
DVC in Open Source ML-development: The Action and the
Reaction

Lorena Barreto Simedo Pacheco
Concordia University
Montréal, Canada

lorena.bspacheco@mail.concordia.ca

Musfiqur Rahman
Concordia University
Montréal, Canada

musfiqur.rahman@mail.concordia.ca

Fazle Rabbi
Concordia University
Montréal, Canada

fazle.rabbi@mail.concordia.ca

Pouya Fathollahzadeh
Queen’s University
Kingston, Canada

pouya.fathollahzadeh@queensu.ca

Ahmad Abdellatif
University of Calgary

Calgary, Canada
ahmad.abdellatif@ucalgary.ca

Emad Shihab
Concordia University
Montréal, Canada

emad.shihab@concordia.ca

Tse-Hsun (Peter) Chen
Concordia University
Montréal, Canada

tse-hsun.chen@concordia.ca

Jinqiu Yang
Concordia University
Montréal, Canada

jinqiu.yang@concordia.ca

Ying Zou
Queen’s University
Kingston, Canada

ying.zou@queensu.ca

ABSTRACT
Machine Learning (ML) systems are gaining popularity, reshaping
various domains ranging from customer services to software en-
gineering. The effectiveness of ML systems is dependent on the
quality of their training data. Therefore, practitioners invest sub-
stantial time experimenting with different data, parameters, and
models to guarantee the quality of the end system. Prior work
highlighted unique challenges of developing ML systems, partic-
ularly concerning versioning data and models. Recently, various
tools such as DVC and MLFlow have emerged to aid developers in
the storage and tracking of data. Despite their growing popularity,
very little is known about their usage patterns and impact on open-
source software (OSS) systems. To address this gap, we conducted
an empirical study on 56 GitHub OSS projects that use DVC to
understand the DVC usage pattern and the impact of using DVC
on the software development process. We found that Versioning
and tracking is the most adopted DVC feature, being utilized by all
56 projects and being the only adopted feature in 85.7% of them.
Furthermore, we found that DVC has a significant impact on the
software development process indicators such as the number of
created pull requests (PRs), and the number of bug-fix commits. For
instance, our findings showed that DVC causes a peak in the num-
ber of commits and PRs at the moment of the adoption, followed
by a long-term decrease. We believe that our findings can assist
practitioners in tailoring tools to better meet user requirements
and help organizations realize potential outcomes of adopting such
tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CAIN 2024, April 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems.

KEYWORDS
Empirical Software Engineering, Data Version Control, Software
Evolution, SE4AI

ACM Reference Format:
Lorena Barreto Simedo Pacheco, Musfiqur Rahman, Fazle Rabbi, Pouya
Fathollahzadeh, Ahmad Abdellatif, Emad Shihab, Tse-Hsun (Peter) Chen,
Jinqiu Yang, and Ying Zou. 2024. DVC in Open Source ML-development:
The Action and the Reaction. In Proceedings of 3rd International Conference
on AI Engineering — Software Engineering for AI (CAIN 2024). ACM, New
York, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Machine Learning (ML) systems have diverse applications span-
ning different domains, such as the detection of spam emails [11],
chatbots [10], and AI-assisted surgery [23] to name a few. Models
and data constitute the backbone of ML-based systems. Previous
research demonstrates that training models often involve a sub-
stantial amount of experimentation with different types of data and
modeling techniques to achieve the best-performing models [16].
Consequently, version control for data, models, and pipeline config-
urations is essential to maintain transparency and reproducibility
throughout the development and deployment of ML systems. Re-
cently, numerous tools (e.g., DVC and MLFlow) have emerged, em-
powering ML developers to efficiently track, version, and build ML
components [19]. DVC [1] is an open-source tool for versioning of
ML artifacts, pipeline building, and experiment tracking. Due to its
easy-to-use nature, it is gaining traction among practitioners. Prior
work shows a significant adoption trend of different DVC features
in the open-source software (OSS) community [8]. However, the
usage patterns and impact of using DVC remain open questions.
Addressing these aspects is crucial for advancing the understanding
of the integration of version control tools in the dynamic landscape

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CAIN 2024, April 2024, Lisbon, Portugal Barreto Simedo Pacheco et al.

of ML application development, while also underscoring the advan-
tages of incorporating DVC within organizations.

In this paper, we conduct an empirical study using 56 GitHub
projects to investigate how DVC is used in OSS development. More
specifically, our study answers the following research questions:

RQ1: (The action) How is DVC used in open-source ML-
based software development?

We find that developers use DVC’s Versioning and tracking fea-
ture more frequently than DVC’s Pipelining feature. Specifically,
85.7% of projects use DVC exclusively for Versioning and tracking,
while all the remaining projects use DVC for both Versioning and
tracking as well as Pipelining.

While RQ1 focuses on the adoption and usage patterns of dif-
ferent DVC features, in RQ2, we aim to understand the impact of
adopting DVC in the development process.

RQ2: (The reaction) How does the introduction of DVC
affect the software development process?

We analyze 6 software development process indicators and find
that the majority of indicators show a shift in existing trends after
the introduction of DVC. For example, with the DVC adoption, the
number of created pull requests (PRs) decreases.

In this work, our contributions are as follows:
(1) To the best of our knowledge, this is the first work that stud-

ies the DVC usage patterns and the impact of DVC adoption
on the software development process.

(2) We make our code and dataset publicly available 1 to accel-
erate future research in this area.

Paper Organization. The rest of the paper is organized as
follows. In Section 2, we provide an overview of the study’s back-
ground, while in Section 3, we discuss the dataset used in our
analysis. Section 4 presents our findings for each RQ. In Sections 5
and 6, we cover related works and potential threats to validity, re-
spectively. Finally, we conclude the paper by outlining directions
for future research in Section 7.

2 BACKGROUND
DVC is an open-source tool designed for data and model versioning.
DVC enables practitioners to version and track their ML artifacts,
reproduce experiments, and monitor their ML pipelines. DVC oper-
ates on top of Git repositories and cloud storage. DVC comprises
two main features, namely, Versioning and tracking feature and
Pipelining feature. In this section, we explain each feature and the
associated terminologies used throughout the paper.

2.1 Versioning and tracking
DVC can be used to version and track different ML components of a
system. The Versioning and tracking functionalities allow practition-
ers to store and track large datasets and ML models on the cloud
without having to keep them in the code repository, which increases
the security and privacy of ML artifacts and reduces their coupling
with general software artifacts. The .dvc file keeps track of all
changes that occur to the data and/or models. Listing 1 presents
a snapshot of one of the .dvc files from the project dna-seq [3].
Line 1 represents the MD5 hash for the .dvc file itself. deps (line

1https://zenodo.org/records/10161505

2) and outs (line 6) represent the dependency and output blocks,
respectively. Lines 3-5 represent the dependency entries, path in
line 3 is the path to the dependency, size in line 4 represents the
size of the dependency file/folder, and etag in line 5 is the ETag for
HTTP [5]. The md5 in line 7 represents the MD5 hash value for the
file/directory being tracked with DVC. As shown in line 3, the file
being tracked by DVC is saved remotely and tracked via its URL,
which makes the usability of DVC flexible.
1 md5: 531 ba86b382cbb71a7ed0fad1be2ccd1
2 deps:
3 - path: http ://ftp.ncbi.nlm.nih.gov/pub/clinvar/

vcf_GRCh38/clinvar.vcf.gz
4 size: 57813301
5 etag: '"3722935 -5 df53b38168c8"'
6 outs:
7 - md5: 1a0bd5729abb411a388e590431c62f99

Listing 1: Example of a .dvc file.

2.2 DVC for ML Pipelines
In addition to its versioning feature, DVC enables workflow automa-
tion via its pipelining feature. This attribute allows teams to use
DVC to define ML pipelines to perform tasks like data collection,
model training as well as validation. Each DVC pipeline is repre-
sented by a dvc.yaml file. For example, Listing 2 shows a dvc.yaml
file from the project guildai [4]. The DVC pipeline is composed
of an aggregate of stages. Each stage represents a process that typi-
cally receives an input produced in the previous stage and delivers
an output file. In this example, the partial contents from the original
file are shown. The prepare-data stage, among other stages, is
shown in line 2. In the prepare-data stage, the pipeline executes
a Python script (line 3) which performs data preprocessing and
prepares the data to be used in modelling. The deps and outs block
define the dependencies and the produced output files, respectively.
1 stages:
2 prepare -data:
3 cmd: python prepare_data.py
4 deps:
5 - iris.csv
6 - prepare_data.py
7 outs:
8 - iris.npy
9 ...

Listing 2: Example of a dvc.yaml file.

It is worth noting that both DVC functionalities are indepen-
dent of each other. For example, practitioners can use DVC only
to version ML artifacts while using a different tool to define ML
pipelines.

3 DATASET
The main goal of this study is to investigate DVC usage and the
impact of its adoption in OSS projects. Therefore, we collect projects
from GitHub that use DVC. In this section, we detail the process of
curating our dataset to answer the RQs.

Software projects that use DVC have the following artifacts:
*.dvc, dvc.lock, dvc.ignore and dvc.yaml.We leverageGitHub’s
API search to identify projects containing one or more files with the
term “dvc" in the file name. This step returns 168 projects. Given
that the goal of this study is to understand the usage patterns of

https://zenodo.org/records/10161505

DVC in Open Source ML-development: The Action and the Reaction CAIN 2024, April 2024, Lisbon, Portugal

Table 1: Descriptive Statistics of the Dataset

Metrics Avg. Std. Min. Median Max.
Stars 142.84 508.66 0 18 3673

Commits 1410.35 3770.12 10 287 25931
DVC Commits a 46.23 87.78 0 18 557
Contributors 7.46 9.17 1 4 30
a Any commit that modifies one or more DVC artifacts is considered
a DVC commit.

DVCwithin open-source development, we set out to collect non-toy
projects that use DVC. To filter out toy projects from the returned
results, two authors independently annotate each project by analyz-
ing each project’s name, its description, and the README file. This
process filters out any project where DVC is used for educational,
tutorial, or experimental purposes. The annotators achieve a sub-
stantial agreement (𝑘𝑎𝑝𝑝𝑎 = 0.96) while classifying 168 projects
returned from the GitHub query. In cases of disagreement, all the au-
thors meet to revisit the projects and discuss them until they reach
an agreement. The annotation process results in 56 real projects. Ta-
ble 1 presents the statistics of the collected non-toy projects. From
the table, we observe that our dataset contains projects that vary
in terms of size and popularity.

To assess DVC’s adoption impact, it is necessary to have a rea-
sonable amount of data for the same duration of time before and
after the tool’s introduction [15]. Similar to prior works [9, 12], we
choose a period of 26 weeks or approximately 6months in our anal-
ysis. Therefore, in RQ2, we use a subset of the aforementioned 56
projects in which data is available for 26weeks before and 26weeks
after DVC adoption. A total of 16 projects meet this criterion.

4 RESULTS AND FINDINGS
In this section, we describe our findings for each research question
defined in Section 1.

4.1 RQ1: (The action) How is DVC used in
open-source ML-based software
development?

Motivation: Prior work shows an early adoption and high usage
of DVC functionalities (versioning and pipelining) in more than a
quarter of their studied projects [8]. However, exploring the DVC
features that are being used by the ML-developers remains an
open question. Understanding the usage patterns of DVC provides
insights into the specific DVC features and workflows employed
by ML developers. Therefore, in this RQ, we set out to identify how
ML developers are using DVC in their software projects.
Approach: To gain insights into how the OSS community uses
DVC, we categorize the projects in our dataset into the following
categories:

• Versioning and tracking: Projects that use the Versioning
and tracking feature exclusively.

• Pipelining: Projects that use the Pipelining feature only.
• Both: Projects that use both features.

We employ a set of heuristics to classify projects based on their
DVC usage. Specifically, a project containing files with the .dvc

extension indicates that the project uses DVC for Versioning and
tracking, as discussed in Section 2. On the other hand, if a project
contains one or more dvc.yaml files, it indicates the use of DVC
for constructing ML pipelines. In such cases, we classify the project
as Pipelining. We categorize a project as Both if it incorporates
both .dvc and dvc.yaml files.
Results:We find that 85.7% of the projects use DVC only for ver-
sioning artifacts like data files. Since data plays a pivotal role in ML
applications and the core functionality of DVC lies in data version-
ing, DVC is a suitable choice to track the data utilized in training
and testing ML models. Additionally, the result reveals that 14.3%
of the projects employ DVC for both data versioning and building
ML pipelines, however, none of the projects use DVC exclusively
for constructing ML pipelines. This might be due to the prefer-
ence of practitioners who opt for a different tool like MLFlow [6])
for their ML pipeline development. To better understand the ML
pipeline stages that practitioners create using DVC, we manually
examine the 29 dvc.yaml files. The first two authors independently
inspect the stage names and code for each DVC pipeline. They
categorize each stage in the pipeline using the categories described
in [7, 24]: exploratory data analysis (EDA), data collection, data
pre-processing, data cleaning, model training, model validation,
model fine-tuning, and post-processing. The categorization process
achieves a complete agreement (𝑘𝑎𝑝𝑝𝑎 = 1) between the authors.

We find that among all the projects that use DVC for build-
ing pipelines, 75% of the projects use DVC for data preprocessing
and cleaning, 63% define model training, and 38% define model
validation as part of the pipeline. Although these 3 stages (data
preprocessing, model training, and model validation) are widely
considered to be the core ML-related stages, there are other interest-
ing use cases of the pipeline-building feature as well. For example,
we find that practitioners use DVC pipeline feature to define non-
core ML stages such as data fetching from the cloud, decompressing
compressed files, and spinning up containers in the pipelines.

4.2 RQ2: (The reaction) How does the
introduction of DVC affect the software
development process?

Motivation: Previous research demonstrates that introducing a
new tool can be risky due to the inherent uncertainty in software
systems [21]. Understanding the impact of adopting DVC on soft-
ware development is crucial for practitioners to make informed
decisions regarding the potential pros and cons of such adoptions.
Therefore, in this RQ, we examine the impact of integrating DVC
on a set of software development process indicators.
Approach: To investigate the impact of DVC adoption on a soft-
ware project, we perform an Interrupted Time-Series (ITS) analy-
sis [22]. ITS is a quasi-experimental research design used to evaluate
the effect of an intervention (such as the DVC adoption) on an in-
dicator (such as the number of commits) over time as shown in
prior studies [15, 20, 28]. ITS compares periods before and after the
intervention, assuming the trend would hold if the intervention
had not happened. We measure the impact of DVC adoption on 6
software development process indicators 2 as shown in Table 2.

2We use ‘indicator(s)’ in the rest of the paper to shorten the term ‘software development
process indicator(s)’.

CAIN 2024, April 2024, Lisbon, Portugal Barreto Simedo Pacheco et al.

Table 2: Overview of the indicators studied to analyze the
impact of DVC adoption.

Indicator Rationale

of commits We analyze the number of commits,
number of created PRs and number of
closed PRs to understand the impact of
DVC on the activity level of a
project [25, 26].

of created PRs

of closed PRs

of bug-fix commits We analyze the total number of bug-fix
commits to understand the complexity
associated with adopting a new tool. A
higher number of bug-fix commits in
DVC artifacts indicates a higher level of
complexity. We use keywords (such as,
‘bug’, ‘fix’, ‘wrong’, ‘error’, ‘fail’, ‘prob-
lem’ and ‘patch’) used in prior work to
identify the bug-fix commits [13, 14].

of contributors We analyze the number of
contributors [15] and number of new
contributors to understand DVC’s
impact on the size and involvement of
the project community.

of new contributors

To perform ITS analysis in this study, we employ the following
linear regression model:

𝑌𝑡 = 𝛽0 + 𝛽1 × time𝑡 + 𝛽2 × adoption𝑡 + 𝛽3 × time_since_adoption𝑡 + 𝛽4 × controls
(1)

The variables in Equation 1 are defined as follows:

• 𝑌𝑡 is the dependent variable that represents an indicator (e.g.,
number of commits and number of contributors) at time 𝑡 .

• 𝑡𝑖𝑚𝑒 represents the number of weeks after the start of the
observation period at 𝑡 . 𝑡𝑖𝑚𝑒 starts at 1 and increments by 1
for each subsequent week.

• 𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 represents whether or not DVC has been adopted
at 𝑡 . The value of this variable is 0 before the DVC adoption
and 1 after it.

• 𝑡𝑖𝑚𝑒_𝑠𝑖𝑛𝑐𝑒_𝑎𝑑𝑜𝑝𝑡𝑖𝑜𝑛 represents the number of weeks passed
since the adoption of DVC at 𝑡 . The value of this variable is
0 before the DVC adoption, starts at 1 at the time of DVC
adoption, and increments by 1.

• 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 is calculated via an arithmetic mean of three con-
trol variables: the age of the project at the adoption time
in weeks to capture the level of maturity of the project, the
total number of contributors to capture the size of the project
community, and the total number of PRs to capture the level
of activity in the project.

To evaluate the fit of the models, we use the marginal 𝑅2 and
conditional 𝑅2 for mixed-effects models [17].
Results: The results obtained from each model for all 6 indicators
are shown in Table 3. From the table, we observe that all indicators

(except the number of new contributors) have a statistically signifi-
cant (confidence level of 95%) association with time_since_adoption,
which implies that the trends change after the adoption of DVC.

Figure 1 represents how the adoption of DVC impacts the indi-
cators’ long-term trends. The first three indicators, namely Number
of commits, Number of created PRs and Number of closed PRs, show
a very similar trend of a slight increase at the DVC adoption time
followed by a consistent drop afterward. For example, in Figure 1b,
we observe that there is an increase in the number of PRs at the
adoption time. Then, the number of PRs decreases after the DVC’s
adoption. This reduction can be attributed to the separation of data
from the codebase. In other words, data scientists and developers
can independently work on data, reducing the necessity for PRs
related to data changes.

Figure 1d shows the change in trend for Number of bug-fix com-
mits. Interestingly, we find that there is a sudden spike in bug-fix
commits at the time of adoption, although DVC usage leads to a
sustained decrease in bug-fix commits in the long run after the
tool’s adoption. Upon qualitative analysis, we find that the majority
of these bug-fix commits are not associated with DVC artifacts. One
possible reason for this observation is that practitioners fix the bugs
in their code base to prepare the repository for integration with
the DVC tool. One example is the DVC introducing commit 3 at
the Search [2] project. This commit fixes bugs related to directory
name updates, changing the README file, and updating the library
version. Although we cannot say that all these fixes are forced by
DVC adoption, many of these fixes are happening concurrently
with DVC’s incorporation, which supports the finding from [8]
regarding the co-evolution of DVC and general software artifacts.

5 RELATEDWORK
Recently, many researchers studied the versioning of ML data and
models [8, 18, 20, 27]. For example, Njomou et al. [18] analyzed
the challenges related to model evolution and data versioning for
ML software. They found DVC to be a powerful tool and proposed
a framework to preprocess the software repository to integrate
with DVC. Also, Barrak et al. [8] empirically studied the usage of
DVC in GitHub projects and demonstrated that ML versioning is a
developing trend in open-source repositories. Their finding indi-
cated a high coupling between DVC artifacts and general software
artifacts. Schlegel et al. [20] provided an overview of ML artifact
management systems while Zaharia et al. [27] proposed MLflow–a
tool designed for building ML pipeline and managing ML projects–
with a focus on ease of experimentation, reproducibility, and model
deployment.

While our work shares a common goal with the studies men-
tioned above, which is to investigate data and model versioning
tools, to the best of our knowledge, no prior work has explored the
usage patterns of DVC or analyzed the impact of adopting DVC in
OSS, which is the primary objective of this work.

6 THREATS TO VALIDITY
DVC is a new addition to the toolbox of ML developers. Although,
the OSS community is adopting this tool at a fast rate [8], to date,
majority of the OSS projects hosted on GitHub that are using DVC
3commit id: b06c80cd3192a067438521af2f511d4014a71cd9

DVC in Open Source ML-development: The Action and the Reaction CAIN 2024, April 2024, Lisbon, Portugal

Table 3: Coefficients obtained from each model for all 6 indicators.

intercept time adoption time_since_adoption controls Performance in 𝑅2

Marginal Conditional
of commits 1.654922 0.018221 0.092663 -0.039216 * 0.001253 0.05 0.68
of created PRs 7.479e-02 3.759e-03 5.598e-02 -1.213e-02 * 1.363e-03 * 0.59 0.71
of closed PRs 5.401e-02 4.236e-03 7.738e-02 -1.342e-02 * 1.347e-03 * 0.57 0.68
of bug-fix commits 1.38e-01 * -1.467e-03 9.261e-02 * -4.263e-03 * -6.11e-05 0.03 0.31
of contributors 0.189602 0.060345 * -0.10540 -0.104426 * 0.0222 0.5 0.96
of new contributors 4.542e-02 * -8.883e-04 1.512e-02 1.258e-03 2.863e-05 0.02 0.36

* The results are statistically significant.

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50

Time

N
um

be
r

of
 to

ta
l c

om
m

its

(a) Number of commits

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50

Time

N
um

be
r

of
 c

re
at

ed
 P

R
s

(b) Number created PRs

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50

Time

N
um

be
r

of
 c

lo
se

d
P

R
s

(c) Number of closed PRs

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25 30 35 40 45 50

Time

N
um

be
r

of
 b

ug
fix

 r
el

at
ed

 c
om

m
its

(d) Number of bug-fix commits

0

20

40

60

80

5 10 15 20 25 30 35 40 45 50

Time

N
um

be
r

of
 to

ta
l c

on
tr

ib
ut

or
s

(e) Number of contributors

0.00

0.25

0.50

0.75

5 10 15 20 25 30 35 40 45 50

Time

N
um

be
r

of
 n

ew
 c

on
tr

ib
ut

or
s

(f) Number of new contributors

Figure 1: Interrupted Time-series Analysis plots, in which the blue line defines the DVC adoption time, the solid red line shows
the indicators’ real values and the dashed red line represents the trend in the indicator had DVC not been adopted.

for purposes like experimentation, tutorials, and demonstration of
the tool. Therefore, from our search on GitHub, we end up with a
set of 56 non-toy projects, which is a relatively small dataset. We
acknowledge that it may not be ideal to generalize our findings
across projects of different size, level of activity and age. However,
the primary aim of this study is to report the current adoption trend
of DVC features, and the current evolution trend of projects after
DVC is adopted.

7 CONCLUSION AND FUTUREWORK
In this research, we conduct an empirical study to understand how
DVC is used in the OSS community and the impact of using DVC
on the software development process. To achieve this, we analyze
56 GitHub OSS projects that use DVC. We find that DVC is mainly

used (85.7% of the studied projects) for its Versioning and track-
ing feature, and no project in our dataset adopts DVC for the sole
purpose of ML Pipelinging. Furthermore, we find that the DVC
adoption significantly shifts the existing trends in all but one soft-
ware development process indicator implying its substantial impact
on the overall development process. Our study sheds light on the
prevalent usage patterns and impact of DVC in the context of ML-
based systems. Moreover, it guides future investigations into best
practices for incorporating DVC in open-source projects.

As potential future works, we plan to explore the versioning
feature in DVC at a granular level, distinguishing between version-
ing for data and models. Furthermore, we will conduct surveys
among practitioners to gain a better understanding of the trends
that emerge after adopting DVC and assess the impact of this shift
on the project’s progress.

CAIN 2024, April 2024, Lisbon, Portugal Barreto Simedo Pacheco et al.

REFERENCES
[1] Data version control · dvc. https://dvc.org/. (Accessed on 11/20/2023).
[2] Github - bluebrain/search: Blue brain text mining toolbox for semantic search

and structured information extraction. https://github.com/BlueBrain/Search.
(Accessed on 11/20/2023).

[3] Github - dna-seq/dna-seq: Dna-seq pipeline. https://github.com/dna-seq/dna-seq.
(Accessed on 11/20/2023).

[4] Github - guildai/guildai: Experiment tracking, ml developer tools. https://github.
com/guildai/guildai. (Accessed on 11/20/2023).

[5] Http etag - wikipedia. https://en.wikipedia.org/wiki/HTTP_ETag#Strong_and_
weak_validation. Accessed: 2022-10-24.

[6] Mlflow - a platform for the machine learning lifecycle | mlflow. https://mlflow.
org./. (Accessed on 11/20/2023).

[7] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann. Software engineering for machine learning: A case study.
In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 291–300. IEEE, 2019.

[8] A. Barrak, E. E. Eghan, and B. Adams. On the co-evolution of ml pipelines and
source code-empirical study of dvc projects. In 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 422–433. IEEE,
2021.

[9] E. Bouwers, A. van Deursen, and J. Visser. Evaluating usefulness of software
metrics: an industrial experience report. In 2013 35th International Conference on
Software Engineering (ICSE), pages 921–930. IEEE, 2013.

[10] J. Cahn. Chatbot: Architecture, design, & development. University of Pennsylvania
School of Engineering and Applied Science Department of Computer and Information
Science, 2017.

[11] P. Garg and N. Girdhar. A systematic review on spam filtering techniques based
on natural language processing framework. In 2021 11th International Conference
on Cloud Computing, Data Science & Engineering (Confluence), pages 30–35. IEEE,
2021.

[12] T. Hall and N. Fenton. Implementing effective software metrics programs. IEEE
software, 14(2):55–65, 1997.

[13] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and P. Tonella.
Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, pages 1110–1121, 2020.

[14] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan. A comprehensive study on deep
learning bug characteristics. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 510–520, 2019.

[15] S. Khatoonabadi, D. E. Costa, S. Mujahid, and E. Shihab. Understanding the
helpfulness of stale bot for pull-based development: An empirical study of 20
large open-source projects. arXiv preprint arXiv:2305.18150, 2023.

[16] G. Lorenzoni, P. Alencar, N. Nascimento, and D. Cowan. Machine learning model
development from a software engineering perspective: A systematic literature
review. arXiv preprint arXiv:2102.07574, 2021.

[17] S. Nakagawa and H. Schielzeth. A general and simple method for obtaining r2
from generalized linear mixed-effects models. Methods in ecology and evolution,
4(2):133–142, 2013.

[18] A. T. Njomou, A. J. B. Africa, B. Adams, and M. Fokaefs. Msr4ml: reconstructing
artifact traceability in machine learning repositories. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
536–540. IEEE, 2021.

[19] D. Sato, A. Wider, and C. Windheuser. Continuous delivery for machine learning.
Martin Fowler, 9, 2019.

[20] M. Schlegel and K.-U. Sattler. Management of machine learning lifecycle artifacts:
A survey. ACM SIGMOD Record, 51(4):18–35, 2023.

[21] M. Tuape, V. T. Hasheela-Mufeti, A. Kayanda, J. Porras, and J. Kasurinen. Software
engineering in small software companies: consolidating and integrating empirical
literature into a process tool adoption framework. IEEE Access, 9:130366–130388,
2021.

[22] A. K. Wagner, S. B. Soumerai, F. Zhang, and D. Ross-Degnan. Segmented re-
gression analysis of interrupted time series studies in medication use research.
Journal of clinical pharmacy and therapeutics, 27(4):299–309, 2002.

[23] T. M. Ward, P. Mascagni, Y. Ban, G. Rosman, N. Padoy, O. Meireles, and D. A.
Hashimoto. Computer vision in surgery. Surgery, 169(5):1253–1256, 2021.

[24] S. Wazir, G. S. Kashyap, and P. Saxena. Mlops: A review. arXiv preprint
arXiv:2308.10908, 2023.

[25] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and M. A. Gerosa. Quality
gatekeepers: investigating the effects of code review bots on pull request activities.
Empirical Software Engineering, 27(5):108, 2022.

[26] M. Wessel, J. Vargovich, M. A. Gerosa, and C. Treude. Github actions: the impact
on the pull request process. Empirical Software Engineering, 28(6):1–35, 2023.

[27] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski, S. Murch-
ing, T. Nykodym, P. Ogilvie, M. Parkhe, et al. Accelerating the machine learning
lifecycle with mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018.

[28] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact of
continuous integration on other software development practices: a large-scale
empirical study. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 60–71. IEEE, 2017.

https://dvc.org/
https://github.com/BlueBrain/Search
https://github.com/dna-seq/dna-seq
https://github.com/guildai/guildai
https://github.com/guildai/guildai
https://en.wikipedia.org/wiki/HTTP_ETag#Strong_and_weak_validation
https://en.wikipedia.org/wiki/HTTP_ETag#Strong_and_weak_validation
https://mlflow.org./
https://mlflow.org./

	Abstract
	1 Introduction
	2 Background
	2.1 Versioning and tracking
	2.2 DVC for ML Pipelines

	3 Dataset
	4 Results and Findings
	4.1 RQ1: (The action) How is DVC used in open-source ML-based software development?
	4.2 RQ2: (The reaction) How does the introduction of DVC affect the software development process?

	5 Related Work
	6 Threats to Validity
	7 Conclusion and Future Work
	References

