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Abstract—Performance issues may compromise user experiences, increase the cost resources, and cause field failures. One of the
most prevalent performance issues is performance regression. Due to the importance and challenges in performance regression
detection, prior research proposes various automated approaches that detect performance regressions. However, the performance
regression detection is conducted after the system is built and deployed. Hence, large amounts of resources are still required to locate
and fix performance regressions. In our paper, we propose an approach that automatically predicts whether a test would manifest
performance regressions given a code commit. In particular, we extract both traditional metrics and performance-related metrics from
the code changes that are associated with each test. For each commit, we build random forest classifiers that are trained from all prior
commits to predict in this commit whether each test would manifest performance regression. We conduct case studies on three
open-source systems (Hadoop, Cassandra and OpenJPA). Our results show that our approach can predict tests that manifest
performance regressions in a commit with high AUC values (on average 0.86). Our approach can drastically reduce the testing time
needed to detect performance regressions. In addition, we find that our approach could be used to detect the introduction of six out of
nine real-life performance issues from the subject systems during our studied period. Finally, we find that traditional metrics that are
associated with size and code change histories are the most important factors in our models. Our approach and the study results can
be leveraged by practitioners to effectively cope with performance regressions in a timely and proactive manner.

Index Terms—performance regression, software performance, software quality, mining software repositories, empirical software
engineering
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1 INTRODUCTION

Performance assurance activities are an essential step
in the development cycle of large software systems [1].
One of the goals of performance assurance activities is to
detect performance regressions, i.e., the performance of the
same feature in the system is worse than before. Response
time degradation and increased CPU usage are typical
examples of performance regressions. These performance
regressions may directly affect the user experience, increase
the resources cost of the system and lead to reputational
repercussions. Therefore, detecting and resolving perfor-
mance regressions is an important task even though the sys-
tem’s performance may meet the requirement. For example,
Mozilla has a performance regression policy that requires
performance regressions to be reported and resolved as
bugs [2].

Although automated techniques are proposed to detect
performance regressions [3], [4], [5], [6], [7], challenges in
the practice of performance regression detection still exist.
First of all, performance regressions detection remains a
task that is conducted after the system is developed and
built, as almost the last step in the release cycle. Therefore,
fixing performance regressions at such a late stage in the
development cycle is difficult and sometimes impossible.
Second, a significant amount of effort is required to locate
the root-cause of the performance regression after detection.

In order to detect performance regressions, prior re-
search studies performance regressions at the code commit
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level [8]. In particular, various performance regressions are
detected by running all the readily available tests for the
software systems. Such knowledge may assist in addressing
the aforementioned challenges. In particular, developers are
notified about the introduction of a performance regression
after the code commit, developers may address such re-
gression in a timely manner, avoiding other code changes
depending the performance-regression-introducing commit.
More importantly, such prediction would ease the developer
to locate the root-cause of the performance regression, and
further address the performance regression.

Taking a real-life example in Hadoop, issue YARN-48621

is a performance issue with major priority. The performance
regression was introduced in a code commit2 that was
performed half a year before the reporting date of the
issue. However, if immediately after the code commit, the
developer was notified that a performance regression might
have been introduced into the source code that is executed
by test TestResourceTrackerService, this major issue may not
be hidden for such a long time.

Unfortunately, running all tests to detect performance
regressions is an extremely time-consuming task, especially
for every commit. From our study results, on average to
detect performance regression by rigorously running all
tests that are impacted by the code changes takes hours
per commit (c.f. Table 7). Recent work by Oliveira et al. [9]
proposed an approach named Perphecy, which aims to select

1. https://issues.apache.org/jira/browse/YARN-4862
2. https://github.com/apache/hadoop/commit/528b809d. A test in

this commit is successfully predicted by our approach (cf. Section 5-
RQ4) to manifest performance regression with slower response time.
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performance benchmark suites that may manifest perfor-
mance regressions. While shown to be effective, Perphecy
depends on a short list of boolean indicators whose thresh-
olds are tuned from prior executions. Due to the observation
in the study that only a very small number of perfor-
mance benchmarks in the commits contains performance
regressions, the paper proposes a conservative approach
for the tuning, i.e., detecting more benchmarks to achieve
higher recall [9]. However, our prior study shows that when
examining the performance regressions at the test level,
a rather large number of performance regressions can be
detected. Using conservatively tuned thresholds on such
large number of performance regressions at the test level
may lead to a large number of false-positive results (as also
shown in our results in RQ1 and RQ4). A high false positive
rate may lead to a large number of tests that need to run,
making the process still a time-consuming task.

Therefore, in this paper, we present an automated ap-
proach that builds just-in-time prediction models to predict
the tests that manifest performance regressions with a given
code commit. We call such tests performance-regression-
prone tests. In other words, our approach predicts whether
there is regression in a particular test of a particular com-
mit (not any test in a commit). To build the prediction
model, we first identify performance-regression-prone tests
by evaluating all the tests that are impacted by the code
changes in prior commits and measuring performance (i.e.,
response time, CPU and memory usage, I/O read and
I/O write) by running each test repetitively. Afterwards,
we build five classifiers, one for each performance metric,
modeling whether a test would manifest a performance
regression. With such prediction models, after developers
commit their code changes, our approach can automatically
predict which tests manifest performance regressions for
each particular performance metric. Developers can prior-
itize their performance assurance activities by only running
the predicted performance-regression-prone tests to address
the performance regressions. For the tests that are executed
and shown to have regression, the developers may check the
covered and changed source code of each test to start their
investigation. The newly executed performance evaluation
results are then included in the training data to update the
classifiers in order to predict the performance-regression-
prone tests in the next new commit.

To evaluate our approach, we conduct case studies on
three open source systems3, namely Hadoop, Cassandra and
OpenJPA. In particular, we aim to answer five research
questions:

RQ1 How well can we predict performance-regression-
prone tests?
Our random forest classifiers can provide the
accurate prediction, outperforming logistic re-
gression, support vector machines and XGBoost,
with an average AUC of 0.85, 0.87 and 0.88
for Hadoop, Cassandra and OpenJPA, respectively.
Our approach also out-performs the state-of-the-
art approach Perphecy in all the studied subjects.

RQ2 How cost-effective is the prioritization of
performance-regression-prone tests?

3. https://users.encs.concordia.ca/∼fu chen/data

We consider the time to spent for each test
as the cost and build cost-aware models for
performance-regression-prone tests. Our mod-
els provide high cost-effectiveness prioritization,
that is close to the optimal prioritization. By
spending only 5% of the cost for executing all
tests, our approach can help detect up to 65% of
the performance-regression-prone tests.

RQ3 How much testing time can our approach save?
Our prediction drastically reduces the testing
time needed compared with running only the
tests that are impacted by the code changes in a
commit (up to 97%).

RQ4 Can our approach detect the introduction of real-life
performance issues?
Our approach can be used to detect six out of
nine real-life performance issues that are found
to be introduced during the studied period of
our evaluation. The predicted tests by our ap-
proach can cover the changed source code that
introduces the performance issues.

RQ5 What are the most important factors in determining
performance-regression-prone tests?
We find that performance-related metrics are not
important factors of performance-regression-
prone tests, while traditional metrics that are
associated with history and size of the code
changes are the most important factors.

Based on our case study results, developers can adopt
our approach in practice to provide accurate prediction on
evaluating performance impact of their code changes in a
timely and proactive manner.

The rest of this paper is organized as follows: Sec-
tion 2 presents prior research related to this paper. Sec-
tion 3 presents our approach of predicting performance-
regression-prone tests. Section 4 presents our subject sys-
tems and how to extract performance-regression-prone tests
as our ground truth. Section 5 presents the results of our case
studies. Section 6 discusses our learned lessons. Section 7
presents the threats to the validity of our study. Finally,
Section 8 concludes this paper.

2 RELATED WORK

In this section, we present the related prior research to this
paper in three aspects: 1) software defect prediction and 2)
empirical studies on software performance and 3) test case
prioritization.

2.1 Software defect prediction
Mockus and Weiss [10] are the first ones to use metrics that
describes the characteristics of software changes to build
linear regression model to predict the probability of failure
after code changes. Kamei et al. [11], [12], [13] conduct a
series of studies on commit-level defect prediction. Kamei
et al. [11] extract 14 change metrics from six open-source
systems and five commercial systems and build a logistic
regression model to predict whether the commit would
introduce software defects. The prediction model built is
able to predict defect-inducing changes with an accuracy
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of 0.68 and a recall of 0.64. Their findings also show that
diffusion and purpose of the code changes play important
roles in defect-inducing changes.

Kamei et al. [13] present an overview in the research
field of defect prediction. To build the prediction model,
researchers need to extract and select a list of metrics. Zhang
et al. [14] use code metrics, process metrics, and context
factors to build a universal defect prediction model for a
large set of systems. Zhang et al. find that adding context
factors can assist in the prediction of software defect of
the universal models. Shivaji et al. [15] realize that the
more features prediction model learned, the more insuffi-
cient performance the model predicts. Hence, Shivaji et al.
perform multiple feature selection algorithms to reduce the
metrics that predict software defects. He et al. [16] study the
feasibility of defect-predictions built with simplified metrics
in different scenarios, and offer suggestions on choosing
datasets and metrics.

There exist various kinds of prediction models to predict
software defects. Tourani and Adams [17] build logistic
regression models to study the impact of human discus-
sion metrics on commit-level predicting models. The result
shows that there exists a strong correlation between human
discussion metrics and defect-prone commits. Tsakiltsidis
et al. [18] use four machine learning algorithms to build
classifiers to predict performance bugs. The study finds that
the most satisfying model is based on logistic regression
with all attributes added. Yang et al. [19] use 14 code-change
based metrics to build simple unsupervised and supervised
models to predict software defect. The results show that
many simple unsupervised models perform better than the
state-of-the-art supervised models in effort-aware commit-
level defect prediction.

Compared to the above papers, we build classifiers to
predict tests that manifest performance regressions. We ex-
tract traditional metrics that are widely used in prior stud-
ies [10], [11] and also include performance-related metrics
in our classifiers.

2.2 Empirical studies on software performance
Various empirical studies are conducted to study perfor-
mance issues. Jin et al. [20] study 109 real-world perfor-
mance bugs that are derived from five software systems
to learn guidance for software practitioners. The study
shows that developers need tool support to fix the sim-
ilar performance issues automatically. The study calls for
in-depth research on performance diagnosis, performance
testing, performance issue detection. Zaman et al. [21], [22]
conduct both qualitative and quantitative studies on 400
performance and non-performance issues. Zaman et al. find
that developers spend more time fixing performance issues
than non-performance issues. This study also advocates the
importance of identifying the root cause of performance
issues. Han et al. [23] study 300 bug reports from three large
open source projects. The authors find that performance
bugs require specific input parameters to expose.

Huang et al. [24] study real-world performance issues
and propose a lightweight approach named performance
risk analysis (PRA) to improve performance regression test-
ing efficiency. The analysis statically evaluates the risk of in-
troducing performance regression. Pradel et al. [25] present

an automatic approach named SpeedGun to detect perfor-
mance regressions in the case of concurrent classes. This
approach intends to generating multi-threaded performance
tests to test and report the performance differences between
two versions of concurrent classes. Tarvo and Reiss [26]
build models to predict the performance of multi-threaded
programs or individual program using computer simula-
tion. The authors collect program information using static
and dynamic analyses, and simulate each thread using a
probabilistic call graph. Luo et al. [3] propose an approach to
mine performance regressions inducing code changes. The
paper implements a tool named PerfImpact to find the inputs
that lead to performance regressions and rank the code
changes that may be closely responsible to performance
regressions. Oliveira et al. [9] present a lightweight tool
named Perphecy to detect which commit will cause perfor-
mance regression on which benchmark. Leitner et al. [27]
aim to understand the current state of art of performance
testing. They conduct a study on 111 open-source java-based
systems from GitHub to investigate the use of performance
tests across five perspectives. Leitner et al. find that there is
a lack of standard guideline to conduct performance tests in
an easy and powerful way. This paper argues that the future
performance testing should implement more flexible testing
framework to support low-friction testing.

Prior research on performance are typically based on
either limited issue reports or releases of the software.
However, performance regressions may not be defects, and
this paper is the first (to the best of our knowledge) to
predict performance-regression-prone tests at the commit
level. In addition, in this paper, our extracted performance-
related metrics are built on top of the findings from the prior
studies on performance issues.

2.3 Test case prioritization

The goal of Test Case Prioritization (TCP) is to select the
most appropriate tests to execute and enable faster feed-
back [28]. Various prior research has been proposed to
improve test case prioritization [29], [30], [31], [32], [33].
Wang et al. [30] present a quality-aware technique namely
QTEP to prioritize tests by giving more weight to fault prone
source code. This paper shows that QTEP can improve ex-
isting coverage-based TCP techniques. PerfRanker [31] was
proposed to prioritize performance test cases for collection-
intensive software. The approach profiles software using dy-
namic call graph to build performance model and analyzes
performance impact introduced by code changes. To address
the coverage profiling overhead, Saha et al. [33] present
an information retrieval approach namely REPiR based on
program changes, e.g., identifier names and comments in
the code.

Historical information produced by the test can also be
used to improve test case prioritization [34], [35], [36], [37],
[38]. Kim et al. [34] build models based on the test execution
history to prioritize tests. The prioritization models assign a
selection probability to each test case in test suite. Anderson
et al . [35] investigate the test historical information includ-
ing test case pass, fail information, code change information.
The authors use such historical metrics to build classifica-
tion model to predict future test case failures. Noor and

Authorized licensed use limited to: Concordia University Library. Downloaded on March 08,2021 at 18:33:25 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023955, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 4

Hemmati [36] use a logistic regression model to predict the
failing test cases for tests prioritization based on a set of test
quality metrics, e.g., change-related metrics. Zhu et al. [37]
propose an approach CODYNAQ to use the historical co-
failure distributions among tests to re-prioritize tests after
each test run. Najaf et al . [38] customize and combine
multiple test selection and prioritization techniques in a
large industrial system based on test execution history infor-
mation. The authors find that simple approaches are often
shown effective in an industrial setting.

Prior research on test case prioritization typically focus
on validating functional bugs rather than performance is-
sues. Our paper aims to prioritize tests for a cost-effective
detection of performance regressions.

3 APPROACH

In this section we present our approach of predicting
performance-regression prone tests in each commit. In other
words, when developers commit their code changes, our
approach predicts which tests are likely to manifest perfor-
mance regressions. Developers can prioritize to execute the
tests that are predicted to have performance regression. The
overview of our approach is shown in Figure 1.

3.1 Extracting metrics

To build classifiers, we first extract metrics from the
Git repositories of our subject systems. Prior research on
commit-level defect prediction extracts metrics that describe
characteristics of the commit. On the other hand, our ap-
proach predicts the performance-regression-prone tests in
each commit. Hence, our extracted metrics are at the test-
level, i.e., the metrics measure the code changes from a
commit associated with each test. However, not all the code
changes in a commit are associated with all the tests.

For example, there may exist two tests, i.e., Test A and
Test B, and a commit has a total code churn of 100 lines
of code. Our code churn metric for Test A and Test B for
this commit is not simply 100. We check the amount of code
churn that are covered by executing Test A (e.g., 60 lines
of code) and the amount of code churn that are covered by
executing Test B (e.g., 50 lines of code). We note that, these
two pieces of code churn can overlap, since some code churn
may be covered by both Test A and B. Then for this commit,
the code churn metric for Test A is 60 and the code churn
metric for Test B is 50.

Therefore, we first need to identify code changes in each
commit that are associated with each test. We leverage the
mapping between code and test that is created in Section 4.2
to identify the code changes in each commit. Due to the
resource needed of generating such mapping, we only gen-
erate these mappings once per release. The overview of our
extracted metrics is shown in Table 1.

Traditional metrics. Prior studies on commit-level defect
prediction leverage various metrics to predict the risk of a
code commit [10], [11]. Similarly, we extract 16 traditional
metrics from six dimensions, i.e., size of the change, com-
plexity of the changed files, diffusion, development history,
developers’ experiences and the purpose of the commit. The
details of the metrics are shown in Table 1.

Performance-related metrics. We aim to predict
performance-regression-prone tests for each commit. Hence,
based on findings from prior research on performance issues
and performance regressions [8], [20], [24], [47], [48], [49], we
extract metrics that describe the code changes in a commit
that may related to performance. For example, adding syn-
chronization into the source code is one of the root-causes of
performance regressions [8], [20]. Considering the findings
from prior research, we extract seven groups performance-
related metrics. The rationale of extracting each type of
entity is shown in Table 1.

All the performance-related metrics are calculated only
from the code changes that are associated with each test
in a commit. To automatically analyze the code changes,
we use srcML [50] to convert the source code to XML files
representing their abstract syntax trees. We use lxml [51] to
compare the two xml trees to extract the added, deleted
and changed code entities. In particular, the metrics are
calculated in the following aspects.
Basic code entity change. We count the added and deleted
code entities including final, static, try, catch, throw, throws,
finally, break, continue, label. Afterwards, we generate two
metrics for each type of code entity, i.e., one metric for added
entity and one metric for deleted entity. If the code entity
can contain expressions, we also generate a metric for the
changes to the code entity.
Synchronization. We measure the added and deleted state-
ments that are associated with synchronization. In particu-
lar, Java has two kinds of expressions related to synchro-
nization, i.e., synchronized statement and synchronized spec-
ifier. We consider both expressions as synchronization and
generate two metrics for added and deleted synchronization
expressions, respectively.
Condition. We calculate condition metrics from the follow-
ing statements in Java: if, elseif, else, switch, case and assert
statements. We generate two metrics for added and deleted
condition, respectively.
Loop. We consider all kinds of loops in Java, such as for,
while, foreach and do while. Besides generating two metrics
for added and deleted loops, we also generated a metric for
changed loops, such as changing the expressions in the loop.
Expensive variable change (expVariable). We count the vari-
ables that are changed from primitive data type to reference
data type for this metric, as expensive variable change
proposed by prior research [49].
Expensive parameter change (expParameter). Similar to expen-
sive variable change, we count the method invocation pa-
rameters that are changed from primitive type to reference
type for this metric.
External function call (externalCall). Function calls that access
external resources may introduce performance overhead,
leading to performance regression. For example, adding
logging statements to print the execution information to a
file may introduce performance regressions. In this paper,
particularly, we only consider the function calls to the log-
ging library. We generate three metrics for added, deleted
and changed external function calls.

3.2 Data preprocessing
Before leveraging the extracted data to build classifiers,
we preprocess the data. Prior research shows that multi-
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TABLE 1
Summary of extracted metrics. The symbol † indicates metrics that represent multiple metrics.

Dim. Metric Definition Values Rationale
D

iff
us

io
n NS Number of modified subsystems Numerical The more subsystems are changed, the higher risk the change may be [10].

ND Number of modified directories Numerical Changing more directories may more likely introduce performance re-
gressions [10].

NF Number of modified files Numerical Changing many source files are more likely to cause performance regres-
sion [39].

NM Number of modified methods Numerical Changes altering many methods are more likely introduce performance
regression [40].

Entropy Distribution of modified code across
files Numerical Scattered changes are more possible to be performance-regression-

prone [41].

Si
ze

LA Lines of code added in all the tested
methods Numerical The more lines of code added, the higher risk that the program will suffer

from performance regression [42].

LD Lines of code deleted in all the tested
methods Numerical The more lines of code deleted, the higher risk of performance regression

is introduced [42].

LT Lines of code before the change in all
the tested methods Numerical Modifying a large method is more likely to introduce performance

regression due to the large method being more complex [40], [43].

SOL Lines of code before the change in all
the tested classes Numerical Large class is more complex than the small class, and may be more

performance-regression-prone [43].

Pu
rp

os
e

FN Whether the code commit
fixes a bug Boolean Bug fixing changes are more likely to introduce performance regres-

sions [8], [44].

H
is

to
ry NDEV Number of developers that changed the

modified files Numerical Changes involving many developers are more possible to cause regres-
sion due to the differences between different developers [45].

AGE The average time interval between the
last and the current change Numerical More recent and frequent changes are more likely to introduce perfor-

mance regression [46].

Ex
pe

ri
e-

nc
e

EXP Developer experience Numerical Senior programmers may introduce more stable code change than a less
experienced developer [10].

REXP Recent developer experience Numerical Recent developers are more familiar with the program so that it is less
likely to introduce performance regression [10].

C
om

pl
e-

xi
ty

MCC McCabe Cyclomatic complexity Numerical Program with higher complexity is more likely to suffer from perfor-
mance regression [41].

FanIn Number of calling subprograms Numerical Large calling subprograms will amplify the regression if there exists
performance regression in the called program [39].

Pe
rf

or
m

an
ce

-r
el

at
ed

m
et

ri
cs

†Basic code
changes

Number of added or deleted on the basic
code entity in method level. (e.g., final add
and final del of final basic code entity)

Numerical Changes on the basic code entities may directly increase the complexity
of the code and introduce performance regressions.

†Synchronization Number of added or deleted synchronization
expressions in method level Numerical Synchronizations are expensive actions for software performance [47].

†Condition Number of added or deleted condition
statement in method level Numerical Changing condition may cause more operation eventually executed by

the software, leading to performance regression [24].

†Loop Number of added, deleted or changed loop
statement in method level Numerical Changes involving the loop may significantly slow down perfor-

mance [48].

†ExpVariable Number of added or deleted expensive
variable in method level Numerical Some variables are more expensive to be held in memory and need more

resources to visit or operate [24], [49].

†ExpParameter Number of added or deleted expensive
parameter in method level Numerical Using more expensive parameter, like reference type other than primitive

type, leading to performance regression [8].

†ExternalCall Number of added or deleted external
function call in method level Numerical Some code changes that introduce new functionality and external opera-

tions may cause performance regression [8], [20].

collinearity data and redundant metrics may be harmful in
interpreting prediction models. In addition, multicollinear-
ity may introduce bias when using the models to explain
a phenomenon [52], [53]. To deal with multicollinearity,
we first perform a correlation analysis on the metrics in
order to remove the most highly correlated metrics. We
used Pearson’s correlation [54] coefficient among all metrics
to find the pair of metrics that have a correlation higher
than 0.7. From these two metrics, we remove the metric
that has a higher average correlation with all other metrics.
We repeat this step until there exists no correlation higher
than 0.7 [55]. We then perform redundancy analysis on the
metrics. The redundancy analysis would consider a metric
redundant if it can be predicted from a combination of
all other metrics [56]. We use each metric as a dependent
variable and use the rest of the metrics as independent
variables to build a regression model. We calculate the R2 of
each model and if the R2 is larger than a threshold (0.9) [57],
the current dependent variable is considered redundant. We
then remove the metric with the highest R2 and repeat the
process until no metric can be predicted with R2 higher than
the threshold.

3.3 Building classifiers and predicting performance-
regression-prone tests

In this step, we build classifiers to model whether a test
in a commit would manifest performance regressions. In
particular, we build five classifiers, each predictor for one
performance metric (i.e., response time, CPU usage, mem-
ory usage, I/O read and I/O write). We use data from prior
commits to train the classifiers. The dependent variable of
each classifier is whether the test manifests a performance
regression with that particular performance metric (see Ta-
ble 4). The independent variables are based on the metrics
that are presented in Section 3.1. All the metrics are pre-
processed as described in Section 3.2.

Projects may not have readily available historical perfor-
mance evaluation results on prior commits to build clas-
sifiers. To “cold start” our approach, we require to exer-
cise performance evaluation on the prior 50 commits to
make the first set of training data [58]. The details of the
performance evaluation are presented in Section 4.2. We
choose 50 commits because of the amount of metrics that
we have. Fewer commits may result into over-fitting the
classifier, while more commits may waste resources on the
performance evaluation.
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With a new commit, our approach leverages the five
built classifiers (each classifier for one performance metric)
to predict which tests are likely to manifest performance
regressions.

3.4 Exercising tests and updating classifiers
After having the prediction results from our classifiers,
developers can choose to only exercise the tests that are
predicted to be performance-regression-prone for perfor-
mance evaluation (c.f., Section 4.2). After the performance
evaluation of the tests, the training data for the classifiers
are updated by including the results of the newly evaluated
tests. Afterwards, the five classifiers are re-built for the
prediction of the next commit. Moreover, the practitioners
can use the performance evaluation results of the tests assist
in locating the root causes of the performance regressions.
In particular, developers may use the changed source code
that is also executed by the test to assist in locating the root
causes of the performance regression.

4 EVALUATION SETUP

In this section we present the setup of our case study. We
present the subject systems that are used and detail how
to extract the tests that manifest performance regressions in
each commit as our ground truth.

4.1 Subject systems
We choose three open-source systems, Hadoop, Cassandra
and OpenJPA as the subject systems of our case study.
Hadoop [59] is a distributed system infrastructure. Hadoop
performs data processing in a reliable, efficient, high fault
tolerance, low cost and scalable manner. Cassandra is an
open-source distributed NoSQL database management sys-
tem. OpenJPA is an open source system from the Apache
organization that implements the JPA standard. We choose
the three subject systems since they are highly concerned
with their performance and have been studied in prior re-
search in mining performance data [60], [61]. The overview
of the three subject systems is shown in Table 2.

TABLE 2
Overview of our subject systems.

Subjects #release #commit The starting and
ending releases

#Total lines
of code (K) #files #tests

Hadoop 11 1,403 2.6.0 – 2.7.5 970 6,373 1,853
Cassandra 9 902 3.0.7 – 3.0.15 346 1,867 369
OpenJPA 4 726 2.3.0 – 2.4.2 429 4,579 916

4.2 Extracting performance-regressions-tests in each
commit
In this subsection, we present how we perform performance
evaluation to extract performance-regressions-tests in each
commit. Such extracted data is used as our ground truth in
the case study. The role of this data is similar to the extracted
“bug-fixing commits” in a commit-level bug prediction ap-
proach [11]. In addition, to “cold start” projects that do not
have performance evaluation results on prior commits, this
subsection describes how to obtain initial training data for
our approach.

Filtering commits. We start our approach to filter com-
mits by only keeping the commits that have source code
changes, i.e., changes to .java files. To accomplish one
development task, multiple commits, including temporary
commits, may be made. We would like to avoid considering
such temporary commits. Since all our subject systems use
JIRA as their issue tracking systems, we use the issue id
mentioned in their commit messages to identify commits
that belong to the same issue. If multiple commits are
associated with the same issue, we only consider the last
commit.

Identifying impacted tests. Our approach considers us-
ing all the functional test that exist in the repository. We
use these tests since these tests are maintained and typically
executed regularly during every build in the release pipeline
of software development [62]. Not all the tests are impacted
by the code changes in a commit and running those un-
impacted tests is not likely to detect performance regres-
sions. To identify all the impacted tests by each commit,
we create mappings between source code and tests. We
automatically instrument all the methods in every version of
the source code of our subject systems by adding invocation
to logging libraries. We run all the available tests of each
released version of the subject systems. By analyzing the
output of our instrumentation, we obtain a list of methods
that are executed during the running of each test. Then, we
can create mappings between each test and the executed
methods of the test. With such a mapping between tests and
methods in the source code, for each commit, we can iden-
tify the tests that are likely to be impacted by identifying the
methods that are changed in the commit, i.e., a method-to-
test mapping for each commit. Due to the resources needed
for creating such mappings, we only update such mappings
for every release of the subject systems.

Dealing with changed tests. Some commits may change
both source code and test code. The changes to the test code
may bias the performance evaluation. Therefore, we opt to
use the test code before the code change, since the new
version of the test code may execute new features, which
is not the major concern of performance regression. In the
cases where old test cases cannot compile or fail, we use
the new test code. Finally, if both new and old test cases
are failed or not compilable, we do not include this test in
the performance evaluation. In total, we have 226 tests in
121 commits that are evaluated with the new tests and 48
tests in 35 commits that are not included in our performance
evaluation.

Evaluating performance. Finally, we exercise the se-
lected tests of each pair of current and parent commits to
evaluate their performance. Our performance evaluation en-
vironment is based on Microsoft Azure node type Standard
F8s (8 cores, 16 GB memory). In order to generate statisti-
cally rigorous performance results, we adopt the practice
of repetitive measurements [63] to evaluate performance.
Conservatively, we executed each test 30 times indepen-
dently, since prior research often only repeat the tests 5 to
20 times [64], [65], [66]. We use a performance monitoring
software named psutil [67] to collect performance metrics
during the execution, i.e., response time, CPU usage, mem-
ory usage, I/O read and I/O write.

Statistical analyses for labeling performance evalua-
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Fig. 1. An overview of our approach.

tion results. We perform statistical analyses on the perfor-
mance data from each pair of current and parent commits to
determine the existence and the magnitude of performance
regression in a statistically rigorous manner. We use Mann-
Whitney U test [68] to examine if there exist statistically
significant differences (i.e., p-value < 0.05). We choose
Mann-Whitney U test since it does not have any assumption
on the distribution of the data. Researchers have shown
that reporting only the statistical significance may lead to
erroneous results (i.e., if the sample size is very large, p-
value can be small even if the difference is trivial). We use
Cliff's delta to quantify the effect sizes [69]. Cliff's delta
measures the effect size statistically and has been used
in prior engineering studies [70]. We only consider a test
manifesting a performance regression if the effect size is
medium (0.33 < Cliff's delta 6 0.474) or large (0.474 <Cliff's
delta).

Based on the statistical analysis results, each commit
is labelled with five different performance metrics, i.e.,
response time, CPU usage, memory usage, I/O read and
I/O write, that are collected during the execution of the
test. For example, the CPU label indicates whether the test
demonstrate performance regression in terms of CPU usage.
Therefore, with the same set of data, by considering one
label, we can build a classifier that predicts the performance
regression only for that metric. For example, if we only take
the CPU label, we build a classifier that predicts whether a
test in a commit would demonstrate performance regression
for CPU usage.

In addition, we calculate the average increase of mean
values of each performance metric with and without regres-
sion, shown in Table 3. We can see that the ones without
regressions have a much smaller increase of values in each
performance metric. Such small increase of values may be
due to the measurement noise, hence not considered as
performance regressions in our experiment. On the other
hand, there may exist extreme values as outliers that should
not be considered by our approach. Therefore, we use the
median ± 3 × median absolute deviance(MAD) as an
indicator of outliers. We find that only 1.5% of our data are
be impacted and we remove such outliers from our data.

In total, we spend 133 machine days running all the
tests. Table 4 shows the amount of identified performance-

TABLE 3
Average increase of mean values of each performance metric by

comparing commits without and with regressions.

Hadoop Cassandra OpenJPA
With Without With Without With Without

regression regression regression regression regression regression
Res. Time (s) 9.68 0.06 1.18 0.01 0.44 0.01

CPU (s) 1.38 0.29 0.54 0.01 1.55 0.02
Mem (KB) 67.56 8.47 15.5 1.24 119.13 27.34

I/O read (count) 119.19 3.97 273.95 4.28 614.6 26.46
I/O write (count) 392.82 13.33 233.29 1.43 122.26 13.72

regression-prone tests in the subject systems. We find that
only a small portion of the tests is performance-regression-
prone. Taking Hadoop as an example, out of the 1,349 tests,
only 118 tests have performance regression in response time,
which only accounts for 9% of all tests. Therefore, running
all the tests to detect these performance regressions is not
cost-effective.

TABLE 4
The number and percentage of identified

performance-regression-prone tests w.r.t different performance metrics.

Total Response
time CPU Memory I/O

read
I/O

write
Hadoop 1,349 118 (9%) 111 (8%) 92 (7%) 110 (8%) 110 (8%)

Cassandra 985 23 (2%) 44 (4%) 31 (3%) 45 (5%) 28 (3%)
OpenJPA 1,868 154 (8%) 375 (20%) 265 (14%) 385 (21%) 488 (26%)

4.3 Preliminary study

One may consider measuring performance only once while
executing the tests for every commit, since running all the
tests for each commit is a typical practice in the software de-
velopment. If one can measure performance while executing
the test once and calculate the differences in performance
metrics to detect performance regression, our approach may
be less useful. For example, by running a test once, a devel-
oper may find that the test takes 11 minutes compared to 10
minutes with last commit. In this case, the developer may
conclude that the test has 10% ( 11−1010 ) regression in response
time. Hence, a question that lingers is: can performance
regression be detected by only running the tests once?

In order to examine the applicability of such a simple
approach, for each test in each commit, we measure the
performance metrics of running each test only once and
compare the metrics that was measured in the last commit.
We calculate the relative difference between performance
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Fig. 2. Distribution of relative difference between performance metrics
by running tests only once in each commit.

metrics. Positive relative differences mean that the tests have
performance regressions, while negative relative differences
mean that the tests have performance improvements. We
group the tests based on whether they have performance
regressions, improvement or no significant changes based
on our performance evaluation in Section 4.2). Finally, we
use bean plots to visualize the distribution of the relative
differences of performance metrics in each group.

Figure 2 presents the distribution of relative difference
between performance metrics by running the test only once.
We find that, in all three groups, most of the relative differ-
ence are close to zero. None of the groups has the values
significantly shift to either the positive or negative side,
implying the inapplicability of using the relatives difference
to detect performance regressions. For example, from Fig-
ure 2, we can see that more than half of the performance-
regression-prone tests have their relative performance dif-
ferences positive. Relying on this result will falsely lead to
missing the detection of performance regression. We apply
Mann-Whitney U test [68] and Cliff’s delta [69] to compare
the relative performance differences between each pair of
the three groups. We find that the difference is either not
statistically significant (p-value > 0.05) or with negligible
effect sizes. Such a result shows that one cannot trust the
performance measurement by only running the test once
to determine whether there exists performance regression,
confirming the need of our approach that aims to predict
tests that are executed rigorously to detect performance
regressions.

5 EVALUATION RESULTS

Our study aims to answer five research questions. For
each research question, we present the motivation for the
question, the approach that we use to answer the question
and the result for the question.

RQ1: How well can we predict performance-regression-
prone tests?

Motivation. We want to provide developers an accurate
prediction on the performance-regression-prone tests when
developers commit code changes. By evaluating the accu-
racy of the classifier, we can understand whether developers
can depend in practice on our prediction results provided by
our approach.
Approach. To answer RQ1, we first build five types of
classifiers or models, including logistic regression (LR) [71],
support vector machine (SVM) [72], XGBoost (XG) [73]
with 50 (XG-50), 100 (XG-100) and 500 (XG-500) iterations,
random forest classifiers [74], to model whether a test would
manifest performance regressions. In addition, We replicate

Perphecy by performing the prediction at the test level by
considering the source code and code changes that are
impacted by each test. We compare our approach to Perphecy
(baseline) in this research question.

To realistically evaluate our classifiers, for every commit,
we use our approach to predict performance-regression-
prone tests and update the classifiers for each commit as
presented in Section 3.

We utilize four metrics to evaluate our classifiers’ perfor-
mance, including precision, recall, F-measure and AUC. Preci-
sion measures the correctness of our classifier. Precision refers
to that the number of tests that were correctly labeled as
performance-regression-prone divided by the total number
of tests that were labeled as performance-regression-prone
by the classifier. Recall measures the completeness of our
classifier. Recall is defined as the number of tests that were
correctly labeled as performance-regression-prone by the
classifier divided by the total number of tests with actual
performance regression. F-measure is the harmonic mean of
precision and recall, which gives equal weight to precision
and recall. Shown in Table 4, our data is highly skewed
since the majority of the tests do not manifest performance
regressions. Therefore, we exploit AUC which allows us to
measure the overall ability of our model to discriminate
tests with performance regression and without performance
regression. The AUC is the area under the ROC curve
which indicates the performance of a binary classifier as
its discrimination is varied [75]. The value of AUC ranges
from 0 to 1, and larger value for AUC indicates a high
discrimination in the prediction model.
Results. The results of using our classifiers to predict
whether a test is performance-regression-prone is shown in
Table 5. Due to the limited space, we only present AUC of
all classifiers while presenting random forest and Perphecy
with precision, recall and F-measure (F1 in Table 5). The full
details can be found in Appendix A. The results show that
the best of our classifiers is random forest, which achieves
an average AUC of 0.85, 0.87 and 0.88 in Hadoop, Cassandra
and OpenJPA, respectively. Random forest classifiers achieve
an average precision of 0.32, 0.3, 0.59 and recall of 0.75,
0.75, 0.77 in Hadoop, Cassandra and OpenJPA, respectively.
We find that although Perphecy achieves a higher average
recall than other models in Hadoop and Cassandra, Perphecy
only achieves an average precision of 0.08, 0.02, and 0.20 in
Hadoop, Cassandra and OpenJPA, respectively. When consid-
ering the F-measures, our approach out-performs Perphecy
in predicting performance regression with all the perfor-
mance metrics of all subjects.

Our classifiers can accurately predict performance-
regression-prone tests despite the fact that they are rare.
Table 4 shows low percentages of tests that actually have
performance regressions. For example, only 9% of the tests
in Hadoop, 2% of the tests in Cassandra and 8% of the
tests in OpenJPA have performance regressions in response
time. However, the precision in predicting performance-
regression-prone tests in response time is 0.3, 0.5 and 0.29,
for Hadoop, Cassandra and OpenJPA, respectively. With such
a large improvement over the random classifier in precision,
our classifiers still provide a high recall (an average recall of
0.76).

Our classifiers have a similar AUC for all performance

Authorized licensed use limited to: Concordia University Library. Downloaded on March 08,2021 at 18:33:25 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3023955, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 9

TABLE 5
Results of using our approach to predict performance regressions with
different performance metrics, comparing with Perphecy. Bold values

highlight the best predictors.

Hadoop
Random Forest Perphecy LR SVM XG-50 XG-100 XG-500

Pre. Recall F1 AUC Pre. Recall F1 AUC AUC AUC AUC AUC AUC
Res. time 0.30 0.78 0.43 0.87 0.08 0.94 0.14 0.51 0.69 0.84 0.83 0.83 0.83
Cpu 0.43 0.77 0.55 0.87 0.09 0.90 0.16 0.55 0.63 0.72 0.80 0.80 0.79
Memory 0.20 0.84 0.32 0.89 0.06 0.88 0.11 0.53 0.58 0.82 0.83 0.82 0.80
I/O Read 0.43 0.67 0.52 0.82 0.07 0.86 0.13 0.52 0.62 0.81 0.74 0.75 0.76
I/O Write 0.25 0.71 0.36 0.81 0.08 0.95 0.14 0.53 0.60 0.61 0.69 0.68 0.68

Average 0.32 0.75 0.44 0.85 0.08 0.91 0.14 0.53 0.62 0.76 0.78 0.78 0.77
Cassandra

Random Forest Perphecy LR SVM XG-50 XG-100 XG-500
Pre. Recall F1 AUC Pre. Recall F1 AUC AUC AUC AUC AUC AUC

Res. time 0.50 0.63 0.56 0.78 0.03 0.79 0.05 0.54 0.66 0.65 0.78 0.79 0.78
Cpu 0.27 0.86 0.41 0.90 0.03 0.63 0.07 0.60 0.60 0.72 0.80 0.81 0.82
Memory 0.27 0.84 0.40 0.95 0.02 0.56 0.04 0.62 0.70 0.68 0.91 0.90 0.90
I/O Read 0.31 0.68 0.42 0.86 0.02 0.38 0.04 0.73 0.62 0.64 0.82 0.81 0.79
I/O Write 0.15 0.76 0.25 0.87 0.02 0.65 0.03 0.59 0.60 0.70 0.83 0.83 0.79

Average 0.30 0.75 0.41 0.87 0.02 0.60 0.05 0.62 0.64 0.68 0.83 0.83 0.82
Openjpa

Random Forest Perphecy LR SVM XG-50 XG-100 XG-500
Pre. Recall F1 AUC Pre. Recall F1 AUC AUC AUC AUC AUC AUC

Res. time 0.29 0.85 0.43 0.92 0.09 0.80 0.16 0.60 0.67 0.60 0.90 0.90 0.89
Cpu 0.73 0.85 0.78 0.91 0.23 0.70 0.35 0.56 0.81 0.63 0.93 0.93 0.93
Memory 0.48 0.72 0.57 0.88 0.10 0.81 0.18 0.51 0.75 0.69 0.84 0.84 0.84
I/O Read 0.72 0.81 0.76 0.92 0.23 0.68 0.34 0.54 0.79 0.62 0.89 0.89 0.88
I/O Write 0.71 0.60 0.65 0.79 0.34 0.70 0.45 0.57 0.72 0.57 0.77 0.77 0.77
Average 0.59 0.77 0.64 0.88 0.20 0.74 0.30 0.56 0.75 0.62 0.87 0.87 0.86

metrics. By examining the prediction results with differ-
ent performance metrics, we find that all the performance
metrics have a similar AUC. The majority of the AUC of
our classifiers are over 0.8 only two classifiers have an
AUC lower than 0.8 (i.e., 0.79 in I/O write for OpenJPA).
In general, response time and CPU usage always have a high
AUC value. Since response time and CPU usage are widely
used performance metrics in practice, such results advocate
the usefulness of our approach.�
�

�
�

Our random forest classifier can achieve high AUC values
when predicting performance-regression-prone tests. The
precision and recall of the classifiers also drastically out-
perform baseline classifiers.

RQ2: How cost-effective is the prioritization of
performance-regression-prone tests?

Motivation. In RQ1, our results show that we can accurately
predict the performance-regression-prone tests. After the
developers are notified by the prediction results, one still
needs to actually execute the tests in order to review and ad-
dress the performance regressions. However, performance
evaluation is a time and resource consuming task [63].
A desired prediction result would predict performance-
regression-prone tests while minimizing the needed time
to execute them. Therefore, in this research question, we
want to factor in the cost (performance testing time) that
is associated with our prediction results.
Approach. First, we measure the actual performance testing
time as a cost factor for every test in every commit of
our subject systems. By knowing the actual testing time
and whether each test actually manifests performance re-
gression, we create an optimal model. In the optimal model,
we sort all the actual performance-regression-prone tests
by increasing the cost, i.e., the shortest test that manifests
performance regression runs first. The optimal model is
used as a baseline since it represents the optimal scenario
of executing the tests in real-life.

Afterwards, we examine the predicted results by our
classifiers from RQ1. We call this model Non-Cost-AWare

random forest model (NCAW). We sort all the tests ordered
by decreasing predicted probability of being performance-
regression-prone tests, without considering the cost of the
tests.

Finally, we build a cost-aware prediction model by also
considering the cost of the tests. Instead of modelling a bi-
nary outcome of whether the test is performance-regression-
prone, we use the cost of the test to normalize the output.
In particular, similar to Mende [76] and Kamei [11], we also
calculate Rd as

Rd(x) =
Y (x)

Cost(x)
(1)

where Y (x) is 1 if the test is performance-regression-prone
and 0 otherwise. Cost(x) is the running time of the test. We
build random forest regression model to predict the cost-
aware output Rd. We call this model Cost-AWare random
forest model (CAW). We then sort all the tests by decreasing
the predicted cost-aware output Rd.

To evaluate the cost-effectiveness of the cost-aware mod-
els, we first evaluate the successfully predicted performance
regression given a threshold of the cost. Prior research on
bug prediction finds that approximately 20% of the files
with the highest faults contain at least 83% of the faults [77].
Since the percentage of tests with performance regression
range from 2% to 26% (see Table 4), if we simply aim to
examine 20% of the files, our approach would detect all
the performance regressions. Therefore, to further demon-
strate the strength of our approach, we set the threshold
at 5% by further limiting the amount of resources that is
available to execute the tests. We calculate the coverage as
the percentage of predicted performance-regression-prone
tests to all performance-regression-prone tests when we just
spend 5% of the total running time. Moreover, since setting
different threshold values lead to different results, to find
the best threshold value, we use the number of detected
performance-regression-prone test divided by the effort as
a measure. We compute the measure by changing the effort
from 5% to 90% in the steps of 5%. The result shows that 5%
effort is the most cost-effective in Cassandra and Hadoop, and
10% of the effort is the most cost-effective in OpenJPA.

Finally, we use cumulative lift charts [78] to evaluate
the prediction performance of model. An example of the
cumulative lift chat is shown in Figure 3. We generate a
cumulative lift chart from the optimal model, the non-cost-
aware model and the cost-aware model (see Figure 3). The
lines in the chart illustrate that by spending more time
to execute tests, how much more performance-regression-
prone tests can be evaluated. The Popt is calculated by the
size of the area under each line (from cost-aware and non-
cost-aware models), divided by the area under the optimal
line. Therefore, Popt has a range from 0 to 1. The closer the
Popt to 1, the better our model is, i.e., closer to the optimal
execution prioritization of the tests.
Results. Our cost-aware models have high cost-
effectiveness, out-perform Perphecy and are close to the
optimal model. Table 6 presents the cost-effectiveness of
our prediction models. In particular, by spending only 5%
of cost for executing all tests, our approach can help detect
12% to 65% of the performance-regression-prone tests. In
addition, we observe that all our models have a high Popt

value. The average Popt values are always higher than 0.8,
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TABLE 6
Summary of non-cost-aware and cost-aware models. The coverage

values are calculated when spending 5% of the total cost.

Hadoop Cassandra OpenJPA
NCAW CAW NCAW CAW NCAW CAW

Cov. Popt Cov. Popt Cov. Popt Cov. Popt Cov. Popt Cov. Popt
Res. time 0.44 0.87 0.53 0.87 0.63 0.75 0.63 0.79 0.31 0.90 0.45 0.93
CPU 0.45 0.83 0.43 0.86 0.54 0.89 0.54 0.90 0.21 0.93 0.24 0.95
Memory 0.48 0.86 0.53 0.89 0.44 0.94 0.42 0.94 0.26 0.85 0.32 0.88
I/O read 0.52 0.88 0.52 0.82 0.46 0.75 0.62 0.86 0.21 0.91 0.23 0.92
I/O write 0.31 0.81 0.41 0.81 0.59 0.83 0.65 0.88 0.12 0.80 0.17 0.84
Average 0.44 0.85 0.48 0.85 0.53 0.83 0.57 0.87 0.22 0.88 0.28 0.90
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Fig. 3. Cumulative distribution function of optimal model, CAW and
NCAW models in the performance counter of Response time in Hadoop.

indicating a high cost-effectiveness of our models. On the
other hand, we find that our cost-aware models out-perform
Perphecy. In particular, Perphecy only has an average Popt

value of 0.51 and by spending only 5% of cost, Perphecy on
average can only detect 15% of the performance-regression-
prone tests.

When comparing the non-cost-aware and cost-aware
models, we find that our cost-aware models can still provide
improvements to the non-cost-aware model, even though
it already is very close to the optimal model. Popt values
from the cost-aware models are always higher than the
non-cost-aware models in all the performance counters for
all subject systems, only except one case, i.e., I/O read in
Hadoop. Similarly, when having a threshold of spending only
5% of cost for executing all tests, the cost-aware models
can detect on average more performance-regression-prone
tests than the non-cost-aware models. The non-cost-aware
models have better results only in the CPU usage for Hadoop
and in the memory usage for Cassandra, when there is only
small (2% and 2%) difference between the results of the two
models. On the other hand, in all other cases, the cost-aware
models typically have an improvement over the non-cost-
aware models.�
�

�
�

Our classifiers are highly cost-effective. By building a cost-
aware model, we can further improve the cost-effectiveness
of our classifiers.

RQ3: How much testing time can our approach save?
Motivation. The goal of our approach is to save developer’s
time from running all the tests to detect performance re-
gressions. Therefore, in this research questions we would

like to answer to what extend can developers benefit from
our approach regarding to time saving.
Approach. To measure the time saving from our approach,
we start by calculating the time needed without our ap-
proach. Since not all the tests are impacted by the code
changes in each commit, one may opt to only run the tests
that are impacted by each commit (c.f., identifying impacted
tests in Section 4.2). Therefore, we measure the average time
needed to run the tests impacted per commit as a baseline.

Afterwards, we measure the average time needed per
commit for only running the tests that are predicted by
our models in RQ1 to be performance-regression-prone. In
particular, we calculate the time needed for each model
related to each performance metric (e.g., CPU usage). In
practice, developers may decide to run the test if any of
the performance metrics are predicted to be performance-
regression prone. Therefore, we also calculate the needed
time to run the tests if at least one performance metric is
predicted to be performance-regression-prone.
Results. Our classifiers can considerably save time of
performance tests. We find that even only executing the
impacted tests takes hours. Table 7 shows that, running all
the impacted tests per commit for Hadoop takes on average
324 minutes (5.4 hours). The long execution time of rigorous
performance evaluation makes it difficult to be carefully
carried out in practice and hence confirms the motivation
of our work.

On the other hand, with our approach, the needed time
can be reduced from hours down to a matter of minutes.
For example, the needed time to run predicted tests per
commit in Cassandra is as low as 2 to 3 minutes, which make
97% to 95% time reduction comparing with running only
the impacted tests. Even if developers choose to run the test
if any performance metric is predicted to have regression,
the needed test is 8 minutes, i.e., 87% time reduction.

TABLE 7
The average needed performance testing time (in minutes) for each

commit.

Impacted
tests

Tests predicted by one model Tests predicted
by any modelRes. Time CPU Memory I/O read I/O wirte

Hadoop 324 26 35 18 23 30 91
Cassandra 61 2 3 3 3 2 8
OpenJPA 313 22 71 35 71 99 114�
�

�
�

Our prediction drastically reduces the needed testing time
comparing with running only the tests that are impacted by
the code changes in a commit.

RQ4: Can our approach detect the introduction of real-
life performance issues?
Motivation. In order to demonstrate the practical impact
of our approach, we would like to examine whether the
prediction results of our approach (cf. RQ1) can be used to
assist in detecting the introduction of performance issues.
Approach. The goal of this RQ is to study whether any test
in the performance-issue introducing commits are predicted
by our approach and whether the predicted tests cover the
code changes that introduce the performance issue.

We first collect all the performance issues whose in-
troduction is possible to be during our studied period.
In particular, we collect all performance issues that are
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reported after the first commit of our study period from
our subject systems. To collect the performance issues, we
search a list of keywords, such as performance and slow, on
the content (like title, description and discussion) of each
issue. To avoid missing related keywords for performance
issues, we identify all similar keywords using Word2vec
that is trained from Stack Overflow4. We manually examine
every issue that contains the keywords to ensure the issue
is indeed a performance issue and we label each issue
with performance metrics (like CPU or memory) to indicate
which performance metric can be used to illustrate the
performance issue.

However, not all of these performance issues are intro-
duced during our studied period. Therefore, we leverage an
SZZ algorithm [79] to detect the inducing commit of the per-
formance issue. Study shows there may exist false positives
results from SZZ algorithms, i.e., the commit identified by
SZZ is not a true issue inducing commit [80]. Therefore, we
manually check the results from SZZ algorithm to collect the
list of issue inducing commits and intersect the results with
the commits in our studied period to obtain the commits
that indeed introduce a fixed performance issue in the future
of the studied period. Finally, for each of the performance
issue introducing commits, examine our prediction results
from RQ1 to know if our approach successfully identifies
any test in the commit. In addition, we examine the covered
source code of the predicted tests to know if the covered
source code is the location where the performance issue was
introduced.
Results. Our approach can be used to detect the introduc-
tion of real-life performance issues. In total, we identify
nine performance issues that are introduced during our
studied period. Table 8 presents the fixing commit each
performance issue, the inducing commits for each issue and
their corresponding performance metrics. Table 8 shows
that six out of nine issues have at least one true positive
prediction, which shows that our approach could be used to
detect the introduction of real-life performance issues. More
importantly, we find that the code changes that introduce
the performance issues are covered by the predicted tests.

Similar to the findings from RQ1, we find that Perphecy
although can detect two more real-life bugs, it produces a
large number of false-positive detection results. Shown in
Table 8, 348 tests are false-positively detected as manifest-
ing performance regressions. Such a large number of false
positive results may introduce much overhead in executing
the tests and extra effort for the practitioners to manually
examine the results.

We manually examine the three issues that are not suc-
cessfully predicted by our approach, and we find that for
YARN-4307, one of the predicted probability of having a
run-time performance regression is 0.49, which is almost at
the threshold (0.5) of being considered as a positive predic-
tion. The other two issues (YARN-7102 and HDFS-12754)
are rather complicated performance issues (like deadlock),
which are expected to be difficult to capture using our
metrics. For the same bugs, because of the tendency of
having false-positive results, Perphecy predicts the test with

4. The complete list of the keywords are listed in our replication
package

almost all metrics as positive as performance regressions.
We also observe a high false positive rate for OPENJPA-
2665. We find that almost all the false positives are related
to physical performance metrics, such as CPU and Memory,
while the description of the issue is only associated with its
impact on response time.

TABLE 8
Results of using our approach and Perphecy to detect the introduction

of real-life performance issues.

Issue ID Issue fixing
commit

Issue inducing
commit

Performance
metric

Predicted?
PerfJIT

#FP
PerfJIT

Predicted?
Perpechy #FP Perpechy

Hadoop

YARN-4307 308d63f e914220 Resp. time NO 0 NO 207af5d6b Resp. time NO NO

YARN-5889 5fb723b d9281fb
Resp. time YES

1
YES

7CPU NO YES
I/O Write YES YES

YARN-3388 444b2ea d9281fb Resp. time YES 2 YES 13I/O Write NO YES
YARN-7102 ff8378e 528b809 Resp. time NO 0 YES 3

YARN-4862 352cbaa 528b809
Resp. time NO

0
YES

2CPU YES YES
Memory NO YES

HDFS-12754 738d1a2 decf8a6 Resp. time NO 0 YES 3CPU NO YES
Cassandra

CASSANDRA-12763 d73f45b b32a9e6 Resp. time YES 0 YES 2

CASSANDRA-13794 f93e6e3
1b36740 Resp. time YES

0
YES

116a7cb009 Resp. time YES YES
88d2ac4 Resp. time NO YES

OpenJPA
OPENJPA-2665 f0286a2 9fa9ef4 Resp. time YES 46 YES 182�

�

�

�

Our approach can be used to detect commits that introduce
performance issues. In addition, the predicted tests cover
the code changes that introduce the issue. Developers in
practice cloud use our approach to prevent the introduction
of performance issues.

RQ5: What are the most important factors in determining
performance-regression-prone tests?
Motivation. The results in RQ1 show that our approach can
successfully predict performance-regression-prone tests at a
given commit. By understanding the influential factors of
such tests, we may further understand the characteristics
of performance-regression-prone tests. Such characteristics
can be leveraged by practitioners to proactively avoid intro-
ducing performance regressions. In particular, developers in
practice often conduct code reviews to improve the quality
of software, where due to the complexity of performance
regressions, it may be challenging to identify the perfor-
mance regressions based on reviewing source code. With the
knowledge of the characteristics of performance-regression-
prone tests, one can use such information to prioritize effort
during their code review process to identify the potential
performance regressions. For example, we may learn that
changes to loops provide important influence to the in-
troduction of performance regressions. When doing code
reviews, or even during the writing of source code, devel-
opers should be aware that changes to loops may consider
spending more effort on reviewing such code changes.
Approach. To address this RQ, we use the variable im-
portance value that is calculated with the random forest
classifiers. The variable importance value is calculated by
permuting the values of the corresponding metric while
keeping the values of the other metrics unchanged. The
classifier measures the impact of such a permutation based
on the classification error rate [81]. We use the function
importance of the randomForest R package to compute the
variable importance values.
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To avoid bias caused by analyzing just one classifier
and to ensure a robust conclusion, for each classifier that
is built for each commit, we use bootstrap to resample the
training data and build random forest predictors with the
bootstrap sample data. We repeat the above process 100
times and collect 100 variable importance values for each
change metric in each commit. In particular, we use the
function boot of the boot R package to perform bootstrap
resampling.

Afterwards, each metric will have 100 variable impor-
tance values in each commit. However, the difference of
variable importance values between two metrics may not
be statistically significant. To find statistically distinct ranks
of metrics, we perform Scott-Knott Effect Size Difference
(ESD) test [82] to cluster the metrics based on both their
statistical significance and effect sizes. The Scott-Knott ESD
test uses hierarchical cluster analysis to partition different
metrics into distinct groups. With this analysis, each metric
has a rank in the classifier for each commit. Since we build
a classifier for every commit, we calculate the average rank
of a metric based on its ranks in all the classifiers.

Finally, to understand whether the value of the metric
has positive or negative relationship with the existence of
performance regressions, we compare the average metric
values in the tests that are with and without performance
regression by performing a t-test. We consider that the
metric has a positive relationship with the existence of per-
formance regressions if the average metric values in the tests
with the performance regression is higher than that without
performance regression. We only consider the positive or
negative relationship if the p-value of the Student T-test [83]
is smaller than 0.05.

TABLE 9
Average rank of the top important metrics in our classifiers. The

up/down arrows indicates whether the relationship is positive/negative.

Metric Resp. time CPU Memory I/O read I/O write
AGE 2.2↓ 1.3↓ 1.5↓ 1.4↓ 1.6↓
SOL 2.6↑ 2.9↑ 2.8↑ 2.3↑ 2.7↑
LT 3.6↑ 3.3↑ 2.9↑ 2.9↑ 3.1↑

REXP 4.0↑ 2.5↑ 2.4↑ 3.0↑ 3.7↑
NDEV 3.1↑ 4.0↑ 4.5↑ 3.7↑ 4.4↑

Entropy 2.9↑ 4.0↑ 3.3↑ 3.8↑ 3.7↑
Complexity 5.2↑ 4.4↑ 4.2↑ 4.3↑ 4.6↑

LA 4.6↑ 4.0↑ 4.4↑ 4.7↑ 4.4↑
LD 4.7↓ 5.9↓ 5.5↓ 5.4↓ 5.2↓

for chg 6.4↑ 9.3↑ 8.4↑ 5.6↑ 6.9↑

Results. The result of average rank of important metrics
is shown in Table 9. Due to limited space, we only show
the top important metrics for the classifiers and models for
each performance metric. Each row in the table presents the
average rank of the importance of a metric among the three
subject systems. The arrows in the table indicate whether
each metric has a positive (up arrow) or negative (down
arrow) to the probability of having performance regressions.

Traditional metrics are more important than
performance-related metrics in the prediction of
performance-regression-prone tests. Surprisingly, despite
that our performance-related metrics are derived based
on prior research [8], [24], [47], [48], [49] on software
performance, we find that most of the top important
metrics are traditional metrics. In fact, there exists only one

performance-related metrics, i.e., for chg (changes to for
loops) in the top metrics. Therefore, we try our approach
based with random forest classifiers based on only with
transitional metrics and evaluate as RQ1. We find that on
average the AUC values of each classifier only decreases
0.01, 0.06 and 0.05 for Hadoop, Cassandra and OpenJPA,
respectively.

The history and size dimensions are more important
than other dimensions in the traditional metrics. Metrics
SOL and AGE are the two most important factors in the
prediction model. AGE has a negative relationship with
performance regression, which implies that more recent and
frequent changes are more likely to introduce performance
regression. Besides AGE, We also find that metrics in the size
(e.g., SOL) has a positive relationship with performance re-
gressions, which is also similar to prior research on commit-
level defect predictions [11].

Changes to loops (for chg) is the most important factors
in the performance-related metrics. This indicates that there
is a relationship between changing the operation of loop
and the performance regressions. For example, in commit
#94a9a5d0 of Hadoop, developers added a for loop into
the method getUsers in the source files LeafQueue.java. The
for loops adds an item to a queue repetitively, leading to
performance regressions in I/O read.�

�

�

�
We find that the traditional software metrics dominate
the important factors in the prediction of performance-
regression-prone tests. On the other hand, changes to loops
are the only top important factors in the performance-related
metrics.

6 DISCUSSION

In this section, we discuss the learned lessons during the
implementation of our approaches, the limitation and future
work of our approach and the generalizability of our study.

6.1 Traditional metrics are more important than
performance-related metrics
In RQ5, we find that traditional metrics are more im-
portant than performance-related metrics, when predicting
performance-regression-prone tests. Such a result is unex-
pected since all our performance-related metrics are derived
by prior empirical study findings on performance bugs [8],
[20], [47]. In order to understand why such metrics do
not have a high importance when predicting performance-
regression-prone tests, we manually examine the tests that
are not performance-regression-prone, while having a high
value in any performance-related metrics. We find the im-
portance of the performance-related metrics often depend
on a specific workload, while such a workload may not exist
in the tests.

For example, in commit #94a9a5d0 in Hadoop project, de-
velopers added a for loop into the class LeafQueue.java, which
produces a performance-related metric loop change. In our
prediction model, the two corresponding tests, TestCapaci-
tyScheduler.java and TestRMWebServicesCapacitySched.java are
predicted as performance-regression-prone tests. However,
the actual tests are not performance-regression-prone be-
cause the two tests do not execute the loop with a large
number of times, to demonstrate the regression.
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6.2 Our approach out-performs Perphecy

In our evaluation, we compare our approach with Perphecy
since it is the closest research approach to ours. However,
we find that Perphecy does not provide an accurate pre-
diction in our evaluation setting. In particular, we find
that, Perphecy suffers badly from a low precision, e.g., the
precision of Perphecy in Hadoop and Cassandra is only 0.06
and 0.02. Although Perphecy has a relatively high recall, it
may mean that Perphecy always tends to predict a test as
performance-regression-prone. In fact, we find that, for all
the tests in our dataset, 61% to 92% of them are predicted
as performance-regression-prone by Perphecy. We consider
the reason may be that Perphecy only treats its metrics as
boolean values based on a threshold. In addition, the tuning
strategy and the use of disjunctions to combine all met-
rics may cause more tests being predicted as performance-
regression-prone. On the other hand, our approach uses a
much larger set of metrics while depending on machine
learning classifiers instead of simplifying metric values into
a boolean value to make predictions. In addition, our results
in RQ5 show that most of the top influential factors are
rather traditional product and process software metrics. The
information in these top metrics is not captured in the
indicators by Perphecy. The lack of such information may
also cause Perphecy’s lower precision in our study.

6.3 Limitation of our approach and future work

The main limitation of our approach is that that our ex-
tracted metrics are all based on static code analysis. When
applying our approach to detect the introduction of real-
file performance issues in RQ4, we find that our approach
fails to detect a few performance bugs with the complex
root causes such as deadlocks. By examining our extracted
metrics and manually studying the details of the perfor-
mance bugs, we understand that our extracted metrics
that are based on static code analysis may not be able
to capture the characteristics of these performance bugs.
On the other hand, performance bugs like deadlocks often
occur with specific execution conditions, where dynamic
data that captures the interactions between procedures in
the executing the source code is crucial to the detection and
prediction of these bugs. Therefore, in order to improve our
approach to detect such complex performance bugs, we plan
our future study by extracting dynamic information from
the test execution and extract more metrics to capture the
interactions between procedures in tests.

6.4 Generalizability of our study

Although our approach is not designed in particular for any
programming language or any type of project, there still
exist some aspects that may influence the generalizability of
our study.
Test coverage. Our approach depends on executing small-
scale tests that are readily available in the software system
to detect performance regressions. If the source code or the
code changes are not covered by the tests, our approach
cannot help in detecting the associated regressions. We find
that by measuring the method coverage by tests, our studied
projects may not have high method coverage. In particular,

the method coverage of Hadoop, Cassandra and OpenJPA is
only 13.64%, 24.82%, and 11.09%, respectively. However,
since our approach works for each code commit, only the
changed methods need to be covered by the test. We find
that for all the changed methods in all commits, 67.97%,
53.3%, and 64.62% are covered by the tests in Hadoop, Cassan-
dra and OpenJPA, respectively. Such high coverage ensures
the success of our approach. This also implies that, in order
to adopt our approach, practitioners may first evaluate
whether the source code that are likely to be changed is
covered by tests.
The granularity of commits. Different projects and devel-
opers may follow different granularities of making code
commits. Some practitioners may stack a large amount of
code changes in one commit. In such a scenario, it is easier
for our approach to do the prediction while on the other
hand, the prediction results may not be as beneficial to
developers since they may still end up with many code
changes to investigate. On the other hand, one developer
may commit very often, leading to commits with very few
changes in it. Since performance regression is often a result
of a combination of contribution from multiple sources, such
small commits may isolate the impact, making our approach
not able to see the performance influence in each individual
commit. In our three studied projects, the average code
churn per commit is 155, 170 and 182, for Hadoop, Cassandra
and OpenJPA, respectively. The granularities of the com-
mits among the three projects are rather similar, so as the
accuracy of our approach on the three projects. However,
future research may perform in-depth investigation on the
granularity of commits and the accuracy of our approach.
The quality of the test itself (e.g., test being flaky). Our
approach depends on the tests to evaluate the performance
of the associated source code. However, if the test itself
is written with a sub-optimal quality, the results may be
biased. For example, the test failures in the flaky test may
introduce noise and requires extra running time to achieve
the needed repetition. Recent research [84] discusses the
reasons for tests not suitable for performance evaluation,
which can be leveraged to know how well another project
can adopt our approach.

7 THREATS TO VALIDITY

External validity. Due to the huge computing resources
(133 machine days spent in our case studies) needed for
identifying performance regressions, we carry out our study
on three subject systems. All our three subject systems are
implemented in Java. Hence, our findings might not be suit-
able for other systems. Future studies may especially focus
on commercial close source systems with other languages
(such as C++).
Internal validity. We use traditional metrics and
performance-related metrics based on the findings from
prior research. We choose our classifiers, based their widely
usage in prior software engineering research [85], [86], and
typically provide a high accuracy in the modeling. There
may exist other metrics that we do not include in our study
and other machine learning classifiers may also achieve an
accurate classification. Although our results have shown
high (0.86 on average) AUC values of our prediction models,
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adding more metrics or employing other classifiers by future
research may further improve the models.

We were only able to collect nine real-life performance
issues in our RQ4. However, there can be other performance
issues that are introduced during our studied period while
not yet being fixed or reported. We could not evaluate
our approach on the un-reported or un-fixed performance
issues. A long-term study by applying our approach in
practice may address this threat.
Construct validity. When extracting performance-
regression-prone tests, we execute each test 30 times
repetitively to address the flakiness and unstableness of the
test results. The more repetition, the less that the testing
results is biased. Future work may vary the number of
repetitions to complement our results. Due to the high
cost of tests, we use the release to estimate the mapping
between code and test rather than creating such mapping
for every commit. Such mapping might not be perfect
since code changes in during the release may alter such
mapping. Future research can evaluate such an approach
or investigate the use of other techniques to generate the
mapping between code and test.

The results of our approach are achieved without re-
balancing the training data. In order to know the impact
of data re-balancing, we leveraged two re-balancing tech-
niques, i.e., up-sampling and SMOTE [87]. However, neither
of the two techniques can improve our prediction results.
Similar findings have been reported in software defect pre-
diction [53], [88]. In addition, we did not fine-tune all the
parameters of classifiers, while only running XGBoost with
different number of iterations. Although practitioners find
mainly the importance of iterations in XGBoost [89], future
work can investigate the optimization of other parameters of
the classifiers. When measuring the time saving in RQ3, we
did not include the time needed to set up the performance
measurement environment and rebuilding models for each
commit. By providing automated scripts, the environment
set up only takes seconds and only needs to be set up once.
In addition, extracting metrics for the newly detected tests
and rebuilding models only negligible time (take less than
one minute) in all the cases in our study. We also examine
the testing time needed for the initial 50 commits for each
subject system when cold start our approach without any
historical data. The testing time for the initial 50 commits
is 2,425 minutes, 2,257 minutes, and 13,099 minutes, respec-
tively. However, such time is only needed once to cold start
our approach.

8 CONCLUSION

In this paper, we propose an approach that automatically
predicts whether a test would manifest a performance re-
gression given a code commit. The case study results show
that our approach can provide accurate prediction results,
drastically outperforming a random classifier and being able
to detect the introduction of real-life performance issues. In
particular, this paper makes the following contributions:

• To the best of our knowledge, our work is the first
to predict performance-regression-prone tests at the
commit level.

• Our approach can provide accurate prediction re-
sults, and save testing time, easing the adoption of
the approach in practice.

• The important factors identified in our case study
can be leveraged by developers to proactively avoid
introducing performance regressions.
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