of PRs

were not relevant for our study, i.e., they do not discuss security-related issues. This is because

some of the used keywords are specific to languages other than JavaScript, and hence, include

a lot of noise in our PRs dataset. For example, the initial list of keywords contained keywords

such as “css”, which in many of the cases for our selected projects, e.g., (Pull Request #2984,

83

accessed on 12/10/2021; Pull Request #4561, accessed on 12/10/2021; Pull Request #685, accessed

on 12/10/2021), refers to the cascading style sheets, the styling language for web pages, and not

Cross Site Scripting (XSS) vulnerabilities, as it is commonly referred to in the security domain.

Therefore, to reduce the number of irrelevant PRs from our candidate set, we further verify

and refine the list of keywords. First, we randomly select a statistically significant sample size of

the candidate set for each keyword. The chosen sample size is significant enough to satisfy a 95%

confidence level with a 5% confidence interval for each designated population. Once the PRs sample

for each keyword is selected, we verify whether the identified PRs use the keywords in a discussion

about security or not, by manually going through the PRs’ comments. If the keyword was used in a

security discussion of the PR, then we consider the PR a relevant case at this stage of the study and

irrelevant otherwise. After going through all the samples of the PRs for each keyword, we decide

the inclusion of the keyword by setting a reasonable threshold, i.e., if a keyword retrieves less than

10% relevant cases in its sample, we remove it from our list of keywords. Otherwise, the keyword

is included. We chose 10% because we wanted to use a low threshold to preserve as large a variety

of keywords as possible, as limiting the amount of keywords could bias the dataset towards only

finding issues related to those specific keywords.

This process yields 23 refined keywords. Note that as we go through the PRs of the relevant

cases, we identified keywords that were being used in security-related reviews and were not in

our initial list of keywords. This step ends us with three newly added keywords, namely, denial

of service, DDOS, redos. Table 5.2 shows the list of the final 26 unique keywords used in our

study. The keywords are associated with a Common Weakness Enumeration (CWE) (CWE List

Version, accessed on 12/10/2021). CWEs are well-defined classifications for the explored software

weaknesses (e.g. CWE-121 corresponds to Buffer Overflow security vulnerabilities).

3) Identifying PR candidates for our study. We then use the list of refined 26 keywords to build

the dataset of PRs for our study, by searching for the keywords in the PRs comments. This process

yields a total of 882 PRs as candidates for our study.

84

Table 5.2: List of refined security-related keywords.

Vulnerability
Type

CWE-ID Keywords

Race Condition 362 - 368 race, racy
Buffer Overflow 120 - 127 overflow
Integer
Overflow

190, 191,
680

overflow, underflow

Improper
Access

22, 264,
269, 276,
281 -290

unauthenticated, gain
access, permission

Cross Site Script-
ing (XSS)

79 - 87 cross site, XSS

Denial of
Service (DoS) /
Crash

248, 400
- 406,
754, 755

denial service, DOS,
denial of service∗,
DDOS∗, redos∗

Deadlock 833 deadlock
SQL Injection 89 injection
Cross Site
Request Forgery

352 cross site, CSRF,
forged

Common
keywords

- security, vulnerability,
vulnerable, overrun,
exploit, insecure,
breach, threat

* Keywords in italic are our additions to this list.

5.2.3 Manual validation of the identified PR candidates

In the previous phase, we were able to curate a refined list of keywords to identify PR candidates

(882 PRs), and reduce the number of irrelevant PRs for our study. However, some of those PRs

might still be wrongly identified due to the limitation of our keyword search technique. For example,

our technique flags this PR (Pull Request #991, accessed on 12/10/2021) as relevant because one of

the review comments in the PR contains the “permission” keyword:

“...when users change the provider config from UI (Roles and Permission page), we will save

the new config into db, and also sync it into JSON file as well, right?”

As shown in the quote, the “permission” keyword is used in the context of a webpage name,

and has no security implications to the project. Examples like this motivated us to further manually

validate the set of 882 PRs. Hence, in this step we conduct a thorough manual analysis on the 882

PRs to filter out the irrelevant cases from our further analysis.

To filter out PRs from our candidate set that did not discuss security-related reviews, we manu-

ally look through all the 882 PRs. We examine whether the contributors and reviewers of each PR

85

Figure 5.2: Example of a security issue raised during code review.

discuss security-related topics in the PRs’ comments. If so, the PR is included in the dataset for

our later analysis. To evaluate the agreement, we invite an external annotator to manually label the

PRs; we used Cohens kappa coefficient (Cohen, 1960), which is a well-known statistical method

that evaluates the inter-rater agreement level for categorical scales. In our manual labelling of the

PRs, the level of agreement between the two annotators was of +0.92. At a macro scale, we extract

the PRs information in eight rounds (almost 110 PRs per batch). Upon completion of each round,

we invite an external annotators to manually validate the PRs. We meet and discuss any conflicts

about including the PR. The goal of these meetings is to address any inconsistencies and to work

together to resolve them.

Our in-depth manual analysis identifies 171 validated PRs with security-related reviews (out

of 882 PRs), which span across all the projects in our dataset. Figure 5.2 shows an example of

86

a relevant PR that discusses a security issue during code review. In this figure, one of the PR’s

reviewers in the Marked project asked the contribution to check whether the code is vulnerable

against a ReDOS security issue.

5.3 Study Results

In this section, we answer our RQs. For each RQ, we provide a motivation, describe the

approach, and present the results.

RQ1: How often are security issues identified during code review?

Motivation: The goal of this RQ is to gain an initial overview of the prevalence of security issues

identified in a code review, allowing us to quantify the degree of effectiveness of code review for

security purposes. In turn, this will help project maintainers and the community to set realistic

expectations on the effort that is put in security-related code reviews and how often security issues

are raised in regular code review processes.

In particular, we examine how often a security-related concern is raised in code review under

three different granularity levels: a) number of PRs; b) number of files touched by the PRs; and c)

number of security-related comments in the PRs.

Approach: We employ the methodology explained in Section 5.2.3 to manually identify the PRs

with security-related reviews in each of the studied projects. To identify the files changed in the PRs

and the prevalence of security comments in the overall PR discussion, we use the meta data of each

PR, to get the files that contain the security issue and the comments that discuss the security issue.

More specifically, we use the following methodology to gather our results:

• To find the distribution of security issues at the PR level, we quantify the number of security-related

PRs per project.

• At the file level, we quantify the number of unique files that contain the identified security

issue per PR, and sum up the number of unique files for each project.

87

Table 5.3: Distribution of security-related issues distributed at different granularities, per project.

Granularity Project # Total # Security-Related %

PRs

Marked 758 27 3.56%
Moment 1,812 2 0.11%
Parse-Server 2,869 19 0.66%
Sequelize 3,359 19 0.57%
Node-Red 1,140 6 0.53%
Strapi 2,878 18 0.63%
Electron 11,794 47 0.39%
React 9,673 31 0.32%
Uglify-js 1,197 2 0.17%

Files

Marked 327 9 2.75%
Moment 786 2 0.25%
Parse-Server 413 15 3.63%
Sequelize 491 13 2.65%
Node-Red 1,187 6 0.50%
Strapi 3,360 15 0.45%
Electron 2,130 42 1.97%
React 2,105 30 1.43%
Uglify-js 276 2 0.72%

Comments in
Security-PRs

Marked 665 108 16.24%
Moment 25 7 28%
Parse-Server 380 49 12.89%
Sequelize 809 39 4.82%
Node-Red 65 8 12.31%
Strapi 309 39 12.62%
Electron 1,250 137 10.96%
React 777 63 8.11%
Uglify-js 35 5 14.29%

• Finally, at the comment level, we quantify the number of comments that specifically discuss

the security issue per PR, and then sum up the total number of such comments for each project.

We normalize the result by the number of total PRs in the project, total files that the project has, and

total comments in the PRs, respectively.

Result: Table 5.3 shows the distribution of the 171 PRs identified in the studied projects at different

levels of granularity. Surprisingly, we observe that the Infor Design project is the only project

that had no security issues raised during code review, i.e., the 171 cases are distributed across the

remaining 9 projects in our dataset. As a result, in terms of the number of security-related PRs, we

88

find that the 171 PRs correspond to 0.49% (less than 1%) of all PRs in the projects. Concretely,

the project Electron has the largest occurrence of security issues raised during code review

(47 PRs), while there are only 2 PRs with raised security concerns in Moment and Uglify-js

projects. Overall, the rate of PRs with security-related reviews varies from 3.56% in Marked

to only 0.11% in Moment, showing that only a minority of PRs raise any concerns about security.

Consequently, the identified security issues are concentrated on a small fraction of the projects’

files (0.25% - 3.63%). For example, marked has 27 security issues that are identified in 9 files out

of the 327 the project currently contains.

Although the PRs with security-related reviews seem rare at both the PR and file granularity

levels, once a maintainer expresses a security concern on the PR, maintainers discuss it at length

in the PRs. Between 4.82% - 28% of all comments in the 171 PRs are related specifically to the

security related concern.

Security issues are raised in a small fraction of PRs (0.25% - 3.63%), affecting also a small

fraction of project files (0.25% - 3.63%). However, raised security issues are discussed at

length by project maintainers (4.82% - 28% of all PR comments).

RQ2: What types of security issues are identified during code review?

Motivation: The goal of this RQ is to understand the types of security issues that project main-

tainers discover and discuss during the code review process. This investigation is important to help

researchers and practitioners compare and contrast these results with other approaches, such as bug

bounties, code inspections, all the way to software inspection tools that have been very well studied

(e.g., (Aloraini, Nagappan, German, Hayashi, & Higo, 2019; Imtiaz, Thorne, & Williams, 2021;

Yang, Tan, Peyton, & Duer, 2019)). More important, such comparison will help us understand the

types of issues code review can be effectively employed and where maintainers may need better

assist to identify issues at code review time.

Approach: To categorize the identified security issues, we resort to in-depth manual analysis of

the 171 PRs in our dataset. In particular, we manually inspect the description of the PR, the review

89

comments and discussion, and the PR commits. We independently analyze the PRs using an open

card-sort method (Fincher & Tenenberg, 2005), where labels for the security issues are created

during the labeling process and each new label is discussed among annotators. We extract the PRs’

labels in multiple rounds (note that the rounds are performed during the manual inspection phase

that we described in Section 5.2.3). Then, we invite an external annotator to manually validate

the PRs. We report the agreement level of the labelling given by both annotators. We found that

the annotators have a high-level agreement with Cohens kappa coefficient of +0.79. Finally, both

annotators meet and discuss any conflicts, i.e., conflicting labels were resolved through discussions

to reach a consensus. The annotators provide one single label for each PR utilizing online search

for the issue type in public advisories databases, e.g., the CWE classification (CWE - Common

Weakness Enumeration, accessed on 12/10/2021), to help us classify the issue according to the

CWE specification.

Result: Through our manual analysis, we find 14 different types of security issues identified

in the PRs during code review. Table 5.4 shows the description and the frequency of each type

represented in our dataset, sorted by frequency in descending order.

As seen from Table 5.4, some types are common across projects, i.e., they exist in a high number

of projects. Others are more frequent within certain projects. Next, we explain some types in more

details.

Common security types across the projects. From Table 5.4, we observe that 7 types are common

across the projects, i.e., they exist in 3 or more projects. For example, we find 23 Race Condition

security issues, which affect three projects in our dataset, namely, Electron, Parse-Server

and Sequelize. A race condition basically means that two threads are trying to access the same

data, which results in having wrong data in the threads or causing errors because of trying to use

the same resource. A race condition can compromise the application security where it sometimes

causes a thread to access security sensitive information from another thread, through some shared

memory, which would result in leaking information if the second thread isn’t secured before the data

is being accessed. In some of those cases, like in the case of the Sequelize project, it is possible

90

Table 5.4: Types of security issues identified during code review and their frequency.

Type Description Frequency # Projects

ReDOS A regular expression denial of service (ReDoS) is an attack
that produces a denial of service by providing a regular
expression that takes a very long time to evaluate, which
may lead to either slowing down the system or becoming
unresponsive.

23 1

Race Condition Occurs when two or more threads can access shared data
and they try to change it at the same time, which may lead
to multiple issues, e.g., alter, manipulate, steal data, and
malicious code.

23 3

Access Control A system that does not restrict or incorrectly restricts
access to a resource from an unauthorized actor suffer from
Access Control security issue.

23 6

XSS XSS attacks occur when an attacker uses a web application
to send malicious code, generally in the form of a browser
side script, to a different end user.

22 3

SQL Injection SQL injection attack consists of insertion or injection of
a SQL query via the input data from the client to the
application to spoof identity.

14 2

Documentation In such cases, developers discuss issues related to
enriching the project documentation for a better and more
secure use of the project.

14 5

Improper Authentication A weakness that allows an attacker to either capture or
bypass the authentication methods that are used by a web
application.

13 2

Sensitive Data Exposure Occurs as a result of not adequately protecting a database
where information is stored

10 5

Remote Code Injection Occurs when an attacker has the ability to run system
commands remotely on the vulnerable application.

9 4

Overflow Occurs when the entered data in a buffer overflows its
capacity to adjacent memory location causing the program
to crash.

7 5

Deadlock Occurs when the software contains multiple threads or
executable segments that are waiting for each other to
release a necessary lock, resulting in deadlock.

4 2

Improper Input Validation Occurs the project does not validate the input properties
that are required to process the data safely and correctly.

4 1

Vulnerable Package A third-party vulnerability contains a vulnerability. 3 2
DDOS Occurs when an attacker floods the target application with

traffic or sending it information that triggers a crash.
2 1

that two callbacks are made, and there is a race condition between them for which will perform

some functionality first. However, the majority of race condition cases are found in the C++ layer

of those JavaScript projects, e.g., package maintainers of the Electron project re-use a lot of the

code of Chromium, which is C/C++ based project, to render the package user-interface (UI). As

an example, in this PR (Pull Request #20818, accessed on 12/10/2021), the project maintainers

91

found a race condition stemming from the C++ code that was spinning up threads to perform some

functionality. Developers suggested to extract the code into the JavaScript layer and use callbacks

instead in order to mitigate the issue and ensure that the correct functionality is still being called on

a particular failure.

Access Control (23) is another security issue type that seems to be common across the studied

projects; we find 23 cases distributed across 6 projects. The reason for this common security concern

is that most projects have to manage several permission options, which may result in issues related

to Permission and Access Control. For example, the Strapi project manages various permissions,

and has encountered an issue in this PR (Pull Request #4790, accessed on 12/10/2021a). The

proposed PR had vulnerable changes, allowing certain users to access files beyond their permission

scheme, or even allow users to register themselves as admins without further control (Pull Request

#3201, accessed on 12/10/2021; Pull Request #5330, accessed on 12/10/2021).

In addition, our manual analysis finds several cases of Sensitive Data Exposure (10) issue,

affecting 5 projects. We found that issues related to Sensitive Data Exposure can range from storing

information in plaintext, logging sensitive information or even exceptions and error messages (e.g.,

(Merge pull request from parse-server@da905a3, accessed on 12/10/2021; Pull Request #2402,

accessed on 12/10/2021; Pull Request #2576, accessed on 12/10/2021a)). For example, in some

cases, maintainers raised the issue that the system was logging sensitive information that should not

be exposed. As an example in this PR (Pull Request #2576, accessed on 12/10/2021a), the session

id is used as a token generated on the server and stored on the client by means of a cookie, used

in later communications to identify the user. Developers may log the session id to track the user

interactions with the application during a session, however, if an attacker gets access to live logs, he

could use the session id to impersonate active users.

Cross-site scripting (22) is another common issue, which is triggered at the client-side when

a potential attacker sends a malicious code in the form of a browser side script, e.g., to hijack

user’s account and credentials. In our analysis, we find that Cross-site scripting (XSS) type affects

three web-based projects in our dataset. We find 22 cases of XSS issues where a lot of HTML

components are rendered in the projects. A lot of these issues arise when the project is failing to

properly escape the inserted HTML, which can cause unwanted cross-site scripting attacks. As a

92

result, many developers spend a lot of time discussing and trying to figure out the best approach to

escape potentially malicious HTML, such as the case for this PR (Pull Request #3152, accessed on

12/10/2021).

Other commonly discussed security types include Overflow, Remote Code Injection and Docu-

mentation. In fact, we find the Documentation (14) cases to be important; they act as the commu-

nication medium between package maintainers and application developers who use the package.

In such cases, package maintainers discuss inadequate or incomplete documentation of critical

usages of the package functionality. For example, in this PR (Pull Request #23650, accessed on

12/10/2021), a project maintainer states the following:

“..it can lead people to the incorrect assumption that they should actually run a server

in the main process, which will confuse folks with this comparison. The relationship

between browser/renderer process has fundamentally different security, performance and

communication constraints than a traditional client-server model that can not be sufficiently

explaining in this comparison”.

As shown, the case specifies that the proposed documentation fails to properly explain the

security constraints of the system, which can mislead package users.

Other cases are related to attributes misnaming. Such issues indicate, for example, misnaming

a variable to make it seem more secure than it actually is. An example of this case can be seen

in this PR (Pull Request #13367, accessed on 12/10/2021a), where a variable is called SafeValue,

which has security connotations, while it actually is not necessarily secure (Pull Request #13367,

accessed on 12/10/2021b). Such a case can cause users of the package to misuse its API and

introduce vulnerabilities into their applications.

Frequent security types within specific projects. From Table 5.4, we also observe that some

types are more frequent in in specific projects. For example, we find 23 ReDOS cases. ReDOS

is one form of denial of service attacks, which occurs by providing a regular expression that takes

long time to process which causes a system to crash or take a disproportional amount of time. We

find ReDOS issues affecting only the Marked project, a compiler for parsing markdown formats.

93

When parsing markdown text, Marked uses a lot of regular expressions, and as such, is very prone

to creating such issues, as shown in various PRs (Pull Request #1305, accessed on 12/10/2021;

Pull Request #1598, accessed on 12/10/2021a; Pull Request #1683, accessed on 12/10/2021a). In

fact, we observe that the project maintainers of Marked seem to be employing a static analysis tool

(called vuln-regex-detector (vuln-regex-detector, accessed on 12/10/2021)), integrating the tool into

their CI pipeline, as shown in this PR (Pull Request #1220, accessed on 12/10/2021). Moreover,

the maintainers seems to seek the help of someone in the team who is regarded as a security expert

to help detect whether certain regular expressions are actually vulnerable. We observed his involve-

ment in most ReDOS issues (e.g., (Pull Request #1083, accessed on 12/10/2021; Pull Request

#1305, accessed on 12/10/2021; Pull Request #1598, accessed on 12/10/2021a; Pull Request #1683,

accessed on 12/10/2021b)). This indicates that such issues of ReDOS are not straightforward to spot

during code review, and may require automated tools as well as “security experts” to better identify

and validate the cases.

We find several cases of SQL injection (14), which affect two projects only, Sequelize and

Strapi. SQL injection issues generally produce attacks by injecting SQL queries via the input

data to spoof identity. We observe that 10 out of 14 cases are present in Sequelize, which is

a powerful package in the JavaScript, which deals with managing SQL databases, and hence, it is

more susceptible to SQL injection issues. Most of SQL injection cases that need to be dealt with in

our dataset are cases that require escaping characters from potentially malicious strings that would

inject SQL queries that grant unauthorized access to the database (Pull Request #7160, accessed on

12/10/2021; Pull Request #783, accessed on 12/10/2021a).

Issues related to Authentication (13) are mostly present in the Parse-Server project (6/12

cases), where user authentication is managed. In such cases where the authentication is not properly

managed, a potential attacker would gain access to a sensitive data or functionality. For example, in

this PR (Pull Request #4305, accessed on 12/10/2021a), a reviewer noticed that a public unauthen-

ticated request was returning information about the server version. This can be risky as attackers are

allowed to send requests to servers to check if they are running a vulnerable version of the server

and take advantage to perform further exploits.

94

We find other less frequent types, e.g., Deadlock, DDOS, Improper Input Validation, and Vul-

nerable Packages. Finally, note that we compare the types of security issues identified during code

review with the post-release security issues (i.e., advisories) in the Discussion Section. Security

advisories are security vulnerabilities that affect the post-release version of the projects and have

been announced in public databases.

Our investigation showed 14 types of security issues raised in code review. Issue type

varies from common issues across the projects, e.g., Race Condition, Access Control,

XSS, Documentation, and Overflow, to other types more frequently affecting specific

projects, e.g., ReDOS, SQL injection, and Authentication.

RQ3: How do developers respond to the identified security issues during code review?

Motivation: As shown in RQ2, although various types of security-related issues are brought up

during the code review, how the issue is tackled, if at all, is crucial to understand how effective the

process of reviewing code is. Therefore, in this RQ, we investigate how developers respond to the

identified security issues and the mitigation strategies employed. Doing so is important to motivate

improvements at code review process, with the aim of increasing its effectiveness.

Approach: To find out how developers respond to the identified security issues in our dataset, we

manually inspect the discussion and reviews comments associated with the 171 PRs in the dataset.

In particular, we examine whether the security issue is resolved in a way that increases the overall

security of the related project, and how the issue was tackled and mitigated during the discussion.

Similarly to RQ1, two authors independently classify the responses using an open card-sort method

(Fincher & Tenenberg, 2005), where labels are created during the labeling process, by looking

through the discussions, code changes and commit history that occurred through the code review

process. For this manual labelling, a high level of agreement is reported with Cohens kappa

coefficient of +0.93. Once again, when different labels were assigned to the same PR, the annotators

discuss them to reach a consensus.

95

Table 5.5: Response themes for handling the 171 identified security issues.

Response Theme Description # Total (%)

Fixed The security issue is raised during code review and evidence for
a related fix is observed.

79 (46.19%)

No Threat Project maintainers come to a conclusion that the security issue
has no actual threats to the project.

49 (28.65%)

PR Rejected The raised security issue caused the PR to be rejected by project
maintainers.

15 (8.77%)

Not Fixed Project maintainers opted not to fix the raised security issue, often
due to very complex technical difficulties.

14 (8.18%)

No Response The security issue is raised during code review, but no discussion
and changes are made to reflect on these concerns.

8 (4.67%)

General Security Discussion Project maintainers discuss a security issue that is not directly
relevant to the reviewed PR but rather a general security concern
to the project.

6 (3.54%)

Result: Table 5.5 presents 6 themes of the responses to the issues raised in the 171 PRs,

identified by our manual analysis. Below, we provide more details about each response theme.

Fixed (79 cases). This is the most common way of responding to the identified security issues.

In such cases, we find that the security concern was discovered during code review in addition to an

evidence for a related fix. In most cases, we observe that the issue is fixed, and the PR is merged

(e.g., (Pull Request #2576, accessed on 12/10/2021b)). In other cases, we observe that the security

issue is fixed, but the code is flawed for some other non-security reason, which led the PR to be

closed (Pull Request #4895, accessed on 12/10/2021). In a few cases (Pull Request #783, accessed

on 12/10/2021b), we observe that the reviewers suggest to open a new PR to properly design the

solution that tackles the raised security issue. An example of a fix is given in this PR (Pull Request

#4305, accessed on 12/10/2021a). In this example, the maintainers found an authentication issue

where a potential attacker could have access to a public unauthenticated request, as stated:

“... Returning information about the server version on a public unauthenticated request makes

it really easy to develop bots that check for a version of Parse Server that is vulnerable to an

attack, lowering the cost of effort for a random attacker to locate vulnerable servers.”

The same maintainer also suggests a solution for the issue:

96

“... If the Health Check is going to return structured data, I think that’s a feature that should be

possible to disable for security hardening. I’d prefer to see the health check do more - but still

just return OK. Specifically, it would be nice if it did a simple round-trip to the database that

does nothing but confirm the database server is up...”

Other maintainers agreed on the relevance of the issue and the suggested fix as well. Hence, the

issue was fixed by removing the related information of the version in the JSON response, as shown

in this commit (Pull Request #4305, accessed on 12/10/2021b).

No Threat (49 cases). Of the total number of the analysed security issues, we observe that 49

cases do not impact the corresponding part in the project. In such cases, project maintainers did not

reach a consensus on the identified security issue. We observe that a reviewer pointed out a security

issue, but was effectively deemed by other reviewers and/or by the contributor that it was actually

not a security concern, e.g., the identified issue was not a real threat to the project. For example, as

shown in this PR (Pull Request #5951, accessed on 12/10/2021), a reviewer discussed some flaws

related to the design of the permission feature and how it works. However, after the discussion, the

reviewers agreed that it didn’t seem to be any security concern. One maintainer stated:

“... the pattern of code was actually widely used in the project and known to not have security

concerns”.

In other examples where the raised issue is not considered as harmful (Pull Request #1224,

accessed on 12/10/2021), project maintainers find that the issue can not be triggered accidentally

in a normal context, i.e., the package users should know how to use the functionality in a secure

manner:

“...we should educate our dependents on the safe way to deal with parsing user input. (i.e. web

worker/vm.runInNewContext).”

In other cases, project maintainers find that the identified security issue has no direct impact on

the project. For example, in this PR (Pull Request #1472, accessed on 12/10/2021) that concerns

97

about a vulnerable dependency, the vulnerability doesn’t affect the end users, since the dependency

is solely used as a development dependency:

“... for users who are using marked, they do not see (and are not affected) by dev dependency

vulnerabilities”.

PR Rejected (15 cases). In 15 PRs, the raised security issues caused the PR to be rejected by

their respective project maintainers. For example, in those PRs (e.g., (Pull Request #3163, accessed

on 12/10/2021; Pull Request #4790, accessed on 12/10/2021b; Pull Request #4822, accessed on

12/10/2021)), the proposed changes in the PR are vulnerable, and not easy to fix. Given that the

proposed changes in the PR are discussed to be lower on the priority list, the team decided to close

the PR to avoid the raised security concern. In this example (Pull Request #4790, accessed on

12/10/2021b), the maintainer stated:

“Closing this PR because of security issue...With this, we can access to all the users base of a

group.”

Not Fixed (14 cases). We observe that in 14 PRs, the project maintainers opted for not fixing the

raised security issue, often due to very complex technical difficulties. For example, in this PR (Pull

Request #2375, accessed on 12/10/2021), the project maintainers clearly discuss a race condition in

the code. However, through our manual inspection, we observe no action was taken in the PR to

fix the race condition since the maintainers don’t seem to be able to find where the issue is coming

from and don’t seem willing to invest time into it at this point of the project, as stated:

“...imperfection is to be expected when there’s only been one iteration :)”

Another example (e.g., (Pull Request #16254, accessed on 12/10/2021)) is where project main-

tainers decide not to fix the issue in the current project release, as it would cause a breaking change

and the fix could require significant code changes that replace entire underlying requirements of the

98

PR. In this case, the project maintainers prioritize respecting the release deadlines over fixing the

security issue.

In some other cases, the project maintainers are offloading the responsibility of security to its

users (the dependent applications). In this example (Pull Request #9224, accessed on 12/10/2021),

the maintainers stated:

“...there is a responsibility up to the developers of Electron projects to ensure the content they

are pulling in is safe and trusted”. And that “Electron intentionally breaks security and the

sandbox to make applications possible”.

This indicates that in certain cases, the project maintainers need to weigh the pros and cons of

securing their project, as there is a tradeoff between usability for the project users and security of

the project itself.

No Response (8 cases). The cases under this category are concerns that are raised by main-

tainers but were completely ignored in the discussion. For example, in these PRs (Pull Request

#1598, accessed on 12/10/2021b; Pull Request #18673, accessed on 12/10/2021), we observe that

a specific reviewer raised an issue related to ReDOS, but we could not find any evidence of a

discussion or any response back. In this example (Pull Request #1598, accessed on 12/10/2021b),

one maintainer raised a potential issue related to ReDOS issue, and asked another maintainer to

validate it. However, we didn’t observe any response back from other maintainers. In other cases,

we observe that the security issue was not raised early enough, i.e., the issue was identified only

after the PR’s decision was already taken (closed/merged). As an example, in this PR (Pull Request

#10816, accessed on 12/10/2021), we find that, after merging the PR, a developer adds a comment

concerning a potential SQL injection. In such cases, we find no evidence of discussing or addressing

the security issue after being raised.

General Security Discussion (6 cases). In such cases, reviewers discuss issues that are not

directly relevant to the reviewed PR, i.e., they discuss general issues that come along the discussion

of other related issues. This can be some improvements for security-features or potential approaches

99

to fix security issues. In such cases, no actions is taken in the PR since the discussion in not specific

to the PR changes. For example, in this PR (Pull Request #714, accessed on 12/10/2021), the project

maintainers discuss various ideas and approaches to escaping characters to prevent potential XSS

issues, though no actual XSS issue is raised. Throughout this discussion, they identify potential

security issues in each others’ ideas and refine them to come up with an optimal solution. This

helps project maintainers plan out a secure approach to prevent a potential vulnerability from an

un-discussed plan. As shown in the following quote:

“...I’d be curious to see if an indexOf(’.’) !== -1 check before escaping would help perf in the

common case. Since the common case is no dot. We could also escape to a format that doesn’t

need re-escaping when it goes into the DOM attribute. Since we already have one escape pass,

we can utilize that for both. Might be dangerous though. Easy to open up XSS vulnerabilities.

The author is relating the content of a PR to some future work or feature, and discussing their

security concerns for the possible approaches. This provides an entryway for a discussion to further

discuss how they should handle these future works, before they begin tackling them.

The majority (54.96%) of the identified security issues during code review are fixed and

mitigated. However, many of the issues seem to be considered as having less threats

(28.65%). In a few cases, the project maintainers do not fix the issues (8.18%) or even

respond to them (4.67%). Interestingly, some of the issues are not directly related to the

reviewed PRs, but still discussed during code review (3.54%).

5.4 Discussion and Implications

In this section, we present a discussion on the comparison of security issues identified during

code review to the post-release security issues (advisories) that are only identified after the project

release. Then, we provide insights about how our findings can improve the practice for practitioners

and researchers.

100

5.4.1 Comparison with advisories dataset

Code review identifies security issues before these issues are merged in the codebase and go to

production. However, security issues uncaught by code review may later become known vulner-

abilities in the projects. To better understand the effectiveness and limitations of code review, we

compare issues identified during code review to post-release security vulnerabilities (advisories) that

have been reported after the project release production. Such comparison will help us understand

whether there are certain types of issues that code review can be effectively employed to identify.

The npm registry maintains a security advisories database to provide regular updates on post-release

security vulnerabilities in the JavaScript projects (npm advisories, accessed on 12/10/2021). We

collect all npm security advisories of the studied projects in the same timeline of the collected

security-related PRs, i.e., we collect all advisories that have their publication date before August,

2020.

We report the results of our comparison by cross referencing the security types identified during

code review with advisories types that affect the projects in our dataset. We manually check whether

each one of the 14 types identified during code review exist in the advisories dataset. Table 5.6

shows the types identified in our study, and whether they are mentioned in the advisories dataset.

From the table, we can observe that four types in our study are not mentioned by advisories

dataset, namely Race Condition, Access Control, Documentation, and Deadlock.

The nature of the types that were more commonly found in code review requires in-depth

knowledge of the project domain and implementation specifics. For example, issues related to Race

Condition and Deadlock stress this point as their identification and solution require an in-depth

understanding of the problematic code and the concerned threads, how they collaborate to deliver

the functionality and more importantly how to add code that puts proper constraints on their collabo-

ration to fix the security issue. Similarly, Access Control issues are difficult to spot in advance. In the

case of Access Control (e.g., in this PR (Pull Request #1681, accessed on 12/10/2021)), we observe

that in order to understand whether certain resources can be exposed or not, a deep understanding of

the project users requirements is necessary to understand whether those resources are sensitive and

need special access to use. In fact, automated tools (e.g., static and dynamic testing tools) can help

101

Table 5.6: Cross-reference the types of security issues identified during code review with advisories
dataset for the studied projects. The values in parentheses represent the number of affected projects.

Types in Code Review Mentioned in Advisories

ReDOS (1) X (4)
Race Condition (3) -
Access Control (6) -
XSS (3) X (3)
SQL Injection (2) X (1)
Documentation (5) -
Improper Authentication (2) X (1)
Sensitive Data Exposure (5) X (2)
Remote Code Injection (4) X (3)
Overflow (5) X (3)
Deadlock (2) -
Improper Input Validation (1) X (3)
Vulnerable Package (2) X (4)
DDOS (1) X (2)

to detect the absence/missing of access control in a system (Aloraini et al., 2019; Broken Access

Control — OWASP, accessed on 12/10/2021), but cannot determine whether it functions properly

when in use, which is the case for several issues identified during code review. Issues classified

under “Documentation” type refer to some security constraints on the project usage. Some missing

documentations may make clients (i.e., project users) use the API in unsafe manners. Hence,

documenting such cases are extremely important as project users rely on this Documentation when

using the project, and any missing details on security may lead users to misuse the project, causing a

vulnerability in their applications. Yet, such issues are not really exploitable vulnerabilities that may

affect the project itself, and hence, the “Documentation” category is not present in the advisories

dataset.

While some types of security issues are frequently identified through code reviews, we find

that other types are more frequently detected in the advisories dataset. For example, as seen in

Table 5.6, we find that code reviews identified ReDOS in one project only (Marked). However,

the advisories dataset mentions four projects (including the Marked project) affected by ReDOS,

namely, Moment, Uglify-js, and Sequqlize. This result indicates that some other types of

issues like ReDOS are easier to detect by means of tools. We observe in RQ1 that project maintainers

102

integrate a static analysis tool in the project pipeline and periodically invite a security expert to

validate and fix specific issues like the ReDOS type.

5.4.2 Implications

In this section, we provide some implications to practitioners and researchers.

Security issues are raised on a small fraction of project files. Our results show that security

issues identified during code review of the studied projects are very localized, only appearing in a

small fraction of project PRs and files (see RQ1). For example, we find that all ReDOS issues in the

Marked project are identified in one file. This indicates that project maintainers concentrate on these

parts and pay more attention to them during security code review. Therefore, one way to support

the code review process is to build tools that rank files based on their security sensitiveness. For

instance, files that have had security issues identified in them can be flagged by the tool as security

sensitive. Such tools can help project maintainers for prioritizing code review for security issues,

e.g., a PR that touches a file that has been flagged as security sensitive before may require the review

of a security code expert.

Code review approach is more effective to find certain types of security issues over other

methods (i.e., advisory method). We found a substantial variety of security issues found through

code review. However, our results also show that 4 types of security issues, i.e., issues relating

to Race Conditions, Deadlocks, Access Controls and Documentation, are issues in the studied

projects which were not found once in the advisories dataset. Through our manual analysis (RQ2

& Section 5.4.1, we observe that dealing with such security issues are highly complex and hard

to locate. For example, in the case of Race Conditions and Deadlocks, the reason due to these

issues being difficult to identify and fix is that they require a deep understanding of how the project

uses multi-threading, in order to understand whether specific implementations in the code can

cause Race Conditions or Deadlocks. In the case of Access Control, this is due to the need for

a solid understanding of the requirements, which is necessary to understand whether the accessed

resources are sensitive and need special access to use. Unlike other types of security issues, cases

103

of Documentation clarity are not considered as vulnerabilities, and also are very subjective, which

makes it easier to identify and improve through the code review process. That said, code review is

considered a critical approach for dealing with such security issues. Hence, it would be advisable

that project maintainers pay attention to such types to employ better security code review and

understand what would be required to catch them and ensure that the code is free from these types.

Also, the development teams should have the required expertise to solve security issues, e.g., issues

related to thread synchronization stress this need as their solutions require an in-depth understanding

of the problematic code.

Developers should integrate automated tools in the project development cycle to target se-

curity issues that affect their projects. Our results (RQ2) show that in some cases, project

maintainers integrate automated tools in the pipeline of the project development cycle. For example,

we observe that the project maintainers of Marked integrate a static analysis tool into the project

CI pipeline, called vuln-regex-detector (vuln-regex-detector, accessed on 12/10/2021), which led to

the identification of most ReDOS security issues in the project. Also, through our manual analysis,

we observe that, in several cases (e.g., (Pull Request #1414, accessed on 12/10/2021; Pull Request

#844, accessed on 12/10/2021)), the project enables tools for dependency management to upgrade

outdated and vulnerable dependencies. For instance, in this PR (Pull Request #1420, accessed

on 12/10/2021) of the project Marked, several outdated dependencies were automatically updated

by the Snyk tool. This result indicates that it is of great help for the project to use automated

tools to target security issues that may affect the project. Further research should explore different

tools that can be integrated in the development cycle of the project to target security concerns.

Recently, GitHub (in August 2018) has created CodeQL (About CodeQL code scanning in your CI

system, accessed on 12/10/2021; github/codeql, accessed on 12/10/2021), a code analysis platform

for finding zero-days and critical vulnerabilities in pull requests. Future research should examine the

efficiency and effectiveness of such code review tools across projects for different types of security

concerns. Such research is important to increase developers awareness to code review tools that can

be employed in the development pipeline to identify security concerns in the project.

104

Overlooked security issues during code review should be better evaluated and disclosed for

project users. Our findings show that a non-negligible share of issues identified during code

review ended up not being fixed or are ignored by maintainers (see RQ3). We observe in several

examples (e.g., (Pull Request #1598, accessed on 12/10/2021b; Pull Request #16254, accessed

on 12/10/2021; Pull Request #9224, accessed on 12/10/2021)) that such issues generally take great

effort to mitigate or may contradict the goal of the project, and the responsibility of the security issue

is on the user to mitigate. However, in all these cases, no action is taken from the project maintainers

to attempt to advise developers of such security issues. This can make vulnerabilities proliferate to

the project users unbeknownst to them. Therefore, we recommend to all project maintainers to

document all potential security issues that could come about by using their project in a way that

is easy to understand and easy to access. Project users cannot be expected to sift through project

history to gain a better understanding of what is their responsibility for security, and to understand

what is not being handled by the project. Having some easily accessible documentation, such as

in the README of a project, in the package description (like on npm registry) or on the project

website can help give a high-level overview to prospective users, further allowing them to handle

and mitigate such vulnerabilities in their own projects.

Code review is effective in fixing raised security issues. Our findings show that issues identified

are frequently fixed, either by applying new patches, or by rejecting the proposed PRs (see RQ3).

While previous studies show that project maintainers lack energy or enthusiasm to review source

code for security issues (Howard, 2006), code review is a critical component of shipping secure

software, given that it is much less costly to fix security issues before a new version of the project

is released. Hence, project maintainers should be encouraged to consider reviewing the PR changes

for security issues before merging them. While fixing issues during code review is time-consuming

and may obstruct meeting the project release deadline (e.g., as stated by project maintainers (Pull

Request #16254, accessed on 12/10/2021; Pull Request #2375, accessed on 12/10/2021)), project

managers should support maintainers by reserving a sufficient amount of time for fixing raised

security issues during code review.

105

5.5 Threats to Validity

Internal validity concerns factors that might affect the casual relationship and experimental bias. In

RQ2 and RQ3, we conducted major manual process to extract the required information for analysing

the security issues in the PRs. Like any human activity, our manual process is subject to some bias.

To mitigate this, we invite an external annotator to independently analyse the PRs using an open

card-sort method. Morover, we report a high-level of agreement which indicates that our results

are more likely to hold. Additionally, both annotators meet and discuss any conflicts to reach a

consensus. This gives us a high confidence of the data used in our study.

Our keyword-based technique to identify security-related PRs is another limitation. We may

miss security issues in the PRs if the review comments do not contain any of the keywords that we

used. However, our keyword set is curated in an extensive process, by utilizing a well-known set of

security-related keywords, which has been used in prior studies. Then, we manually examine the

relevance of each keyword and include ones that yield a good relevance (see Section 5.2.2). Hence,

we believe that our keyword set is of high quality, and that the potentially missed security issues

will not significantly impact our results.

Finally, in our analysis, we used the PR feature in GitHub to search for security issues raised by

project maintainers during code review. However, there might be other security issues that are not

discussed through PR feature. However, through our manual analysis, we did not observe a case

where a project maintainer refers to an issue being discussed through other platforms. Therefore,

we had to rely on the PR discussion as the main source of information for the security issues raised

during code review.

External validity are related to the generalizability of our findings. Our projects dataset contains

10 JavaScript projects available in the npm advisories dataset. Hence, it is possible that there are

other projects not included in our dataset, which might also be of our interest in this study. However,

our projects dataset is of high quality, since we leveraged some filtration criteria to provide a good

representation of the projects we are interested in studying. The projects chosen for our study

include popular open-source projects that vary across domains, languages, age, and having high

activity level. Also, the number of projects in our dataset is in-line with the similar studies that also

106

require similar manual process, given the extensive manual analysis required for the study analysis

and data collection process, which makes it infeasible to include a lot of projects. Therefore, we

believe most of these results can hold for other OSS projects.

5.6 Related Work

In this section, we discus the work that is related to the study in this chapter. We focus mostly

on the work that approach the link between code review and security.

Some studies focused on factors that improve the code review quality. For example, Kononenko

et al. (Kononenko et al., 2018) empirically examined what factors influence the pull request (PR)

review quality and outcome in the Active Merchant project. They found that the quality of a PR

is strongly associated with the quality of its description, its complexity and revertability, while the

quality of the review process is linked to the feedback quality, tests quality, and the discussion

among developers. Bernardo et at. (Bernardo, da Costa, & Kulesza, 2018) examined the impact

of adopting CI on the time to integrate PRs. They found that the time to merge PRs increased after

adopting CI. In the context of our study, we observed some projects adopting and integrating static

analysis tools in the CI pipeline to help identifying specific security issues (e.g., ReDOS) and other

general issues related to fixing the code style and structure.

A recent study by (Paul et al., 2021) built a regression model on the Chromium project to

identify factors that differentiate code reviews with successfully identified vulnerabilities from

reviews that missed vulnerabilities. They found, for example, that the number of directories under

review correlates negatively with identifying vulnerabilities. Bosu et al. (Bosu, 2014) performed

an empirical study, where they analyzed more than 400 vulnerable code changes with the aim to

identify their characteristics. They found, for example, the changes by less experienced contributors

were significantly more likely to introduce vulnerabilities. Also, they found that new files are less

likely to contain vulnerabilities compared to frequently modified files. In our study, we find that

the identified security issues are concentrated on a small fraction of the project files (RQ1). This

should encourage researchers in the future to understand the nature of such files that frequently

contain security issues, which would help practitioners and developers better improve the process

107

of identifying security issues in code review.

In many ways, our study in this chapter complements the previous work since, we specifically

focus on JavaScript projects that have been published in the npm ecosystem. We also add to previous

work by studying how developers discuss the raised security issues and tackle them during the

review phase. Our study aims to help the community better understand the types of security issues

discovered during code review in order to pay attention to them in the future, and understand the

mitigation strategies employed by project maintainers to tackle the issues. Moreover, our results

highlights several important observations that aim to increase the awareness of practitioners and

researchers to the role of code review in relation with security, and improve the practice of code

review for spotting security issues.

5.7 Chapter Summary

This chapter conducts a study to explore the role of code review from a security perspective, by

analysing 10 JavaScript open-source GitHub projects.

First, we quantify the prevalence of security issues raised in the project Pull Requests (PRs).

Our manual analysis (RQ1) identified 171 security issues, which represents a small proportion of

all PRs in the studied projects. However, such issues are discussed by project maintainers at length.

Between 4.82% - 28% of all comments in the 171 PRs are related specifically to the security related

concern. Moreover, our manual analysis showed 14 types of security issues raised in code review

(RQ2). In particular, we observe that code review is effective at identifying certain types of security

issues, e.g., Race Condition, Access Control, and ReDOS. When analysing how project maintainers

respond to the raised security issues (RQ3), we find that the majority of the identified security issues

are fixed and mitigated. Yet, the project maintainers sometimes do not fix the issue, due to its

technical complexity. Interestingly, sometimes the project maintainers discuss security issues that

are not directly related to the reviewed PR. Finally, we present some implications for practitioners

and researchers, which aim to support the role code review in enhancing project security.

The focus of this chapter is to study the role of code review from a security perspective.

However, many open-source projects that adopt code review still encounter a large number of

108

post-release security vulnerabilities. These vulnerabilities can then impact the software project

users (e.g., dependent applications). To help mitigate this issue, the community has created some

mechanisms (e.g., software bots) to automatically track and fix vulnerable dependencies in project.

In the next chapter, we shed the light on a popular software bot, called Dependabot, to examine its

effectiveness for tackling vulnerable dependencies in software projects.

109

Chapter 6

Evaluating the Use of Dependabot for

Patching Package Vulnerabilities

Developers struggle to keep updating and fixing vulnerable dependencies in their projects.

Emerging tools attempt to address this problem by introducing bots that can automatically inform

the developer of stale and vulnerable dependencies in the project. To understand whether these tools

actually help developers, we evaluate the use of a popular software bot, called Dependabot, a bot that

issues pull-requests (PRs) to automatically update vulnerable dependencies. We investigate a quality

set of 2,904 JavaScript open-source GitHub projects that subscribed to Dependabot. Our results

show that the vast majority (65.42%) of the created security-related pull requests are accepted, often

merged within a day. Also, we identify 7 main reasons why security pull requests are not merged,

mostly related to concurrent modifications of the affected dependencies rather than Dependabot

failures. Finally, we model the time it takes to merge a Dependabot security pull-request. Our

model reveals several significant features to explain merge times, e.g., projects that have relevant

experience with Dependabot security pull requests are most likely to be associated with rapid

merges. Our findings indicate that Dependabot can be of great help to increase awareness of

developers to dependency vulnerabilities in their projects.

110

6.1 Introduction

Modern software systems are increasingly depending on the reuse of code from external depen-

dencies (i.e., packages). While the use of dependencies boosts productivity (Basili, Briand, & Melo,

1996b) and software quality (Lim, 1994b), it also increases the impact of security vulnerabilities

(Zimmermann et al., 2019a). A security vulnerability in a highly-used dependency may directly

impact hundreds of applications, leading to significant financial costs and reputation loss. An infa-

mous example is the Equifax cybersecurity incident in 2017, caused by a web-server vulnerability

in the Apache Struts package, which led to illegal access to sensitive information of almost half of

the US population (143 million citizens) (Equifax, 2017).

The open source community has taken active measures to deal with security vulnerabilities in

dependencies. For example, Dependabot is a very popular GitHub bot that creates pull-requests

(PRs) to help developers automatically integrate dependency updates and vulnerability fixes into

their projects (dependabot-core, accessed on 12/10/2021). Dependabot monitors the GitHub Vul-

nerability Advisories dataset to identify the vulnerable dependencies of the target project. As soon as

a dependency vulnerability is identified, Dependabot sends a notification through a PR that updates

the vulnerable dependency version to non-vulnerable version that has fixed the security issue, and

developers can simply merge the PR to adopt the suggested update. Currently, more than 6 million

security and non-security related PRs have been merged in projects from 15 languages supported

by Dependabot (Dependabot, accessed on 12/10/2021).

Previous work (Mirhosseini & Parnin, 2017) investigated to which extent dependency manage-

ment tools can convince developers to upgrade out-of-date dependencies, showing that such tools

are not yet widely adopted by developers. However, they focus on the general problem of outdated

dependencies and do not pay particular attention to security vulnerabilities in dependencies. Given

that dependency updates for vulnerability fixes have a critical impact, we specifically focus on

studying a very popular dependency tool (e.g., Dependabot) at coping with security vulnerabilities

in dependencies. To our best knowledge, little is known about the receptivity and level of adoption

of Dependabot security PRs in real open-source software projects.

Therefore, our main goal is to understand the degree to which developers adopt Dependabot

111

security PRs that tackle dependency vulnerabilities in open source projects.

To achieve our goal, we perform an empirical study involving data from 15,243 Dependabot

security PRs that belong to 2,904 active open-source JavaScript projects from GitHub. In the first

stage of our study, we examine how often Dependabot security PRs are accepted (merged) and how

long it takes to merge them (RQ1), in order to determine to what extent developers of open-source

projects adopt and respond to Dependabot security PRs. We observe that the majority (65.42%)

of the Dependabot security PRs in our dataset are merged, often within a day. Still, a significant

minority (34.58%) of PRs are not merged.

As such, to understand the motives that led developers to not merge Dependabot security PRs,

we qualitatively examine the reasons for Dependabot security PRs not being merged (RQ2). Our

manual analysis identifies 7 main reasons, showing that, by in large, the majority of non-merged

PRs are turned-over by Dependabot itself. For example, in 50.8% of the manually studied PRs,

Dependabot closes a former security PR in favor of a newer PR that updates to a newer version.

Although the majority of the PRs are merged within a day (RQ1), we observe a non-negligible

proportion of PRs that took longer to be merged. Hence, to understand what would lead to take

a longer time to respond to Dependabot security PRs, we examine the features that influence the

time to merge a Dependabot security PR, given that the time is crucial and that the longer a package

remains affected, the longer the application that uses it will remain vulnerable to malicious users

(RQ3). We observe, using our mixed-effects regression model, five highly important features to

explain merge time durations of Dependabot security PRs. While some common wisdom features

(e.g., the project activity and the past experience with Dependabot security PRs) are strongly asso-

ciated with the timespan of the merged PRs, the severity of dependency vulnerability and the level

of patch update are not.

To summarize, this work makes the following contributions:

• To the best of our knowledge, this is the first work to provide an empirical evidence for

understanding developers adoption of Dependabot security automated PRs in open source

projects, while also discussing the implications of our findings to practitioners and Depend-

abot maintainers.

112

• We qualitatively uncover the possible issues developers could face when adopting Depend-

abot PRs. Such evaluation can advance the future work, i.e., researchers can direct their

efforts to identify the cause of the issues and propose solutions to overcome the limitations.

• We build a logistic regression model that could identify relative importance of various factors

explaining merge times of Dependabot security PRs.

Chapter organization.

This chapter is organized as following: Section 6.2 provides a brief background about Dependabot

workflow. Section 6.3 describes our study design. Section 6.4 presents the results of our study.

Section 6.5 discusses how our findings lead to implications to practitioners and future research

directions. Section 6.6 presents DEPCOMBINE, a proposed tool that combines Dependabot security

PRs on GitHub repositories. Section 6.7 presents the threats to validity. Section 6.8 presents the

related work. Section 6.9 concludes our study.

6.2 Background

In this section, we provide a background on Dependabot and its workflow for fixing vulnerable

dependencies through pull-requests.

Dependabot is a popular GitHub bot in the field of dependency management (Dependabot,

accessed on 12/10/2021) . The goal of Dependabot is to help developers maintain and protect their

projects from outdated and vulnerable dependencies, by automatically alerting developers about

the vulnerable release of dependencies and suggesting security updates for dependencies using Pull

Requests (PRs). It supports almost all popular programming languages, such as JavaScript, Python,

Ruby, Java, PHP, Elixir, etc.

Dependabot Workflow. To understand how Dependabot works for suggesting security updates for

vulnerable dependencies through pull-requests, we briefly discuss the procedures Dependabot uses

to find a vulnerable dependency and suggest a fix. To start using Dependabot, a project maintainer

needs to enable Dependabot to inspect the project dependencies and submit PRs accordingly. To

facilitate adoption, Dependabot provides a method for easy integration, where project maintainers

113

can sign-in and add their projects to be monitored by Dependabot. Once Dependabot is integrated

in the project, its procedure for submitting security pull request is as follows:

(1) Dependabot monitors Github’s Security Advisory API (GitHub, accessed on 12/10/2021) to

identify security updates of various dependencies in different package ecosystems underlying

different programming languages.

(2) Dependabot monitors the dependencies of the target project on a daily-basis by inspecting the

dependency management files (e.g., package.json for NodeJS applications, requirements.txt

for Python applications).

(3) As soon as a new vulnerability is published in the advisory API, Dependabot then verifies: i)

if the monitored project depends on affected package versions; and ii) if there is a version of

the package with a fix-patch for said vulnerability. If both criteria are met, Dependabot issues

a PR bumping the current vulnerable version of the dependency to the closest non-vulnerable

version (to reduce build breakage), by updating the dependency management file. Updating

to the minimal fixed version makes that easier, i.e., there is less to review, and less chance

of breaking changes. Dependabot distinguishes minor bug fixes and feature enhancements

from security fixes, i.e., if the dependency update contains a security fix, the corresponding

PR adds several information related to the vulnerability of the affected dependency, e.g., the

PR body indicates that the update includes a security fix. Figure 6.1 shows an example of

Dependabot security PR.

(4) After that, the project developer can simply upgrade the vulnerable dependencies with a single

click by merging the PR or ignore and close the PR without having any effect on the project.

In fact, Dependabot comes with other features in order to convince developers at accepting

the PRs. For example, alongside the suggested changes, each PR contains information about

the vulnerability (e.g., severity, versions affected) and the issue from the advisory report,

which can help developers analyze and understand the implications of changes and consider

the risks of not updating. Finally, Dependabot provides an auto-merge feature, which

automatically merges Dependabot PRs. A project can enable this feature in case it uses a

114

Figure 6.1: An example of Dependabot security PR.

Continuous Integration (CI) infrastructure to prevent possible breaking changes. By default

no PRs are auto-merged.

6.3 Study Design

Dependabot aims to help developers automatically update their dependencies through PRs.

There are numerous reasons to update a dependency, such as making the use of new features, access-

ing bug fix patches, etc., which led to the creation of millions of Dependabot PRs in open-source

projects. Updates that include security issues fixes are among the most critical reasons develop-

ers should update their dependencies, as applications frequently depend on packages containing

vulnerabilities (Snyk.io, accessed on 12/10/2021). Therefore, we focus in our work on studying

115

Dependabot security PRs, i.e., to what extent open source developers adopt Dependabot security

PRs to help them keep their dependencies secure. Hence, we first need to identify and collect the

dataset of Dependabot security PRs, and use this data to answer the following research questions:

• RQ1: How often and how fast are Dependabot security pull requests merged?

• RQ2: What are the reasons for Dependabot security pull requests being not merged?

• RQ3: What factors are associated with rapid merge times?

Our study examines security PRs created by Dependabot in JavaScript projects. We chose to

focus on JavaScript due to its wide popularity amongst the development community (SOF, 2020).

In addition, considering the dynamic nature of JavaScript and the rapidly growing environment

(with more than 1.3M packages (Libraries.io - The Open Source Discovery Service, accessed on

12/10/2021)), the problem of maintaining and updating dependencies is especially challenging,

as evidenced by a recent survey of JavaScript developers (Abdalkareem et al., 2017). Hence,

dependency management in JavaScript is challenging, which makes Dependabot effectiveness even

more crucial.

To perform our study, we leverage the GitHub API to collect security PRs that were created by

Dependabot for the purpose of fixing a vulnerable dependency in a JavaScript project.

Obtaining Dependabot security PRs. Dependabot distinguishes minor bug fixes and feature

enhancements from security fixes, i.e., whether the dependency update contains a security fix or

not. Security PRs submitted by Dependabot contain information related to the vulnerability of the

affected dependency, such as the list of vulnerabilities in the security fix. Using the GitHub API, we

are able to obtain security PRs by collecting PRs that are: (i) created by Dependabot; (ii) submitted

to JavaScript projects in GitHub, and (iii) for the purpose of fixing a security vulnerability (i.e., the

PR body refers to a security update). In total, we obtained 36,561 Dependabot security PRs from

6,853 JavaScript projects.

Project selection. It is known that GitHub contains some toy projects (Kalliamvakou et al., 2014),

which are not representative of the software projects we aim to investigate. Therefore, once the

dataset of Dependabot security PRs is collected, we apply some filtering criteria for selecting a

set of higher-quality projects. We only include JavaScript projects that are starred, non-forked,

116

Table 6.1: Statistics of the 2,904 studied JavaScript projects.

Metric Min. Median (x̄) Mean (µ) Max.

Commits 20 153 465.7 28,486
Age (in days) 146 652 808.3 3,828
Security PRs 1 6 7.3 48

and contain more than 20 commits, as recommended by prior studies (Kalliamvakou et al., 2014;

Mirhosseini & Parnin, 2017). After applying these refinement criteria, we end up with 15,243 PRs,

which belong to 2,904 open-source JavaScript projects that have at least one vulnerable dependency

identified by Dependabot and a security PR was already created for the purpose of fixing it. The

affected dependencies contain a set of 167 distinct vulnerable packages. This set contains some

popular packages, such as lodash, eslint-utils, jquery, debug, and merge.

Table 6.1 shows the descriptive statistics on the selected JavaScript projects in our dataset.

Overall, the projects in our dataset have a rich development history and are long-lived projects

(median of 153 commits and 652 days of development lifespan), and have received a median of

6 security PRs from Dependabot. Finally, our dataset contains Dependabot security PRs for the

period between June 2017 and April 2020. Note that Dependabot launching was on May 26,

2017 (Dependabot introduction, accessed on 12/10/2021).

6.4 Study Results

In this section, for each RQ, we present our motivation, describe the approach used, and discuss

our findings.

RQ1: How often and how fast are Dependabot security pull requests merged?

In this RQ, we examine the degree to which open source developers are responsive to Dependabot

security PRs in the studied projects. Our examination contemplates two main aspects, namely: how

many Dependabot security PRs are merged (accepted)?, and how long does it take for these security

PRs to be merged?.

117

Table 6.2: Analysis of the merged and not merged Dependabot security PRs.

Dependabot security PRs # %

Total 13,003 100.00%
Merged 8,506 65.42%
Not Merged 4,497 34.58%

Acceptance of Dependabot security PRs

Motivation. Given the critical problem of vulnerable dependencies in the current JavaScript land-

scape, we want to understand how receptive to Dependabot security PRs the open-source projects

are. A high adoption rate of Dependabot security PRs indicates that developers value Dependabot

contributions and agree with its assessment on the importance of updating their dependencies due to

security concerns. Also, given that updating dependencies comes at the risk of breaking the project’s

own code, the adoption rate shows how often developers are willing to risk breaking their code to

use a dependency that is free of vulnerabilities.

Approach. To examine the number of merged PRs, we need first to find the state of each PR in

our dataset. PRs have three different states in GitHub: open, merged and closed (i.e., not merged).

Open PRs indicate that the PR is not yet processed by developers and the decision about such

PRs is not yet taken, hence they are not meaningful for this analysis and have been excluded. To

identify whether the PR status is merged (accepted) or not, we extract the value of the key merged at

timestamp that is returned from the GitHub API for each PR. For the closed (not merged) PRs, this

timestamp is null, while for the merged PRs the merged at timestamp carries an actual date-time

value. After that, we count the frequency of each PR state.

Results. The total number of Dependabot security PRs in our dataset after excluding the ones with

open state is 13,003. Of the 13,003 examined Dependabot security PRs in our dataset, 65.42%

are merged. Table 6.2 shows the proportion of each state of the Dependabot security PRs in our

dataset. We observe that the majority of security PRs are merged, indicating that developers are

highly receptive to Dependabot security PRs in their projects.

118

M
er

ge
d

N
ot

 M
er

ge
d

1 10 100 1000
Time (in days)

Figure 6.2: Violin-plot showing the distribution of the amount of time for Dependabot security PRs
to be processed (merged and not merged). Note the logarithmic scale on the x-axis.

Lifecycle of Dependabot security PRs

Motivation. The time needed to process (merge or close) Dependabot security PRs is an important

property, as the longer an application remains depending on vulnerable versions of packages, the

higher the likelihood of having the vulnerability exploited by attackers. So, to advance our insights,

we study whether developers are responsive at merging Dependabot security PRs, i.e., if the time

that these security PRs take to be processed is as short as possible. Therefore, we investigate 1) how

long does it take to merge a security PR since it was first created? and 2) how long does it take to

close a security PR since it was first created?

Approach. To measure the amount of time it takes for Dependabot security PRs to be processed

(merged or closed), we calculate the time difference (in days) between the creation date and the

merge date for merged PRs, and the time difference between the creation date and the close date for

closed PRs.

Results. Figure 6.2 presents a violin-plot containing the distribution of the amount of time for the

merged and not merged (closed) security PRs, measured in days. From the Figure, we can observe

that the vast majority of the merged Dependabot security PRs are processed within one day

(median = 1 day).

119

Figure 6.2 also shows that the closed security PRs tend to take longer time to process than the

merged ones, i.e., on median, the closed security PRs took 8 days before being closed. Comparing

the merged and closed security PRs using the unpaired Mann Whitney test (Mann & Whitney, 1947)

shows that this difference is statistically significant (p-value = 2.2e-16), with an effect size (Cliff’s:

0.48) for the differences between merged and closed PRs, which is a large size of the effect. This

ensures that Dependabot security PRs are either processed and merged fast or left to linger before

they are closed without being merged.

The majority (65.42%) of Dependabot security PRs are merged and integrated in the

projects, often within a day. Non-merged Dependabot security PRs take, on median, 8

days to be closed.

RQ2: What are the reasons for Dependabot security pull requests being not merged?

Motivation. While most PRs are merged (as shown in RQ1), a non-negligible share (34.58%)

of the PRs are closed (not merged) in the studied projects. It is crucial to understand why such PRs

are not merged, to grasp the motives that led developers to dismiss them, especially because such

security-related PRs are meant to free open-source projects from known vulnerabilities. In turn, this

can be used to motivate improvements at Dependabot, with the aim of increasing its effectiveness.

Therefore, we examine why some PRs are not merged, by performing an in-depth manual analysis.

Approach. To find out why Dependabot security PRs are not merged in our dataset, we qualitatively

examine them based on the discussion and reviews associated with these PRs. We collect the

discussion and review comments related to each closed PR. Out of overall closed PRs (4,497),

1.27% have no discussion or review comments on them, hence, we exclude them from our analysis

since it is very hard to judge such PRs without any extra information. We manually inspected all

remaining closed PRs (4,440) by looking at the discussion and review comments to determine the

reason for the closing, and (if possible) summarize the reason for not merging the PR into one

120

Table 6.3: The manually extracted reasons for not merging Dependabot security PRs.

ID Reason Description % % Closed by
Dependabot Others

R1 Superseded A newer PR contains a newer fix version of the affected dependency 50.8% 49.74% 1.06%
R2 Up to date The affected dependency is already updated 30.1% 30.1% -
R3 No longer a dependency The affected dependency is removed 6.6% 6.6% -
R4 No longer updatable The affected dependency has a peer requirement on another dependency 6.4% 6.4% -
R5 Tests Tests run failed 3.2% - 3.2%
R6 Errors Incorrect implementation for handling the dependency fix in the PR 1.4% 1.4% -
R7 Quality Requirement The PR does not comply to the project standards for handling the PRs 1.1% - 1.1%
R8 Unknown The PR could not be classified due to lack of information in the discussion 0.4% - 0.4%

sentence. Through this manual analysis, we identified 7 different groups of reasons for the PRs not

being merged.

To alleviate the potential bias due to our manual classification for these PRs, we obtain a

statistically significant sample of 354 PRs (of the 4,440 PRs) with 95% confidence level and 5%

confidence interval. Then, we invite an external annotator to independently examine the 354 PRs.

Note that the number of comments that span over the discussion of the closed PRs is two, on median,

which makes the manual inspection indeed feasible.

To evaluate the agreement between the two annotators, we used Cohen’s Kappa coefficient

(Cohen, 1960), which is a well-known statistic that measures the inter-rater agreement level for

categorical scales, and takes into consideration the possibility of the agreement occurring by chance.

In our categorization of the manually extracted reasons, the level of agreement between the two

annotators was of +0.96, which is considered to be an excellent agreement (Fleiss & Cohen, 1973).

Results. Table 6.3 summarizes why Dependabot security PRs are not merged, identified by our

manual analysis. Below, we provide more details about each reason.

• R1. PR is superseded by another newer PR (50.8%): This is the most common reason for not

merging a Dependabot security PR. In this case, the PR is closed because another Dependabot

security PR updates the affected dependency to even a newer version that contains fixes to other

problems but not necessarily a new vulnerability. In such cases, Dependabot itself closes the

former PR in favor of the new and more up-to-date PR. Figure 6.3 shows an example of R1 (Pull

Request #91, accessed on 12/10/2021). A few cases (1.06%) of superseded PRs are closed by

project maintainers where they close a set of PRs and create a single PR that combines all of the

121

Figure 6.3: Example of Dependabot PR closed for being superseded by another Dependabot PR
(R1).

Figure 6.4: Example of Dependabot PR closed because the dependency was already updated (R2).

changes (Pull Request #245, accessed on 12/10/2021).

• R2. PR is not merged because the update was applied manually on the dependency file

(30.1%): Dependabot detects that the fixed version has been applied on the dependency file,

hence, it closes the corresponding PR. Figure 6.4 shows an example of R2 where Dependabot

closed the PR that fixes the vulnerable version of the dependency eslint-utils. We manually

searched for the commit that applied the same fix suggested by Dependabot. In this commit

(steelbrain/babel-cli@c8c9859, accessed on 12/10/2021), we observe that the same fix version,

suggested by Dependabot, was manually added through the commit that also has the same date as

the closed PR date (Pull Request #85, accessed on 12/10/2021).

• R3. PR is not merged because the affected dependency is removed and no longer exists in

the project (6.6%): Dependabot will close a PR once the corresponding vulnerable dependency

is removed from the project, and hence, the PR is no longer needed (Pull Request #33, accessed

on 12/10/2021).

• R4. PR is not merged due to a peer dependency requirement (6.4%). Another reason

Dependabot closes a PR is when there is a peer requirement between the affected dependency and

122

Figure 6.5: Example of a Dependabot PR closed due to Dependabot’s error in the resolved version
(R6). As the PR title shows, the affected dependency Cryptiles should be updated from 3.1.2 to
4.1.3, while the diff change shows a different version update from 3.1.2 to 3.1.3.

another dependency. Peer dependencies are a way of specifying dependencies among external

packages, when such packages are compatible with specific dependency versions. Hence, to

update/fix an affected dependency, its peer dependency should also be updated, which may lead

to version conflicts (Pull Request #3, accessed on 12/10/2021). For example, if the dependency

eslint-config-airbnb@16.1.0 have a peer requirement on eslint@ˆ4.9.0, so it is required to update

this (eslint) until eslint-config-airbnb is updated. In such cases, Dependabot opens a PR to update

eslint-config-airbnb but later it closes the PR due to having the peer dependency. We found

a Github issue in Dependabot repository itself about this problem (Issue #1138, accessed on

12/10/2021), however, the problem seems not yet properly resolved by Dependabot according to

the issue discussion.

• R5. PR is not merged due to test failures (3.2%). In such cases, the PR is closed after auto-

mated tests have failed during the CI pipeline run (Pull Request #105, accessed on 12/10/2021).

For example, after the Travis tests have failed in this PR (Job #231.2 - Travis CI, accessed

on 12/10/2021), the project maintainer closed the PR. When the project maintainer closes the

PR, Dependabot will stop notifying the project about the current affected dependency version,

however, it opens a new PR when a new fix version of the affected dependency is available.

• R6. Error in Dependabot (1.4%). We found cases where the submitted PRs were opened,

however, they do not perform the correct fix update, and hence, Dependabot closed such PRs

(Pull Request #39, accessed on 12/10/2021). For example, in Figure 6.5 we can notice from the

PR title that the affected dependency cryptiles should be updated from the vulnerable version

3.1.3 to the fixed version 4.1.3. However, Dependabot was not able to resolve the dependency

123

to the fixed version, i.e., the PR commit changes show a different version update than the one

should be. This issue is caused by the challenge of resolving dependency conflicts of transitive

dependencies. Consider an application that depends on package A, and package A (transitively)

depends on package B. Package A has a version constraint for depending on package B (ˆ1.0.0)

which contains a vulnerability, and the vulnerability was only fixed in another major version (e.g.,

2.0.1) of package B. In this case, Dependabot cannot find a version of package B that complies

with the requirement of package A and is not vulnerable. This type of issues render the R6 reason.

The has now been fixed by Dependabot maintainers (JS: Handle version resolution, accessed on

12/10/2021).

• R7. PR does not comply with the project standards for handling PRs (1.1%). A small share

of open-source projects specifies what is called Contributor License Agreement (CLA) that should

be signed by the contributor before merging the corresponding PR. In such projects, developers

tend to close the Dependabot security PR after it is submitted. To gain more insights about

whether such PRs may be still useful for the projects (e.g., project maintainers may manually

adopt and apply the dependency fix suggested by the Dependabot PR), we manually analyze a

sample of such PRs. In particular, we perform our analysis on 15 PRs of a popular and very active

project namely box/box-ui-elements (box/box-ui-elements, accessed on 12/10/2021). We could

find 8 Dependabot PRs that are manually applied to the dependency file by a project maintainer

even after closing the Dependabot PRs. For example, in this PR (Pull Request #1521, accessed

on 12/10/2021), Dependabot suggests updating the vulnerable dependency atob from version

2.0.3 to 2.1.2. Although the project maintainer closed the PR, we find that the same dependency

update was actually applied as shown in this commit (Upgrades most dev dependencies (#1753),

accessed on 12/10/2021), probably to circumvent the licensing issue. One way to overcome the

issue of legal side of contributions (i.e., contributor license agreement (CLA) requirements) is to

white-list Dependabot in the CLA checker. Some CLA providers (e.g., cla-assistant (cla assitant,

accessed on 12/10/2021)) allow to white-list specific contributions to a repository.

• R8. Unknown (0.4%). In a small minority of cases (0.4%), we could not identify the reason

of not merging a Dependabot PR because its discussion and comments provided insufficient

124

information relevant to closing the PR (Pull Request #860, accessed on 12/10/2021).

Overall, the vast majority of the examined PRs (93.9%) are not merged due to four primary rea-

sons related to concurrent modifications of dependencies: R1 (superseded), R2 (already up-to-date),

R3 (no longer a dependency), R4 (no longer updatable). Approximately 4% of the PRs are not

merged by project maintainers due to factors related to the project process and quality specifications

(testing, license agreement). Only 1.4% of the PRs are not merged due to technical errors in De-

pendabot. Finally, note that the reasons mentioned above are not strictly related to security-related

Dependabot PRs.

The large majority of the closed Dependabot security PRs (93.9%) are turned over by De-

pendabot due to concurrent modifications of the affected dependencies. Approximately

4.3% of the non-merged PRs are closed by developers due to a specific project’s process.

Only 1.4% are not merged due to technical issues with Dependabot.

RQ3: What factors are associated with rapid merge times?

Motivation. While most of the merged Dependabot PRs are accepted and integrated within one day

(RQ1), there is a sizeable proportion (32.82%) of the merged PRs which took much longer time to

be merged. The time taken to handle a Dependabot security PR is crucial given that a quick fix is

the only weapon at developers disposal for minimising the risk of the application being affected by

external vulnerable dependencies. For example, Heartbleed, a security vulnerability in OpenSSL

package, is perhaps the most infamous example. It was introduced in 2012 and remained uncovered

until April 2014. After its disclosure, researchers found more than 692 different sources of attacks

attempting to exploit the vulnerability in applications that used the OpenSSL package (Durumeric

et al., 2014; Heartbleed flaw, accessed on 12/10/2021). Hence, in this RQ we aim to study the

features that are highly important and associated with the merge time of a Dependabot security PR.

Doing so is important to gain understanding of why developers take so long to merge a Dependabot

125

PR that fixes some publicly discovered vulnerabilities.

Approach. Our goal is to study the most important features associated with the merge time of a

Dependabot security PR. In particular, we aim to understand the features that are associated with

rapid merge times. To that aim, we perform a logistics regression analysis that can discriminate

whether a Dependabot security PR is merged rapidly or not. Therefore, we first classify merge

times into rapid vs. not-rapid. We determine a threshold that discriminates the PRs merge times in

our dataset into rapid vs. not-rapid merge times, by evaluating the merge time distribution of the

PRs. We find the third quantile (4 days) to be an appropriate threshold. Note that, influenced by

prior studies (Ghaleb, Da Costa, & Zou, 2019; Vasilescu et al., 2016), we perform several scenarios

for choosing our threshold, i.e., we experimented with different segmentation thresholds (lower

quantile, median, upper quantile). For each scenario, we measure the logistics model performance

using R-squared (R2) metric (Nakagawa & Schielzeth, 2013). We use the threshold obtained by

the top performing modelling scenario (i.e., the upper quantile). That said, 6,546 PRs belong to the

lower 75% of the data points (i.e., those are rapid PR merge times), whereas 1,960 PRs belong to

the upper 25% of the data point (i.e., those are not-rapid PR merge times).

To conduct our logistic regression model we first collect a set of features by reviewing the

related research on the pull-based software development modelling. Then, we conduct correlation

and redundancy analyses to remove highly correlated features because the existence of correlated

and redundant features can affect regression models (Domingos, 2012). Finally, we fit a generalized

mixed-effects model for logistic regression. These steps are detailed in the following paragraphs.

(i) Features Selection. To determine our set of features, we consult the related literature on the field

of pull-based development model, e.g., areas of patch submission and acceptance (Gousios, Pinzger,

& Deursen, 2014; Weißgerber, Neu, & Diehl, 2008), code reviewing (Rigby & Bird, 2013), and

also dependency vulnerability analysis (Bogart, Kästner, & Herbsleb, 2015; Bogart et al., 2016).

The initial list of computed features (described in Table 6.4) comprises features that span over three

main dimensions as follows:

PR features. These features attempt to capture the influence of Dependabot security PR char-

acteristics on the merge time. For example, the size of the patch in the PR could affect the merge

126

Table 6.4: The 15 features selected to model the time to merge Dependabot security PRs.

Feature Name Data Type Description

PR Features
changed lines Numeric Number of lines changed (added + deleted) in the dependency file by

Dependabot PR
auto merge Category Status of auto-merge method for Dependabot PR. Binary value: True or

False
Project Features

sloc Numeric Number of executable source lines of code in the project at Dependabot PR
creation time

team size Numeric Number of the active team members in the project at the PR creation time
num submitted PRs Numeric Number of submitted Dependabot security PRs to the project at the PR

creation time
num accepted PRs∗ Numeric Number of accepted Dependabot security PRs in the project at the PR

creation time
perc accepted PRs Numeric Percentage of merged Dependabot security PRs in the project at the PR

creation time
num dependencies Numeric Number of total proejct dependencies at the PR creation time

num recent commits Numeric Number of commits in the project during the last month prior to the PR
creation time

age (days) Numeric Project age at Dependabot PR creation time (i.e., the time interval between
project creation time and Dependabot PR creation time)

total commits∗ Numeric Number of total project commits at the PR creation time
num issues Numeric Number of total project issues at the PR creation time

num PRs Numeric Number of total project PRs at the PR creation time
Vulnerability Patch Features

severity Category Severity of the vulnerability in the affected dependency (Critical, High,
Moderate, Low) associated with the Dependabot PR

patch level Category Patch level of the dependency update (Major, Minor, Patch) associated with
the Dependabot PR

* Features removed after further step-wise feature selection (e.g., correlation).

time (Gousios et al., 2014; Weißgerber et al., 2008), i.e., the time needed to examine an external

contribution could vary depending on the size of the contribution. Dependabot security PRs have

varying size depending on the updated dependencies, such as the number of lines being changed

(chanegd lines) in the dependency file, which may affect the time it takes for developers to

review and validate the applied changes. In fact, Dependabot triggers one security PR for each

direct vulnerable dependency, by default. However, if the direct vulnerable dependency requires

transitive dependencies that are also vulnerable, Dependabot applies additional changes in the same

PR, increasing the impact of the changes, e.g., there is more risk in breaking changes when transitive

dependencies are vulnerable. Another PR feature is the auto-merge. Dependabot provides an

auto-merge feature, which automatically merges Dependabot PRs. A project can enable this

feature in case it uses a Continuous Integration (CI) infrastructure to prevent possible breaking

127

changes. By default, no PRs are auto-merged. Note that we assign the auto merge as a PR

feature, as it can be enabled/disabled during the project lifecycle. Also, enabling the auto-merge

feature does not assure that the PR will be merged instantly, given that Dependabot will only merge

the PR if the CI tests pass without issues.

Project features. Project features quantify how responsive to Dependabot security PRs the

project is. Essentially, such features capture how open the project is to accepting such PRs and its

past experience with Dependabot security PRs, by quantifying past Dependabot merged security

PRs (e.g., perc accepted PRs). Other common wisdom features that can explain the merge time

are related to the project size (e.g., sloc, team size) and maturity of the project (e.g., age). We

obtain the project features from previous studies in the field of PR acceptance, as the majority of

these features have been successfully used in prior studies (Gousios et al., 2014; Rahman & Roy,

2014; Rigby & Bird, 2013; Soares, de Lima Júnior, Murta, & Plastino, 2015; Yu, Wang, Filkov,

Devanbu, & Vasilescu, 2015) to explain the merge time of a PR.

Vulnerability patch features. The vulnerability patch features quantify the characteristic of

the suggested dependency update in the Dependabot PR. There are three main levels of dependency

update: 1) patch release indicates backward compatible bug fixes, 2) minor release indicates back-

wards compatible new features and 3) major release informs developers of backwards incompatible

changes in the package release. Therefore, dependency updates that happens at the patch and minor

levels are most likely to have minimal impact on the project and can be merged faster by developers.

The opposite will happen in updates that bump the dependency to a major release, which have

a higher risk of breaking changes and thus may take longer to be merged (Bogart, Kästner, &

Herbsleb, 2015; Bogart et al., 2016). Additionally, the severity of the dependency vulnerability is

another feature to explain the project response to a security PR (Decan, Mens, & Constantinou,

2018b). Dependabot builds upon GitHub Advisory dataset (GitHub, 2017) to provide a severity

level of a dependency vulnerability (i.e., Critical, High, Moderate, and Low).

(ii) Correlation and Redundancy Analysis. The initial list of features included 15 features, shown

in Table 6.4. To make sure that our selected features are not correlated, which could distort their

importance in the model, we conduct a pairwise correlation analysis. Specifically, we use the

Spearman rank correlation |ρ| metric (Sarle, 1990). A pair of features that have a correlation

128

of |ρ| ≥ 0.7 should have one of the features removed. We remove 2 features using that cut-off,

namely, num accepted PRs, total commits.

Furthermore, we perform RDA (redundancy analysis) on the remaining 13 non-correlated fea-

tures. A feature can be redundant if it can be modelled using the other independent features. That

said, we should eliminate independent features that can be estimated with anR2 >= 0.9 (Harrell Jr,

2015). We observe no redundant features found in the remaining 13 features.

Table 6.4 shows the final 13 selected features (the features without ∗ sign) along with their data

type and description. Since the original distributions for most of the features were on different

scales, we decided to re-scale the data (standardization scaler) before using them in the model.

(iii) Statistical Analysis. Since our dataset contains PRs from different projects (i.e., PRs merging

times vary from one project to the next), we use the generalized mixed-effects logistic model to

control the variation between projects. Mixed-effects logistic model, unlike the traditional logistic

model, can model the individual differences between the projects by assigning (and estimating) a

different intercept value for each project (Lewis, 2009; Winter, 2013). This allows to capture a

project-to-project variability in the dependent feature (PR merge time). We use the glmer function

in the lme4 R package to conduct a mixed-effects logistic model.

To evaluate the fitness of our model, we use the R-squared metric for generalized mixed-effects

models (Nakagawa & Schielzeth, 2013), which describes the proportion of variance considering

the project variable effect. Also, to measure the explanatory power of the features in the model, and

influenced by prior studies (Ghaleb et al., 2019; Ruangwan, Thongtanunam, Ihara, & Matsumoto,

2019), we use χ2 (Chi-Squared). The value of χ2 indicates whether the model is statistically

different from the same model in the absence of a given independent variable according to the

degrees of freedom in the model. The higher the χ2 value, the greater the explanatory power of the

feature in distinguishing rapid PR merge times.

Results. Our mixed-effects logistic model achieves a good performance of discriminating the

rapid PR merge times of Dependabot security PRs using our determined threshold. The model

fits the data well; it explains 67% of the variability in the data (PR merge times) when considering

the project variable (R2 = 0.67); and 22% when only considering the independent features without

129

Table 6.5: Results of the mixed-effects logistic model - sorted by χ2 in descending order.

Feature Coef. χ2 p-value Sign.+

perc accepted PRs 0.63 88.46 < 0.001 ***
auto merge (TRUE) 1.32 64.57 < 0.001 ***
num recent commits 0.71 32.20 < 0.001 ***
num dependencies -0.23 7.83 0.005 **
age 0.17 4.32 0.037 *
sloc -0.09 2.94 0.086
severity - 1.49 0.683
patch level - 1.06 0.588
num PRs -0.11 0.55 0.459
num submitted PRs 0.03 0.25 0.617
changed lines 0.02 0.17 0.681
num issues -0.05 0.12 0.733
team size 0.04 0.09 0.765

+ Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

the project variable, showing that the mixed-effect model is more effective at modelling time to

merge PRs across different projects.

Table 6.5 presents the findings of the features importance derived from the mixed-effects model.

All the independent features are ordered on the basis of their explanatory power (χ2). With each

independent feature, we report its estimated coefficient, its explanatory power (χ2), its p-value,

and its statistical significance code (using asterisks) to model the rapid PR merge times. Our results

reveal 5 important features to have a strong association with the time to merge a Dependabot security

PR. The top three features are: (1) the percentage of past accepted Dependabot security PRs

in the project, (2) the adoption of the auto-merge feature, (3) the level of project activity prior

to the PR creation time. Next, we explain the important features derived from our model.

As shown in Table 6.5, we observe several features that led to merge the Dependabot security

PRs fast. For example, the past experience of the project with Dependabot is a major feature that

have a strong association with the PR merge time. Projects that have had success in accepting and

merging security Dependabot PRs in the past are more likely to merge Dependabot PRs faster in

the future, as indicated by the positive coefficient of the perc accepted PRs in Table 6.5. This

also shows that projects that have experienced issues in the past are less inclined to merge the PRs

without its due investigation, which may explain the long PR processing time.

130

Also, enabling the auto-merge feature is strongly associated with merging the PRs rapidly.

Other highly important features are related to the project activity. For example, the level of project

activity, denoted by num recent commits, has a strong association with rapid merges, i.e., the

model indicates that the more active the project, the more likely a Dependabot security PR will

be merged within 4 days. Moreover, our model shows that the project age is another important

feature that explains the rapid PR merges, although to a lower degree. Projects that have been in

development for years are more likely to merge Dependabot PRs within 4 days, as opposed to more

recent projects.

Furthermore, we observe that the number of project dependencies (num dependencies) is a

feature that correlates with Dependabot security PRs being merged in more than 4 days. This indi-

cates that projects with a high number of dependencies tend to take longer to merge a Dependabot

security PR. Projects with many dependencies are more susceptible to dependency vulnerabilities

(Gkortzis, Feitosa, & Spinellis, 2020), which may lead to an overwhelmingly high number of

Dependabot security PRs, taking much longer for developers to address all updates.

Finally, it is also surprising to note that some observed features, such as the vulnerability

severity and the dependency patch-level, do not play a significant role in how rapid a Dependabot

security PR will be merged. This shows that developers do not necessarily prioritize Dependabot

security PRs depending on the severity of the vulnerability or the likelihood of a breaking change

(patch level).

The rapid merge time of Dependabot security PRs is directly associated with the project

activity level, the project past experience with Dependabot security PRs and the adoption

of the auto-merge feature. In contrast, a project with a high number of dependencies is

more likely to take longer to process the merges. Surprisingly, neither the severity of

the vulnerability nor the risk of breaking changes (patch level) seems to significantly

influence the PR merge time.

131

6.5 Implications

In this section, we discuss implications of our findings to practitioners (Section 6.5.1) and

Dependabot (Section 6.5.2).

6.5.1 Implications to practitioners

Open-source JavaScript projects are highly receptive to Dependabot security PRs. Our results

(RQ1 & RQ2) show that a large proportion (65.42%) of the Dependabot security PRs are accepted,

and 50.8% of the closed (not merged) security PRs are not triggered by developers, but rather by

Dependabot itself in favor of more updated dependency versions. The high level of acceptance of

Dependabot security PRs indicates that developers are willing to trust external automated tools for

important preventive tasks (security dependency updates), given that the tool provides sufficient

information for developers to decide. That said, developers should use Dependabot not just to make

their dependencies up-to-date but also to keep them secure and vulnerability-free. Dependabot can

be seen as a success case to be replicated by tools that assist developers on a variety of tasks like

security updates through PRs.

Developers are encouraged to enable the auto-merge feature for improving the merging time

of Dependabot security PRs. Our results (RQ2) show that more than half (50.8%) of the non-merged

PRs in our dataset are superseded for not being merged on time. Therefore, we recommend main-

tainers to review and respond to security updates as quickly as possible to avoid being affected by

publicly known vulnerabilities. One way to achieve that is by using the auto-merge feature. Our

model (RQ3) shows the importance of the auto-merge feature. Additionally, our results show that the

security dependency updates of Dependabot rarely break the tests in the CI pipeline (3.2%), given

the fact that Dependabot issues a PR bumping the current vulnerable version of the dependency to

the closest (minimum) non-vulnerable version (to reduce the likelihood of build breakage) (De-

pendabot security updates, accessed on 12/10/2021). In fact, projects can configure the auto-merge

feature to be only enabled for security PRs (Dependabot Schedule, accessed on 12/10/2021). That

said, developers are better off setting a CI pipeline to automatically merge Dependabot security PRs,

132

particularly in projects that are not in active development or suffer from lack of resources.

6.5.2 Implications to Dependabot maintainers

Dependabot needs to properly handle peer dependencies. Our results (RQ2) show that 6.4% of

the closed security PRs are accidentally closed by Dependabot when there is a peer dependency. If a

vulnerable dependency A has a peer dependency to B (i.e., the semantic version of the dependency

A allows only specific versions to be compatible with the dependency B), creating a PR to update

the dependency A would produce version conflicts, effectively leading Dependabot to close the PR

after opening it. In such cases, to avoid version conflicts for the peer dependency, the dependency

B in the previous example should be updated prior, to be compatible with the new version update

of the vulnerable dependency A. At current stage, Dependabot is not fully able to handle such peer

dependency updates (Issue #1138, accessed on 12/10/2021). Therefore, and given that security

updates are essential, Dependabot should find a mechanism to be able to resolve the version conflicts

among the peer dependencies in the target project, by updating them to compatible versions.

Dependabot needs to be more efficient for projects with a high number of dependencies. Our

model (RQ3) pinpoints the num dependencies as one of the significant factors for taking a long

time to merge a security Dependabot PR. In fact, we have seen several cases (e.g., (Pull Request

#250, accessed on 12/10/2021; Pull Request #49, accessed on 12/10/2021)) where developers have

manually consolidated multiple Dependabot PRs into a single PR, to only then update the depen-

dencies all at once. Dependabot can be more efficient by providing ways of grouping PRs to reduce

security notification fatigue in large projects. Also, such feature would be more essential in case

multiple dependencies need to be updated at the same time or they can break the application.

Dependabot needs to prioritize security updates by more fine-grained analysis of dependency

vulnerabilities. Currently, Dependabot provides the maintainers with a way to prioritize receiving

notifications for Dependabot security PRs (Configuring notifications, accessed on 12/10/2021).

This is done by using the vulnerability severity level of the suggested security updates. Our model

(RQ3) shows that the security PRs are treated independently of the severity level, indicating a need

133

Figure 6.6: Screen-shot of the DEPCOMBINE website showing its main interface (DepCombine —
Home, 2021).

for a better way of prioritization. A potential improvement to Dependabot is to give priority to

updates where the vulnerability part of the dependency is actively used by the project’s code. This

is admitedly difficult, particularly in dynamically typed languages such as JavaScript, but a conser-

vative approximation can be used to hint developers they need to act fast. Techniques discussed in

the literature might be used to achieve this fine-grained prioritization, e.g., SAP organization had

recently created a tool that applies static and dynamic analyses to detect and mitigate the use of

vulnerable dependencies at the code-level (Chinthanet et al., 2020; Ponta et al., 2020).

6.6 Tool Support: Dep-Combine

The implications of our work suggests ways in which Dependabot notifications can be improved

to better align with developers’ need, e.g., to reduce notification fatigue and improve developers

productivity. This is more critical for Dependabot security updates, given that such updates should

be merged in the project as short as possible. In our work, we have seen several cases (e.g., (Pull

Request #250, accessed on 12/10/2021; Pull Request #49, accessed on 12/10/2021)) where devel-

opers have manually consolidated multiple Dependabot PRs into a single PR, to only then update

the dependencies all at once. To address this problem, we build a tool called DEPCOMBINE, which

combines Dependabot security PRs that are open in a GitHub repository, by creating a new single

PR that merges all Dependabot PRs together. Figure 6.6 shows a screen-shot of DEPCOMBINE’s

interface. The tool is publicly available through this website (DepCombine — Home, 2021). Next,

we briefly describe the workflow of DEPCOMBINE using an example.

First, the user provides a Github repository link, as shown in Figure 6.6. We assume that the

134

Figure 6.7: Screen-shot of the DEPCOMBINE website showing the fetched Dependabot pull
requests.

analysed repository have already integrated Dependabot for dependency management. Once the

user press “Fetch Pull Requests” button, DEPCOMBINE will fetch all the open Dependabot security

pull requests and list them in a table, as shown in Figure 6.7.

As shown in Figure 6.7, the tool allows the user to view some information related to the PR,

i.e., the user can search for keywords, package name, package manager, patch level, compatability

scores of the update, etc, to filter the pull requests based on the search criteria. The users can then

pick any pull requests in any order for the grouping (using check boxes shown under the column

“selected”). Once satisfied, when the user presses “Group Pull Requests”, DEPCOMBINE will create

a new PR that combines all the changes of the previously selected PRs, as shown in Figure 6.8. The

Figure shows a single PR created in the analyzed repository, and the PR combines the changes of the

two previously selected PRs from Dependabot. Note that the PR author (i.e., malfadel) is a GitHub

test user that we created for the purpose of testing the tool.

Finally, note that DEPCOMBINE also considers specific cases where a PR from the tool is

already created in the repository but not yet merged, and the user would like to perform another

grouping activity using the tool. For example, assume that the user already created a grouped pull

request which has not been merged in the repository yet. If the user creates a new pull request using

DEPCOMBINE, the tool will only update the un-merged (open) PR with the latest changes, without

135

Figure 6.8: Screen-shot showing the new PR created by the tool DEPCOMBINE, which combines
the selected PRs in the analysed repository (Pull Request #5 by mahmoud-alfadel/test, 2021).

creating another new PR for the new changes, which could reduce the number of open PRs in the

repository.

6.7 Threats to validity

Internal validity: Threats to internal validity concern factors that might affect the casual relation-

ship and experimental bias. In RQ2, we manually analyze the non-merged PRs to identify the

reasons of their apparent rejection by developers. This analysis is subjected to the human bias, as

every investigator has a subjective method when classifying a PR. We mitigate this threat by asking a

second annotator to independently classify the reasons for not merging and calculate the inter-rater

agreement in our methodology (Cohens Kappa coefficient (Cohen, 1960)). The level agreement

(+0.96) indicates that our results are more likely to hold.

Another concern is related to the conclusion drawn from the built model by studying the asso-

ciation between the independent and dependent variables. In our work, we study the features that

136

influence the time it takes to merge a Dependabot security PR. To achieve that, we built our model

using 13 features that span over three dimensions. However, our set of features are not exhaustive,

and other features can be added and show influence for the PR merge times. Still, our model is able

to explain 67% of the data variation, which for our purposes is a good initial model for understanding

the factors that correlate with the merge time.

External validity: Threats to external validity concern the generalizability of our findings. Our

study analyses only JavaScript projects that subscribe to Dependabot. Therefore, our results cannot

be generalized to projects of different languages and other ecosystems. Still, given that JavaScript

was the first major language supported by Dependabot, it has had a more widespread adoption,

which enable us to assess its use on a larger dataset of projects. Furthermore, our methodology can

be applied to investigate Dependabot in projects from other programming languages.

6.8 Related Work

In this section, we present the work most related to the study in this chapter. The works

most related to ours are studies that propose or discuss dependency management tools for security

vulnerabilities. Previous works (e.g., (David, accessed on 12/10/2021; Greenkeeper, accessed on

12/10/2021)) aim to help project maintainers automatically track and update their dependencies. For

example, David-DM (David, accessed on 12/10/2021) is a tool that uses what is called ”coloured

(badges)”, trying to convince developers to update their outdated dependencies (regardless of the

package being afected by a vulnerability). The tool checks for outdated dependencies and colours

a dependency badge with red, indicating that an outdated dependency version is used. Green-

keeper (Greenkeeper, accessed on 12/10/2021), an automated pull-requests bot, is another tool that

helps developers keep their project dependencies up-to-date by creating PRs that make the required

changes for the dependency version update.

A study by Mirhosseini and Parnin (Mirhosseini & Parnin, 2017). Their work investigated

the use of pull requests and badges in the tools David-DM (badges) and Greenkeeper (PRs) to

understand whether such tools help developers upgrade outdated dependencies. They analyzed

more than 6K GitHub projects that used these tools, and found that projects using the PR tool

137

(i.e., Greenkeeper) tend to upgrade more often than projects that use the Badge tool (David-DM).

Nevertheless, the Greenkeeper tool could convince developers of the examined projects to accept

only a third of the submitted PRs with a relativity high rate of build breakages (i.e., 25%), indicating

the need for better automated dependency tools to convince developers respond to these PRs. The

analysis in the study focused on only seven npm packages in the studied projects.

Dependabot (Dependabot, accessed on 12/10/2021) is a bot (acquired by GitHub in 2019) that

creates pull requests to monitor project dependencies and help developers automatically integrate

dependency updates and vulnerability fixes. Also, it provides information about the vulnerability,

such as its severity, versions affected, information about the issue from the advisory report, which

developers can analyze to consider the risks of not updating. Moreover, the PR contains information

about the compatibility of the PR with the project, calculated based on the outcome of updates done

by similar projects (Dependabot Score, accessed on 12/10/2021).

The work that is most close to ours is the study by Mirhosseini and Parnin (Mirhosseini &

Parnin, 2017). Their work investigated the use of pull requests and badges in the tools David-DM

(badges) and Greenkeeper (PRs) to understand whether such tools help developers upgrade outdated

dependencies. They analyzed more than 6K GitHub projects that used these tools, and found

that projects using the PR tool (i.e., Greenkeeper) tend to upgrade more often than projects that

use the Badge tool (David-DM). Nevertheless, the Greenkeeper tool could convince developers of

the examined projects to accept only a third of the submitted PRs with a relativity high rate of

build breakages (i.e., 25%), indicating the need for better automated dependency tools to convince

developers respond to these PRs. The analysis in the study focused on only seven npm packages in

the studied projects.

While previous work investigated to which extent dependency management tools can convince

developers to upgrade out-of-date dependencies, they focus on the general problem of outdated

dependencies and do not pay particular attention to security vulnerabilities in dependencies. Our

study complements previous works since we specifically focus on studying security updates, i.e., we

study a large dataset of Dependabot security pull requests. Moreover, we examine the reasons for

Dependabot security PRs being not-merged. Our case study shows that developers make a good use

of dependency tools such as Dependabot, responding quickly to the majority of Dependabot security

138

pull requests (less than a day), suffering from a low rate of build breakages. Additionally, our study

adds to the literature through, for example, understanding what factors influence the merge time of

a Dependabot security PR. Lastly, we do believe our observations from evaluating Dependabot can

also help application developers choose effective security dependency tools and persuade other tool

builders and researchers to address limitations of the current tools.

6.9 Chapter Summary

This chapter conducts an empirical study to investigate the use of Dependabot security pull

requests, by examining 15,243 pull requests submitted to 2,904 JavaScript open source GitHub

projects. Our results show that a large proportion (65.42%) of Dependabot security PRs are merged,

often in one day. Furthermore, our manual analysis leads us to identify that most of the non-merged

security PRs (93.9%) are actually closed by Dependabot itself, mostly related to concurrent modifi-

cations on the affected dependencies, rather than Dependabot failures. Finally, we build a mixed-effects

regression model to understand why some of the pull requests take longer to be merged. Our results

reveal 5 important features, e.g., the project past experience with Dependabot security PRs is the

most influential feature. We note, however, that the severity of the vulnerability and the risk of

breaking changes are not significantly associated with rapid merges. Our findings indicate that De-

pendabot provides an effective platform to help developers secure their dependencies. Leveraging

our findings, we provide a series of implications that is of interest for practitioners and Dependabot

maintainers alike. Finally, to enhance the process of merging Dependabot security PRs, we build a

tool called DEPCOMBINE, which combines multiple Dependabot security PRs, creating a new PR

that merges all Dependabot PRs together in a GitHub repository.

139

Chapter 7

Conclusion and Future Work

In this chapter, we conclude the thesis by summarizing the main work and contribution in each

chapter of the thesis. At the end of the chapter, we discussed some directions for future research.

7.1 Conclusion

The work presented in this thesis has emerged from the observation that software packages

have become popular in software development and that software developers increasingly rely on

these packages. However, such packages also increase the impact of security vulnerabilities and

may directly impact hundreds of applications, leading to significant financial costs and reputation

loss. In this thesis, we focused on examining some of the most critical aspects for dealing with

security vulnerabilities that affect the software package. We described and reported on a series

of empirical studies that investigate the lifecycle of package vulnerabilities and their impact on

dependent applications. Our finding showed that package vulnerabilities often take a long time to

be discovered. Furthermore, software applications that rely on external packages remain affected

by public vulnerabilities for a long time, giving ample time for attackers exploitation. We also

performed empirical studies that investigate some popular mechanisms for mitigating the impact of

package vulnerabilities (i.e., code review process and software bots). We qualitatively uncover the

possible issues developers could face when adopting these mechanisms. Such evaluation can also

advance the future work, i.e., researchers can direct their efforts to identify the cause of the issues

140

and propose solutions to overcome the limitations.

Based on the findings in our studies, this thesis attempts to improve the practice of relying on

software packages from a security perspective, by building several prototype tools to enhance the

maintenance of vulnerable packages in software projects. More specifically, the presented research

provides the following main contributions:

7.1.1 Analysing the Lifecycle of Package Vulnerabilities

We perform the first empirical study to analyse security vulnerabilities in the Python ecosystem

(PyPi). Our study covers 12 years of PyPi reported vulnerabilities, affecting 252 Python packages.

Our results show that PyPi vulnerabilities are increasing over time, affecting the large majority of

package versions. Additionally, we observe that the timing of vulnerability patches does not closely

align with the public disclosure date, leaving open windows and chances for an attacker exploitation.

We compare the findings of our study to a previous study conducted on the npm ecosystem. Our

comparison shows a drastic departure from npm’s reported findings in some aspects, which can

be attributed to ecosystems policies. Finally, we build a tool called DEPHEALTH, which uses the

analysis approach in our study to generate analytical report of security vulnerabilities that affect

Python packages, i.e., we provide developers with metrics related to the lifecycle of vulnerability

discovery and fix, which help to show how maintained and secure the packages are.

7.1.2 Examining the Discoverability of Package Vulnerabilities Impacting Software

Applications

The thesis presents the first empirical study on 6,546 open-source JavaScript applications to

determine the prevalence of affected applications that rely on vulnerable dependencies, taking

into consideration the vulnerability disclosure timeline (i.e., the discoverability aspect). We also

examine why these applications end up depending on vulnerable versions of the package in order

to better understand how we can mitigate such issues. We show that 1) the majority of the affected

applications depend on hidden dependency vulnerabilities. Though, a non-trivial number of the

applications were still affected by a public dependency vulnerability. 2) Such applications often

141

remain affected for a substantial long time during the application lifetime, and 3) the application de-

velopers are mostly to blame, i.e., a fix for the vulnerable dependency is available but not patched in

the application. Finally, we develop DEPREVEAL, a tool that generates historical analytical reports

to increase developers awareness to the discoverability of their JavaScript application dependencies.

7.1.3 Studying The Role of Code Review in Enhancing Package Security

To help developers understand the role of code review in relation with security, we investigate

10 active and popular JavaScript projects. In particular, we aim to understand what types of security

issues are raised during code review, and what kind of mitigation strategies are employed by project

maintainers to address them. Our study examines 171 pull requests (PRs) with raised security

concerns. We find that 1) such issues represent a small fraction of all PRs in the studied projects.

However, we find that such issues are discussed at length by project maintainers. 2) Code review

approach is more effective to find certain types of security issues over other methods, i.e., advisory

method. 3) Although the majority of identified issues are frequently fixed, we find a non-negligible

share of issues ended up not being fixed or are ignored by maintainers. Our findings help the

community better understand the role of code review from a security perspective, trying to improve

the practice of code review for the software security, by understanding the types of security issues

discovered during code review in order to pay attention to them in the future, and understand the

mitigation strategies employed by project maintainers to tackle the issues. Leveraging our findings,

we offer several implications that support the role of reviewing code for security concerns.

7.1.4 Evaluating the Use of Dependabot for Patching Package Vulnerabilities

We examine the use of Dependabot security pull-requests for tackling vulnerable packages in

2,904 JavaScript projects. We show that 1) a large proportion (65.42%) of Dependabot security

PRs are merged, often in one day. 2) Most of the non-merged security PRs are actually closed by

Dependabot itself, mostly related to concurrent modifications on the affected dependencies, rather

than Dependabot failures. 3) We also found that several factors could influence the PR merge time,

e.g, we find that the project past experience with Dependabot security PRs is the most influential

feature. Our findings illustrate that Dependabot provides an effective platform to help developers

142

secure their dependencies. The implications of our work suggests ways in which Dependabot

notifications can be improved to reduce the problem of notification fatigue and improve developers

productivity. We build a tool called DEPCOMBINE, which combines multiple Dependabot security

PRs in a GitHub repository, and create a new single PR that merges all the PRs together.

7.2 Future Work

Although this thesis work has made many contributions towards understanding security vulner-

abilities that affect open-source software packages, many different avenues for future work remain

unexplored. Next, we summarize some of the main directions for future work.

7.2.1 Examining Fine-Grained Solutions to Address Package Vulnerability in Soft-

ware Applications

The work of this thesis focused on analysing security vulnerabilities that affect software pack-

ages, and how they may impact software applications. Most of the explored solutions for such anal-

ysis consider coarse-grained methods. Whenever a vulnerable dependency is found, the common

mitigation action consists of updating the dependency to another non-vulnerable version. While

this solution seems reasonable and easy to adopt, it can be difficult particularly when the library

to be updated is not compatible with or has some production issues in the application. There are

other solutions that have tackled the problem by providing fine-grained code analyses to reduce the

number of false alerts (i.e., dependencies flagged as vulnerable but that do not expose the dependent

application to any threat) (Pashchenko et al., 2018; Plate et al., 2015; Ponta et al., 2020; Zapata et

al., 2018). Such solutions provide a combination of both static (i.e., call graph-based) and dynamic

analyses (i.e., test-based) to maximize the reachability of known vulnerable package constructs

(e.g., method, class) starting from the client application code. However, one limitation of this

solution is that it requires a significant amount of data from the application test suite (i.e., execution

traces) to make an effective vulnerability assessment. Unfortunately, many software projects are

not adequately tested. Therefore, further research should explore more efficient and automated

solutions to tackle this problem. Software fuzzers (Manès et al., 2019) are known as efficient and

143

effective software testing techniques that are used to test programs against unexpected behaviors to

expose corner cases that have not been properly dealt with, which might overcome the problem of

inadequate test suite in the application. The research should investigate the possibility of applying

these techniques (e.g., fuzzers) for analysing known package vulnerabilities that impact software

applications.

7.2.2 Exploring Different Data Sources for Package Vulnerabilities

Throughout our work in this thesis, we utilized several databases for package vulnerabilities.

For instance, in Chapter 3, to collect security vulnerabilities for the PyPi packages, we resort

to the dataset provided by Snyk.io. Also, in Chapter 4, we resort to the npm advisories reg-

istry to obtain the required information about all npm vulnerable packages. In the Dependabot

study, we observe that the bot utilizes GitHub’s advisory database to track and pull patched ver-

sion of vulnerable packages. Besides, many other tools monitor vulnerable dependencies. Tools

supporting npm and JavaScript include commercial services (Gemnasium, SRC:CLR), as well as

free/open-source solutions (RetireJS, Node Security Project, OSSIndex). While all these tools

search existing databases for vulnerability information, some of them also recover information from

their own private databases and from mailing lists, bug-tracking systems and blogs. This diversity of

tools and data sources when reporting security issues makes it impossible to get a complete historic

view on the ecosystem’s vulnerabilities. Therefore, one direction for future work is to investigate

the differences among such tools and data-sources, and also examine the possibilities to maintain

and contribute to a single and common vulnerability database reporting all vulnerabilities related to

the package dependency network.

7.2.3 Replication in an Industrial Setting

The results included in this thesis showed that reusing packages affects the quality of software

from a security perspective. However, these results are based on analyzing only open source

projects. While we have done our best to select appropriate representative large platforms such

as PyPi and npm and data analysis techniques in order to reduce the threats to internal validity, we

believe that practitioners need to understand how the problem impacts their project qualities and

144

what challenges arise when relying on such software packages. A future research that investigates

and studies the impact of vulnerable packages in an industrial setting would allow us to further

generalize our results.

7.2.4 Evaluating the Proposed Tools

The implications of our work in this thesis lead us to build several prototype tools that aim to

increase the awareness of developers to the impact of vulnerable packages. However, the actual

usefulness of these tools and the degree to which developers would adopt them remains unknown.

Future work should explore how developer perceive such tools, e.g., by conducting surveys with

software developers to understand their point of view on the tools, and how they can be improved

further to encourage developers adopt them.

7.2.5 Understanding Developers Perception on the Studied Aspects

Another direction for the future is to gain more insights on the aspects studied in this thesis

from developers point of view. For instance, future work should focus on improving our work by

conducting surveys with developers to understand their perception on the role of code review in

identifying and fixing security issues. Another example is to conduct survey with developers to

obtain more insights on the use of Dependabot and what kind of challenges developers face while

adopting the bot.

7.2.6 Other Languages of Software Ecosystems

While this thesis work has focused on the impact of software packages from popular package

ecosystems, e.g., PyPi and npm, however, there are other important package ecosystems. We

argue that it is important to study other software ecosystems to contrast with our studies and

draw more generalizable empirical evidence about vulnerabilities in software ecosystems. Future

work should focus on broadening our studies to other ecosystems and work on the development

of package security tools that help practitioners at selecting and using secure software packages in

other ecosystems.

145

References

Aalen, O., Borgan, O., & Gjessing, H. (2008). Survival and event history analysis: a process point

of view. Springer Science & Business Media.

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., & Shihab, E. (2017). Why do developers

use trivial packages? an empirical case study on npm. In Proceedings of the 2017 11th

joint meeting on foundations of software engineering (pp. 385–395). ACM. Retrieved

from http://doi.acm.org/10.1145/3106237.3106267 doi: 10.1145/3106237

.3106267

About codeql code scanning in your ci system. (accessed on 12/10/2021). https://

docs.github.com/en/code-security/code-scanning/using-codeql

-code-scanning-with-your-existing-ci-system/about-codeql-code

-scanning-in-your-ci-system. (accessed on 10/04/2021)

Alfadel, M. (2021). Depreveal. https://github.com/mahmoud-alfadel/DepReveal.

((accessed on 07/17/2021))

Alfadel, M., Costa, D. E., & Shihab, E. (2021). Empirical analysis of security vulnerabilities

in python packages. In Proceedings of the 2021 ieee international conference on software

analysis, evolution and reengineering (saner) (pp. 446–457).

Alfadel, M., Costa, D. E., Shihab, E., & Mkhallalati, M. (2021). On the use of dependabot

security pull requests. Proceedings of the 2021 International Conference on Mining Software

Repositories (MSR 21).

Allodi, L., & Massacci, F. (2014). Comparing vulnerability severity and exploits using case-control

studies. ACM Transactions on Information and System Security (TISSEC), 17(1), 1–20.

146

http://doi.acm.org/10.1145/3106237.3106267
https://docs.github.com/en/code-security/code-scanning/using-codeql-code-scanning-with-your-existing-ci-system/about-codeql-code-scanning-in-your-ci-system
https://docs.github.com/en/code-security/code-scanning/using-codeql-code-scanning-with-your-existing-ci-system/about-codeql-code-scanning-in-your-ci-system
https://docs.github.com/en/code-security/code-scanning/using-codeql-code-scanning-with-your-existing-ci-system/about-codeql-code-scanning-in-your-ci-system
https://docs.github.com/en/code-security/code-scanning/using-codeql-code-scanning-with-your-existing-ci-system/about-codeql-code-scanning-in-your-ci-system
https://github.com/mahmoud-alfadel/DepReveal

Aloraini, B., Nagappan, M., German, D. M., Hayashi, S., & Higo, Y. (2019). An empirical study

of security warnings from static application security testing tools. Journal of Systems and

Software, 158, 110427.

Android google play protect. (accessed on 12/10/2021). https://www.android.com/intl/

en ca/play-protect/.

Appsec on dependency management. (2020 (accessed 2020)). https://blog.npmjs.org/

post/187496869845/appsec-pov-on-dependency-management.

Bacchelli, A., & Bird, C. (2013). Expectations, outcomes, and challenges of modern code review.

In 2013 35th international conference on software engineering (icse) (pp. 712–721).

Basili, V. R., Briand, L. C., & Melo, W. L. (1996a). How reuse influences productivity in

object-oriented systems. Communications of the ACM, 39(10), 104–116.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996b). How reuse influences productivity in

object-oriented systems. Communications of the ACM, 39(10), 104–116.

Beller, M., Bacchelli, A., Zaidman, A., & Juergens, E. (2014). Modern code reviews in open-source

projects: Which problems do they fix? In Proceedings of the 11th working conference on

mining software repositories (pp. 202–211).

Bernardo, J. H., da Costa, D. A., & Kulesza, U. (2018). Studying the impact of adopting continuous

integration on the delivery time of pull requests. In 2018 ieee/acm 15th international

conference on mining software repositories (msr) (pp. 131–141).

Bewick, V., Cheek, L., & Ball, J. (2004). Statistics review 12: survival analysis. Critical care, 8(5).

Bogart, C., Kästner, C., & Herbsleb, J. (2015). When it breaks, it breaks: How ecosystem developers

reason about the stability of dependencies. In 30th ieee/acm international conference on

automated software engineering workshop (asew), 2015 (pp. 86–89).

Bogart, C., Kästner, C., Herbsleb, J., & Thung, F. (2016). How to break an api: cost negotiation and

community values in three software ecosystems. In Proceedings of the 2016 24th acm sigsoft

international symposium on foundations of software engineering (pp. 109–120).

Bogart, C., Kstner, C., & Herbsleb, J. (2015, Nov). When it breaks, it breaks: How ecosystem

developers reason about the stability of dependencies. In 2015 30th ieee/acm international

conference on automated software engineering workshop (asew) (pp. 86–89). doi: 10.1109/

147

https://www.android.com/intl/en_ca/play-protect/
https://www.android.com/intl/en_ca/play-protect/
https://blog.npmjs.org/post/187496869845/appsec-pov-on-dependency-management
https://blog.npmjs.org/post/187496869845/appsec-pov-on-dependency-management

ASEW.2015.21

Bohner, S. A. (2002). Extending software change impact analysis into cots components. In

27th annual nasa goddard/ieee software engineering workshop, 2002. proceedings. (pp.

175–182).

Bosu, A. (2014). Characteristics of the vulnerable code changes identified through peer code review.

In Companion proceedings of the 36th international conference on software engineering (pp.

736–738).

box/box-ui-elements. (accessed on 12/10/2021). https://github.com/box/box-ui

-elements.

Broken access control — owasp. (accessed on 12/10/2021). https://owasp.org/www

-project-top-ten/2017/A5 2017-Broken Access Control.

Cadariu, M., Bouwers, E., Visser, J., & van Deursen, A. (2015). Tracking known security

vulnerabilities in proprietary software systems. In 2015 ieee 22nd international conference

on software analysis, evolution, and reengineering (saner) (pp. 516–519).

Chacon, S., & Straub, B. (2014). Pro git. Springer Nature.

Chinthanet, B., Kula, R. G., McIntosh, S., Ishio, T., Ihara, A., & Matsumoto, K. (2019). Lags

in the release, adoption, and propagation of npm vulnerability fixes. Empirical Software

Engineering.

Chinthanet, B., Kula, R. G., McIntosh, S., Ishio, T., Ihara, A., & Matsumoto, K. (2021). Lags

in the release, adoption, and propagation of npm vulnerability fixes. Empirical Software

Engineering, 26(3), 1–28.

Chinthanet, B., Ponta, S. E., Plate, H., Sabetta, A., Kula, R. G., Ishio, T., & Matsumoto, K. (2020).

Code-based vulnerability detection in node. js applications: How far are we? In 2020 35th

ieee/acm international conference on automated software engineering (ase) (pp. 1199–1203).

cla assitant. (accessed on 12/10/2021). Cla assistant. https://github.com/cla

-assistant/cla-assistant.

Cogo, F. R., Oliva, G. A., & Hassan, A. E. (2019). An empirical study of dependency downgrades

in the npm ecosystem. IEEE Transactions on Software Engineering.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psychological

148

https://github.com/box/box-ui-elements
https://github.com/box/box-ui-elements
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control
https://github.com/cla-assistant/cla-assistant
https://github.com/cla-assistant/cla-assistant

measurement, 20(1), 37–46.

Configuring notifications. (accessed on 12/10/2021). https://docs.github.com/

en/free-pro-team@latest/github/managing-subscriptions-and

-notifications-on-github/configuring-notifications#filtering

-email-notifications.

Cvss for cves — snyk. (accessed on 12/10/2021). https://snyk.io/blog/scoring

-security-vulnerabilities-101-introducing-cvss-for-cve/.

Cwe-416. (accessed on 12/10/2021). https://cwe.mitre.org/data/definitions/

416.html.

Cwe - common weakness enumeration. (accessed on 12/10/2021). https://cwe.mitre.org/

index.html.

Cwe list. (accessed on 12/10/2021). https://cwe.mitre.org/about/index.html.

Cwe list version. (accessed on 12/10/2021). https://cwe.mitre.org/data/index

.html.

David. (accessed on 12/10/2021). http://freestyle-developments.co.uk/blog/

?p=457.

A day in the life of npm security. (accessed on 12/10/2021). https://blog.npmjs.org/

post/190665497245/a-day-in-the-life-of-npm-security.html.

Decan, A., & Mens, T. (2019). What do package dependencies tell us about semantic versioning?

IEEE Transactions on Software Engineering.

Decan, A., Mens, T., & Claes, M. (2016). On the topology of package dependency networks: A

comparison of three programming language ecosystems. In Proccedings of the 10th european

conference on software architecture workshops (p. 21).

Decan, A., Mens, T., & Claes, M. (2017). An empirical comparison of dependency issues in

oss packaging ecosystems. In 2017 ieee 24th international conference on software analysis,

evolution and reengineering (saner) (pp. 2–12).

Decan, A., Mens, T., & Constantinou, E. (2018a). On the evolution of technical lag in the npm

package dependency network. In 2018 ieee international conference on software maintenance

and evolution (icsme) (pp. 404–414).

149

https://docs.github.com/en/free-pro-team@latest/github/managing-subscriptions-and-notifications-on-github/configuring-notifications#filtering-email-notifications
https://docs.github.com/en/free-pro-team@latest/github/managing-subscriptions-and-notifications-on-github/configuring-notifications#filtering-email-notifications
https://docs.github.com/en/free-pro-team@latest/github/managing-subscriptions-and-notifications-on-github/configuring-notifications#filtering-email-notifications
https://docs.github.com/en/free-pro-team@latest/github/managing-subscriptions-and-notifications-on-github/configuring-notifications#filtering-email-notifications
https://snyk.io/blog/scoring-security-vulnerabilities-101-introducing-cvss-for-cve/
https://snyk.io/blog/scoring-security-vulnerabilities-101-introducing-cvss-for-cve/
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
http://freestyle-developments.co.uk/blog/?p=457
http://freestyle-developments.co.uk/blog/?p=457
https://blog.npmjs.org/post/190665497245/a-day-in-the-life-of-npm-security.html
https://blog.npmjs.org/post/190665497245/a-day-in-the-life-of-npm-security.html

Decan, A., Mens, T., & Constantinou, E. (2018b). On the impact of security vulnerabilities

in the npm package dependency network. In International conference on mining software

repositories.

Decan, A., Mens, T., & Grosjean, P. (2018). An empirical comparison of dependency network

evolution in seven software packaging ecosystems. Empirical Software Engineering, 1–36.

Decan, A., Mens, T., & Grosjean, P. (2019). An empirical comparison of dependency network

evolution in seven software packaging ecosystems. Empirical Software Engineering, 24(1),

381–416.

Deepscan. ((accessed 2020)). https://deepscan.io/.

Depcombine — home. (2021). http://104.237.154.205:8449/. (accessed on

10/04/2021)

Dependabot. (accessed on 12/10/2021). https://dependabot.com/.

Dependabot, A. (accessed on 12/10/2021). Dependabot. https://dependabot.com/.

dependabot-core. (accessed on 12/10/2021). https://github.com/dependabot/

dependabot-core.

Dependabot introduction. (accessed on 12/10/2021). https://dependabot.com/blog/

introducing-dependabot/.

Dependabot page. (accessed on 12/10/2021). https://dependabot.com/.

Dependabot schedule. (accessed on 12/10/2021). https://dependabot.com/docs/

config-file/#update schedule-required.

Dependabot score. (accessed on 12/10/2021). https://dependabot.com/

compatibility-score/?dependency-name=bootstrap&package

-manager=npm and yarn&version-scheme=semver.

Dependabot security updates. (accessed on 12/10/2021). https://docs.github

.com/en/free-pro-team@latest/github/managing-security

-vulnerabilities/about-dependabot-security-updates.

Dependabot tool. (accessed on 12/10/2021). https://github.com/dependabot.

Dep health — home. (2021). http://104.237.154.205:8443/?fbclid=

IwAR3qdZPNXISqK7VkPNXYQaEhtdxKR8nBEbmqGJI7Z-nHw9f6 oSNAjLc dI.

150

https://deepscan.io/
http://104.237.154.205:8449/
https://dependabot.com/
https://dependabot.com/
https://github.com/dependabot/dependabot-core
https://github.com/dependabot/dependabot-core
https://dependabot.com/blog/introducing-dependabot/
https://dependabot.com/blog/introducing-dependabot/
https://dependabot.com/
https://dependabot.com/docs/config-file/#update_schedule-required
https://dependabot.com/docs/config-file/#update_schedule-required
https://dependabot.com/compatibility-score/?dependency-name=bootstrap&package-manager=npm_and_yarn&version-scheme=semver
https://dependabot.com/compatibility-score/?dependency-name=bootstrap&package-manager=npm_and_yarn&version-scheme=semver
https://dependabot.com/compatibility-score/?dependency-name=bootstrap&package-manager=npm_and_yarn&version-scheme=semver
https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities/about-dependabot-security-updates
https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities/about-dependabot-security-updates
https://docs.github.com/en/free-pro-team@latest/github/managing-security-vulnerabilities/about-dependabot-security-updates
https://github.com/dependabot
http://104.237.154.205:8443/?fbclid=IwAR3qdZPNXISqK7VkPNXYQaEhtdxKR8nBEbmqGJI7Z-nHw9f6_oSNAjLc_dI
http://104.237.154.205:8443/?fbclid=IwAR3qdZPNXISqK7VkPNXYQaEhtdxKR8nBEbmqGJI7Z-nHw9f6_oSNAjLc_dI

(accessed on 12/10/2021)

Depreveal. (2021, July). https://bit.ly/3emg5w3. ((accessed on 07/17/2021))

Dey, T., & Mockus, A. (2020). Effect of technical and social factors on pull request quality for the

npm ecosystem. In Proceedings of the 14th acm/ieee international symposium on empirical

software engineering and measurement (esem) (pp. 1–11).

di Biase, M., Bruntink, M., & Bacchelli, A. (2016). A security perspective on code review: The case

of chromium. In 2016 ieee 16th international working conference on source code analysis

and manipulation (scam) (pp. 21–30).

Disclosure of security vulnerabilities. (accessed on 12/10/2021). https://docs.github

.com/en/code-security/security-advisories/about-coordinated

-disclosure-of-security-vulnerabilities#about-disclosing

-vulnerabilities-in-the-industry.

Domingos, P. (2012). A few useful things to know about machine learning. Communications of the

ACM, 55(10), 78–87.

Dowd, M., McDonald, J., & Schuh, J. (2006). The art of software security assessment: Identifying

and preventing software vulnerabilities. Pearson Education.

Durumeric, Z., Li, F., Kasten, J., Amann, J., Beekman, J., Payer, M., . . . others (2014). The matter

of heartbleed. In Proceedings of the 2014 conference on internet measurement conference

(pp. 475–488).

Ebert, F., Castor, F., Novielli, N., & Serebrenik, A. (2019). Confusion in code reviews: Reasons,

impacts, and coping strategies. In 2019 ieee 26th international conference on software

analysis, evolution and reengineering (saner) (pp. 49–60).

electron - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/

electron.

Equifax. (2017). Equifax releases details on cybersecurity incident, announces personnel

changes — equifax,. Retrieved from https://investor.equifax.com/news-and

-events/news/2017/09-15-2017-224018832 (accessed on 01/12/2021)

Fard, A. M., & Mesbah, A. (2017). Javascript: The (un) covered parts. In Ieee international

conference on software testing, verification and validation (icst), 2017 (pp. 230–240).

151

https://bit.ly/3emg5w3
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://docs.github.com/en/code-security/security-advisories/about-coordinated-disclosure-of-security-vulnerabilities#about-disclosing-vulnerabilities-in-the-industry
https://www.npmjs.com/package/electron
https://www.npmjs.com/package/electron
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832

Fincher, S., & Tenenberg, J. (2005). Making sense of card sorting data. Expert Systems, 22(3),

89–93.

Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation

coefficient as measures of reliability. Educational and psychological measurement, 33(3),

613–619.

Frakes, W. B., & Kang, K. (2005). Software reuse research: Status and future. IEEE transactions

on Software Engineering, 31(7), 529–536.

Ghaleb, T. A., Da Costa, D. A., & Zou, Y. (2019). An empirical study of the long duration of

continuous integration builds. Empirical Software Engineering, 24(4), 2102–2139.

Git - contributing to a project. (accessed on 12/10/2021). https://git-scm.com/book/

en/v2/GitHub-Contributing-to-a-Project.

GitHub. (2017). Github advisory database. https://github.com/advisories?page=1.

((accessed on 01/12/2021))

GitHub. (accessed on 12/10/2021). Advisory database. https://github.com/

advisories.

github/codeql. (accessed on 12/10/2021). https://github.com/github/codeql.

(accessed on 10/04/2021)

Gkortzis, A., Feitosa, D., & Spinellis, D. (2020). Software reuse cuts both ways: An empirical

analysis of its relationship with security vulnerabilities. Journal of Systems and Software,

1–14.

Godefroid, P., Levin, M. Y., & Molnar, D. (2012). Sage: whitebox fuzzing for security testing.

Communications of the ACM, 55(3), 40–44.

Gong, L. (2018). Dynamic analysis for javascript code (Unpublished doctoral dissertation). UC

Berkeley.

Gousios, G. (2013). The ghtorrent dataset and tool suite. In Proceedings of the 10th working

conference on mining software repositories (pp. 233–236). Piscataway, NJ, USA: IEEE Press.

Retrieved from http://dl.acm.org/citation.cfm?id=2487085.2487132

Gousios, G., Pinzger, M., & Deursen, A. v. (2014). An exploratory study of the pull-based

software development model. In Proceedings of the 36th international conference on software

152

https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project
https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project
https://github.com/advisories?page=1
https://github.com/advisories
https://github.com/advisories
https://github.com/github/codeql
http://dl.acm.org/citation.cfm?id=2487085.2487132

engineering (pp. 345–355).

Greenkeeper. (accessed on 12/10/2021). https://greenkeeper.io/.

Harrell Jr, F. E. (2015). Regression modeling strategies: with applications to linear models, logistic

and ordinal regression, and survival analysis. Springer.

Heartbleed bug. (accessed on 12/10/2021). https://heartbleed.com/#:˜:

text=The%20Heartbleed%20Bug%20is%20a,used%20to%20secure%

20the%20Internet.

Heartbleed flaw. (accessed on 12/10/2021). https://www.computerworld.com/

article/2605220/heartbleed-flaw-was-unknown-before-disclosure

.html.

Hejderup, J. (2015). In dependencies we trust: How vulnerable are dependencies in software

modules?

Hora, A., & Valente, M. T. (2015). apiwave: Keeping track of api popularity and migration. In 2015

ieee international conference on software maintenance and evolution (icsme) (pp. 321–323).

Howard, M. A. (2006). A process for performing security code reviews. IEEE Security & privacy,

4(4), 74–79.

How snyk finds out about new vulnerabilities. (accessed on 12/10/2021). https://

support.snyk.io/hc/en-us/articles/360003923877-How-Snyk-finds

-out-about-new-vulnerabilities.

Imtiaz, N., Thorne, S., & Williams, L. (2021). A comparative study of vulnerability reporting by

software composition analysis tools. arXiv preprint arXiv:2108.12078.

infor-design - npm. (accessed on 12/10/2021). https://github.com/infor-design/

enterprise-ng.

Inoue, K., Sasaki, Y., Xia, P., & Manabe, Y. (2012). Where does this code come from and where

does it go?-integrated code history tracker for open source systems. In Proceedings of the

34th international conference on software engineering (pp. 331–341).

Internet systems consortium. (accessed on 12/10/2021). https://www.isc.org/#.

Issue #1138. (accessed on 12/10/2021). https://github.com/dependabot/

dependabot-core/issues/1138.

153

https://greenkeeper.io/
https://heartbleed.com/#:~:text=The%20Heartbleed%20Bug%20is%20a,used%20to%20secure%20the%20Internet.
https://heartbleed.com/#:~:text=The%20Heartbleed%20Bug%20is%20a,used%20to%20secure%20the%20Internet.
https://heartbleed.com/#:~:text=The%20Heartbleed%20Bug%20is%20a,used%20to%20secure%20the%20Internet.
https://www.computerworld.com/article/2605220/heartbleed-flaw-was-unknown-before-disclosure.html
https://www.computerworld.com/article/2605220/heartbleed-flaw-was-unknown-before-disclosure.html
https://www.computerworld.com/article/2605220/heartbleed-flaw-was-unknown-before-disclosure.html
https://support.snyk.io/hc/en-us/articles/360003923877-How-Snyk-finds-out-about-new-vulnerabilities
https://support.snyk.io/hc/en-us/articles/360003923877-How-Snyk-finds-out-about-new-vulnerabilities
https://support.snyk.io/hc/en-us/articles/360003923877-How-Snyk-finds-out-about-new-vulnerabilities
https://github.com/infor-design/enterprise-ng
https://github.com/infor-design/enterprise-ng
https://www.isc.org/#
https://github.com/dependabot/dependabot-core/issues/1138
https://github.com/dependabot/dependabot-core/issues/1138

Issue 27863. (accessed on 12/10/2021). https://bugs.python.org/issue27863.

Job #231.2 - travis ci. (accessed on 12/10/2021). https://travis-ci.org/github/

joshghent/blog/jobs/577015435.

Johari, R., & Sharma, P. (2012). A survey on web application vulnerabilities (sqlia, xss) exploitation

and security engine for sql injection. In 2012 international conference on communication

systems and network technologies (pp. 453–458).

Js: Handle version resolution. (accessed on 12/10/2021). https://

github.com/dependabot/dependabot-core/commit/

b917ac195748f2d2812071c3cffaf7b77b6b5489.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D. (2014).

The promises and perils of mining github. In Proceedings of the 11th working conference on

mining software repositories (pp. 92–101).

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal

of the American statistical association, 53(282), 457–481.

Kononenko, O., Rose, T., Baysal, O., Godfrey, M., Theisen, D., & De Water, B. (2018). Studying

pull request merges: a case study of shopify’s active merchant. In Proceedings of the 40th

international conference on software engineering: Software engineering in practice (pp.

124–133).

Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018). Do developers update their

library dependencies? Empirical Software Engineering, 23(1), 384–417.

Kula, R. G., Ouni, A., German, D. M., & Inoue, K. (2017). On the impact of micro-packages: An

empirical study of the npm javascript ecosystem. arXiv preprint arXiv:1709.04638.

Larios-Vargas, E., Aniche, M., Treude, C., Bruntink, M., & Gousios, G. (2020). Selecting

third-party libraries: The practitioners’ perspective. arXiv preprint arXiv:2005.12574.

Lewis, A. J. (2009). Mixed effects models and extensions in ecology with r. Springer.

Li, F., & Paxson, V. (2017). A large-scale empirical study of security patches. In Proceedings of

the 2017 acm sigsac conference on computer and communications security (pp. 2201–2215).

Libraries.io - the open source discovery service. (2021). Retrieved from http://libraries

.io/

154

https://bugs.python.org/issue27863
https://travis-ci.org/github/joshghent/blog/jobs/577015435
https://travis-ci.org/github/joshghent/blog/jobs/577015435
https://github.com/dependabot/dependabot-core/commit/b917ac195748f2d2812071c3cffaf7b77b6b5489
https://github.com/dependabot/dependabot-core/commit/b917ac195748f2d2812071c3cffaf7b77b6b5489
https://github.com/dependabot/dependabot-core/commit/b917ac195748f2d2812071c3cffaf7b77b6b5489
http://libraries.io/
http://libraries.io/

Libraries.io - the open source discovery service. (accessed on 12/10/2021). https://

libraries.io/.

Lim, W. C. (1994a). Effects of reuse on quality, productivity, and economics. IEEE software(5),

23–30.

Lim, W. C. (1994b). Effects of reuse on quality, productivity, and economics. IEEE software, 11(5),

23–30.

Lu, L., Li, Z., Wu, Z., Lee, W., & Jiang, G. (2012). Chex: statically vetting android apps for

component hijacking vulnerabilities. In Proceedings of the 2012 acm conference on computer

and communications security (pp. 229–240).

Maiden, N. A., & Ncube, C. (1998). Acquiring cots software selection requirements. IEEE software,

15(2), 46–56.

M. Alfadel, E. S., D. Costa. (2019, August). On the Unexploitability of Security Vulnerabilities:

A Case Study on Node.js. Retrieved from https://doi.org/10.5281/zenodo

.3376290 doi: 10.5281/zenodo.3376290

Manès, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz, E. J., & Woo, M. (2019).

The art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software

Engineering.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is

stochastically larger than the other. The annals of mathematical statistics, 50–60.

Mäntylä, M. V., & Lassenius, C. (2008). What types of defects are really discovered in code

reviews? IEEE Transactions on Software Engineering, 35(3), 430–448.

marked - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/marked.

marked@v0.3.4. (2020 accessed on 12/10/2021). https://github.com/atom/atom/

commit/41b799aebc7f40201219d8ec435d1520cf057285.

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014). The impact of code review coverage

and code review participation on software quality: A case study of the qt, vtk, and itk

projects. In Proceedings of the 11th working conference on mining software repositories

(pp. 192–201).

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2016). An empirical study of the impact of

155

https://libraries.io/
https://libraries.io/
https://doi.org/10.5281/zenodo.3376290
https://doi.org/10.5281/zenodo.3376290
https://www.npmjs.com/package/marked
https://github.com/atom/atom/commit/41b799aebc7f40201219d8ec435d1520cf057285
https://github.com/atom/atom/commit/41b799aebc7f40201219d8ec435d1520cf057285

modern code review practices on software quality. Empirical Software Engineering, 21(5),

2146–2189.

Merge pull request from parse-server@da905a3. (accessed on 12/10/2021).

https://github.com/parse-community/parse-server/commit/

da905a357d062ab4fea727a21eac231acc2ed92a.

Mezzetti, G., Møller, A., & Torp, M. T. (2018). Type regression testing to detect breaking changes

in node. js libraries. In 32nd european conference on object-oriented programming (ecoop

2018).

Mirhosseini, S., & Parnin, C. (2017). Can automated pull requests encourage software developers

to upgrade out-of-date dependencies? In 2017 32nd ieee/acm international conference on

automated software engineering (ase) (pp. 84–94).

moment - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/moment.

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining r2 from

generalized linear mixed-effects models. Methods in ecology and evolution, 4(2), 133–142.

Nesbitt, A., & Nickolls, B. (2018). Libraries.io Open Source Repository and Dependency

Metadata. v1.2.0. https://doi.org/10.5281/zenodo.808273. ([Online;

accessed 10/10/2020])

Neuhaus, S., & Zimmermann, T. (2009). The beauty and the beast: Vulnerabilities in red hat’s

packages. In Usenix annual technical conference.

node-red - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/node

-red.

npm. (2021). npm advisories. https://www.npmjs.com/advisories. ((accessed on

07/17/2021))

npm. (accessed on 12/10/2021). npm-registry. https://docs.npmjs.com/using-npm/

registry.html.

npm advisories. ((accessed 2020)). About audit reports — npm docs. https://bit.ly/

3uqn0uv.

npm advisories. (accessed on 12/10/2021). https://www.npmjs.com/advisories.

npm advisory reports. (accessed on 12/10/2021). https://www.npmjs.com/advisories.

156

https://github.com/parse-community/parse-server/commit/da905a357d062ab4fea727a21eac231acc2ed92a
https://github.com/parse-community/parse-server/commit/da905a357d062ab4fea727a21eac231acc2ed92a
https://www.npmjs.com/package/moment
https://doi.org/10.5281/zenodo.808273
https://www.npmjs.com/package/node-red
https://www.npmjs.com/package/node-red
https://www.npmjs.com/advisories
https://docs.npmjs.com/using-npm/registry.html
https://docs.npmjs.com/using-npm/registry.html
https://bit.ly/3uqn0uv
https://bit.ly/3uqn0uv
https://www.npmjs.com/advisories
https://www.npmjs.com/advisories

npm audit. (accessed on 12/10/2021). https://docs.npmjs.com/auditing-package

-dependencies-for-security-vulnerabilities.

npm - libraries.io. (2021). https://libraries.io/NPM. ((accessed on 07/17/2021))

npm - libraries.io. (accessed on 12/10/2021). https://libraries.io/npm.

npm publications. (accessed on 12/10/2021). https://www.npmjs.com/advisories/33.

OWASP. (2019). Owasp. https://www.owasp.org/index.php/Main Page. ((accessed

on 10/10/2020))

OWASP. (2020 (accessed 10/10/2020)). Open web application security project [Computer software

manual]. Retrieved from https://www.owasp.org/index.php/Main Page

parse-server - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/parse

-server.

Pashchenko, I., Plate, H., Ponta, S. E., Sabetta, A., & Massacci, F. (2018). Vulnerable open source

dependencies: Counting those that matter. In Proceedings of the 12th acm/ieee international

symposium on empirical software engineering and measurement (pp. 1–10).

Pashchenko, I., Plate, H., Ponta, S. E., Sabetta, A., & Massacci, F. (2020). Vuln4real: A

methodology for counting actually vulnerable dependencies. IEEE Transactions on Software

Engineering.

Pashchenko, I., Vu, D.-L., & Massacci, F. (2020). A qualitative study of dependency management

and its security implications. In Proceedings of the 2020 acm sigsac conference on computer

and communications security (pp. 1513–1531).

Paul, R., Turzo, A. K., & Bosu, A. (2021). Why security defects go unnoticed during code reviews?

a case-control study of the chromium os project. arXiv preprint arXiv:2102.06909.

Pham, N. H., Nguyen, T. T., Nguyen, H. A., & Nguyen, T. N. (2010). Detection of

recurring software vulnerabilities. In Proceedings of the ieee/acm international conference

on automated software engineering (pp. 447–456).

Plate, H., Ponta, S. E., & Sabetta, A. (2015). Impact assessment for vulnerabilities in open-source

software libraries. In 2015 ieee international conference on software maintenance and

evolution (icsme) (pp. 411–420).

Ponta, S. E., Plate, H., & Sabetta, A. (2018). Beyond metadata: Code-centric and usage-based

157

https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities
https://libraries.io/NPM
https://libraries.io/npm
https://www.npmjs.com/advisories/33
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.npmjs.com/package/parse-server
https://www.npmjs.com/package/parse-server

analysis of known vulnerabilities in open-source software. In 2018 ieee international

conference on software maintenance and evolution (icsme) (pp. 449–460).

Ponta, S. E., Plate, H., & Sabetta, A. (2020). Detection, assessment and mitigation of vulnerabilities

in open source dependencies. Empirical Software Engineering, 25(5), 3175–3215.

Pull request #105. (accessed on 12/10/2021). https://github.com/joshghent/blog/

pull/105.

Pull request #10816. (accessed on 12/10/2021). https://github.com/sequelize/

sequelize/pull/10816.

Pull request #1083. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/1083#issuecomment-368726539.

Pull request #1220. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/1220.

Pull request #1224. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/1224.

Pull request #1305. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/1305.

Pull request #13367. (accessed on 12/10/2021a). https://github.com/facebook/

react/pull/13367.

Pull request #13367. (accessed on 12/10/2021b). https://github.com/facebook/

react/pull/13367#issuecomment-412349795.

Pull request #1414. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/1414. (accessed on 10/04/2021)

Pull request #1420. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/1420. (accessed on 10/04/2021)

Pull request #1472. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/1472.

Pull request #1521. (accessed on 12/10/2021). https://github.com/box/box-ui

-elements/pull/1521.

Pull request #1598. (accessed on 12/10/2021a). https://github.com/markedjs/

158

https://github.com/joshghent/blog/pull/105
https://github.com/joshghent/blog/pull/105
https://github.com/sequelize/sequelize/pull/10816
https://github.com/sequelize/sequelize/pull/10816
https://github.com/markedjs/marked/pull/1083#issuecomment-368726539
https://github.com/markedjs/marked/pull/1083#issuecomment-368726539
https://github.com/markedjs/marked/pull/1220
https://github.com/markedjs/marked/pull/1220
https://github.com/markedjs/marked/pull/1224
https://github.com/markedjs/marked/pull/1224
https://github.com/markedjs/marked/pull/1305
https://github.com/markedjs/marked/pull/1305
https://github.com/facebook/react/pull/13367
https://github.com/facebook/react/pull/13367
https://github.com/facebook/react/pull/13367#issuecomment-412349795
https://github.com/facebook/react/pull/13367#issuecomment-412349795
https://github.com/markedjs/marked/pull/1414
https://github.com/markedjs/marked/pull/1414
https://github.com/markedjs/marked/pull/1420
https://github.com/markedjs/marked/pull/1420
https://github.com/markedjs/marked/pull/1472
https://github.com/markedjs/marked/pull/1472
https://github.com/box/box-ui-elements/pull/1521
https://github.com/box/box-ui-elements/pull/1521
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598

marked/pull/1598.

Pull request #1598. (accessed on 12/10/2021b). https://github.com/markedjs/

marked/pull/1598.

Pull request #16254. (accessed on 12/10/2021). https://github.com/facebook/react/

pull/16254.

Pull request #1681. (accessed on 12/10/2021). https://github.com/strapi/strapi/

pull/1681.

Pull request #1683. (accessed on 12/10/2021a). https://github.com/markedjs/

marked/pull/1683.

Pull request #1683. (accessed on 12/10/2021b). https://github.com/markedjs/

marked/pull/1683.

Pull request #18673. (accessed on 12/10/2021). https://github.com/facebook/react/

pull/18673.

Pull request #20818. (accessed on 12/10/2021). https://github.com/electron/

electron/pull/20818.

Pull request #23650. (accessed on 12/10/2021). https://github.com/electron/

electron/pull/23650.

Pull request #2375. (accessed on 12/10/2021). https://github.com/sequelize/

sequelize/pull/2375.

Pull request #2402. (accessed on 12/10/2021). https://github.com/node-red/node

-red/pull/2402.

Pull request #245. (accessed on 12/10/2021). https://github.com/FromDoppler/

doppler-webapp/pull/245.

Pull request #250. (accessed on 12/10/2021). https://github.com/FromDoppler/

doppler-webapp/pull/250.

Pull request #2576. (accessed on 12/10/2021a). https://github.com/sequelize/

sequelize/pull/2576.

Pull request #2576. (accessed on 12/10/2021b). https://github.com/sequelize/

sequelize/pull/2576.

159

https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/facebook/react/pull/16254
https://github.com/facebook/react/pull/16254
https://github.com/strapi/strapi/pull/1681
https://github.com/strapi/strapi/pull/1681
https://github.com/markedjs/marked/pull/1683
https://github.com/markedjs/marked/pull/1683
https://github.com/markedjs/marked/pull/1683
https://github.com/markedjs/marked/pull/1683
https://github.com/facebook/react/pull/18673
https://github.com/facebook/react/pull/18673
https://github.com/electron/electron/pull/20818
https://github.com/electron/electron/pull/20818
https://github.com/electron/electron/pull/23650
https://github.com/electron/electron/pull/23650
https://github.com/sequelize/sequelize/pull/2375
https://github.com/sequelize/sequelize/pull/2375
https://github.com/node-red/node-red/pull/2402
https://github.com/node-red/node-red/pull/2402
https://github.com/FromDoppler/doppler-webapp/pull/245
https://github.com/FromDoppler/doppler-webapp/pull/245
https://github.com/FromDoppler/doppler-webapp/pull/250
https://github.com/FromDoppler/doppler-webapp/pull/250
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576

Pull request #2984. (accessed on 12/10/2021). https://github.com/infor-design/

enterprise/pull/2984.

Pull request #3. (accessed on 12/10/2021). https://github.com/codeparticle/react

-visible/pull/3.

Pull request #3152. (accessed on 12/10/2021). https://github.com/facebook/react/

pull/3152.

Pull request #3163. (accessed on 12/10/2021). https://github.com/strapi/strapi/

pull/3163.

Pull request #3201. (accessed on 12/10/2021). https://github.com/strapi/strapi/

pull/3201.

Pull request #33. (accessed on 12/10/2021). https://github.com/4Catalyzer/

graphql-validation-complexity/pull/33.

Pull request #39. (accessed on 12/10/2021). https://github.com/hinaloe/public

-toot-viewer/pull/39.

Pull request #4305. (accessed on 12/10/2021a). https://github.com/parse

-community/parse-server/pull/4305.

Pull request #4305. (accessed on 12/10/2021b). https://github

.com/parse-community/parse-server/pull/4305/commits/

be4aef061d7b1967ce020e286304e08a6ac389d2.

Pull request #4561. (accessed on 12/10/2021). https://github.com/facebook/react/

pull/4561.

Pull request #4790. (accessed on 12/10/2021a). https://github.com/strapi/strapi/

pull/4790.

Pull request #4790. (accessed on 12/10/2021b). https://github.com/strapi/strapi/

pull/4790.

Pull request #4822. (accessed on 12/10/2021). https://github.com/parse-community/

parse-server/pull/4822.

Pull request #4895. (accessed on 12/10/2021). https://github.com/parse-community/

parse-server/pull/4895.

160

https://github.com/infor-design/enterprise/pull/2984
https://github.com/infor-design/enterprise/pull/2984
https://github.com/codeparticle/react-visible/pull/3
https://github.com/codeparticle/react-visible/pull/3
https://github.com/facebook/react/pull/3152
https://github.com/facebook/react/pull/3152
https://github.com/strapi/strapi/pull/3163
https://github.com/strapi/strapi/pull/3163
https://github.com/strapi/strapi/pull/3201
https://github.com/strapi/strapi/pull/3201
https://github.com/4Catalyzer/graphql-validation-complexity/pull/33
https://github.com/4Catalyzer/graphql-validation-complexity/pull/33
https://github.com/hinaloe/public-toot-viewer/pull/39
https://github.com/hinaloe/public-toot-viewer/pull/39
https://github.com/parse-community/parse-server/pull/4305
https://github.com/parse-community/parse-server/pull/4305
https://github.com/parse-community/parse-server/pull/4305/commits/be4aef061d7b1967ce020e286304e08a6ac389d2
https://github.com/parse-community/parse-server/pull/4305/commits/be4aef061d7b1967ce020e286304e08a6ac389d2
https://github.com/parse-community/parse-server/pull/4305/commits/be4aef061d7b1967ce020e286304e08a6ac389d2
https://github.com/facebook/react/pull/4561
https://github.com/facebook/react/pull/4561
https://github.com/strapi/strapi/pull/4790
https://github.com/strapi/strapi/pull/4790
https://github.com/strapi/strapi/pull/4790
https://github.com/strapi/strapi/pull/4790
https://github.com/parse-community/parse-server/pull/4822
https://github.com/parse-community/parse-server/pull/4822
https://github.com/parse-community/parse-server/pull/4895
https://github.com/parse-community/parse-server/pull/4895

Pull request #49. (accessed on 12/10/2021). https://github.com/edm00se/emoji

-transmogrifier/pull/49/commits.

Pull request #5330. (accessed on 12/10/2021). https://github.com/strapi/strapi/

pull/5330.

Pull request #5951. (accessed on 12/10/2021). https://github.com/parse-community/

parse-server/pull/5951.

Pull request #5 by mahmoud-alfadel/test. (2021). https://github.com/mahmoud

-alfadel/test/pull/5. (accessed on 10/04/2021)

Pull request #685. (accessed on 12/10/2021). https://github.com/strapi/strapi/

pull/685.

Pull request #714. (accessed on 12/10/2021). https://github.com/facebook/react/

pull/714.

Pull request #7160. (accessed on 12/10/2021). https://github.com/sequelize/

sequelize/pull/7160.

Pull request #783. (accessed on 12/10/2021a). https://github.com/sequelize/

sequelize/pull/783.

Pull request #783. (accessed on 12/10/2021b). https://github.com/sequelize/

sequelize/pull/783.

Pull request #844. (accessed on 12/10/2021). https://github.com/markedjs/marked/

pull/844. (accessed on 10/04/2021)

Pull request #85. (accessed on 12/10/2021). https://github.com/steelbrain/babel

-cli/pull/85.

Pull request #860. (accessed on 12/10/2021). https://github.com/PrideInLondon/

pride-london-web/pull/860.

Pull request #91. (accessed on 12/10/2021). https://github.com/slothpixel/ui/

pull/91.

Pull request #9224. (accessed on 12/10/2021). https://github.com/electron/

electron/pull/9224.

Pull request #991. (accessed on 12/10/2021). https://github.com/strapi/strapi/

161

https://github.com/edm00se/emoji-transmogrifier/pull/49/commits
https://github.com/edm00se/emoji-transmogrifier/pull/49/commits
https://github.com/strapi/strapi/pull/5330
https://github.com/strapi/strapi/pull/5330
https://github.com/parse-community/parse-server/pull/5951
https://github.com/parse-community/parse-server/pull/5951
https://github.com/mahmoud-alfadel/test/pull/5
https://github.com/mahmoud-alfadel/test/pull/5
https://github.com/strapi/strapi/pull/685
https://github.com/strapi/strapi/pull/685
https://github.com/facebook/react/pull/714
https://github.com/facebook/react/pull/714
https://github.com/sequelize/sequelize/pull/7160
https://github.com/sequelize/sequelize/pull/7160
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
https://github.com/markedjs/marked/pull/844
https://github.com/markedjs/marked/pull/844
https://github.com/steelbrain/babel-cli/pull/85
https://github.com/steelbrain/babel-cli/pull/85
https://github.com/PrideInLondon/pride-london-web/pull/860
https://github.com/PrideInLondon/pride-london-web/pull/860
https://github.com/slothpixel/ui/pull/91
https://github.com/slothpixel/ui/pull/91
https://github.com/electron/electron/pull/9224
https://github.com/electron/electron/pull/9224
https://github.com/strapi/strapi/pull/991
https://github.com/strapi/strapi/pull/991

pull/991.

PyPi. (2018). Security pypi. https://pypi.org/security/. ((accessed on 10/10/2020))

R2c. ((accessed 2020)). https://r2c.dev/.

Raemaekers, S., Van Deursen, A., & Visser, J. (2014). Semantic versioning versus breaking

changes: A study of the maven repository. In Ieee 14th international working conference

on source code analysis and manipulation (scam), 2014 (pp. 215–224).

Rahman, M. M., & Roy, C. K. (2014). An insight into the pull requests of github. In Proceedings

of the 11th working conference on mining software repositories (pp. 364–367).

react - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/react.

report, S. ((accessed 2020)). 77% of 433,000 sites use vulnerable javascript

libraries — snyk. https://snyk.io/blog/77-percent-of-sites-still

-vulnerable/. Retrieved from https://snyk.io/blog/77-percent-of

-sites-still-vulnerable/

Reporting a vulnerability in an npm package. (accessed on 12/10/2021). https://docs.npmjs

.com/reporting-a-vulnerability-in-an-npm-package.

Rigby, P. C., & Bird, C. (2013). Convergent contemporary software peer review practices.

In Proceedings of the 2013 9th joint meeting on foundations of software engineering (pp.

202–212).

Ruangwan, S., Thongtanunam, P., Ihara, A., & Matsumoto, K. (2019). The impact of human

factors on the participation decision of reviewers in modern code review. Empirical Software

Engineering, 24(2), 973–1016.

Ruohonen, J. (2018). An empirical analysis of vulnerabilities in python packages for web

applications. In 2018 9th international workshop on empirical software engineering in

practice (iwesep) (pp. 25–30).

Sabottke, C., Suciu, O., & Dumitra, T. (2015). Vulnerability disclosure in the age of social media:

Exploiting twitter for predicting real-world exploits. In 24th {USENIX} security symposium

({USENIX} security 15) (pp. 1041–1056).

SAP. (1972). Sap software solutions — business applications and technology. https://www

.sap.com/canada/index.html. ((accessed on 07/17/2021))

162

https://github.com/strapi/strapi/pull/991
https://github.com/strapi/strapi/pull/991
https://pypi.org/security/
https://r2c.dev/
https://www.npmjs.com/package/react
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://docs.npmjs.com/reporting-a-vulnerability-in-an-npm-package
https://docs.npmjs.com/reporting-a-vulnerability-in-an-npm-package
https://www.sap.com/canada/index.html
https://www.sap.com/canada/index.html

Sarle, W. (1990). Sas/stat user?s guide: The varclus procedure. sas institute. Inc., Cary, NC, USA.

Semantic versioning 2.0.0. (2021). https://semver.org/. ((accessed on 07/17/2021))

Semantic versioning 2.0.0. ((accessed 2020)). https://semver.org/.

semver. (2021). semver - npm. https://www.npmjs.com/package/semver. ((accessed

on 07/17/2021))

semver pypi. (2020). https://pypi.org/project/semver/. ((accessed on 10/10/2020))

sequelize - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/

sequelize.

Snyk.io. (2017). The state of open-source security. ([Online; Available: https://snyk.io/])

Snyk.io. (accessed on 12/10/2021). The state of open source security. https://snyk.io/

open-source-security/. Retrieved from https://snyk.io/open-source

-security/

Snyk report. (accessed on 12/10/2021). https://snyk.io/blog/77-percent-of

-sites-still-vulnerable/.

Soares, D. M., de Lima Júnior, M. L., Murta, L., & Plastino, A. (2015). Acceptance factors of

pull requests in open-source projects. In Proceedings of the 30th annual acm symposium on

applied computing (pp. 1541–1546).

SOF. (2020). Stack overflow developer survey 2019. https://insights.stackoverflow

.com/survey/2020#overview. ((accessed on 01/12/2021))

Spadini, D., Aniche, M., Storey, M.-A., Bruntink, M., & Bacchelli, A. (2018). When testing meets

code review: Why and how developers review tests. In 2018 ieee/acm 40th international

conference on software engineering (icse) (pp. 677–687).

Spadini, D., Palomba, F., Baum, T., Hanenberg, S., Bruntink, M., & Bacchelli, A. (2019).

Test-driven code review: an empirical study. In 2019 ieee/acm 41st international conference

on software engineering (icse) (pp. 1061–1072).

Stack overflow developer survey. (2020). https://insights.stackoverflow.com/

survey/2020#technology-programming-scripting-and-markup

-languages-all-respondents. ((accessed on 01/10/2021))

Stack overflow developer survey. (accessed on 12/10/2021). https://insights

163

https://semver.org/
https://semver.org/
https://www.npmjs.com/package/semver
https://pypi.org/project/semver/
https://www.npmjs.com/package/sequelize
https://www.npmjs.com/package/sequelize
https://snyk.io/open-source-security/
https://snyk.io/open-source-security/
https://snyk.io/open-source-security/
https://snyk.io/open-source-security/
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://snyk.io/blog/77-percent-of-sites-still-vulnerable/
https://insights.stackoverflow.com/survey/2020#overview
https://insights.stackoverflow.com/survey/2020#overview
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-all-respondents
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-all-respondents
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-all-respondents
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019

.stackoverflow.com/survey/2019.

Staicu, C.-A., Pradel, M., & Livshits, B. (2016). Understanding and automatically preventing

injection attacks on node. js (Tech. Rep.). Tech. Rep. TUD-CS-2016-14663, TU Darmstadt,

Department of Computer Science.

Staicu, C.-A., Pradel, M., & Livshits, B. (2018). Synode. In Ndss.

steelbrain/babel-cli@c8c9859. (accessed on 12/10/2021).

https://github.com/steelbrain/babel-cli/commit/

c8c985925c3513f2dd26241a75d71953dd5e1d39#diff

-b9cfc7f2cdf78a7f4b91a753d10865a2.

strapi - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/strapi.

Synopsys. (2019). Synopsys black duck open source security and risk analysis.

Thomé, J., Shar, L. K., Bianculli, D., & Briand, L. (2018). Security slicing for auditing common

injection vulnerabilities. Journal of Systems and Software, 137, 766–783.

Thompson, H. H. (2003). Why security testing is hard. IEEE Security & Privacy, 1(4), 83–86.

Thongtanunam, P., McIntosh, S., Hassan, A. E., & Iida, H. (2015). Investigating code review

practices in defective files: An empirical study of the qt system. In 2015 ieee/acm 12th

working conference on mining software repositories (pp. 168–179).

uglify-js - npm. (accessed on 12/10/2021). https://www.npmjs.com/package/uglify

-js.

Upgrades most dev dependencies (#1753). (accessed on 12/10/2021).

https://github.com/box/box-ui-elements/commit/

7c8bde43917e9bef50c38ef5e7af3fe168412b1d#diff

-8ee2343978836a779dc9f8d6b794c3b2.

Vasilescu, B., Blincoe, K., Xuan, Q., Casalnuovo, C., Damian, D., Devanbu, P., & Filkov, V. (2016).

The sky is not the limit: multitasking across github projects. In Proceedings of the 38th

international conference on software engineering (pp. 994–1005).

Vu, D.-L., Pashchenko, I., Massacci, F., Plate, H., & Sabetta, A. (2020a). Poster: Towards using

source code repositories to identify software supply chain attacks. In Ccs 20.

Vu, D.-L., Pashchenko, I., Massacci, F., Plate, H., & Sabetta, A. (2020b). Typosquatting and

164

https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://github.com/steelbrain/babel-cli/commit/c8c985925c3513f2dd26241a75d71953dd5e1d39#diff-b9cfc7f2cdf78a7f4b91a753d10865a2
https://github.com/steelbrain/babel-cli/commit/c8c985925c3513f2dd26241a75d71953dd5e1d39#diff-b9cfc7f2cdf78a7f4b91a753d10865a2
https://github.com/steelbrain/babel-cli/commit/c8c985925c3513f2dd26241a75d71953dd5e1d39#diff-b9cfc7f2cdf78a7f4b91a753d10865a2
https://www.npmjs.com/package/strapi
https://www.npmjs.com/package/uglify-js
https://www.npmjs.com/package/uglify-js
https://github.com/box/box-ui-elements/commit/7c8bde43917e9bef50c38ef5e7af3fe168412b1d#diff-8ee2343978836a779dc9f8d6b794c3b2
https://github.com/box/box-ui-elements/commit/7c8bde43917e9bef50c38ef5e7af3fe168412b1d#diff-8ee2343978836a779dc9f8d6b794c3b2
https://github.com/box/box-ui-elements/commit/7c8bde43917e9bef50c38ef5e7af3fe168412b1d#diff-8ee2343978836a779dc9f8d6b794c3b2

combosquatting attacks on the python ecosystem. In 2020 ieee european symposium on

security and privacy workshops (euros&pw) (pp. 509–514).

vuln-regex-detector. (accessed on 12/10/2021). https://github.com/davisjam/vuln

-regex-detector#readme.

Walden, J. (2020). The impact of a major security event on an open source project: The case of

openssl. In Proceedings of the 17th international conference on mining software repositories

(pp. 409–419).

Wang, Y., Chen, B., Huang, K., Shi, B., Xu, C., Peng, X., . . . Liu, Y. (2020). An empirical study of

usages, updates and risks of third-party libraries in java projects. In 2020 ieee international

conference on software maintenance and evolution (icsme) (pp. 35–45).

Weißgerber, P., Neu, D., & Diehl, S. (2008). Small patches get in! In Proceedings of the 2008

international working conference on mining software repositories (pp. 67–76).

Williams, J., & Dabirsiaghi, A. (2012). The unfortunate reality of insecure libraries. Asp. Secur.

Inc, 1–26.

Winter, B. (2013). Linear models and linear mixed effects models in r with linguistic applications.

University of California, Merced, Cognitive and Information Sciences.

Wittern, E., Suter, P., & Rajagopalan, S. (2016). A look at the dynamics of the javascript package

ecosystem. In Ieee/acm 13th working conference on mining software repositories (msr), 2016

(pp. 351–361).

Yang, J., Tan, L., Peyton, J., & Duer, K. A. (2019). Towards better utilizing static application

security testing. In 2019 ieee/acm 41st international conference on software engineering:

Software engineering in practice (icse-seip) (pp. 51–60).

Yu, Y., Wang, H., Filkov, V., Devanbu, P., & Vasilescu, B. (2015). Wait for it: Determinants of pull

request evaluation latency on github. In 2015 ieee/acm 12th working conference on mining

software repositories (pp. 367–371).

Yu, Y., Wang, H., Yin, G., & Wang, T. (2016). Reviewer recommendation for pull-requests in

github: What can we learn from code review and bug assignment? Information and Software

Technology, 74, 204–218.

Zapata, R. E., Kula, R. G., Chinthanet, B., Ishio, T., Matsumoto, K., & Ihara, A. (2018). Towards

165

https://github.com/davisjam/vuln-regex-detector#readme
https://github.com/davisjam/vuln-regex-detector#readme

smoother library migrations: A look at vulnerable dependency migrations at function level

for npm javascript packages. In 2018 ieee international conference on software maintenance

and evolution (icsme) (pp. 559–563).

Zerouali, A. (2019). A measurement framework for analyzing technical lag in open-source software

ecosystems (Unpublished doctoral dissertation). PhD thesis, University of Mons.

Zerouali, A., Constantinou, E., Mens, T., Robles, G., & González-Barahona, J. (2018). An

empirical analysis of technical lag in npm package dependencies. In International conference

on software reuse (pp. 95–110).

Zerouali, A., Mens, T., Decan, A., & De Roover, C. (2021). On the impact of security vulnerabilities

in the npm and rubygems dependency networks. arXiv preprint arXiv:2106.06747.

Zimmermann, M., Staicu, C.-A., Tenny, C., & Pradel, M. (2019a). Small world with high risks:

A study of security threats in the npm ecosystem. In 28th {USENIX} security symposium

({USENIX} security 19).

Zimmermann, M., Staicu, C.-A., Tenny, C., & Pradel, M. (2019b). Small world with high risks: A

study of security threats in the npm ecosystem. USENIX Security Symposium.

166

	List of Figures
	List of Tables
	Introduction and Research Statement
	Introduction
	Research Statement
	Thesis Overview
	Chapter 2: Background and Literature Review
	Chapter 3: Analysing the Lifecycle of Package Vulnerabilities
	Chapter 4: Examining the Discoverability of Package Vulnerabilities Impacting Software Applications
	Chapter 5: Studying The Role of Code Review in Enhancing Package Security
	Chapter 6: Evaluating the Use of Dependabot for Patching Package Vulnerabilities

	Thesis Contributions
	Related Publications
	Thesis organization

	Background and Literature Review
	Terminology
	Literature review
	Work Related to Software Packages and Vulnerabilities
	Work Related to Solutions for Mitigating the Impact of Vulnerable Packages

	Chapter Summary

	Analysing the Lifecycle of Package Vulnerabilities
	Introduction
	Study Design
	Terminology
	Data Collection and Processing

	Study Results
	Discussion and Implications
	Comparison to the npm ecosystem
	Implications

	Tool Support: Dep-Health
	Threats to Validity
	Related Work
	Chapter Summary

	Examining the Discoverability of Package Vulnerabilities Impacting Software Applications
	Introduction
	NPM Dependency Management
	Classifying Vulnerabilities
	Vulnerability Lifecycle
	Discoverability Levels

	Study Design
	Research Questions
	Data Collection

	Approach
	Study Results
	Discussion
	Severity levels of public vulnerabilities
	Project evolution vs. discoverability levels

	Tool Support: Dep-Reveal
	Implications
	Threats to Validity
	Related Work
	Chapter Summary

	Studying The Role of Code Review in Enhancing Package Security
	Introduction
	Study Design
	Project selection
	Identification of PR candidates
	Manual validation of the identified PR candidates

	Study Results
	Discussion and Implications
	Comparison with advisories dataset
	Implications

	Threats to Validity
	Related Work
	Chapter Summary

	Evaluating the Use of Dependabot for Patching Package Vulnerabilities
	Introduction
	Background
	Study Design
	Study Results
	Implications
	Implications to practitioners
	Implications to Dependabot maintainers

	Tool Support: Dep-Combine
	Threats to validity
	Related Work
	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Analysing the Lifecycle of Package Vulnerabilities
	Examining the Discoverability of Package Vulnerabilities Impacting Software Applications
	Studying The Role of Code Review in Enhancing Package Security
	Evaluating the Use of Dependabot for Patching Package Vulnerabilities

	Future Work
	Examining Fine-Grained Solutions to Address Package Vulnerability in Software Applications
	Exploring Different Data Sources for Package Vulnerabilities
	Replication in an Industrial Setting
	Evaluating the Proposed Tools
	Understanding Developers Perception on the Studied Aspects
	Other Languages of Software Ecosystems

	Bibliography
	References

