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Abstract—Just-in-Time Software Defect Prediction (JIT-SDP)
is an SDP approach that makes defect predictions at the software
change level. Most existing JIT-SDP work assumes that the
characteristics of the problem remain the same over time.
However, JIT-SDP may suffer from class imbalance evolution.
Specifically, the imbalance status of the problem (i.e., how
much underrepresented the defect-inducing changes are) may be
intensified or reduced over time. If occurring, this could render
existing JIT-SDP approaches unsuitable, including those that re-
build classifiers over time using only recent data. This work thus
provides the first investigation of whether class imbalance evo-
lution poses a threat to JIT-SDP. This investigation is performed
in a realistic scenario by taking into account verification latency
— the often overlooked fact that labeled training examples arrive
with a delay. Based on 10 GitHub projects, we show that JIT-SDP
suffers from class imbalance evolution, significantly hindering
the predictive performance of existing JIT-SDP approaches.
Compared to state-of-the-art class imbalance evolution learning
approaches, the predictive performance of JIT-SDP approaches
was up to 97.2% lower in terms of g-mean. Hence, it is essential
to tackle class imbalance evolution in JIT-SDP. We then propose
a novel class imbalance evolution approach for the specific
context of JIT-SDP. While maintaining top ranked g-means, this
approach managed to produce up to 63.59% more balanced
recalls on the defect-inducing and clean classes than state-of-the-
art class imbalance evolution approaches. We thus recommend
it to avoid overemphasizing one class over the other in JIT-SDP.

Index Terms—Software defect prediction, class imbalance,
verification latency, online learning, concept drift, ensembles

I. INTRODUCTION

Reducing the number of software defects (and their high
debugging cost) is a challenging problem, specially consider-
ing that software teams have limited testing resources [1], [2],
and often face strong pressure towards rapid delivery [1], [3].
Therefore, machine learning approaches have been proposed
for predicting defects in software source code [4]. Such
Software Defect Prediction (SDP) approaches can potentially
help testing and inspection effort to be more easily and wisely
allocated, focusing more attention on software components
that are likely to contain defects.

Just-in-Time (JIT) SDP is a specific type of SDP approach
that makes predictions at the software change level. It identifies
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defect-inducing software changes as soon as they are imple-
mented (i.e., “just-in-time”). As the changes are still fresh in
the developers’ minds, their inspection is much easier than at
later stages. In addition, software changes typically involve
few lines of code (i.e., they have fine code granularity) and
can be straightforwardly assigned to the right developers for
inspection, further facilitating their task. These are advantages
over both (1) code debugging after a defect report is pro-
duced and (2) more conventional SDP, which is concerned
with predicting defects in software components (e.g., files or
packages) [5]. Therefore, JIT-SDP has attracted special interest
from industry. For instance, Lucent [1], BlackBerry [6] and
Cisco [7] have adopted this type of approach.

Most existing work on JIT-SDP assumes that past defect-
inducing software changes are always similar to future ones.
However, as recently shown by McIntosh and Kamei [8],
the characteristics (input feature values) of defect-inducing
software changes fluctuate during the lifecycle of a software.
These fluctuations can negatively impact the predictive per-
formance of classifiers trained on old data, requiring machine
learning algorithms able to not only take chronology into
account, but also learn and adapt over time. Algorithms that
can learn new training examples separately over time are often
referred to as online learning algorithms [9].

Besides fluctuations in the characteristics of defect-inducing
software changes, JIT-SDP may also suffer from class imbal-
ance evolution. This means that the imbalance status of the
problem (i.e., how much underrepresented the defect-inducing
software changes are in the training data) may be intensified or
reduced over time. JIT-SDP is known to be a class imbalanced
problem, where defect-inducing software changes are typically
a minority compared to clean software changes [5], [7], [2].
However, existing work assumes that the class imbalance
status of JIT-SDP is static, i.e., it does not evolve over time. If
it actually does evolve over time, existing JIT-SDP approaches
(e.g., [5], [2], [7]) are likely to become unsuitable (perform
poorly) over time, because they would be assuming the wrong
level of class imbalance. Even the recent approach of re-
building classifiers using only recent data, recommended to
cope with fluctuations in the characteristics of defect-inducing
software changes [8], would struggle to obtain good predictive
performance. Despite being able to track the level of class



imbalance, this would be at the cost of discarding old training
examples which may be vital for learning the minority class.
Therefore, this is unlikely to be a suitable approach for coping
with class imbalance evolution.

Given the potential threat posed by class imbalance evolu-
tion to the predictive performance of JIT-SDP classifiers, the
first aim of this work is to provide the first investigation
of whether class imbalance evolution occurs and nega-
tively impacts predictive performance of existing JIT-SDP
approaches. Our study, based on ten GitHub open source
projects, reveals that class imbalance evolution is indeed an
issue in JIT-SDP and can have a very detrimental effect
on the predictive performance of JIT-SDP approaches from
the literature. Their predictive performance in terms of g-
mean was up to 97.2% worse than that achieved by machine
learning algorithms prepared to tackle class imbalance evolu-
tion. Therefore, class imbalance evolution must be taken into
account to improve the applicability of JIT-SDP approaches.

However, our study also reveals that the existing machine
learning algorithms for class imbalance evolution [10] suffer
from overemphasising one class (defect-inducing or clean)
over the other in JIT-SDP. This can be very detrimental in
practice. Overemphasising the clean class means that defect-
inducing software changes may be missed. Overemphasising
the defect-inducing class means that several changes are
incorrectly flagged as defect-inducing, suggesting a too high
number of clean software changes to be closely inspected
by developers and thus reducing their trust in the approach.
Therefore, the second aim of this paper is to propose a
novel JIT-SDP approach to address this problem. Our
proposed approach was successful in obtaining top-ranked g-
means while reducing the difference in recalls between the
defect-inducing and clean classes by up to 63.59%.

Our investigation is performed in a realistic scenario where
not only new software changes are produced over time and
arrive as incoming training examples, but also there is ver-
ification latency. This term refers to the fact that the labels
associated to training examples arrive with delays [9]. We
cannot know at commit time whether a new software change
induces a defect or not. If we knew that, we would not
need to provide a prediction of that, and JIT-SDP would be
unnecessary. Instead, it takes time for defects to be found,
meaning that it takes time to assign the label of “defect-
inducing” to a given training example. And it takes time for
one to gain confidence that a given change is clean. Therefore,
we need to wait for a given amount of time (waiting time)
before assigning the label “clean” to a given training example.
Ignoring verification latency means training JIT-SDP models
on data not yet available in practice, leading to invalid studies
and over-optimistic estimations of predictive performance [7].
And yet, this issue is often overlooked by JIT-SDP studies,
as alerted by Tan et al. [7]. Our study provides the first
investigation of the extent to which verification latency occurs
in JIT-SDP. We found that verification latency caused delays
from 1 to 11.5 years (4210 days) in receiving the true label
of defect-inducing software changes.

This paper is further organized as follows. Section II
presents the research questions and summarises the novel
contributions of this work. Section III presents related work.
Section IV introduces the proposed approach. Section V details
the investigated datasets. Section VI explains the experimental
setup to investigate the RQs. Section VII presents the analyses
to answer the RQs. Section VIII presents threats to validity.
Section IX presents conclusions and implications of this work.

II. RESEARCH QUESTIONS AND NOVEL CONTRIBUTIONS

Overall, this work answers the following research questions:

RQ1 To what extent there is verification latency in JIT-SDP?
What would be reasonable waiting times to use in JIT-
SDP studies? This RQ informs the proposal and applica-
tion of machine learning approaches to JIT-SDP in this
and future studies, by investigating how long it typically
takes for software changes to be found as defect-inducing.
Does JIT-SDP suffer from class imbalance evolution?
More specifically, do the ratios of defect-inducing and
clean software changes evolve over time in JIT-SDP?
How? This RQ investigates whether the topic of class
imbalance evolution is really relevant in JIT-SDP.

If class imbalance evolution does occur in JIT-SDP, what
is its effect on the predictive performance of (1) existing
JIT-SDP approaches and (2) machine learning algorithms
specifically designed to cope with class imbalance evo-
lution, when taking verification latency into account?
This RQ reveals whether the predictive performance of
existing JIT-SDP approaches is negatively affected by
class imbalance evolution, and how well state-of-the-
art machine learning algorithms for coping with class
imbalance evolution perform in the context of JIT-SDP.

How to improve the predictive performance of JIT-SDP,
given class imbalance evolution and verification latency?
This RQ proposes a novel JIT-SDP approach to better
cope with class imbalance evolution in the presence of
verification latency.

RQ2

RQ3

RQ4

Overall, the main novel contributions of this work are that

this is the first work to:

« show that class imbalance evolution occurs in JIT-SDP;

o reveal that this negatively affects the predictive perfor-
mance of existing JIT-SDP approaches;

« investigate if state-of-the-art online class imbalance learn-
ing algorithms from the machine learning literature can
help tackling this issue in JIT-SDP;

« propose a novel online class imbalance learning algorithm
to improve upon the results achieved by these state-of-
the-art algorithms in the context of JIT-SDP; and

o investigate to what extent verification latency occurs in
JIT-SDP, enabling researchers and practitioners to make
more informed choices when applying machine learning
to JIT-SDP.

III. RELATED WORK

We discuss four areas of SDP research that are most closely
related to our paper, and contrast the prior work with ours. We



also discuss the machine learning literature on online class
imbalance learning for tackling class imbalance evolution and
verification latency.

A. JIT-SDP

One of the first studies on JIT-SDP was conducted by Kim
et al. [11]. They used software change features like the terms
in added and deleted deltas, terms in directory/file names,
complexity metrics, etc., to classify changes as being defect-
inducing or not.

Several other studies investigated the characteristics of
defect-inducing software changes and potential metrics (input
features) for predicting them, including the day of the week
[12] or the time of the day [13] the change was committed,
and metrics for identifying changes that require a lot of effort
to fix [14]. Shihab er al. [6] studied risky (defect-inducing)
changes — as deemed by the developers who committed them.
They found that lines of code added, bugginess of the touched
files (i.e., the ratio of bug fixing to total changes that touched
a file), the number of bug reports linked to a commit and the
developer experience are the top indicators of risky changes.

One of the largest JIT-SDP studies was conducted by Kamei
et al. [5]. They used a variety of factors extracted from
commits and bug reports, which were found as good indicators
of defect-inducing software changes. They showed that the
metrics used in their study yield high predictive performance
for both open source and commercial projects. Therefore, we
use the same metrics in this work, as provided by the tool
Commit Guru (http://commit.guru). The dimensions used to
create these metrics are further explained in Section V.

None of the papers above considered class imbalance evo-
lution or verification latency.

B. Verification Latency in JIT-SDP

As explained in Section I, verification latency refers to the
fact that the labels of training examples may arrive much later
than their input features. Ignoring such delay means training
JIT-SDP models on data not year available in practice, which is
a serious threat to validity. Tan et al. [7] found that ignoring
verification latency leads to over-optimistic estimates of the
predictive performance. They proposed an approach that takes
verification latency into account. It stores new batches of
training examples over time, and uses all batches received
so far for building a JIT-SDP classifier. Training examples
are available to compose new batches only after a pre-defined
waiting time has passed. This waiting time should reflect the
time it takes for one to be confident enough that software
changes are not defect-inducing. However, their study does not
analyse how long it typically takes for defects to be found,
and their proposed approach assumes that there is no class
imbalance evolution. Different from their work, our study
(1) investigates class imbalance evolution and its impact on
the predictive performance of JIT-SDP classifiers over time,
(2) proposes approaches to better deal with class imbalance
evolution, and (3) investigates how long it typically takes for
software changes to be revealed as defect-inducing.

C. Concept Drift in SDP

Concept drift is a change in the data generation process,
affecting the underlying probabilities of the data [15]. They
can be changes in (1) the relationship between input features
describing an example and the label being predicted (p(z|y)),
and/or (2) the ratio of examples of each of the classes being
predicted (p(y)). In JIT-SDP, these correspond to changes
in the defect generating process, and can occur due to the
evolution or maturing process of a software project. For
example, the development team may be initially focused in the
GUI and then turn its effort to implement the business logic,
leading to a concept drift affecting p(x|y). Or, refactoring
could potentially affect the rate of defect-inducing software
changes, leading to concept drifts affecting p(y). Class imbal-
ance evolution corresponds to concept drifts affecting p(y) in
class imbalanced problems.

Very few studies investigated concept drift in SDP.
Ekanayake et al. [16] studied four open source projects and
showed that SDP classifiers’ performance significantly varies
over time, suggesting that SDP suffers from concept drift.
This study did not investigate JIT-SDP. Recently, McIntosh
and Kamei [8] examined the impact of concept drift affecting
p(zly) in the specific context of JIT-SDP. They considered
three open source projects and found that (i) JIT-SDP classi-
fiers lose a significant amount of performance after one year
and (ii) the important indicators of defect-inducing changes
also vary over time. To tackle such concept drifts, they suggest
re-building JIT-SDP classifiers on sliding windows containing
only recent software changes. To the best of our knowledge,
this is the first work to examine concept drift in JIT-SDP.

However, McIntosh and Kamei [8] did not investigate class
imbalance evolution, which requires different strategies to
avoid reduction in predictive performance [15]. Their sug-
gested sliding windows strategies can be even detrimental
to predictive performance in such scenario. This is because
despite being able to track the level of class imbalance,
this is at the cost of discarding potentially vital information
for learning the minority class. Therefore, sliding windows
are unlikely to be suitable for coping with class imbalance
evolution. In addition, their work did not take verification
latency into account, implicitly assuming that the labels of
training examples are available immediately after commit time.

Tan et al. [7] investigated JIT-SDP in an updatable learning
scenario, where additional training examples can be received
over time. However, their updatable classifiers assume that all
training examples come from the same underlying probability
distribution, i.e., they assume that there is no concept drift.
As explained by Ditzler et al. [9], learning in the presence of
concept drift requires “approaches that can monitor and track
the underlying changes, and adapt a model to accommodate
those changes accordingly.” The approaches investigated by
Tan et al. [7] do not meet these requirements.

D. Class Imbalance Learning for SDP

SDP is well-known to be a class imbalanced problem. Many
studies consider this issue, independent of it being their central



theme or not. Mahmood et al. [17] showed that the predictive
performance of SDP classifiers (in terms of Mathews Correla-
tion Coefficient) gets worse as the data get more imbalanced.
Wang and Yao [18] provided a comprehensive study of dif-
ferent class imbalance learning techniques in the context of
SDP, including resampling, threshold moving, and ensembles.
Their study, based on performance measures such as balance,
g-mean, and Area Under the ROC Curve (AUC), concluded
that an ensemble approach called AdaBoost.NC yielded the
best overall predictive performance. They also proposed a
version of Adaboost.NC that is able to automatically tune its
training parameters. Kamei et. al. [19] investigated the use
of four resampling methods for fault prone module detection
and showed that, when associated to linear discriminant anal-
ysis and logistic regression analysis, there is a performance
improvement irrespective of the resampling method. Bennin
et.al. [20] introduced a synthetic oversampling approach based
on the chromosomal theory of inheritance that, according to
their experiments, overcame four other resampling techniques.
These studies did not investigate JIT-SDP.

In JIT-SDP, resampling is typically used to tackle class
imbalance [5], [2], [7]. For instance, Kamei et al. [5], [2]
applied an undersampling technique that randomly eliminates
clean class examples to balance the number of training ex-
amples from both classes. Tan et al. [7] investigated the
effect of different resampling techniques on JIT-SDP while
taking the chronology of the data and verification latency
into account, including oversampling techniques that replicate
minority class examples. They concluded that resampling in
general helps to improve predictive performance in terms
of Fl-measure. However, their approach adopts a fixed re-
sampling rate, assuming that the imbalance ratio is fixed
throughout time, i.e., assuming that there is no class imbalance
evolution. Specifically, their parameter tuning procedure fixed
the resampling rate to be used for a whole dataset to a single
value, rather than enabling the resampling rate to dynamically
adapt to the current imbalance level of the data.

None of the studies on class imbalance learning for SDP
(including JIT-SDP) investigated the impact of class imbalance
evolution, or techniques to handle class imbalance evolution.
This paper is the first to provide such investigation.

E. Machine Learning To Tackle Class Imbalance Evolution

Class imbalance evolution started to be investigated only
very recently by the machine learning community [15]. Wang
et al. [10] proposed two online class imbalance learning
approaches for coping with class imbalance evolution: Im-
proved Undersampling Online Bagging (UOB) and Improved
Oversampling Online Bagging (OOB). These approaches track
the current imbalance ratio, i.e., the rate pg) of examples
belonging to each class ¢ € {0, 1} as follows:

P =0+ (10" ==0), M

where ¢ is the current time step; each time step corresponds to
the presentation of a new training example to the algorithm;
(y® == ¢) returns 1 if the training example at time ¢ is

of class ¢ and O otherwise; and 6/, 0 < 6’ < 1, is a pre-
defined parameter to tune the emphasis on the more recent
data. Smaller 6@’ emphasizes the present, enabling pg) to
reflect changes in the imbalance ratio more quickly, but being
potentially more affected by noise. Tracking changes in the
imbalance ratio means tracking (but not yet coping with) class
imbalance evolution.

To cope with class imbalance evolution, the rates pgt) are
used to dynamically decide the resampling rate A used by
UOB and OOB to decide the number of times k that a given
training example is to be presented to a given classifier. The
number & is drawn from a Poisson(\) distribution. In UOB,
examples of the majority class use A = pgfl)m /p%x, where
man is the minority and max is the majority class. This re-
sults in frequently sampling them zero times (undersampling).
Training examples of the minority class use A = 1. In OOB,
examples of the minority class have a resampling rate of
A= psfl)m /pg,?m This results in k being frequently greater
than 1 (oversampling). Training examples of the majority
class use A = 1. Both UOB and OOB maintain an Online
Bagging ensemble [21] composed of n Hoeffding trees [22]
as base classifiers. The pseudocode for OOB is in Algorithm
1, removing the statements in blue.

UOB and OOB are the state-of-the-art for dealing with
class imbalance evolution [15], making them good candidates
to tackle that in JIT-SDP. Based on UOB and OOB, this
paper provides the first investigation of online class imbalance
evolution learning approaches in the context of JIT-SDP.

F. Machine Learning to Tackle Verification Latency

Some work on learning data streams can be argued to take
verification latency into account. However, they are designed
for very specific learning scenarios. For example, Zhang et
al. [23] assume that some training examples become available
in a timely manner, whereas others never have their labels
revealed. Dyer et al. [24] assume that labeled training exam-
ples are available only during an initial learning stage. After
that, no further labeled training examples are provided. These
studies proposed to use semi-supervised learning to cope with
that. Pozzolo et al. [25] is a very recent work in the context
of credit card fraud detection. It assumes that the system has
prior knowledge of which training examples will have their
labels arriving early and which examples are likely to have
delayed labels. They propose to learn different classifiers with
these two different types of training examples.

None of the learning scenarios above matches the case of
JIT-SDP, where any example could receive its true label early
(if a defect associated to it is quickly found), at the end of the
waiting time (if the example is believed to be clean) or after
the waiting time (if an example previously considered clean is
found to actually be defect-inducing after the waiting time).

IV. PROPOSED APPROACH

Even though UOB and OOB are the state-of-the-art ap-
proaches to cope with class imbalance evolution, they have
three potential problems in the context of JIT-SDP: (1) They



do not consider verification latency. (2) They assume that
adjusting the resampling rate so that the class proportions
in the training data get closer to (1:1) is enough to obtain a
balanced predictive performance on different classes. If one of
the classes is more difficult to learn, balancing their numbers
of training examples may still lead to unbalanced predictive
performances, where the recall on one class is still much worse
than the recall on the other. As explained in Section I, un-
balanced predictive performances are undesirable in JIT-SDP.
(3) SDP frequently has noisy or outlier training examples,
containing exactly the same input feature values but different
labels [26]. The effect of noisy or outlier training examples of
the defect-inducing class could be magnified when adopting
oversampling, potentially leading to false alarms.

Section IV-A explains how to take verification latency into
account, overcoming problem (1). Section IV-B proposes a
novel approach to overcome problems (2) and (3) in the
presence of verification latency.

A. A Framework for Verification Latency Classification

In practice, it is not possible to know, at commit time,
whether a new software change induces a defect or not. So,
we consider that each change is labeled as defect-inducing
or clean only w (waiting time) days after the commit time,
or as soon as it is found to be defect-inducing, whichever is
shorter. The waiting time w is a parameter to be set by software
managers. For instance, if it typically takes less than 90 days
for a change to be found as defect-inducing, an appropriate
value for w would be 90 days. The reason is that, if no defect
associated to a change has been found in 90 days from its
commit, one can gain confidence that this change is clean.
Once a change is labeled, it is immediately used to create a
training example for learning. If a change that has already been
labeled as clean is found to be defect-inducing after the waiting
time, the training example corresponding to that change will
be updated with the label defect-inducing and presented again
for learning. This framework can be applied to any classifier.

B. Oversampling Rate Boosting (ORB)

This section proposes a novel approach (ORB) to overcome
problems (2) and (3) discussed in the beginning of Section I'V.
To cope with (2), ORB builds upon OOB by monitoring the
model predictions to support the adjustment of the resampling
rate. If the predictions are considerably biased towards a
given class ¢, the resampling rate of the opposite class ¢
should be boosted (increased). To cope with (3), a safety
mechanism is adopted to prevent using potentially noisy (or
outlier) examples of the defect-inducing class for training.
Algorithm 1 depicts the proposed approach. ORB is run within
the framework explained in Section IV-A.

When a new training example d®) = (z(*), y(*)) is received
at time step ¢ (line 1), the moving average of the predictions
(ma®) is calculated over a time window of size w, (lines 2
and 3). The current problem is a binary problem where § €
{0,1}, with O representing the clean and 1 representing the
defect-inducing class. Therefore, the moving average of the

Algorithm 1: ORB’s training procedure. Statements in
black correspond to statements used by OOB’s training.

Input: Ensemble size n, incoming training examples d, parameters
of the adjustment function (th, lo, l1, m), noise mechanism
parameter o, decay factor §’, window size ws

1 for each training example d(t) = (a:(t)7 y<t)), t < 0 to oo do

2 Obtain the ensemble prediction §(*) for 2(*)
3 Compute the average ma(*) over the predictions on the most
recent ws examples, including d(*)
4 Update the proportions p(()t) and pgt) of each class using Eq. 1
5 for i < 0 to n do
6 A=1
7 if y(t) == 1 and pgt) < p(()t) then
[ x=0l /0"
if y(*) == 0 and p(()t) < pgt) then
_ (@) (1)
10 | x=p{"/0§
11 Set k ~ Poisson(\)
12 Calculate OBF®) (ma() th, 1y, 11, m) using Eq. 2 or
Eq. 3
13 k=k-OBF®
14 Run noise safety mechanism with parameter o
/* Depending on the noise safety
mechanism outcome, update the ith
Hoeffding tree with k copies of d¢ =/
15 Update(HT;, k, d¢t)
end
end

predictions enables us to detect any classification bias towards
each of the classes. According to the severity of this bias, the
resampling rate of one of the classes will be boosted.

After calculating the moving average of the predictions,
OOB’s procedures are used to update the proportions of each
class pét) and p(lt) and determine the resampling rate A (lines 4
to 10). The resampling rate is used to determine the number of
times k that the training example will be sampled for a given
Hoeffding tree to learn (line 15). In OOB, k is directly taken
from a Poisson(\) distribution (line 11). However, in ORB,
the value taken from Poisson(A) is multiplied by a boosting
factor OBF®) (lines 12 to 13) before being used to resample
the training example (line 15). This factor boosts (increases)
the number of times that the training example is sampled.

The equations used to calculate the boosting factors for
training examples of the clean and defect-inducing classes are
shown below, respectively:

’!71.[1(1’) ]
(M * lo) +1, if ma® >th

— h
OBFY (Py) = m=mf @)
1, otherwise
7171a(t)
' (%*h) +1, if ma® <th
oBF"(py) =

1, otherwise
3
where Py and P; are the set of parameters for each func-
tion, containing the following parameters: m — determines
the growth of the exponential function; th — stands for the
threshold that indicates which class must be boosted; ma! —
the predictions moving average at time t¢; and [y and [y —

control the maximum boosting factor values (i.e., the boosting
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Fig. 1. Boosting factor functions with th = 0.4, [p = 10, [ = 12, m = L.5.

TABLE I
STATISTICS OF THE STUDIED PROJECTS

Dataset #commits | %defect- Period Language
inducing
Fabric8 13,004 20% 12/2011 - 12/2017 Java
JGroups 18,317 17% 09/2003 - 12/2017 Java
Camel 30,517 20% 03/2007 - 12/2017 Java
Tomcat 18,877 28% 03/2006 - 12/2017 Java
Brackets 17311 23% 12/2011 - 12/2017 | JavaScript
Neutron 19,451 24% 12/2010 - 12/2017 Python
Spring-integration 8,692 27% 11/2007 - 01/2018 Java
Broadleaf 14911 17% 11/2008 - 12/2017 Java
Nova 48,938 25% 08/2010 - 01/2018 Python
NPM 7.893 18% 09/2009 - 11/2017 | JavaScript

factors varies from 1 to 14y and 1+ [;). The parameters th
and ma® must be scaled between 0 and 1.

The functions used to compute the boosting factors are
illustrated in Fig. 1. The condition ma(® < th implies that, at
time ¢, less than th% of the commits are being classified as
defect-inducing, so, the resampling rate of the defect-inducing
class must be boosted. On the other hand, if ma® > th,
more than th% of the commits are being classified as defect-
inducing. In this case, the resampling rate of the clean class
is boosted. As the moving average approaches the limits (0
or 1), the function growth gets steeper. The steepness level
is controlled by the parameter m. The parameter th, should
be chosen to represent a reasonable imbalance rate in the
classifier’s predictions. Future work could investigate methods
to automatically tune th.

ORB also contains a safety mechanism (line 14) to cope
with noise on defect-inducing training examples. If such
examples have exactly the same input features z(*) as more
than o previous clean training examples, the algorithm skips to
the next iteration of the outer loop without learning the current
defect-inducing training example d®).

V. DATASETS

Our study uses the ten GitHub open source projects shown
in Table 1. These projects were randomly chosen among
projects with more than 5 years of duration, rich history (>10k
commits) and good defect-inducing changes ratio (~20%
overall). Their size ranges from 74k to over 1.3m lines of code
(LOC), with development periods from 6 to over 14 years.
To obtain defect-inducing software changes, we use Commit
Guru [27], a tool that analyzes and provides change level
analytics. Commit Guru applies the SZZ algorithm [12]
to identify defect-inducing changes and their associated bug
fixing commits. It provides a number of commit-level metrics
related to five dimensions: (1) the size of the change, (2) the
history of the files changed, (3) the diffusion of the change,
(4) the experience of the developers making the modification,
and (5) the purpose of the change. These dimensions have
shown to perform well in JIT-SDP research [5], [2], [8], and

lead to 14 metrics used as input features to describe software
changes in this study. Further details on the specific metrics
are omitted from this paper due to space constraints, and can
be found in Kamei ef al. [5]’s work.

VI. EXPERIMENTAL SETUP

a) Setup for RQI: An analysis of the time it takes for
changes to be revealed as defect-inducing (defect discovery
delay) will be provided based on statistics such as median,
percentiles, minimum and maximum values. It will support
the choice of waiting time (w) explained in Section IV-A.

b) Setup for RQ2: The proportion of examples from each
class over time will be analysed using Eq. 1 with 8" = 0.99.
This value was chosen for providing a good trade-off between
tracking changes and not being too affected by noise, based on
preliminary experiments. The investigation takes into account
verification latency as explained in Section IV-A, using the
waiting time of w = 90 days informed by RQ1. Possible causes
for variations in the proportions of the classes are discussed.

c) Setup for RO3: This RQ will be answered by compar-
ing five approaches, taking verification latency into account as
explained in Section IV-A. The approaches are OOB, UOB,
OOB(FixedIR), OOB(FixedIR)* and OOB-SW. OOB and
UOB [10] are two state-of-the-art online class imbalance learn-
ing approaches explained in Section III-E. OOB(FixedIR) uses
a modified version of OOB that assumes that the imbalance
ratio (and thus the resampling rate) of the problem is fixed over
time. It thus corresponds to the resampling strategy typically
used in the JIT-SDP literature [5], [2]. OOB(FixedIR)* is
similar to OOB(FixedIR), but training examples of the defect-
inducing class are only used for training at the end of the
waiting time. This is the case even if their software changes are
found to be defect-inducing earlier, as done in Tan et al. [7]’s
JIT-SDP work. Finally, OOB-SW trains an OOB ensemble on
a sliding window — the strategy recommended by Mclntosh
and Kamei [8]. The oversampling rate is set to ng/nq, where
ng is the number of clean and n, is the number of defect-
inducing changes within the window.

The evaluation metrics used for the comparison are the
recalls on the clean (Ry) and defect-inducing (R;) classes, and
the g-mean (y/Recy X Recy). These are the most commonly
used metrics in the online class imbalance literature [15].
Different from precision and F-measure, they are robust to
the class imbalance problem [28]. The absolute differences
between Ry and R; was also adopted, as large gaps between
the recalls of different classes are undesirable in JIT-SDP,
as explained in Section I. All metrics are computed in a
prequential way, as recommended for online learning studies
in the presence of concept drift [29]. The decay parameter 6
used in the calculation of the metrics enables them to track the
impact of concept drift on predictive performance. Similar to
the parameter 0’ used for RQ1, # = 0.99 was used. It is worth
noting that, given the online concept drifting nature of the
problem, AUC (an extensively used metric for offline binary
problems) is not applicable.



A grid search based on the first 5,000 changes of each
dataset, using g-mean as evaluation criterion, was conducted
to choose the best parameters for each approach. Values in
bold face correspond to the chosen values for the experiments.
Some parameters are shared among the classifiers: (n) ensem-
ble size = {10,20,30,40}; (¢’) decay factor = {0.9,0.99,0.999};
and (w) waiting period = {90,180}. For OOB(FixedIR), the
imbalance ratio was fixed at time step 500. For the OOB-SW,
sliding windows of size 90 and 180 days were tested.

d) Setup for RQ4: ORB was compared against the
approaches from RQ3 that obtained the best g-mean and
|Ro — R1|. ORB has the same parameters of OOB plus (i)
the parameters for exponential functions (Eqs. 2 and 3) and
(i1) noise detection mechanism (n). The values tested for these
parameters were: moving average window size = {50, 100,
200}; th = {0.3, 0.4, 0.5}; lp = {5, 10, 15}; I; = {6, 12, 18};
m = {1.5, 2.0, e}; and n = {3, 5, 7}. These values were cho-
sen based on preliminary experiments. A sensitivity analysis
showed that ORB is not very sensitive to parameters choice,
and is available at http://doi.org/10.5281/zenodo.2555695.

For both RQ3 and RQ4, 30 executions of each approach
were performed. The comparisons among the approaches
were supported by the Scott-Knott multiple comparison proce-
dure to separate the approaches into non-overlapping groups,
regarding their overall predictive. This test was conducted
considering the total number of experiments (i.e., 10 datasets
times 30 executions for each classifier). Scott-Knott was
recommended by Mittas and Angelis [30] because it can (1)
separate different approaches into non-overlapping groups and
(2) reduce the number of statistical tests performed, being a
powerful test. As suggested by Menzies et al. [31], Scott-Knott
was run with non-parametric bootstrap sampling, making the
test non-parametric. In addition, Vargha and Delaney’s non-
parametric A12 effect size [32] was used to ensure that groups
can only be split if medium or large effect sizes exist between
them. Specifically, Scott-Knott only performed statistical tests
to check whether groups should be separated if the A12 effect
size was medium or large. If A12 effect size was not medium
or large, groups were not separated. As suggested by Vargha
and Delaney [32], A12 > 0.56, > 0.64 and > 0.71 are
considered small, medium and large, respectively. The use
of effect size with Scott-Knott has also been recommended
by Tantithamthavorn et al. [33], [34], even though they used
Cohen’s parametric effect size. The code provided by Tim
Menzies (at https://github.com/txt/ase16/blob/master/doc/stats.
md) was used to run the Scott-Knott procedure.

All approaches use Hoeffding trees [22] as base learners, as
explained in Sections III-E and IV. A replication package is
available at http://doi.org/10.5281/zenodo.2555695.

VII. EXPERIMENTAL RESULTS

A. RQI: Analysis of Verification Latency

We refer to the time taken for bug reports to be created
and their corresponding defects fixed, making defect-inducing
training examples available, as defect discovery delay. Fig. 2
depicts the defect discovery delay. The delays ranged from 1
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Fig. 2. Defect discovery delay (in days) for each software project, using a
logarithmic y-axis.

to 4210 days (i.e., approximately 11.5 years). The medians
delays varyied from 15 to 416.5 days, and were less than or
close to 90 days (lower red dashed line) in 8 out of 10 projects
(Fabric8, Jgroups, Camel, Brackets, Neutron, Broadleaf, Nova
and NPM). Therefore, using a waiting time of 90 days implies
that more than, or approximately, half of the defect-inducing
changes would produce correctly-labeled examples for training
before the end of the waiting time.

Increasing the waiting time yields a higher number of
correctly labeled defect-inducing changes to be used at training
time. However, as the waiting time increases, the chances
of a concept drift in p(z|y) occurring before the example is
available for training also increases. This means that the train-
ing examples are potentially obsolete and misleading when
they arrive for training [8]. In fact, McIntosh and Kamei’s [§]
recommended using changes produced within the past 90 days,
as older changes can be detrimental to predictive performance
due to concept drift in p(x|y). Therefore, a waiting period
of 90 days can be argued to offer a good trade-off between
mislabeled training examples and concept drift in p(z|y).

RQI: Verification latency is intrinsic to JIT-SDP. Defect
discovery delays ranged from 1 day to over 11 years, and
medians were typically close to, or lower than, 90 days. A
waiting time of 90 days can be considered to provide a good
trade-off between correct labeling and concept drift in p(x|y).

B. RQ2: Analysis of Class Imbalance Evolution

Fig. 3 shows the evolution of the ratio of defect-inducing
and clean software changes over time for each dataset. It
represents the imbalance status as perceived by machine
learning algorithms, taking verification latency into account as
explained in Section IV-A. If a training example is considered
as clean at the end of the waiting time and later on it is found to
be defect-inducing, it will first be used to update the proportion
of each class as a clean example, and then later on it will be
used again as a defect-inducing example.

For Fabric8, Jgroups, Camel, Spring-Integration, Nova and
NPM, there are several periods where the the ratio of defect-
inducing software changes increases before reducing again.
In Camel, for example, around time steps 11k, 15k, 18k and
26k, this ratio increases from around 15-20% to more than
50%. The increases observed at time steps 5k and 13k in
Fabric8 coincide with major refactorings around timeframes
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Fig. 3. Class imbalance evolution for all datasets, calculated based on Eq. 1
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3.x and 4.x reported in their official website http://fabric8.io/
gitbook/overview.html#history. We confirmed the time steps
corresponding to refactorings based on the RefactoringMiner
tool. This suggests that refactoring can indeed be linked
to class imbalance evolution. Such large variations in the
imbalance status of the problem are likely to disturb machine
learning algorithms that are unable to adapt rapidly to them
[15]. The remainder of the datasets also suffer from increases
in the defect-inducing ratio.

According to Fig. 3, Spring-Integration experiences a period
of time (from 1k to 3k) where the ratio of defect-inducing
software changes becomes very small (less than 0.001%). This
means that the problem becomes very highly imbalanced.As
machine learning algorithms tend to struggle with more im-
balanced SDP problems [17], classifiers unable to identify and
tackle such class imbalance evolution may become unsuitable.

For some datasets, such as Camel, Brackets, Neutron and
Nova, the ratio of defect-inducing software changes also
presents a decreasing trend over time. For instance, for Camel,
the ratio of defect-inducing examples started at around 40%
and decreased to less than 10% by the end of the period
analysed, having become more than four times smaller, and
thus increasing the challenge posed by class imbalance [17].
There are two potential reasons behind such decreasing trends.
First, as open source software matures, it may become less
defective over time. And second, defects might be found
more quickly in the initial stages of the project, causing the

perceived rate of defect-inducing changes to be higher in the
beginning. Independent of the reason, this decreasing trend
shows that class imbalance evolution occurs continuously over
time in some projects. Classifiers unable to continuously adapt
to that are likely to become unsuitable [15].

RQ2: In short, JIT-SDP does present class imbalance evo-
lution, including (1) steep peaks increasing the ratio of
defect-inducing software changes, which cause the problem
to become more balanced; (2) sudden decreases in such
ratio, leading to very severe levels of class imbalance (defect-
inducing ratio of 0.001%), and (3) decreasing trends in such
ratio, causing the problem to become even 4+ times more
imbalanced over prolonged periods of time.

C. RQ3: The Impact of Class Imbalance Evolution on Predic-
tive Performance of Existing Approaches

Table II presents the overall predictive performances
across time steps obtained by OOB, UOB, OOB(FixedIR),
OOB(FixedIR)* and OOB-SW. ORB is also presented in this
table, but is analysed in Section VII-D.

Regarding the approaches that adopt strategies recom-
mended by the JIT-SDP literature:

OOB(FixedIR) obtained poor g-mean compared to the
other approaches. Together with OOB(FixedIR)*, it was
ranked worst in terms of g-mean by the Scott-Knott test
across datasets. Compared to OOB, which was ranked second,
OOB(FixedIR)’s g-mean was up to 70.34% lower (Tomcat),
with large effect sizes in 9 out of 10 datasets. OOB(FixedIR)
computes the oversampling rate based on the imbalance ra-
tio of the beginning of the project (until time step 500).
This is unlikely to be suitable throughout the whole project,
given the class imbalance evolution presented in Section
VII-B. Therefore, class imbalance evolution was detrimental
to OOB(FixedIR).

OOB(FixedIR)* also fixes the oversampling rate based on
the imbalance ratio computed until time step 500. However,
changes found to be defect-inducing before the end of the
waiting period are only used for computing the imbalance
ratio at the end of the waiting period. This led to a lower ratio
of defect-inducing examples at the beginning of the project,
causing the approach to focus more on the clean class. As
a result, it obtained worse R; than most other approaches.
Compared to OOB, for instance, its R; was up to 99.82%
lower (Fabric8), with large effect sizes for all datasets. Its g-
mean was as a result also lower. Similar to OOB(FixedIR),
fixing the oversampling rate based on values that are not
appropriate throughout the whole project was detrimental,
meaning that class imbalance evolution also negatively affects
this approach.

OOB-SW obtained worse g-mean compared to OOB with
large effect sizes in 8 out of 10 datasets. Its g-mean was up to
38.41% lower than OOB’s (Broadleaf). In addition, OOB-SW
was ranked worse than OOB in terms of |Ry — R4 | (i.e., group
4), based on the Scott-Knott test across datasets. OOB-SW’s
|Ro — R1| was up to 52.97% higher than OOB’s (Broadleaf).
The effect sizes were large in 7 out of 10 datasets in favor of



TABLE II
OVERALL PREDICTIVE PERFORMANCE, EFFECT SIZES AND STATISTICAL
TESTS TO COMPARE LEARNING APPROACHES

Dataset Classifier Ry Ry |Ro - Ri| G-Mean
00B 50.24 (2.20) 74.44 (2.15) 28.50 (2.97) 59.03 (0.63)
UOB 4227 (5.94) [-b] | 8370 (4.68) [b] | 43.90 (8.76) [-b] | 57.07 (2.42) [-b]
Fabric8 OOB(FixedIR) 62.64 (3.19) [b] 59.02 (2.63) [-b] | 48.64 (2.88) [-b] 50.92 (0.98) [-b]
OOB(FixedIR)* | 99.95 (0.03) [b] 0.13 (0.17) [-b] 99.82 (0.20) [-b] 1.66 (1.47) [-b]
OOB-SW 73.31 (0.11) [b] 46.35 (0.36) [-b] | 47.73 (0.32) [-b] 50.74 (0.29) [-b]
ORB 60.34 (1.75) [b] 68.35 (1.43) [-b] 20.59 (2.95) [b] 60.93 (0.87) [b]
OOB 59.38 (1.40) 56.67 (1.52) 28.13 (1.45) 54.71 (0.50)
UOB 73.77 (3.10) [b] 45.12 (3.02) [-b] 36.81 (3.66) [-b] 55.09 (0.71) [m]
JGroups OOB(FixedIR) 53.14 (0.62) [-b] 58.70 (0.59) [b] 21.98 (0.67) [b] 53.38 (0.31) [-b]
OOB(FixedIR)* 68.24 (1.70) [b] 47.96 (1.43) [-b] 30.19 (1.65) [-b] 53.08 (0.63) [-b]
OOB-SW 81.49 (0.07) [b] 35.33 (0.26) [-b] 57.51 (0.31) [-b] 47.95 (0.25) [-b]
ORB 62.65 (0.79) [b] 56.73 (1.23) [*] 17.79 (1.30) [b] 57.76 (0.96) [b]
0OOB 57.06 (1.44) 73.99 (0.92) 25.47 (1.60) 62.90 (0.70)
UOB 55.57 (2.53) [-b] 71.28 (2.34) [-b] 29.27 (2.72) [-b] 60.35 (1.05) [-b]
Camel OOB(FixedIR) | 91.54 (0.54) [b] | 20.97 (0.84) [-b] | 76.82 (1.22) [-b] | 38.24 (1.15) [-b]
OOB(FixedIR)* 87.42 (0.88) [b] 33.85 (0.90) [-b] 58.62 (1.20) [-b] 50.81 (0.94) [-b]
OOB-SW 71.67 (0.11) [b] 40.38 (0.27) [-b] | 64.61 (0.31) [-b] | 40.28 (0.41) [-b]
ORB 60.74 (0.61) [b] 70.41 (0.77) [-b] 17.03 (0.87) [b] 63.63 (0.50) [b]
00B 59.81 (2.41) 61.75 (1.79) 29.42 (2.29) 57.28 (0.88)
UOB 68.47 (2.51) [b] 50.04 (2.57) [-b] 33.69 (2.85) [-b] 55.18 (1.05) [-b]
Tomeat OOB(FixedIR) 93.54 (1.15) [b] 6.52 (1.44) [-b] 87.08 (2.51) [-b] 16.99 (2.29) [-b]
OOB(FixedIR)* 75.43 (1.06) [b] 45.06 (1.25) [-b] | 42.59 (1.96) [-b] 53.04 (0.72) [-b]
OOB-SW 65.19 (0.15) [b] 52.30 (0.27) [-b] 35.93 (0.25) [-b] 54.53 (0.19) [-b]
ORB 59.43 (1.39) [-b] 64.37 (0.68) [b] 16.07 (1.52) [b] 60.18 (0.80) [b]
0OB 49.10 (0.27) 89.48 (0.29) 41.90 (0.25) 63.93 (0.09)
UOB 5459 (1.52) [b] | 83.09 (1.64) [-b] | 3298 (2.17) [b] | 64.24 (0.44) [b]
Brackets OOB(FixedIR) 58.54 (1.94) [b] 76.25 (3.09) [-b] 40.54 (2.35) [b] 61.17 (1.15) [-b]
OOB(FixedIR)* 76.71 (1.39) [b] 60.59 (1.14) [-b] 27.29 (1.75) [b] 63.46 (0.91) [-b]
OOB-SW 56.28 (0.10) [b] 79.82 (0.28) [-b] | 42.80 (0.20) [-b] 61.67 (0.16) [-b]
ORB 61.68 (1.07) [b] 77.14 (1.05) [-b] 36.00 (1.44) [b] 63.66 (0.48) [-b]
0OOB 69.71 (0.79) 91.89 (0.62) 23.97 (1.33) 79.31 (0.45)
UOB 58.82 (1.60) [-b] 92.45 (0.34) [b] 38.40 (1.54) [-b] 70.72 (1.43) [-b]
Neutron OOB(FixedIR) 94.81 (0.38) [b] 22.23 (0.56) [-b] 77.35 (0.62) [-b] 41.09 (0.69) [-b]
OOB(FixedIR)* 82.72 (1.07) [b] 70.81 (1.71) [-b] 20.10 (2.02) [b] 75.59 (0.85) [-b]
OOB-SW 73.82 (0.10) [b] 83.08 (0.36) [-b] 20.49 (0.32) [b] 76.73 (0.21) [-b]
ORB 79.89 (1.63) [b] 81.12 (1.37) [-b] 13.98 (2.14) [b] 79.92 (0.46) [b]
00B 62.47 (2.06) 53.74 (1.80) 4727 (1.82) 2811 (0.72)
UOB 55.65 (6.14) [-b] 59.30 (3.15) [b] 37.57 (4.86) [b] 52.19 (2.78) [b]
Spring- OOB(FixedIR) 55.39 (0.38) [-b] | 52.86 (0.68) [-b] | 48.29 (0.60) [-b] | 44.75 (0.49) [-b]
Integration | OOB(FixedIR)* 98.96 (0.19) [b] 1.59 (0.19) [-b] 97.37 (0.31) [-b] 9.47 (0.68) [-b]
OOB-SW 45.55 (0.21) [-b] 79.87 (0.34) [b] 39.52 (0.30) [b] 56.11 (0.24) [b]
ORB 74.32 (0.86) [b] 44.31 (1.24) [-b] 37.30 (1.73) [b] 52.20 (0.83) [b]
00B 59.24 (1.23) 68.32 (1.89) 33.40 (2.50) 60.07 (0.75)
UOB 59.32 (4.45) [*] 62.69 (4.92) [-b] | 43.26 (4.37) [-b] 55.45 (1.31) [-b]
Broadleaf OOB(FixedIR) 67.47 (1.21) [b] 58.39 (1.72) [-b] 39.77 (1.72) [-b] 58.17 (0.88) [-b]
OOB(FixedIR)* 89.05 (0.96) [b] 26.74 (2.09) [-b] 62.55 (2.78) [-b] 45.68 (1.59) [-b]
OOB-SW 78.20 (0.10) [b] 34.73 (0.31) [-b] 71.02 (0.33) [-b] 37.00 (0.60) [-b]
ORB 61.60 (1.48) [b] | 67.00 (1.47) [-b] | 19.17 2.32) [b] | 61.97 (0.76) [b]
0OB 68.53 (0.35) 86.27 (0.70) 24.34 (0.59) 75.41 (0.23)
UOB 65.56 (0.63) [-b] 90.84 (0.89) [b] 27.59 (0.75) [-b] 75.93 (0.15) [b]
Nova OOB(FixedIR) 81.62 (0.20) [b] 42.68 (0.46) [-b] 65.17 (0.34) [-b] 39.07 (0.73) [-b]
OOB(FixedIR)* 86.95 (0.64) [b] 55.90 (1.37) [-b] | 36.96 (1.74) [-b] | 66.29 (0.91) [-b]
OOB-SW 66.41 (0.05) [-b] 85.90 (0.17) [-b] 33.66 (0.17) [-b] 72.85 (0.10) [-b]
ORB 75.30 (2.26) [b] 80.13 (4.07) [-b] 20.31 (1.57) [b] 75.68 (0.96) [*]
0OOB 37.91 (1.84) 74.88 (1.17) 49.67 (1.52) 46.17 (0.77)
UOB 38.26 (2.67) [*] 72.82 (1.88) [-b] 48.89 (1.71) [b] 45.86 (0.94) [-b]
NPM OOB(FixedIR) 43.93 (1.52) [b] 67.66 (2.06) [-b] 47.74 (1.64) [b] 46.35 (1.08) [*]
OOB(FixedIR)* 82.77 (1.31) [b] 26.22 (1.13) [-b] 59.00 (1.86) [-b] 39.85 (1.03) [-b]
0OB-SW 5555 (0.18) [b] | 62.74 (0.54) [-b] | 43.68 (0.31) [b] | 50.53 (0.35) [b]
ORB 55.24 (0.84) [b] 63.94 (1.31) [-b] 31.73 (1.70) [b] 54.26 (0.91) [b]
00B 57.35 3] (9.51) | 73.14 [1] (13.32) 33.21 [2] (9.61) 60.69 [2] (10.53)
UOB 57.23 [3] (10.91) | 71.13 [1] (16.60) 37.24 [3] (6.71) 59.21 [2] (8.93)
TS OOB(FixedIR)  70.26 [2] (18.67) | 46.53 [4] (22.79) | 55.34 [5] (20.48) | 45.01 [4] (12.57)
8 OOB(FixedIR)* 84.82 [1] (9.97) 36.89 [5] (23.77) | 53.45 [5] (27.78) | 45.89 [4] (23.70)
OOB-SW 66.75 [2] (11.32) | 60.05 [3] (20.75) | 45.69 [4] (15.16) | 54.84 [3] (12.76)
ORB 65.12 [2] (8.22) 67.35 [2] (11.17) 23.00 [1] (8.63) 63.02 [1] (8.70)

Standard deviations are shown in brackets. Symbols [*], [s], [m]
and [b] represent insignificant, small, medium and large A12 effect
size against WFL-OOB. Presence/absence of the sign “-” in the
effect size means that the corresponding approach was worse/better
than WFL-OOB. Cells in bold correspond to the approaches be-
longing to the best group according to Scott-Knott. The groups’
rankings are in square brackets in the average rows, with smaller
numbers indicating better ranks. A table using larger font is available
at http://doi.org/10.5281/zenodo.2555695.

OOB. OOB-SW can track class imbalance evolution based on
its sliding windows. However, its strategy to deal with concept
drift discards potentially useful past information, not being
adequate to tackle class imbalance evolution, as discussed in
Section III-C. This is probably the reason for its worse g-mean.

Regarding the online class imbalance learning approaches
prepared to cope with class imbalance evolution:

UOB was more competitive against OOB in terms of g-
mean than OOB(FixedIR) and OOB(FixedIR)*, being ranked
in the second group according to Scott-Knott. However, its
|Ro — R1| was still ranked worse than OOB (i.e., in group 3),
based on the Scott-Knott test across datasets. Tackling class
imbalance evolution seems to have helped UOB, but UOB

discards training examples from the majority class. This may
be a risky strategy since the discarded examples may contain
useful information.

OOB was ranked in the second best group in terms of
g-mean and |Ry — R;| and in the first group in terms of
R;. However, based on the Scott-Knott test across datasets,
its Ry was worse than all the JIT-SDP approaches from the
literature. Conversely, it overcame both FixedIR and OOB-SW
approaches, regarding I7;. OOB demonstrated a better balance
between the finals Ry and R; averages than the JIT-SDP
approaches from the literature. Nevertheless, the difference
in recalls (Ry — R;) was still high (up to 49.67). Section
VII-D analyses the approach ORB proposed to overcome this
problem.

RQ3: Existing JIT-SDP approaches based on fixed class
imbalance ratio struggled to obtain competitive predictive
performance in the presence of class imbalance evolution,
obtaining g-mean up to 97.2% worse than OOB’s. OOB-SW
tracks changes in the imbalance ratio, but discards historic
data, which has shown to be detrimental, leading to g-
mean of up to 38.41% lower than OOB’s. OOB achieved
competitive g-mean, but may not be suitable for adoption in
practice due fo its high |Ry — Ry|.

D. RQ4: The Benefit of the Proposed Approach ORB

RQ4 is partly answered by our proposed approach ORB. In
this section, we check whether ORB is really able to improve
predictive performance against the approaches found to be
the most competitive in terms of g-mean and |Ry — R;| in
Section VII-C. These are OOB and UOB. ORB’s main goal
is to improve |Rg — Ry|. So, we are particularly interested in
this performance metric.

Regarding g-mean, ORB was isolated ranked in the best
group, according to the Scott-Knott tests across datasets. The
magnitudes of the differences in g-mean between these two
approaches are in favor of ORB in 9 out of 10 datasets, but
were not large — at most 7.8% (Spring-Integration). Therefore,
ORB and OOB perform quite similarly in terms of g-mean.

Regarding |Ry — R1|, again, ORB ranked first according
to Scott-Knott, having outperformed all other approaches
including OOB and UOB. Its |Ry — R1| was up to 45.38%
lower than OOB’s (Tomcat) and up to 63.59% lower than
UOB’s (Neutron). Overall, ORB was successful in obtaining
the top g-means while improving its |Rg — R1].

Regarding Ry and R; individually, ORB was ranked in the
second best group for both of these metrics. It sometimes
wins and sometimes looses against other approaches from the
best group on single datasets. This is because, to obtain a
better |Rg — R1|, sometimes R; has to be reduced a bit and
sometimes increased. This prevents the recall on the defect-
inducing class to be too high at the expense of a large number
of false alarms, or the recall on the clean class being too high
at the cost of missing too many defect-inducing changes.

Fig. 4 shows an example of Ry, R; and g-mean plotted over
time for Neutron. As we can see, during a large period of time,
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Fig. 4. Rp (in lime / light grey), R (in orange / dark grey) and g-mean (in
black) over time for OOB and ORB on Neutron.

OOB obtained a very large R; of around 90%, while its Ry
was around 60%. So, even though OOB managed to retrieve
most defect-inducing software changes in the project, around
half of the changes flagged as defect-inducing were actually
clean. Carefully inspecting all these changes that were actually
clean would be costly for practitioners and would likely make
them loose trust in the approach. ORB managed to reduce this
problem, producing more balanced recalls.

RQA4: Our proposed approach ORB adjusts the resampling
rate based on the ratio of examples predicted as being of the
defect-inducing class. This enabled it to significantly reduce
the problem of over-emphasising one class over the other,
while maintaining top g-means. ORB is therefore successful
in improving JIT-SDP predictive performance over state-
of-the-art machine learning algorithms for class imbalance
evolution. In particular, ORB’s |Ry — R1| was up to 45.38%
better than OOB’s and up to 63.59% better than UOB’s.

VIII. THREATS TO VALIDITY

Internal validity: when using machine learning approaches,
poor parameter choices can highly influence the results [35],
[36]. We mitigate this threat by using a grid search based
on the first 5,000 changes of each dataset, as detailed in
Section VI. This strategy has shown to be effective and easily
automated.. The parameter values investigated included values
that were used in previous work that investigated online class
imbalance learning in the machine learning literature [10]. The
set of values Py and Pj, used in Equations 3 and 2, were
chosen based on preliminary experiments. A sensitive analysis
has shown that ORB is not too sensitive to these parameters.

Construct validity: as explained in Section VI the evaluation
metrics used in this work were Ry, Ri, |Ro — R1| and g-
mean. They were calculated prequentially with fading factors,
as recommended for online learning studies [29]. These are
the most commonly used metrics in the online class imbalance
literature [15].

Statistical conclusion validity: Bootstrap-based Scott-Knott
test and Al12 effect size were used to address conclusion
validity. The benefits of using them is explained in Section VI.
Our work assumes that a given software change can become a
training example once 90 days have passed from its commit,
as explained in Section IV-A. However, projects that are not
changed very often may require longer time gaps to reflect the
confidence on the label of committed software changes.

External validity: this study was based on ten open source
projects from the GitHub repository, as explained in Section
V. All of these projects are currently and continuously being
developed and maintained. They cover a variety of different

characteristics, such as starting date, number of modified files
per commit and number of commits per day. The programming
language was Java in most cases. The results obtained in
this study may not generalize to other projects (specially
proprietary projects) or to different problems than JIT-SDP.
We would be keen to perform additional case studies with
proprietary projects in the future.

IX. CONCLUSIONS AND IMPLICATIONS

We conducted the first work to investigate and deal with
class imbalance evolution in JIT-SDP. We show that class
imbalance evolution is a significant issue in JIT-SDP. The im-
balance status can vary between fairly balanced and extremely
imbalanced during the course of a project (RQ2). Existing
JIT-SDP approaches did not perform well under this scenario,
obtaining g-means up to 97.2% lower than those obtained by
OOB, an online class imbalance learning approach for cop-
ing with class imbalance evolution (RQ3). Despite obtaining
better g-mean, OOB still often favored the performance on
one class too much in detriment of the other (RQ3). Our
proposed approach ORB was able to improve on that, being
top ranked both in terms of g-mean and differences in recalls.
In particular, its difference in recals was up to 45.38% lower
than OOB’s (RQ4). We also provided an analysis of the typical
defect discovery delay in the GitHub projects used in this
study, showing to what extent verification latency occurs in
JIT-SDP. The analysis suggests that a waiting time of 90 days
is adequate for those projects (RQ1).

Our work has implications to both practice and future
research. Regarding implications to practice:

1) Based on the results from RQ2 and RQ3, it is important
for practitioners to apply online learning algorithms able to
tackle class imbalance evolution if they wish to perform JIT-
SDP. Otherwise, they risk using classifiers that, over time,
will get a high rate of false alarms (i.e., low recall on clean
changes) or miss a substantial amount of defect-inducing
software changes (i.e., low recall on defect-inducing changes).

2) Based on RQ3, even the sliding window strategy recom-
mended in the JIT-SDP literature for dealing with concept drift
in p(z|y) is not enough to cope with class imbalance evolution.
Therefore, simply re-building classifiers from scratch over time
is not enough to obtain good predictive performance over time.

3) Based on RQ4, practitioners adopting ORB could po-
tentially be less overloaded by false alarms at the same time
as not missing too many defect-inducing changes w.r.t. other
approaches in existing literature. Future studies within their
company’s environment would enable to check whether such
findings generalize to their company.

4) Based on RQI, our study further emphasizes that, when
deciding which JIT-SDP to adopt, it is important to investigate
them taking verification latency into account.

Future work includes: (i) quantitative and qualitative studies
of ORB with industry using proprietary data; (ii) investigation
of other base classifiers than Hoeffding trees; (iii) and tech-
niques to automatically tune parameters of machine learning
approaches over time, including the waiting period.
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