
Untriviality of Trivial Packages

Md Atique Reza Chowdhury

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

December 2019

c©Md Atique Reza Chowdhury, 2020

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Md Atique Reza Chowdhury

Entitled: Untriviality of Trivial Packages

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Weiyi Shang

Examiner
Dr. Yann-Gaël Guéhéneuc

Examiner
Dr. Tse-Hsun Chen

Supervisor
Dr. Emad Shihab

Approved by
Dr. Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2019
Amir Asif, Dean
Faculty of Engineering and Computer Science

Abstract

Untriviality of Trivial Packages

Md Atique Reza Chowdhury

Nowadays, developing software would be unthinkable without the use of third-party pack-

ages. Although such code reuse helps to achieve rapid continuous delivery of software to end-users,

blindly reusing code has its pitfalls. Prior work investigated the rationale for using packages of

small size, known as trivial packages, that implement simple functionality. This prior work showed

that, although these trivial packages are simple, they are popular and prevalent in the npm ecosys-

tem. This popularity and prevalence of trivial packages peaked our interest in questioning; first, the

‘triviality’ of these packages and, second, the impact of using these packages on the quality of the

client software applications.

To better understand the ‘triviality’ of trivial packages and their impact, in this thesis we report

on two large scale empirical studies. In both studies, we mine a large set of JavaScript applications

that use trivial npm packages. In the first study, we evaluate the triviality of these packages from two

complementary points of view: based on application usage and ecosystem usage. Our result shows

that trivial packages are being used in important JavaScript files, by the means of their ‘centrality’, in

software applications. Additionally, by analyzing all external package API calls in these JavaScript

files, we find that a high percentage of these API calls are attributed to trivial packages. Therefore,

these packages play a significant role in JavaScript files. Furthermore, in the package dependency

network, we observe that 16.8% packages are trivial and in some cases removing a trivial package

can break approximately 30% of the packages in ecosystem. In the second study, we started by

understanding the circumstances which incorporate trivial packages in software applications. We

analyze and classify commits that introduce trivial packages into software applications. We notice

that developers resort to trivial packages while performing a wild range of development tasks that

iii

are mostly related to ‘Building’ and ‘Refactoring’. We empirically evaluate bugginess of the files

and applications that use trivial packages. Our result shows that JavaScript files and applications

that use trivial packages tend to have a higher percentage of bug-fixing commits than files and

applications that do not depend on trivial packages. Overall, the findings of our thesis indicate that

although smaller in size and complexity, trivial packages are highly depended on packages. These

packages may be trivial by the means of size, their usage in software applications suggests that their

role is not so trivial.

iv

Statement of Originality
I, Md Atique Reza Chowdhury, hereby declare that I am the sole author of this thesis. All ideas

and inventions attributed to others have been properly referenced. This is a true copy of the thesis.

v

Dedication
To my parents.

vi

Acknowledgments

First and foremost, I would like to express my deepest gratitude to Almighty Allah for his

abundance blessings and help to accomplish this work.

I would like to thank my supervisor Dr. Emad Shihab for his support and guidance in each step

of this journey. He motivated me when I needed it most. I consider myself very lucky to work under

his supervision.

I am grateful to Dr. Rabe Abdalkareem for guiding me in each step of this endeavor. Your

advice, critical comments and feedback helped me immensely.

I am greatly indebted to my fellow colleagues Ahmad Abdellatif, Suhaib Mujahid, Mahmood

AL Fadel, Diego Elias,Giancarlo Sierra and everyone else in the Data-driven Analysis of Software

(DAS) Lab.

I owe my deepest gratitude to my parents for their fervent prayers, support, motivation and never

loosing faith in me. Thanks to my son for inspiring me dream big and to my wife for helping me

chase that dream.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivating Example . 2

1.2 Thesis Statement . 3

1.3 Thesis Overview . 3

1.3.1 Chapter 3: Untriviality of Trivial Packages: An Empirical Study of the npm

JavaScript Packages . 3

1.3.2 Chapter 4: An Empirical Study on the Impact of Using Trivial Packages on

Software Quality . 4

1.4 Thesis Contributions . 5

1.5 Related Publications . 5

2 Related Work 6

2.1 Third-party Package Usage . 6

2.2 Software Ecosystems . 7

2.3 Impact of Reusing source code . 9

2.4 Summary . 10

3 Untriviality of Trivial Packages: An Empirical Study of the npm JavaScript Packages 11

3.1 Introduction . 11

viii

3.2 Case Study Design . 14

3.2.1 Dataset of Candidate Applications . 14

3.2.2 Pruning List of Applications . 14

3.2.3 Identifying JavaScript Applications that Use Trivial Packages 15

3.3 Case Study Result . 17

3.3.1 RQ1: Are trivial packages used in important parts of JavaScript applications? 17

3.3.2 RQ2: How widely used are trivial packages in JavaScript Applications? . . 21

3.3.3 RQ3: Do trivial packages play an important role at the ecosystem level? . . 23

3.4 Discussion . 28

3.5 Threats to validity . 31

3.5.1 Construct validity . 31

3.5.2 External validity . 32

3.6 Chapter Summary . 33

4 An Empirical Study on the Impact of Using Trivial Packages on Software Quality 34

4.1 Introduction . 34

4.2 Case Study Design . 37

4.2.1 Dataset of candidate applications . 37

4.2.2 Select active and large JavaScript applications 38

4.2.3 Select applications with rich development history 38

4.2.4 Identify applications that use trivial packages 38

4.3 Case Study Result . 40

4.3.1 RQ0: In which context trivial packages are introduced into a software ap-

plication and what types of functionalities trivial packages provide? 40

4.3.2 RQ1: Does using trivial JavaScript packages impact the overall quality of

applications? . 46

4.3.3 RQ2: What is the impact of trivial packages on the quality of the files? . . 49

4.3.4 RQ3: Are commits that introduce trivial packages in JavaScript files risky? 53

4.4 Threats to validity . 55

ix

4.4.1 Internal validity . 56

4.4.2 External validity . 57

4.5 Chapter Summary . 57

5 Summary, Contributions and Future Work 58

5.1 Summary of findings . 58

5.2 Contribution . 59

5.3 Future Work . 60

5.3.1 Detecting Trivial Packages That Provide Similar Functionalities: 60

5.3.2 Generate Automated Test Cases for the Packages: 60

5.3.3 Automate the Evaluation of Ecosystem Health: 60

5.3.4 Automatically Generate Smaller Packages: 61

Bibliography 62

x

List of Figures

Figure 1.1 The source code of trivial package isarray. 2

Figure 3.1 An overview of our data collection approach. 14

Figure 3.2 Distribution of degree centrality rank of trivial dependent and non-trivial

dependent files in different project groups based on number of files. 19

Figure 3.3 Distribution of percentage of API calls for trivial and non-trivial packages in

JS files. 21

Figure 3.4 Distribution of trivial and non-trivial package API entropy. 22

Figure 3.5 Composite Dependency Network . 24

Figure 3.6 Distribution of PageRank values for trivial and non-trivial packages. 25

Figure 3.7 The distribution of the percentage of trivial dependent files in all the studied

applications based on TDDT segmentations. Dotted horizontal line present overall

median. 30

Figure 4.1 Overview of the dataset selection process. 37

Figure 4.2 Distribution of percentage of bug-fixing commits in trivial dependent and

non-trivial dependent applications. The solid horizontal lines represent the medians

of the distribution. The dotted horizontal line is the overall median. 46

Figure 4.3 Distribution of percentage of bug-fixing commits before and after trivial

package introduction in applications. The solid horizontal lines represent the medi-

ans of the distribution. The dotted horizontal line is the overall median. 48

xi

Figure 4.4 The distribution of percentage of bug-fixing commits in trivial dependent

and non-Trivial dependent files. The solid horizontal lines represent the medians of

the distribution. The dotted horizontal line is the overall median. 49

Figure 4.5 The correlation between the percentage of number of trivial package used

and percentage of number of the bug-fixing commits in file. 50

Figure 4.6 The distribution of bug-fixing commits before and after trivial package in-

troduction in files that are converted from non-trivial dependent to trivial dependent

in that commit. The solid horizontal lines represent the medians of the distribution.

The dotted horizontal line is the overall median. 51

Figure 4.7 Distribution of percentage of fix-inducing commits in trivial introduction

commits in files and other commits. The solid horizontal lines represent the medians

of the distribution. The dotted horizontal line is the overall median. 53

xii

List of Tables

Table 3.1 Filtering steps of the studied JavaScript applications. 15

Table 3.2 Summary of the number of developers, commits, watchers, and stars for

15,254 JavaScript projects. 16

Table 3.3 Distribution of number of npm packages in all the JavaScript applications in

our dataset. 16

Table 3.4 Distribution of number of files in projects in our dataset. 17

Table 3.5 The distribution of the degree centrality of trivial and non-trivial dependent

JavaScript files. 18

Table 3.6 The statistical summary of the distribution of technical bus factor (TBF) for

the trivial and non-trivial packages in our composite dependency network. 26

Table 3.7 The top-20 most impactful trivial packages measured by Technical Bus Factor

(TBF). 27

Table 3.8 The statistical summary of the distribution of external package API call per-

centage in JavaScript files throughout application’s development lifespan. The table

shows the distribution for trivial packages (TP) and non-trivial packages (NPT). . . 30

Table 4.1 Summary statistic of the studied dataset. 40

Table 4.2 Type of development activities associated with introducing trivial packages

into JavaScript applications. 41

Table 4.3 Categories of trivial packages based on functionality. 44

xiii

Table 4.4 The percentage of fix-inducing commits for each of the different type of func-

tionalist that trivial packages provide. *The percentage of fix-inducing commits all

commits for each of the different type of functionalities. **The percentage of fix-

inducing commits for each type to all fix-inducing commits related to trivial packages. 54

xiv

Chapter 1

Introduction

Using third-party packages is becoming an integral part of today’s software development prac-

tice. Developers share their code in the form of packages to different software package managers

(e.g. Node Package Manager (npm) and Python Package Index (PyPI)). Developers are using these

packages in their software applications to avoid reinventing the wheel (Abdalkareem, Nourry, We-

haibi, Mujahid, and Shihab (2017); Murphy-Hill et al. (2019); Wagner and Murphy-Hill (2019); Xu,

An, Thung, Khomh, and Lo (2019)). Because of this demand and supply, entire ecosystems have

been created around these package managers, e.g., the Node.js ecosystems are largely supported by

npm (Cox (2019)).

Previous studies showed that blindly using external-packages has pitfalls like an increase of

unforeseen maintenance cost, exposer to vulnerabilities and legal problems due to licensing is-

sues (Decan, Mens, and Constantinou (2018); Inoue, Sasaki, Xia, and Manabe (2012); Lim (1994);

Zapata et al. (2018)). Lately in 2016, removal of “left-pad”, an 11 line source code, package from

npm affected popular websites like Facebook, NetFlix, Airbnb. This incident triggered a debate

regarding using small npm packages. Some people were critical about reusing small packages to

the extent that they even questioned the programming competence of developers who use these

small packages (Haney (2016)). Prior work (Abdalkareem, Nourry, et al. (2017); Abdalkareem,

Oda, Mujahid, and Shihab (2019)) evaluated the rationale of developers regarding using these small

packages, known as “trivial” packages. They defined trivial packages based on size and complex-

ity, and they observed that approximately 17% of the packages in the npm ecosystem are trivial.

1

 var toString ={}.toString;
module.exports = Array.isArray || function (arr) {
 return toString.call(arr) == '[object Array]';
};

};

Figure 1.1: The source code of trivial package isarray.

Although developers speculate that these packages are well maintained and tested, more than 50%

of these packages have no test case. Moreover, developers claim that these packages improve their

productivity and make the software applications less complex, more readable and performant.

We agree that trivial packages may be small in size and implement very specific functionality

but the fact that they are so prevalent and popular warrants questioning their triviality. Therefore,

the main objective of this thesis is to empirically examine the triviality of these packages from their

usage in software applications.

1.1 Motivating Example

To highlight the popularity and prevalence of trivial packages, we describe three motivating

examples. First, we examine the “isarray” package composed of only 3 lines of code shown in

Figure 1.1. Our examination of this package shows that it is extremely popular and has more than

24 million downloads per week. One of the prominent reasons behind the large popularity of this

package is backward compatibilities with browsers that do not support Array.isArray provided by

JavaScript 1.8.5. For this reason, 214,330 (40%) other packages in the npm ecosystem directly or

indirectly (transitive) depend on this package, which makes this package extremely important in this

ecosystem. Second, the removal of the “left-pad”, which contains only 11 lines of codes, package

from the npm ecosystem had interrupted most popular websites like Facebook, Netflix, and Airbnb.

Finally, we observe that the three of the top 5 most depended on packages in the npm ecosystem are

small packages (Zimmermann, Staicu, Tenny, and Pradel (2019)).

It is apparent from the aforementioned examples that some trivial packages are very popular and

heavily depended on by other packages. It is essential to evaluate whether these trivial packages

play a trivial role in software applications that depend on them. Moreover, more than 50% of trivial

2

packages have no test cases, it is important to assess if these packages have an impact on the quality

of software applications.

1.2 Thesis Statement

In this Master’s thesis, we focus on understanding the use of trivial packages in software ap-

plications. We analyze the software applications that depend on these packages to understand two

aspects. First, we evaluate if these packages are important in the scope of these software applica-

tions and in the software ecosystem to which they belong to. Second, we examine the quality impact

of these packages on software applications. We formulate our research problem as follows:

Although prior work shows that the use of trivial packages has become increasingly common,

little is known about their importance and impact on software applications. We want to investigate

the triviality of trivial packages.

1.3 Thesis Overview

The body of the thesis is composed of two main chapters:

1.3.1 Chapter 3: Untriviality of Trivial Packages: An Empirical Study of the npm

JavaScript Packages

Prior work has investigated the developer’s rationale regarding using trivial packages. Although

these trivial packages provide simple functionalities, they are popular and prevalent in the npm

ecosystem. This popularity and prevalence of trivial packages piqued our interest in questioning

their triviality. To understand the triviality of these packages, we mine a large set of NodeJs appli-

cations that use trivial npm packages and evaluate these packages relative importance by evaluating

how these packages are used in these applications. Specifically, we evaluate the triviality of these

trivial packages from two complementary aspects: based on application usage and ecosystem usage.

Our result shows that:

3

• Files that have trivial package dependency are comparatively more ‘central’ within the scope

of a software application than other files.

• In these JavaScript files, we found that a significantly higher percentage of API calls are

attributed to trivial packages compared to non-trivial packages. Therefore, these packages

play a significant role in these files.

• In the package dependency network, which consists of all direct and transitive dependency of

the software applications in our dataset, trivial packages are statistically more central as these

packages are more depended upon by other packages than non-trivial packages.

1.3.2 Chapter 4: An Empirical Study on the Impact of Using Trivial Packages on

Software Quality

Motivated by the findings of the previous study and by the fact that more than 50% of the trivial

packages have no test case, we empirically examine the impact of using these packages on software

quality. Additionally, we categorize trivial packages based on their functionality. Our analysis

shows that:

• Trivial packages render a wide variety of functionalities ranging from simple string modifica-

tion to server management or providing security.

• Applications that use trivial packages tend to have a higher percentage of bug-fixing commits

compared to the applications that do not have any trivial package dependency.

• Files that depend on trivial packages are statistically more buggy than files that do not depend

on trivial packages.

• The commits that introduce trivial packages in JavaScript files are statistically more fix-

inducing than other commits, which makes these changes risky.

4

1.4 Thesis Contributions

The contributions of this thesis are as follows:

• We provide a novel approach to evaluate how important trivial npm packages are by exten-

sively analyzing their usage from applications and ecosystems perspective.

• We formulate various metrics to understand the importance of a package in a dependency

network of the npm ecosystem.

• We provide an extensive insight on the development activities that introduce trivial packages

in to an application and the functionalities trivial packages provide.

• We conducted a large scale empirical study to examine the quality impact of using trivial

packages in JavaScript applications.

1.5 Related Publications

Earlier versions of the work presented in this thesis have been previously presented or submitted

to different renowned software engineering events:

• A. Chowdhury, “On the Untriviality of Trivial Packages: An Empirical Study of the npm

JavaScript Packages”, Poster Presented at Consortium for Software Engineering Research

(CSER), Fall 2016 Meeting, Markham, Ontario, Canada, 2018.

• A. Chowdhury, R. Abdalkareem, E. Shihab, and B. Adam “On the Untriviality of Trivial

Packages: An Empirical Study of the npm JavaScript Packages”, Under Submission to the

IEEE Transactions on Software Engineering (TSE), 16 pages (2019).

• A. Chowdhury, R. Abdalkareem, E. Shihab and S. McIntosh “An Empirical Study on the

Impact of Using Trivial Packages on Software Quality”, In Preparation to be Submitted to the

Journal of Empirical Software Engineering (EMSE), 29 pages (2019),

5

Chapter 2

Related Work

The work that is most related to our study falls into three main categories: third-party package

usage, software ecosystems, and software quality.

2.1 Third-party Package Usage

The increasing trend of using third-party packages in software applications has motivated re-

searchers to analyze why and how these packages are created and maintained. Xu et al. (Xu et al.

(2019)) studied the reason behind the reuse and re-implement of external packages in software ap-

plications. Developers often replace their self-implemented methods by external libraries because

they were initially unaware of the library or it was unavailable back then. Later on, when they be-

come aware of a well maintained and tested package, they replace their own code by that package.

Although developers prefer to reuse code than re-implementing, they replace the external package

by implementing the methodology themselves when they become aware that they only use a small

number of functionalities of a heavy package or if the package methods become deprecated. This

study encourages package developers to produce lightweight packages e.g., trivial packages. Ab-

dalkareem et al. (Abdalkareem, Nourry, et al. (2017)) studied an emerging code reuse practice in

the form of lightweight packages in the npm ecosystem. Abdalkareem et al. (Abdalkareem, Nourry,

et al. (2017)) studied various aspects of trivial packages. They defined trivial packages based on

the size and complexity of these packages and we adopt this definition in our study. Their study

6

was conducted upon understanding why developers use trivial packages. Kula et al. (Kula, Ouni,

Germán, and Inoue (2017)) also study small packages in the npm ecosystem. Their study shows

that these small packages either provide trivial functionalities or they act as a facade to load other

external packages. Therefore, these packages, when act as a facade, have long dependency chains.

Both of these studies evaluate small or micro packages as standalone units, our study examines the

importance and quality impact of these trivial packages where they are used. Trivial packages are

not only available in the npm ecosystem. In another study, Abdalkareem et al. (Abdalkareem et al.

(2019)) observed that these packages are also prevalent in PyPI (Python Package Index) but 70.3%

of the developers consider using these packages in software applications a bad practice. Therefore,

perception of package use varies across software ecosystems.

2.2 Software Ecosystems

The software applications that belong to the same software ecosystem was a research interest.

Several studies examine software ecosystems to understand their characteristics and evolution (e.g.,

Bavota, Canfora, Penta, Oliveto, and Panichella (2013); Bloemen, Amrit, Kuhlmann, and Ordóñez

Matamoros (2014); Decan, Mens, Claes, and Grosjean (2016); German, Adams, and Hassan (2013);

Kabbedijk and Jansen (2011); Manikas (2016)).

Several studies examined direct and transitive dependencies of software applications. Wittern et

al. (Wittern, Suter, and Rajagopalan (2016)) examined packages in the npm ecosystem and observed

that 32.5% of the packages have 6 or more dependencies. Moreover, 27.5% of the packages in npm

are core packages as they are largely dependent on by other packages. Fard et al. (Fard and Mes-

bah (2017)) evaluated changeability in npm applications and showed that the average number of

dependencies in these applications is six and the number is always in the growing trend. Kikas et

al. analyzed the dependency network structure and evolution of JavaScript, Ruby, and Rust ecosys-

tems and showed that the number of transitive dependencies of the packages in these ecosystems

is 10 times higher than the number of direct dependencies and this scenario is growing exponen-

tially (Kikas, Gousios, Dumas, and Pfahl (2017)). Zimmermann et al. (Zimmermann et al. (2019))

systematically examine dependencies between packages, the maintainers responsible for packages

7

in the npm while focusing on security issues. Their results show that individual packages could

impact large parts of the npm ecosystem. They also reported that a very small number of developers

are responsible for a large number of npm packages.

In our study, we also see that direct dependencies are only the tip of the iceberg, whereas indirect

dependencies make up the largest portion of a package dependency network. We found 10,507

distinct packages as direct dependencies to these applications whereas the package dependency

network, which has direct and transitive dependencies of these software applications, has 32,319

packages.

Researchers also investigated the developers’ rationale for selecting a package for their soft-

ware application. Haenni et al. found that developers generally do not apply any logical reasoning

when selecting packages, they just use them to accomplish their task (Haenni, Lungu, Schwarz, and

Nierstrasz (2013)). Abdalkareem et al. (Abdalkareem, Nourry, et al. (2017)) found that developers

have biased perception about trivial packages, thinking that these packages are well tested. After in-

cluding third-party packages, developers are often too reluctant to updates their dependencies. New

versions of the packages improve functionalities and fixe security issues or bugs. Kula et al. (Kula,

Germán, Ouni, Ishio, and Inoue (2018)) observed that 81.5% of their studied applications have

outdated dependencies, although these applications heavily depend on external packages. Their

interviewing of developers revealed that they were often unaware of the security vulnerabilities of

underlying dependencies and perceived updating dependencies not a necessity but additional work.

The study of Wittern et al. (Wittern et al. (2016)) showed that the package version number is not a

good predictor of a package’s maturity. To assist developers in updating dependencies, evaluating

four software packaging ecosystems (Cargo, npm, Packagist, and Rubygems), Decan et al. (Decan

and Mens (2019)) proposed an evaluation based on the “wisdom of the crowd” to select appropri-

ate semantic versioning constraints for their dependencies. These types of ecosystem-wide studies

helped to clarify various general misconceptions and mitigate bad practices in ecosystems.

Lertwittayatri et al. (Lertwittayatrai et al. (2017)) analyzed npm ecosystem topology by us-

ing network analysis technique to extract patterns of existing libraries by studying its localities.

Mens (Mens (2016)) discussed the socio-technical aspects of software maintenance and evolution.

He emphasizes on studying both technical and social factors while analyzing software ecosystems.

8

We utilized his proposed metrics to evaluate the effect of the removal of a package from a software

ecosystem.

Other studies examine the API usage of external packages. Mileva et al. (Mileva, Dallmeier,

and Zeller (2010)) studied API usage patterns of external libraries to examine the popularity of their

API. They used this popularity metric to determine if a package is successful or not. Holmes et

al. (Holmes and Walker (2007)) quantitatively analyzed how APIs are used. They consider the

frequency of API use as the popularity and importance of that API. We determine the importance of

an external package by analyzing the percentage of its API calls in the files that depend upon those

packages.

Overall, this thesis examines software applications that depend on at least one trivial package

from the npm ecosystem. This thesis is focused on the characteristics of software applications that

use external packages from npm ecosystem. This categorization helps understand the ecosystem

better and adhere to good practices and mitigate bad practices ecosystem-wide.

2.3 Software Quality

Quality assessment and bug prediction is one of the most important domains in software en-

gineering research. In our study, similar to other studies (Kim, Whitehead, and Zhang (2008);

McIntosh, Kamei, Adams, and Hassan (2016); Śliwerski, Zimmermann, and Zeller (2005); We-

haibi, Shihab, and Guerrouj (2016)), we use a keyword-based approach to recognize commits that

fix some bugs. Abdalkareem et al. (Abdalkareem, Shihab, and Rilling (2017)) analyzed the quality

of software applications that reuse code from StackOverflow. We analyze the quality of software

applications that do not source raw source code but rather reuse code in the form of external pack-

ages. Similar to Abdalkareemet al., we evaluate the bugginess of software applications before and

after code from the external source is reused in the applications.

Prior studies evaluated changes that induce future bugs in software applications. Śliwerski et

al. (Śliwerski et al. (2005)) introduced the SZZ technique to locate fix-inducing changes by checking

the version control system and bug database. Several other studies enhanced the SZZ algorithm (da

Costa et al. (2017); Kim, Zimmermann, Pan, and Jr. Whitehead (2006); Mizuno and Hata (2013);

9

Williams and Spacco (2008)). Our study leverages the SZZ technique to examine the riskiness of

the commits that introduce trivial packages into software applications. We utilize Commit guru (?)

for analyzing fix-inducing changes.

2.4 Summary

This chapter surveyed prior studies that are most related to this thesis. Specifically, it discussed

work related to the third-party package creation and usage in software applications and ecosystems

and how they are related to the impact of overall software quality. Our literature review showed

that the trend of using trivial packages is popular in different software ecosystems that include

for example npm and PyPI. However, most of the prior work assumes that these trivial packages

are by definition small in size and provide simple functionalities and that their impact of the overall

software applications and ecosystems can be neglected. To fill this gap in the following two chapters

(Chapters 3 and 4), we describe two empirical studies on the triviality of trivial packages and how

trivial packages can impact software quality.

10

Chapter 3

Untriviality of Trivial Packages: An

Empirical Study of the npm JavaScript

Packages

3.1 Introduction

The use of third-party packages is becoming increasingly popular since it allows teams to reduce

development time and costs and increase productivity (Abdalkareem, Nourry, et al. (2017); Murphy-

Hill et al. (2019); Wagner and Murphy-Hill (2019)). A major enabler for the use of third-party

packages (hereafter referred to as packages) is the capability for developers to easily share their code

through software packages on dedicated platforms, known as software package managers (e.g. Node

Package Manager (npm) and Python Package Index (PyPI)). Entire ecosystems have been created

around these package managers, e.g., the Node.js ecosystems are largely supported by npm (Cox

(2019)).

Despite the many benefits and wide popularity of using software packages, they also pose some

major drawbacks such as increased maintenance costs, and increased risk of exposure to vulnera-

bilities and even legal issues (Decan et al. (2018); Inoue et al. (2012); Lim (1994); Zapata et al.

11

(2018)). One specific incident, the left-pad incident (Abdalkareem, Nourry, et al. (2017); Mac-

domald (2016)), triggered a large debate on whether developers should be reusing packages for

“trivial tasks”1. Since then a number of studies focused on the topic of “trivial packages” and found

that indeed, the left-pad incident is not isolated, and that trivial packages account for more than

17% of the 800,000 packages on npm (Abdalkareem, Nourry, et al. (2017); Kula, Ouni, German,

and Inoue (2017)). In addition, these packages tend to be heavily used, with some trivial packages

(e.g., escape-string-regexp) being downloaded more than 11 million times per week (npm

search (2018)).

The fact that these trivial packages play such a central role made us ask the question are trivial

packages really trivial? Although we do agree that these packages may be small in size and

implement very specific functionality, their prevalence warrants questioning their triviality. In this

chapter, we examine the triviality of trivial packages based on their usage. We focus on the usage of

trivial packages in (1) the applications that use them (application usage) and (2) the role they play

in the ecosystem they belong to (ecosystem usage).

We perform an empirical study analyzing more than 15,000 JavaScript applications, of which

3,965 depend on trivial packages. To examine application usage, we use static analysis to deter-

mine the importance of the files that use trivial packages and analyze how widely the trivial packages

are used in these files. To examine ecosystem usage, we leverage network analysis to examine the

role of trivial packages in the ecosystem’s dependency network. Our study is formalized through

three Research Questions (RQs):

• Application usage. RQ1: Are trivial packages used in important parts of JavaScript appli-

cations? To better understand how applications use trivial packages, we examine their role in

the source code files of the applications that depend on them. Using the call graph, we find that

files that depend on trivial packages are important in their respective applications. This finding

indicates that trivial packages may not be so trivial after all, because they are used in important

parts of the applications that depend on them.

• Application usage. RQ2: How widely used are trivial packages in JavaScript Applications?
1The left-pad incident refers to a 11-line package that implements simple string manipulation. This package was used

by Babel, a package that is used by the most major website, including Facebook, Netflix, and Airbnb.

12

In addition to knowing if the trivial packages are used in important parts of the application, we

study if the trivial packages are widely used (i.e., are they only used in one important part or

throughout the applications). Again, we use static source code analysis to determine the percent-

age of API calls that are made to trivial packages. Also, we measure the entropy of packages

to determine the spread of their use. We find that trivial packages are at least as widely used as

non-trivial packages, indicating that they may not be so trivial.

• Ecosystem usage. RQ3: Do trivial packages play an important role at the ecosystem level?

To complement our analysis in RQs 1 and 2, which focus on application-level usage, we examine

the importance of trivial packages within the ecosystem. We study the package dependency net-

work for both direct and transitive dependencies of the studied applications. We find that trivial

packages are more important to the ecosystem than non-trivial packages. Moreover, we find that

removing certain trivial packages from the ecosystem may impact up to 30% of other packages

in the ecosystem. Our result shows that trivial packages are important building blocks in the

ecosystem, and hence that their role is not trivial.

Our study makes the following contributions:

• To the best of our knowledge, this is the first in-depth study that examines the importance and

role of trivial packages to applications using them and to the ecosystem to which they belong.

• The findings of this chapter are based on an extensive analysis, which includes a large dataset

of JavaScript applications that depended on trivial packages and the use of a state-of-the-art

technique that include dependency network analysis.

• To encourage replication and further study on the use of trivial packages, we disclosed our

dataset and source code for our analysis in our replication package.

Chapter organization: Section 3.2 presents our study design and approach. We describe our results

in Section 3.3. We discuss the implications of our study in Section 3.4. We discuss threats to validity

in Section 3.5. Finally, Section 3.6 concludes the chapter.

13

Candidate npm
applications from

GitHub

Filter out
immature

applications

Identify
applications that

use trivial
packages

1,960,727 15,254

1 2 3
3,965 applications

that use trivial
packages

Figure 3.1: An overview of our data collection approach.

3.2 Case Study Design

To investigate the role of trivial packages in software applications, we study a large dataset of

JavaScript software applications that depend on at least one trivial package. Figure 4.1 shows an

overview of our general approach. We describe each step in our approach below.

3.2.1 Dataset of Candidate Applications

Our analysis focuses on understanding the role of trivial packages in software applications that

use them, we must study a diverse and sufficiently large number of JavaScript applications that

depend on trivial packages.

To acquire our dataset, we resort to the public GHTorrent dataset (Gousios (2013)) to extract

information about all the JavaScript applications hosted on GitHub. We extract the data pertaining

to 7,863,361 JavaScript applications that are hosted on GitHub, as of 15th March 2019. We then

filter out applications that do not use npm as their package management system. We found 2,289,130

applications use npm as their package management system (i.e., applications have package.json

file, which is the configuration file for npm applications). Moreover, some npm packages use GitHub

as their code repository, we exclude these npm packages from our list by crosschecking our list of

URLs and GitHub URLs of all the npm packages.We exclude npm package repositories from our

dataset so we do not analyze them as standalone JavaScript applications. We identify 3,28,343 npm

packages in our list of candidate applications and we filter these packages out.

3.2.2 Pruning List of Applications

As recommended in prior work (Abdalkareem, Nourry, et al. (2017); Kalliamvakou et al. (2014)),

we perform extra steps to eliminate immature applications from our candidate dataset. We adopt

similar filtering criteria that were used in prior work. We choose to select applications that are

14

Table 3.1: Filtering steps of the studied JavaScript applications.

Filtering Step # Applications

JavaScript applications in GitHub 7,863,361
npm Applications in GitHub 2,289,130
JavaScript applications that are not npm packages 1,960,787
Filtering out immature and/or inactive applications 15,254

non-forks, have more than 100 commits by more than one contributor and have a community in-

terest (i.e., applications that have at least one star and a watcher on GitHub). Finally, we select

applications that have at least one external npm package dependency. These filtering steps allow

us to extract a list of 15,254 JavaScript applications that are the client of npm packages (Step 2

Figure 4.1). Table 3.1, shows the steps and number of applications after each step in the dataset

acquisition process. Table 3.2 shows the summary statistics for different metrics of the selected

JavaScript applications in our candidate dataset. Our dataset contains a good distribution of appli-

cations in terms of developers, commits, watchers and stars.

3.2.3 Identifying JavaScript Applications that Use Trivial Packages

The goal of this study is to understand the role of trivial packages in JavaScript applications,

we must identify applications that depend on trivial npm packages in the selected candidate appli-

cations. We start by cloning the selected 15,254 applications. Then, we analyze them following a

four-step approach (step 3 in Figure 4.1) to identify applications that use trivial packages.

First, we extract each application dependency information by examining the package.json

file, which is the configuration file for npm applications. The package.json, among other configura-

tions, specify the list of packages that the application depends on.

We extract the package name and its associated version for each dependency for each application

in our 15,254 applications candidate dataset.

Once we have the list of dependencies for each application in our candidate dataset, we down-

load these packages using the package name and related version information. We download the

dependent packages by using the npm-pack command (npm-pack (2009)). The npm-pack command

15

Table 3.2: Summary of the number of developers, commits, watchers, and stars for 15,254
JavaScript projects.

Measurement Min. Median Mean Max.

Developers 2 5 6.74 69
Commits 100 271 669 97,504
Watchers 1 6 23.99 2,451
Stars 1 9 303.73 48,765

consults with the npm registry (npm-registry (2009)) and resolves the semantic version and down-

loads the appropriate ‘tar’ file that contains the source code of the package for each dependency-

version pair.

Third, once we have the ‘tar’ file for each npm package, we analyze them to identify trivial pack-

ages. We extract the ‘tar’ file and analyze if the package is trivial or not by leveraging the definition

proposed by Abdalkareem et al. (Abdalkareem, Nourry, et al. (2017)), which categorize a package

as trivial if its number of JavaScript “Line of code (LOC)” ≤ 35 and “Cyclomatic Complexity” ≤

10. We analyze all the packages using the Understand tool (SciTools.com (1996)). Understand is

a static analysis tool that provides, amongst other metrics, Line of Code (LOC) and Cyclomatic

complexity measures for the packages.

Forth, we categorize applications that are trivial package dependent. We used the depchecker (depcheck-

npm (2013)) tool to extract the external packages that are used in JavaScript files. For each file in

the studied JavaScript applications, we extract the number of dependent packages, and how many of

these dependent packages are trivial. If a file depends on one or more trivial packages, we consider

that file as a trivial dependent file, otherwise a non-trivial dependent file. If an application has at

least one trivial dependent file then we flag it as a trivial dependent application.

According to this approach, in our candidate dataset, among the 15,254 JavaScript applications

that we analyze, 26% (3,965) of the applications are trivial dependent. We want to analyze the role

Table 3.3: Distribution of number of npm packages in all the JavaScript applications in our dataset.

Type of packages Min. Median Mean Max.

trivial 1 2 2.34 31
non-trivial 1 16 19.69 106

16

of trivial packages in JavaScript applications, we conduct our analysis on these 3,965 JavaScript

applications dataset that use at least one trivial npm package. Table 3.3 shows the distribution of

trivial and non-trivial packages in the applications in our dataset.

3.3 Case Study Result

This section presents the results of our three RQs. For each RQ, we provide motivation, describe

the approach used, and present our results.

3.3.1 RQ1: Are trivial packages used in important parts of JavaScript applications?

Motivation: Previous work showed that trivial npm packages are widespread, and has arguably

some negative impact on software applications (Abdalkareem, Nourry, et al. (2017)). However,

these packages are small in size and complexity, one may expect that they are used in the unimpor-

tant part of software applications. To understand how applications use trivial packages, we examine

their role in the source code files of the dependent applications. For example, if a trivial package

is used in an isolated part (i.e., file) in an application then its impact on that application can be ne-

glected. Answering this question will help us understand the relative importance of trivial packages

in the software applications that use them.

Approach: To examine a trivial package’s importance in a JavaScript application, we identify the

files that use trivial packages since they provide a direct link between trivial packages and their

importance in an application. In this analysis, a trivial dependent file is a file that uses at least one

trivial package, whereas, a non-trivial dependent file is a file that does not use any trivial packages.

We examine the importance of trivial dependent files by analyzing the dependency graph among

the files of an application and measure the centrality score (Freeman (1978)) of trivial dependent

and non-trivial dependent files.

Table 3.4: Distribution of number of files in projects in our dataset.

Min. 1st Qu. Median Mean 3rd Qu. Max.

10 26 54 115.1 109 5921

17

Table 3.5: The distribution of the degree centrality of trivial and non-trivial dependent JavaScript
files.

File Type Min. 1st Qu. Median Mean 3rd Qu. Max.

Trivial 0.00 0.003 0.022 0.061 0.070 1
Non-Trivial 0.00 0.000 0.003 0.021 0.019 1

To identify the JavaScript files that are more central in a software application, we apply network

analysis on the call graph of each application and measure the centrality score. The centrality score

of a node in a network reflects how important that node is in the network (Cadini, Zio, and Petrescu

(2009); Qi, Fuller, Wu, Wu, and Zhang (2012); White and Smyth (2003)). In scientific literature,

network analysis is a popular measure in social sciences, which studies networks between humans

(actors) and their interactions (ties). In our context, the JavaScript files are the actors and their inter-

dependencies are the ties. For each JavaScript file within an application, we extract information on

which other files the concerned file depends (out-degree) and by which other files the concerned

file is being dependent upon (in-degree). Then, we calculate the degree centrality score (Freeman

(1978)) for each file of an application in our dataset. The degree centrality score is a measure of

the number of in-degree and out-degree for a JavaScript file within an application. This degree

centrality score is normalized by dividing by n − 1, the maximum possible degree in a graph that

has n total nodes in that graph. The degree centrality of a node Vi is given by:

Degree Centrality (Vi) =
|N (Vi)|
n− 1

(1)

Where the |N(Vi)| is the number of nodes (files in our case) that are connected to the node Vi (i.e.,

file under examination). The degree centrality score has a value in [0, 1], where 1 means that the

node is in the center of the network (i.e., connected to all other nodes) and zero indicates that the

node is isolated.

To calculate the degree centrality of trivial and non-trivial dependent files in each application

in our dataset, we start by generating a call graph representation of files in every application. We

use the madge tool to generate the call graphs (Henningsson (2014)). The output of this tool is a

call graph that shows each file in a software application and a list of files it depends on. We then

18

0
2

4
6

8

Small Small−mid Mid−large Large

Fi
le

 d
eg

re
e

ce
nt

ra
lit

y
ra

nk
 (l

og
 S

ca
le

d)
Non−Trivial
Trivial

Figure 3.2: Distribution of degree centrality rank of trivial dependent and non-trivial dependent files
in different project groups based on number of files.

run the networkx tool (Aric Hagberg and Swart (2005)) on the generated call graph, to calculate the

centrality score of every file in the graph. The networkx tool is a well-known tool for analyzing and

visualizing social network data. Finally, to put our results in perspective, we compare and contrast

the degree centrality score for trivial and non-trivial dependent files.

In addition, to get a more detailed understanding of the JavaScript file’s relative importance

within a software application, we rank the files based on their degree centrality score, e.g., JavaScript

file with highest degree centrality score is ranked 1 and the rank increases with decreasing degree

centrality values. The trivial dependent applications in our dataset vary in the number of JavaScript

files, we segment the applications into four groups (based on the quartile they fall) namely small,

small-mid, mid-large, and large applications based on the distribution of the number of JavaScript

files in the applications. From the distribution of the number of files in the studied applications,

shown in Table 3.4, we group applications having #files < 1st Qu. into small applications; 1st

Qu. ≥ #files < median into small-mid applications; median ≥ #files < 3rd Qu. into mid-large

applications, and #files ≥ 3rd Qu. into large applications. We compare the distribution of degree

centrality rank for trivial dependent and non-trivial dependent files in each group of applications.

Results: Table 3.5 shows the summary distribution of the degree centrality score for trivial and

19

non-trivial dependent files in our dataset. We observe that overall the degree centrality values for

trivial dependent files are higher than that of non-trivial dependent files. The table shows that the

median/mean degree centrality values are 0.022/0.061 and 0.003/0.021 for trivial and non-trivial

dependent files, respectively. To test if the difference is statistically significant between the two

result sets, we applied the nonparametric Wilcoxon rank-sum test (wilcox.test function (2010)). We

determine if the difference is statistically significant at the customary level of 0.01. We also esti-

mated the magnitude of the difference between datasets using the Cliff’s Delta (cliff.delta function

(2010)) (or d). Cliff’s Delta is a non-parametric effect size measure for ordinal data. We consider

the effect size values: negligible for |d| < 0.147, small for 0.147 6 |d| < 0.330, medium for 0.330

6 |d|< 0.474 and large for |d|> 0.474. We found that the results is statistically significant (p-value

< 2.2e-16) with medium effect size (d = 0.3471).

Figure 3.2 shows a beanplot distribution of the degree centrality rank of trivial dependent and

non-trivial dependent files for the four groups of applications. We observe that for each group of

applications, the trivial dependent files have a lower degree centrality rank than that of non-trivial

dependent files, which indicate that trivial packages are used in an important part of the applica-

tions. Also, the results for each segment is significant(p-value < 2.2e-16). We also measured the

effect size and observed -0.3853 (medium), -0.2397 (small), -0.3355 (medium) and -0.5040 (large)

Cliff’s delta value for small, small-mid, mid-large and large applications respectively. Overall, these

results highlight that trivial packages are used in files that are more central in the studied JavaScript

applications.

Our findings indicate that trivial packages are used in more important and central parts of soft-

ware applications compared to non-trivial packages. In our dataset, trivial dependent files have

on median degree centrality value of 0.022 while it is 0.001 for non-trivial dependent files. This

difference is statistically significant.

20

Non−Trivial

Trivial

0 20 40
Percentage of API calls in JS files (Log Scaled)

Figure 3.3: Distribution of percentage of API calls for trivial and non-trivial packages in JS files.

3.3.2 RQ2: How widely used are trivial packages in JavaScript Applications?

Motivation: We saw that trivial packages are used in important parts of the applications that depend

on them. Next, we want to examine the diffusion of a used package across the applications. In other

word, we want to examine if trivial packages are used only in important parts of the applications or

their usage is dispersed across different parts of the applications. For example, prior work showed

that if the Application Programming Interfaces’ (API) of a package PkgA are invoked less than

APIs’ of another package PkgB in a software application then this is a clear indication that PkgB

is more important than PkgA in that specific application (Holmes and Walker (2007)). Thus, low

usage of trivial package APIs’ in a JavaScript file suggests that, even if these packages are used in

more important files, these package’s importance within that file is low. Therefore, we investigate

how heavily a trivial package’s APIs are used within a JavaScript file to determine these package’s

importance within the trivial dependent JavaScript files.

Approach: To determine how widely used trivial packages are within an application, we again

perform a two-way analysis. First, we measure the percentage of each package’s application pro-

gramming interface calls in a file that depends on an external package in our dataset. Then, we

examine how widespread the use of a package is in each application. We use static code analysis

and calculate the following two measures:

Percentage of trivial package API calls in a trivial dependent file: Although, based on our definition,

21

Non−Trivial

Trivial

0.0 0.5 1.0 1.5 2.0 2.5
Entropy Distribution (Log Scaled)

Figure 3.4: Distribution of trivial and non-trivial package API entropy.

a trivial dependent file has at least one trivial package dependency, in fact, it can have any number

of non-trivial package dependencies. In our dataset, the median number of trivial and non-trivial

packages in trivial dependent files are 1 and 3, respectively. Therefore, these files have a lower

number of trivial package dependencies, we want to understand what percentage of total API calls

in a trivial dependent file are associated with trivial packages. We use a static source code analysis

tool (Understand tool (SciTools.com (1996))) to extract and measure all the occurrences of external

package API calls in JavaScript files. Then, we calculate the percentage of a package’s API calls

within a JavaScript file by accounting all the API calls in that file.

External package entropy: We again use the extracted information about the API calls of external

packages to compute the entropy of the packages. The entropy of a package shows how widely

the package is used in an application. The higher the entropy of a package (i.e., API usage spread

across files.), the more difficult it gets to uproot the package from the application. Similar to prior

work (Hassan (2009); Kamei et al. (2013)), we define the entropy of an external package as the

distribution of API calls of that package across files. For example, in a JavaScript application, the

package Pkgx’s APIs are called 10 times in file F1, 15 times in file F2, and twice in file F3, we

calculate the entropy of the package Pkgx as (−10
27 log2

10
27 −

15
27 log2

15
27 −

2
27 log2

2
27), which equal

to 1.28. IHigher the entropy value, the more widespread is the usage of the package in a JavaScript

application and if a package is used only in a single file then its entropy is zero.

22

Result: Figure 3.3 shows the distribution of percentage of API calls for trivial packages and non-

trivial packages within the trivial dependent files. We observe that the median value of the percent-

age of API calls for trivial packages within trivial dependent files is higher than that of non-trivial

packages with a median of 11.76% and 7.69% calls, respectively. We examine whether the result

is statistically significant and calculate the effect size. We found that the results are statistically

significant (p-value < 2.2e-16) and the effect size is small (Cliff’s delta estimate = 0.25). This API

call analysis of trivial dependent files shows that trivial packages play an important role in these

files.

In the second part of this research question, we investigate the distribution of API calls of a

trivial package across the application by computing its entropy. Figure 3.4 shows a bean-plot distri-

bution of entropy scores for trivial and non-trivial packages. We observe that trivial and non-trivial

packages have similar entropy score distribution with median entropy scores equal to zero for both

types of packages. Most of the packages (68.067%) in our dataset have zero entropy scores, which

suggests that these packages are used in only a single JavaScript file in the studied JavaScript appli-

cations. This result is statically significant with p-value < 1.789e-05 but the effect size is negligible

(Cliff’s delta estimate: -0.1119). The entropy score distribution of trivial and non-trivial packages

indicates that trivial and non-trivial packages tend to be used in the same way thus these two types

of packages are equally important in software applications.

A higher percentage of total API calls of JavaScript files are associated with trivial packages

(11.76% and 7.69% for trivial and non-trivial packages) and thus these packages are important

within these files. Moreover, the entropy distribution of trivial and non-trivial packages shows

both types of packages are equally important in software applications.

3.3.3 RQ3: Do trivial packages play an important role at the ecosystem level?

Motivation: In previous research questions, we found that trivial packages are important compo-

nents for the JavaScript applications that directly depend on them. However, npm packages, trivial

or non-trivial, do not exist in isolation, they interconnect with other packages and they form what is

23

Þ
ProjectAApplicationA ApplicationB Composite

Figure 3.5: Composite Dependency Network

known as the npm ecosystem. Examining how important trivial packages are in the software ecosys-

tem they belong provide a general understanding of their importance. Thus, we seek to understand

the importance of a trivial package in the dependency network of npm ecosystem, which consists of

all direct and indirect dependencies of the studied applications.

Approach: To examine the importance of trivial packages from the npm ecosystem perspective,

we extract all the dependencies (direct and indirect) for each JavaScript application in our dataset

and construct its dependency network graph. To extract this package dependency graph, initially,

we install and clone the applications’ dependencies by using the npm install command, which

installs the package version specified in package.json file. Thus, all the direct and indirect depen-

dencies of every application in our dataset are saved locally in the application’s home directory

in a folder named “node modules”. Then, we use the npm-ls (npm-ls (2010)) to list installed

package and their inter-dependencies in json format. Subsequently, we merge all the dependency

network graphs of all the applications in our dataset and compile a composite dependency network

at a given point in time. Figure 3.5 depicts an example of the process of merging the dependency

network graphs of two JavaScript applications (ApplicationA and ApplicationB). In our example,

ApplicationA is directly dependent on pkg X, which in turn depends on pkg Y whereas pkg Y de-

pends on pkg Z. ApplicationB has two direct dependencies and one transitive dependency. Here,

in the composite dependency network, the dependency hierarchy is preserved while accommodat-

ing all the dependencies of both applications. We recursively apply this merging process on all

the dependency network of all the applications in our dataset. As a result of this merging process,

we get a composite package dependency network that consists of 32,319 connected packages. We

24

Non−Trivial

Trivial

1.5e−05 2.0e−05 2.5e−05 3.0e−05
Pagerank in Dependency Network

Figure 3.6: Distribution of PageRank values for trivial and non-trivial packages.

analyze the source code of each package in the constructed dependency network and identify triv-

ial and non-trivial packages. We use the composite packages dependency network to examine the

importance of trivial packages in two complementary measures. First, we measure the importance

of trivial packages within this dependency network using the PageRank algorithm (Brin and Page

(1998)). Second, we study the importance of the trivial packages by measuring the Technical Bus

Factor (TBF) of these packages. Similar to the idea of social bus factor, which measures the effect

of removal of a developer from a project, the TBF measures the effect of the removal of a pack-

age from a dependency network (Mens (2016)). In the following subsection, we describe how we

measure these values for every package in our constructed graph.

PageRank of External Packages: PageRank score (Brin and Page (1998)) of a node (packages in our

case) indicates the importance of the node in a network. The more dependent on a node in a network

the higher is its PageRank score. PageRank has a value in [0, 1]. We calculated the PageRank score

of every package (trivial and non-trivial) in our composite package dependency network. We again

use the network analysis tool called networkx tool (Aric Hagberg and Swart (2005)). Then, we

compare the PageRank score of trivial and non-trivial packages.

Technical Bus Factor (TBF): To understand the effect of removing one trivial package from the

package dependency network, we calculate TBF, which simulates the removal of a package from our

constructed composite network. We then evaluate how many other packages, directly or indirectly

dependent on the removed package, are affected. We calculate what percentage of 32,319 packages,

25

which is the total number of packages in our dependency network, are affected by the removal of

one package from the package dependency network. The higher a package’s Technical Bus Factor

(TBF) value; the more vital that node is in the package dependency network.

Result: Figure 3.6 shows PageRank score distribution for trivial and non-trivial packages. We

notice that the median PageRank score of trivial packages (1.71e-05) is higher than that of non-

trivial packages (1.61e-05). This result is significant (p-value < 2.2e-16) and effect size is small

(Cliff’s delta estimate: 0.1578). This result shows that many packages are dependent upon trivial

packages which makes trivial packages vital nodes in the ecosystem that they belong to.

Table 3.6 shows the statistical summary of the distribution of technical bus factor (TBF) of

the trivial and non-trivial packages. We see that removing a trivial package from our composite

dependency network has a much larger impact than that of non-trivial package removal. We see that

the median TBF values for trivial packages is 0.0155 while it is 0.0093 for non-trivial packages.

We observe that this result is a statistically significant with p-value < 2.2e-16 and small effect size

(Cliff’s delta estimate: 0.1525).

We manually analyze top twenty trivial packages, based on TBF values, to understand charac-

teristics of these packages. Table 3.7 shows the name, TBF value, its rank in dependency network

based on TBF and the description of the functionalities of the top trivial packages. From Table 3.7,

we see that these trivial packages have TBF values ranges between 36.82 and 28.91, which means

that trivial packages in the list based on the TBF value can affect approximately 29% of all packages

in the dependency network when any one of these is removed. We rank these packages in depen-

dency network based on their TBF where package with highest TBF is ranked 1 and rank increases

with decreasing TBF.

Based on our manual examination of these trivial packages, we found that these packages

Table 3.6: The statistical summary of the distribution of technical bus factor (TBF) for the trivial
and non-trivial packages in our composite dependency network.

File Type Min. 1st Qu. Median Mean 3rd Qu. Max.

Trivial 0.00 0.0031 0.0155 3.5324 0.1918 36.8174
Non-
Trivial

0.00 0.0031 0.0093 1.9480 0.0495 34.9485

26

Table 3.7: The top-20 most impactful trivial packages measured by Technical Bus Factor (TBF).

Packages TBF Rank Functionality

inherits 36.82 1 Inherits one constructor’s prototype to another construc-
tor.

isarray 35.43 2 Checks if the object in the argument is an array.
process-nextick-args 34.15 10 Amends the functionality of process.nextTick, which de-

fers a callback function until next eventloop, by enabling
it to accept arguments.

debuglog 34.13 11 Shows degugging information in stderr.
escape-string-regexp 32.26 14 Escapes special characters.
ansi-regex 32.00 18 Matches ANSI escape codes.
object-assign 31.90 22 Assigns values to objects.
strip-ansi 31.89 24 Removes ANSI escape codes from a string.
indexof 31.14 49 Returns index of an object in an array.
foreach 30.87 59 Iterates over the key value pairs of either an array or a

dictionary like object.
pinkie-promise 30.54 63 Returns JavaScript promise object
is-object 30.20 64 Checks if the argument is an object.
get-stdin 30.10 65 Get standard input as a string or buffer.
xtend 30.03 68 Extends an object by appending all of the properties from

each object in a list.
has-flag 29.77 70 Checks if function argument has a specific flag.
has-color 29.67 73 Detects whether a terminal supports color.
once 29.65 74 Restricts a function to be called only once.
graceful-readlink 29.02 79 Returns a file’s symbolic link.
number-is-nan 28.91 82 Checks whether the value in the argument is undefined and

its type is Number

provide popular utility functions, enhancement of JavaScript standard functionalities, and cross-

platform compatibility features.

First, the examined trivial packages provide some popular utility functions like checking ob-

jects, e.g., has-flag, has-color, is-object, number-is-nan; string operations, e.g.,

ansi-regex, strip-ansi; and object manipulation, e.g., xtend, foreach. The second

group of the examined trivial packages is used to enhance the existing native functionality of the

JavaScript engine. For example, process-nextick-args (Metcalf (2015)) extends the capa-

bility of process-nextick by enabling this function to accept arguments. Finally, we found some

trivial packages provide functionalities that help developers to deal with cross-platform compati-

bility. JavaScript code can be run on different types and versions of web browsers, these packages

27

provide backward and forward compatibility. For example, isarray (Gruber (2013)) is a well-

known package and in the dependency network it is ranked 2nd based on it’s TBF. It provides same

functionality like the native Array.isArray. Array.isArray is supported by browsers with newer ver-

sion, e.g. IE9+, Chrome 5+, Firefox 4+, Opera 10.5+ and Safari 5+. However, as this function is not

supported in older versions of browsers, isarray is used to support older browser versions that are

not compatible with ECMAScript 5 or later. These types of packages that provide cross-platform

compatibility are known as ponyfills and polyfills (Sorhus (2016)). polyfills are prone to unexpected

bugs as these pollute the global scope. ponyfills is the smarter alternative as it exports functionalities

as a module without exploiting global scope. 25% of top 20 trivial packages e.g isarray, debuglog,

object-assign, pinkie-promise, number-is-nan, are ponyfills. Furthermore, 37.97% of all ponyfill so-

lutions in npm are trivial packages (npms-ponyfill (2009); Sorhus (2016)). From this analysis, we

see that trivial packages are often the byproduct of compatibility efforts.

Additionally, this analysis of the top 20 trivial packages revealed that some developers have

a proclivity of publishing trivial packages. For example, Sindre Sorhus (Sorhus (2013)), a fa-

mous open-source developer, who created Yeoman (Yeoman (2012)) and Awesome Project (Sorhus

(2014)), collaborated 7 of the top 20 trivial packages. We examined all of his 1,148 packages in

npm and surprisingly 55.14% of his published packages are trivial packages.

Trivial packages are vital nodes in the package dependency network (i.e., ecosystem). In fact, our

results show that 16.19% of trivial packages and only 9.27% of non-trivial packages have a TBF

value grater than 15%.

3.4 Discussion

Our results were presented on a specific snapshot of the applications and their dependencies.

Hence, we further investigate the validity of our findings over time.

28

Re-examining the Role of Trivial Packages Overtime

In research questions 1 and 2, we focus on studying the importance of trivial packages from the

perspective of how they are used. We examine the current snapshot of the studied applications2.

Now, we examine the role of trivial packages in the studied applications over time. We believe that

examining the usage of the trivial package over time will provide us with a general overview of

the usage of trivial packages compare to only examine the current snapshot. Also, an increment in

the number of trivial dependent files overtime in a software application suggests these packages’

importance and developer’s reliance on these packages whereas decrement suggests otherwise.

First, we examine the evolution of the number of trivial dependent files over their development

timespan of an application. Second, we analyze the evolution of the percentage of trivial package

API calls in trivial dependent files over the development timespan of software applications To iden-

tify the development period in which an application has some trivial package dependency, we need

to know the commit that introduced the first trivial package in an application. This commit is either

the first commit in a software application or before this commit the application was non-trivial de-

pendent. All the applications in our dataset use git as their source control system, we iterate each

commit starting from the initial commit of a software application to check if the commit is adding

any trivial package into a JavaScript file. When we encounter such commit, we break the iteration

and mark and register that commit as a trivial introducing commit for that software application.

Trivial dependent applications in our dataset start being trivial dependent from the trivial in-

troductory commit. We consider the development timespan of an application, which ranges from

first trivial introductory commit till the latest commit as trivial dependent development timespan

(TDDT). We segment this TDDT into 10 equal parts by the means of the total number of commits

in this period. For each application, we count the total number of commits in its TDDT and take

a snapshot at each 10th percentile commit. Therefore, this segmentation process provides 11 snap-

shot points for each application, which are at: first trivial introductory commit, 10% commit, 20%

commit, 30% commit, 40% commit, 50% commit, 60% commit, 70% commit, 80% commit, 90%

commit and latest commit. As module growth is a predicted phenomenon in the software develop-

ment lifecycle (Godfrey and Qiang Tu (2000); Lehman (1980); Xie, Chen, and Neamtiu (2009)),
2In our study, the current snapshot of an application refers to the date when we collected application in our dataset.

29

0

20

40

60

80

100

Intro 10% 20% 30% 40% 50% 60% 70% 80% 90% Cur.
Segmentations

%
 o

f T
riv

ia
l D

ep
en

de
nt

 F
ile

s

Figure 3.7: The distribution of the percentage of trivial dependent files in all the studied applications
based on TDDT segmentations. Dotted horizontal line present overall median.

Table 3.8: The statistical summary of the distribution of external package API call percentage in
JavaScript files throughout application’s development lifespan. The table shows the distribution for
trivial packages (TP) and non-trivial packages (NPT).
Segments Intro 10% 20% 30% 40% 50% 60% 70% 80% 90%

TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP TP NTP

Min. 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Median 16.7 9.1 16.7 9.1 16.7 9.1 16.7 9.1 16.7 9.1 16.7 8.6 16.7 8.7 16.7 8.3 16.7 8.3 16.7 8.3
Mean 30.1 16.4 30.4 16.5 30.0 16.4 30.5 16.3 30.2 16.3 30.7 15.9 30.7 16.0 30.8 15.9 30.8 15.9 30.3 15.8
Max. 100 96.6 100 96.5 100 96.6 100 96.8 100 96.9 100 97.1 100 96.9 100 97.3 100 97.5 100 97.6

p-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
Cliff’s d 0.2434 0.2540 0.2453 0.2626 0.2589 0.2641 0.2635 0.2661 0.2760 0.2543

we measure the percentage of trivial dependent files to all files across an application’s TDDT, not

the raw number.

Figure 3.7 shows box-plots of the percentage of the number of trivial dependent files in all the

studied applications in our dataset for the 11 snapshot points in the applications’ TDDT. Here, we

observe that the percentage of the number of trivial dependent files remains almost constant over

time with approximately the median percent of trivial dependent files equal to 20%. These results

reflect the importance of and developer’s reliance on these trivial packages in software applications.

We further investigate the percentage of trivial packages’ API calls in trivial dependent files

throughout the concerned application’s TDDT. Table 3.8 the shows percentage of package’s API

calls distribution in these files for each application across its TDDT. Once again, to put our analysis

30

in perspective, for every TDDT segment, the table shows the percentage of trivial packages (TP)

and non-trivial packages’ API calls.

From Table 3.8, we observe that the percentage of trivial package’s (TP) API calls is higher than

that of non-trivial packages (NTP) API call at each snapshot point in the applications development

timespan. For example, at 30%’s TDDT, we see that trivial packages’ API calls are higher (with

mean=30.5 and median = 16.7) that the percentage of API calls for the non-trivial packages (with

mean = 16.3 and median = 9.1). We see similar results at the late of the development lifespan of

the studied applications. At 90%’s TDDT, we see that with 30.3/16.7 mean/median of API calls for

trivial packages is higher than the ones for the non-trivial packages (15.8/8.3).

To examine whether the results are statistically significant, we perform the Wilcoxon rank-

sum test and the Cliff’s Delta effect size test on the data from each segment. The last two rows

of Table 3.8 shows p-value and the effect size between the percentage of trivial and non-trivial

packages’ API calls for every TDDT. We see that these results are statistically significant and have

small effect sizes in all the snapshot points. For example, at 30% TDDT, we found that the difference

between the percentage of the API calls for trivial and non-trivial packages are statically significant

(p-value = <2.2e-16) and the effect size is small. This analysis shows that the percentage of API

calls for trivial packages within trivial dependent files remains higher throughout the development

timespan of the concerned software applications.

3.5 Threats to validity

In this section, we discuss the threats of validities related to our study.

3.5.1 Construct validity

Construct validity considers the relationship between theory and observation, in case the mea-

sured variables do not measure the actual factors. In our study, we used several in-house and state-

of-the-art tools and techniques. We used the Depchecker (depcheck-npm (2013)) tool to extract

file-level dependencies, the madge tool (Henningsson (2014)) for generating call graph, and the

Understand tool (SciTools.com (1996)) for static analysis. Hence, we are limited by the accuracy of

31

these tools. Our study consists of four million JavaScript files. Thus, it is time and resource con-

suming to manually check each file and these tools’ results. To mitigate the threats related to using

these state-of-the-art tools, we randomly selected five applications from our dataset and manually

cross-checked the output of these tools and in all cases, the tools produce the correct results. We

also use the networkx (Aric Hagberg and Swart (2005)) tool to generate the dependency graph of

files of every JavaScript application. Again, our graph dependency network analysis may influence

the accuracy of the generated graph. To alleviate these issues, we manually examine the generated

call graphs for five applications in our dataset and found that these graphs represent the dependency

structure between files in these applications.

To answer our second research question, we only captured the direct usage of external packages

in our static code analysis. For example, a package “X” is imported (e.g require statement) and

assigned it to a variable “a” and later “a” is assigned to another variable “b”. We only tracked the

external package usage with variable “a” and did not track “b”. We decide to examine the direct

usage of these packages for two main reasons. First, this type of transitive assignment of a variable

is very rare in JavaScript code as other work shows (Feldthaus, Schfer, Sridharan, Dolby, and Tip

(2013)). We believe that this shortcoming does not significantly impact our finidings. Second, if

we miss some of the usages of external packages, we missed both trivial and non-trivial packages.

As we contrast trivial and non-trivial package usage, this effect will not affect the result of the

comparison.

3.5.2 External validity

Our dataset only consists of JavaScript applications, which use npm as their package manager,

hence our findings may not hold for applications written in other programming languages or use

different package manager. However, npm mainly supports JavaScript applications and it is one of

the largest and most rapidly growing software ecosystem (Decan, Mens, and Grosjean (2019)). In

addition, our dataset presents only open source application hosted on GitHub that may do not reflect

proprietary applications. Also, our initial dataset size is 15,254 JavaScript applications that use the

npm package manager, which may not represent the whole population of JavaScript applications.

32

3.6 Chapter Summary

Code reuse in the form of small/trivial packages became prevalent in software development Ab-

dalkareem, Nourry, et al. (2017); Abdalkareem et al. (2019). We observe that these trivial packages,

being small in size and complexity, provide various functionalities ranging from string manipula-

tion to security. Thus it is important to understand whether these packages are trivially used or their

usage in software applications transcends their triviality. We empirically examine trivial packages

relative importance their use cases from two point of views; from the applications usage and ecosys-

tem usage. We analyze a large dataset of open-source JavaScript applications that depend on at least

on trivial package.

We observe that trivial packages are used in important part of the examined software applica-

tions compare to non-trivial packages. Our results show that trivial dependent files have on median

0.022 degree centrality value while it is 0.001 for non-trivial dependent files. We also, found that

trivial packages have a higher percentage of total API calls of JavaScript files (11.76% and 7.69%

for trivial and non-trivial packages). As for the ecosystem usage, we examine the relative impor-

tance of trivial packages in the ecosystem they belong to where we analyze the dependency graph of

the direct and transitive dependencies of software applications in our dataset. We observe that trivial

packages are highly dependent upon packages in the npm ecosystem, which makes trivial packages

salient in the ecosystem. In some case removing one trivial package from the npm ecosystem could

effect up to 30% of the whole npm ecosystem.

In the next chapter, we focus on studying the impact of using trivial packages on software

quality. We first examine the functionalities that trivial packages provide and the development

activities that introduce trivial packages to software applications. We then focus on examining the

impact of using trivial packages on the files- and applications-levels.

33

Chapter 4

An Empirical Study on the Impact of

Using Trivial Packages on Software

Quality

4.1 Introduction

Nowadays, software applications heavily depend on reusing other source code in the form of

external packages that are generally available in package manager platforms (e.g., npm, RubyGems,

Maven, PyPi, NuGet.). The availability of large amounts of these tailored third-party packages

facilitates and accelerates software development and its evolution. Thus, it becomes a broadly

adopted practice in software development (Inoue et al. (2012); Mockus (2007)).

Despite ubiquitous usage, whether source code reuse practice is healthy or not is subject to de-

bate among researchers. For example, prior work showed that code reuse can reduce time-to-market

and speed up overall productivity (Basili, Briand, and Melo (1996); Lim (1994); Mohagheghi, Con-

radi, Killi, and Schwarz (2004)). Additionally, using third-party packages enhances developer’s

productivity Wagner and Murphy-Hill (2019), therefore, companies encourage using these pack-

ages to gain initial momentum of a software application (Haefliger, von Krogh, and Spaeth (2008)).

Conversely, code reuse may lead to an increase in maintenance costs (Lim (1994)) in the long run

34

and even expose an organization to legal issues (Abdalkareem, Shihab, and Rilling (2017); Inoue

et al. (2012)). Because of these confounding factors, the study of different types of code reuse

and their impact on software quality became a popular research interest (Abdalkareem, Shihab, and

Rilling (2017); Basili et al. (1996); Bavota et al. (2013); McCamant and Ernst (2003); Mohagheghi

et al. (2004)).

In a contemporary study, Abdalkareem et al. (Abdalkareem, Nourry, et al. (2017)) identified a

specific genre of code reuse practice where developers tend to use packages that implement simple

and trivial tasks. Developers of the applications that depend on trivial packages perceive that these

packages are well-tested but in reality, more than 50% of these packages do not have any test code

written. However, this prior work examines the use of trivial packages from developers’ perspective

and there is no empirical evidence on how the usage of trivial packages may impact the quality of

the applications that depend on them.

To that end, we empirically examine a dataset consisting of 5,757 JavaScript applications to un-

derstand the quality impact of using trivial packages. We analyze these applications and identified

3,158 applications that use at least one trivial package. First, we examine to understand the devel-

opment scenario which introduces these trivial packages into software applications. In addition, we

analyze what kind of functionalities trivial packages provide. To do so, we analyze and categorize

the commits that introduce first trivial packages into software applications and the functionalities

that these packages provide. Second, we examine the quality impact of using trivial packages on

the file- and application-levels. To examine the quality impact of trivial packages and similar to

previous work (Abdalkareem, Shihab, and Rilling (2017); Foucault, Palyart, Blanc, Murphy, and

Falleri (2015); Kim et al. (2008); McIntosh, Kamei, Adams, and Hassan (2014); Śliwerski et al.

(2005); Wehaibi et al. (2016)), we use the number of bug-fixing commits as a proxy for software

quality. More specifically, we ask the following research questions:

• RQ0: In which context trivial packages are introduced into a software application and what

types of functionalities trivial packages provide? We identify 11 types of development activ-

ities that are responsible for introducing trivial packages into software applications. We found

that ‘Modifying Functionalities’, ‘Building’, ‘Refactoring’, and ‘Improving Performance’ are the

35

most frequent development activities that introduce trivial packages into software applications.

Additionally, our results show that trivial packages render a wide variety of functionalities rang-

ing from simple string modification to server management or providing security.

• RQ1: Does using trivial JavaScript packages impact the overall quality of applications? Our

results show that JavaScript applications that use trivial packages tend to have a higher percentage

of bug-fixing commits compared to the applications that do not have trivial package dependency.

• RQ2: What is the impact of trivial packages on the quality of the files? Based on our exami-

nation of the percentage of bug-fixing commits, which is a proxy to software quality, in JavaScript

files, we observe that files which depend on trivial packages tend to have significantly more bug-

fixing commits.

• RQ3: Are commits that introduce trivial packages in JavaScript files risky? Our study re-

veals that the commits that introduce trivial packages in JavaScript files are significantly more

fix-inducing than other commits, which makes these changes risky (Shihab, Hassan, Adams, and

Jiang (2012)). Moreover, we observe that the commits that introduce trivial packages of utility

category are most risky as 37% of all risky commits are attributed to this category.

Our work makes the following contributions:

• We manually categorize more than 1,900 trivial packages based on their functionalities. There-

fore, our study amends the definition of trivial packages by adding what kind of functionalities

trivial packages provide.

• We conduct qualitative analysis to understand the development scenario which ships these

trivial packages into software applications.

• We studied more than 5,000 JavaScript applications and applying different MSR technique to

examine the impact of using trivial packages on software quality.

36

Select active and
large

applications

Select
applications with
rich development

history

Identify trivial
dependent

applications

7.86M 38,926 5,757 Trivial
dependent

applications

3,158
GHTorrent

Dataset

Figure 4.1: Overview of the dataset selection process.

Chapter organization: Section 4.2 presents our study design and approach. We describe our

results in section 4.3. Threats to validity is shown in Section 4.4. Finally, Section 4.5 concludes the

chapter.

4.2 Case Study Design

The goal of our study is to understand the quality impact of using trivial packages on software

applications. To do so, we study a large dataset of JavaScript applications. In the following sections,

we describe the selection process of the applications in our dataset, and identification of applications

and JavaScript files that depend on trivial packages. Figure 4.1 provides an overview of our study

design. We describe each of the steps in the approach below.

4.2.1 Dataset of candidate applications

To examine the impact of using trivial packages in JavaScript applications that use npm as their

package management system, we need to examine a sufficient number of JavaScript applications that

depend on trivial packages. It is important to study a large and diverse set of JavaScript applications

to conduct a generalized experiment and provide confidence in our results. For dataset acquisition,

we query the public GhTorrent dataset (Gousios (2013)) and get the list of 7.86 million JavaScript

applications hosted on Github, as of March 2019. Out of these JavaScript applications 2.29 million

applications have package.json file, which is the configuration management file for Node.js

applications. Since some npm packages are hosted on GitHub as well as JavaScript applications

and we want to examine the applications that depend on npm packages but not the npm packages

themselves, we distinguish between npm packages and JavaScript applications. We extract the

Github URLs of the npm packages from the npm registry (npm-registry (2009)). We then crosscheck

37

with the URLs we extracted from the GhTorrent dataset. We exclude the URLs that are common in

both sources. After this filtration process, we obtain 1.96 million JavaScript applications.

4.2.2 Select active and large JavaScript applications

Since some applications on GitHub are immature (Kalliamvakou et al. (2014)), we perform

extra steps to eliminate such immature applications by adopting similar filtering criteria that were

used in prior work (Abdalkareem, Nourry, et al. (2017); Kalliamvakou et al. (2014)). We select

applications that are non-forked, have more than 100 commits by more than one contributor, and

have more than a year of development lifespan. Additionally, we select those applications, which

have at least one external package dependency. These filtering steps allow us to extract a list of

38,962 JavaScript applications that are the client of npm packages.

4.2.3 Select applications with rich development history

To eliminate application with little development history, we count the number of commits in

each application. We then filter out applications that have less than or equal to 255 commits, which

is the median number of commits in the applications of our dataset. This filtering step narrows

our dataset to 5,757 applications for further analysis. It is important to note that this filtering step is

essential since it allows us to 1) filter out applications that do not have enough software development

history, and 2) study a sufficiently large number of applications, but at the same time manageable in

size since we will perform some manual analysis on these applications.

4.2.4 Identify applications that use trivial packages

To identify trivial packages and to distinguish files and applications that depend on these trivial

packages, we follow a three-step approach.

First, we extract all the packages that an application depends on by looking into package.json,

which is the configuration file for npm applications that contains, among other configurations, a list

of all used npm packages along with their versions. Upon the completion of this step, we get the

dependent packages names and associated versions information for each application of the 5,757

applications dataset.

38

Second, we download all the dependencies of each application in our dataset using npm-pack

command (npm-pack (2009)). npm-pack command consults with npm registry (npm-registry (2009))

and resolves the semantic version and downloads appropriate tar file for each dependency-version

pair. We extract the tar file and analyze if the package is trivial or not by leveraging the definition

proposed by Abdalkareem et al. (Abdalkareem, Nourry, et al. (2017)), which categorizes a package

as trivial if it has “Line of code (LOC)” ≤ 35 and “Cyclomatic Complexity” ≤ 10. To measure the

number of lines of code and the Cyclomatic complexity of each package’s source code, we use the

Understand tool (SciTools.com (1996)). Understand is a static analysis tool that provides, amongst

other metrics, Line of Code (LOC) and Cyclomatic complexity measures.

Third, we categorized applications and files that are trivial package dependent. We used the

depchecker (depcheck-npm (2013)) tool to extract which dependent packages are used in which

JavaScript file. From the previous step, we label packages as trivial and non-trivial. If a file depends

on one or more trivial packages then we consider that file as a trivial dependent file otherwise it

is considered as a non-trivial dependent file. In the same way, we consider applications that have

at least one trivial dependent file as trivial dependent applications otherwise they are considered as

non-trivial dependent applications.

According to this approach, in our dataset, among 5,757 applications, 3,158 are trivial dependent

applications and 2,599 are non-trivial dependent. Table 4.1 shows a summary statistic for all the

applications in our dataset and the trivial dependent applications. It shows the number of commits,

number of developers, development age in days and number of application’s dependencies for all

applications in our dataset. From Table 4.1, we observe that overall, the mean number of commits

per application is 1,123 and the mean number of developers is 39.73. However, when we look at the

applications that depend on at least one trivial package (3,158 applications), we see that this mean

number of developers is 37 and these have 1,282 commits on average. We also observe that the

applications in our dataset have on average more than 3 years of development history. This analysis

shows that our dataset contains a mature and representative sample of JavaScript applications that

are hosted on GitHub.

39

Table 4.1: Summary statistic of the studied dataset.

Measure All Applications Trivial Dependent Applications

Min. Median Mean Max. Min. Median Mean Max.

Commits 256 566 1,123 62,183 256 587 1,282.1 62,183
Developers 2 12 39.73 1,432 2 12 37.64 1,432
Development age in days 365 1127 1232 17541 365 1072 1205 17541
Dependencies 1 18 25.7 228 1 29 33.68 228

4.3 Case Study Result

Since prior work investigated the reasons behind using trivial JavaScript packages (Abdalka-

reem, Nourry, et al. (2017)) and it shows that more than 50% of the trivial packages have no test

case, the main goal of our study is to examine the impact of using trivial packages on the quality of

software applications that use them. To that end, we conduct an empirical study to understand the

impact of trivial packages on software application’s quality. In this section, we answer our research

questions. For each research question, we motivate the question, describe our approach to answers

the question, and present the result.

4.3.1 RQ0: In which context trivial packages are introduced into a software appli-

cation and what types of functionalities trivial packages provide?

Motivation: Previous work showed that the use of trivial packages is very common and has ar-

guably some advantage (Abdalkareem, Nourry, et al. (2017)). We know that trivial packages are

smaller in size and complexity. Therefore, the general speculation is that most of the functionalities

that trivial packages render can be implemented with ease by application developers themselves

rather than depending on some external packages (Haney (2016)). So, under what circumstances

a developer imports an external package that is small in size is worth investigating. Additionally,

although we know the structural definition of trivial packages, what type of functionalities trivial

packages render is yet unknown. Thus, in this research question, first, we investigate the context in

which trivial packages are introduced into a software application and second, we classify function-

alities that trivial packages render.

Approach: To answer this research question, we examine the trivial packages in two ways. First,

40

Table 4.2: Type of development activities associated with introducing trivial packages into
JavaScript applications.

Objectives % Brief Description Example Commit Message

Modifying func-
tionalities

41.3 These activities are involved with
managing application dependen-
cies, modifying front-end and
back-end functionalities.

“add library;Update to mathoid-
mathjax-node 0.7”

Building 29.2 These commits manage build in-
frastructure and modify build
tasks.

“chore(all): new build, contrib and
lint”

Refactoring 18.7 Refoctoring codebase for main-
tainability.

“Refactor structure to modularize
config versus non config items”

Performance
improving

13.1 Improve response time and scal-
ability

“Bug 886446 - [email] Partition
card loading, cache initial card
HTML for fast startup”

Testing Code 12.8 These commits modifies test
code.

“Added unit tests and basic service
registry impl ”

Improving code
readability

6.1 Keep code precise and readable. “Clean up gruntfile, remove unused
dependencies”

Networking 5.8 Change related to routing and
connection to external resources.

“ initial setup: app structure, depen-
dencies, readme, testing tools, build
tools, developer tools, basic routing
#11, Travis, license”

Project design-
ing

4.4 These commits involves scaf-
folding application struc-
ture,adding middleware.

“JHK: github auth enabled, yo
mean scaffolding”

Security 2.9 These changes modify security
related features.

“Added oauth2 foursquare passport
strategy ”

Documentation 1.8 Change related to documentation
and code comments.

“moved swagger UI, updated some
docs”

Other tasks 20.7 These commits comprises of
initail commits, merging files,
adding schemas.

“initial application commit”

41

we examine the development history of the applications to understand the development context that

introduces these packages into software applications. Second, we analyze the functionalities that

trivial packages render.

To understand the context in which trivial packages are introduced in JavaScript applications, we

study the development history of trivial dependent applications. In doing so, we identify the com-

mits that introduce trivial packages into the applications. Since all the applications in our dataset

use git as their version control system, we analyze each commit of an application that touches

a JavaScript file to determine the commit that first introduced trivial packages in the application.

Then, we perform a manual examination of these commits. Since our dataset has 3,158 applications

that use trivial packages, it is arduous and error-prone to manually examine all of these applications.

Thus, we draw a statistically significant sample with a 95% confidence level and confidence inter-

val of 5% similar to prior work (Mujahid, Sierra, Abdalkareem, Shihab, and Shang (2018)). This

sampling process resulted in randomly selected 343 trivial dependent applications from our dataset.

Therefore from this sample, we found 343 commits that introduced first trivial packages into these

applications. We manually examine these commits to comprehend the development context that

introduces trivial packages to an application. To categorize these commits, the first two authors

read the commit messages and examine the related source code changes and come up with several

categories for the commit activities. Then, the two authors discuss the extracted classifications and

agreed on the obtained categories. Therefore, they tag each commit with one or more categories.

To measure the agreement between these two authors regarding the categorization, we use Cohen’s

Kappa coefficient (J. Fleiss, Levin, and Paik (2013)). Cohen’s Kappa coefficient is a widely used

statistical method that evaluates the inter-rater agreement level for categorical scales (J. Fleiss et al.

(2013)). This coefficient has a value range between -1.0 and 1.0; where -1 means negative agree-

ment, 0 indicates no agreement and 1 indicates full agreement. In our analysis, we found the level

of agreement between the authors is 0.75, which is a moderate inter-rater agreement (J. L. Fleiss

and Cohen (1973)).

In the second part of this research question, we investigate the functionalities that trivial pack-

ages provide. First, since the studied applications in our dataset have a large number of trivial

42

packages (1,958), we take a statistically significant sample having a 95% confidence level and con-

fidence interval of 5% and thus we get a sample size of 459 trivial packages. For each of the selected

459 trivial packages, we retrieve their ‘readme’ files from the npm1 website for the packages. We

followed the same aforementioned process to categorizing trivial packages based on their function-

ality. We run a two-phase iterative process (Seaman (1999)). The first two authors examine the

source code and read the ‘readme’ file of the trivial packages and come up with some categories.

Then, they discussed the extracted categories and finalized the categories. In the second phase, they

apply the functional categories in the whole population (1,958) but the ‘readme’ file for 43 packages

was missing in the npm website. Once again, we examine the agreement between the two authors

using Cohen’s Kappa coefficient (J. Fleiss et al. (2013)) and found the level of agreement measured

between the authors is 0.83, which is considered to be an excellent inter-rater agreement.

Results: Table 4.2 shows the eleven development activity types that introduce trivial packages in

JavaScript applications. For each category, we provide the percentage of commits in that category

for applications in the sample, a brief description of the category, and an example commit message

related to the introduction of the trivial package. Since some commits perform multiple development

activities e.g. add new functionality and refactor in the same commit, hence, the commit can be

mapped to more than one category. Thus the percentage of categories may sum up to more than

100%.

From Table 4.2, we observe that JavaScript developers tend to introduce trivial packages while

performing diverse development activities such as refactoring, modifying functionalities, building,

performance improving, and testing. As Table 4.2 shows, ‘Modifying functionalities’, ‘Building’,

‘Refactoring’, and ‘Performance improving’ are the most frequent development activities that in-

troduce trivial packages. It is also worth mentioning that during our qualitative analysis, we find

in 64 instances where, in a commit message, trivial package names are explicitly mentioned e.g.,

the commit that introduces “load-grunt-tasks” dependency in the application has “Add load-grunt-

tasks” in the header of the commit. This shows that these trivial packages are the protagonist in

those commits. In some cases, the commits were not descriptive enough for a clear classification,

for example, commit messages “Just Wow”; “Initial Commit”. We categorize such a trivial package
1https://www.npmjs.com/

43

Table 4.3: Categories of trivial packages based on functionality.

Category % Brief Description Example of Triv-
ial Packages

Utility 31.07 Trivial packages in this category provides functionalities like
string manipulation, stream operation, configuration management,
file operations, various data related operations and conversions.

capitalize

Datastructure, numerical
and logical operation

11.75 These trivial packages provides functionalities regarding different
types of data structure manipulation; numerical, geometric and
logical functionalities.

reduce

Build 10.18 These trivial packages help building the application. grunt-bell

Front-end development 7.94 This category of trivial packages provide CSS functionalities, var-
ious front-end modules and DOM manipulation functionalities.

dom-select

Extend or optimize func-
tionality

7.42 These trivial packages are patches that help to extend the scope of
another function or module or optimize the function usages.

middleware-
responder

Error handle, debug and
testing

6.89 These trivial packages provide error management, testing code and
debugging functionalities.

debuglog

Security 4.60 Trivial packages that provide security, authentication, encryption
and decryption related functionalities falls into this category.

md5-hex

Communication, net-
working and RPC

4.18 These packages provide remote process or service communication,
location discovery, path management related services.

connections

Compiling, parsing and
compression

3.66 These trivial packages help compilation, parsing and minification
of JavaScript, CSS and html

koa-html-minifier

Concurrency control 2.30 These trivial packages provide asynchronous call managements,
callback and promise related functionalities.

promise-all

Dependency manage-
ment

2.25 These packages manage dependencies, loading preset of packages
for the application.

static-reference

Performance optimiza-
tion

2.14 The main functionalities of these trivial packages are caching, load
management, benchmarking, manage cookies, watching memory,
checking HTTP response freshness etc.

nocache

Event handle 1.72 These package provides smoother user interaction facilities. add-event-handler

Project design 1.46 Scaffolding application structure, templating, generating default
configurations are the functionalities that these packages provide.

hapi-dust

Wrapper 1.15 Packages in this category encapsulates some function, package or
module so that access to these functional blocks can be general-
ized.

karma-es6-shim

Process and server man-
agement

0.68 Packages help to manage various process and handle different
server like database servers.

server-destroy

Documentation 0.63 These packages helps generating and archiving various application
related informations

source-map-to-
comment

44

introducing activity as ‘Other tasks’.

In the second part of this research question, we categorized trivial packages based on their func-

tionalities. Table 4.3 shows the 17 category of functionalities that the trivial packages in our dataset

render. Once again, for each category of used trivial packages, Table 4.3 shows the percentage of

packages, a brief description, an example package for each category. Here we see that trivial pack-

ages provide a variety of functionalities. We observe that ‘Utility’, ‘Datastructure, numerical and

logical operation’ and ‘Build’ are the categories that consist of more than have (51.79%) of pack-

ages in our trivial package dataset. Trivial packages in the ‘Utility’ category provide functionalities

like string manipulation, stream operations, file operations, configuration and data conversion. In

the ‘Datastructure, numerical and logical operation’ categories trivial packages facilitate various

data structure and mathematical operations while ‘Build’ packages help to build the applications.

‘Compiling, parsing and compression’ consists only 3.66% packages in our dataset but these trivial

packages are download most on average.

We observe that ‘Modifying functionalities’ and ‘Building’ are the top two activities that in-

troduce trivial packages into software applications. On the other hand ‘Utility’, ‘Datastructure,

numerical and logical operation’ , ‘Build’, ‘Front-end development’ and ‘Extend or optimize func-

tionality’ are the top functionalities that trivial package provides. From the descriptions of the

aforementioned categories of trivial introductory activity and functionalities of trivial packages, as

well as from explicit mentioning of trivial package names in 64 instances of trivial introductory

commits, it can be deduced that trivial packages play a significant role in the commits that introduce

trivial packages into an application.

Observation - ‘Modifying functionalities’, ’Building’ and ‘Refactoring’ are the three most fre-

quent activities that introduce trivial packages in an application. In addition, our analysis shows

that trivial packages provide developers with a wide range of functionalities but ‘Utility’, ‘Datas-

tructure, numerical and logical operation’ and ‘Build’ are the most prominent categories as these

categories constitute 53% of the packages.

45

0 20 40 60 80
Percentage of Bug Fixing Commits.

Non−Trivial dependent applications
Trivial dependent applications

Figure 4.2: Distribution of percentage of bug-fixing commits in trivial dependent and non-trivial
dependent applications. The solid horizontal lines represent the medians of the distribution. The
dotted horizontal line is the overall median.

4.3.2 RQ1: Does using trivial JavaScript packages impact the overall quality of ap-

plications?

Motivation: Prior work showed trivial packages add dependency overhead and more than 50%

of these packages have no test case written (Abdalkareem, Nourry, et al. (2017)). Therefore, we

suspect that applications that depend on trivial packages may suffer from quality issues. Thus, in this

research question, we investigate to determine the quality impact of trivial package dependencies in

overall application-level granularity. We believe that answering this question will provide us with

an overall glance at these package’s impact on software quality.

Approach: To have a general overview of the quality of applications that depends on trivial pack-

ages, we compare these application’s quality with that of the applications that do not have any trivial

package dependency. We use the number of bug-fixing commits as a proxy for an application’s qual-

ity, similar to previous studies (Kim et al. (2008); Śliwerski et al. (2005); Wehaibi et al. (2016)).

We flag bug-fixing commits by leveraging a well-known approach that examines the appearance of

pre-defined set of keywords that include “bug”, “fix”, “defect”, “patch”,“error”,“issue”, “problem”,

“fail”, “crash” and their variants in commit messages (Abdalkareem, Shihab, and Rilling (2017);

Eyolfson, Tan, and Lam (2011); Mockus and Votta (2000); Śliwerski et al. (2005)). We examine

46

the impact of trivial packages on the application level in a two-fold complementary approach. First,

we compare the distribution of bug-fixing commits in applications that depend on trivial packages

and applications that do not depend on trivial packages. Second, for each software application that

has any trivial package dependency, we compare the distribution of bug-fixing commits before and

after the first trivial introductory commit in that application. In both of these analyses, we use the

percentage of bug-fixing commits instead of the raw number since these applications vary in the

number of commits.

To understand the quality of a software application before and after a trivial package introduc-

tion, we identify the commit that introduces the first trivial package into a software application.

This trivial package introducing commit is either the first commit in an application or before this

commit, the application did not have any trivial package dependency. Since the applications in

our dataset use git as the version control system, we iterate through the development history of

a software application starting from the initial commit and analyze if that commit introduces any

external packages of trivial nature. When we find such a commit, we break the iteration and register

that commit as the first trivial package introducing commit for that application. For each trivial

dependent application, this trivial introductory commit split the development period of a software

project into two parts and we calculate and compare the percentage of bug-fixing commits for both

segments.

Results: Figure 4.2 shows the distribution of bug-fixing commits in trivial dependent and non-

trivial dependent applications. We observe that applications that are using trivial packages have a

higher percentage of bug-fixing commits (median=16.22) than their counterparts (median=14.01).

To examine whether the result is statistically significant, we applied the nonparametric Wilcoxon

rank-sum test (wilcox.test function (2010)). We determine if the difference is statistically significant

at p-value < 0.05. We estimate the magnitude of the difference between datasets using Cliff’s

Delta (cliff.delta function (2010)) (or d). Cliff’s Delta is a non-parametric effect size measure for

ordinal data. We consider the effect size values: negligible for |d| < 0.147, small for 0.147 6 |d|

< 0.33, medium for 0.33 6 |d| < 0.474 and large for |d| > 0.474. We found that the result is

significant as p-value < 5.479e-07, which is less than 0.05, with negligible effect size (Cliff’s delta

value is 0.0767).

47

0 20 40 60 80 100

Percentage of Bug−fix Commit.

After trivial package introduced in applications
Before trivial package introduced in applications

Figure 4.3: Distribution of percentage of bug-fixing commits before and after trivial package intro-
duction in applications. The solid horizontal lines represent the medians of the distribution. The
dotted horizontal line is the overall median.

We also examine the percentage of bug-fixing commit before and after introducing trivial pack-

ages to the studied applications. The beanplots in Figure 4.3 shows the bug-fixing commit distribu-

tion before and after trivial package introduction into the applications in our dataset. In our dataset,

among 3,158 trivial dependent applications, 92.02% of the applications introduce trivial packages in

a commit later than the initial commit of the applications and trivial packages were introduced with

the initial commit in rest of the applications. Figure 4.3 shows the distribution for the applications

that did not have a trivial dependency in their initial commit.

Here, we observe that the distribution of the percentage of bug-fixing commits is higher after

the introduction of a trivial package in the trivial dependent applications. We see that the median

of the percentage of bug-fixing commits before trivial package introduction in a trivial dependent

application is 14.51 whereas after trivial introduction the value is 16.67. Once again, we examine

whether the result is statistically significant. We found that the result is statistically significant

(p-value < 2.2e-16) although the effect size is small (cliff’s delta = 0.1516).

48

0 20 40 60 80 100
Percentage of Bug Fixing Commits.

Non−Trivial dependent files
Trivial dependent files

Figure 4.4: The distribution of percentage of bug-fixing commits in trivial dependent and non-
Trivial dependent files. The solid horizontal lines represent the medians of the distribution. The
dotted horizontal line is the overall median.

Observation - Our results show that the distribution of percentage of bug-fixing commits is higher

in trivial dependent applications than in non-trivial dependent applications. Moreover, we ob-

serve that trivial dependent applications have higher bug-fixing commits after the introduction of

trivial packages.

4.3.3 RQ2: What is the impact of trivial packages on the quality of the files?

Motivation: From the analysis in the overall application level, we observe that trivial package de-

pendent applications have a higher percentage of bug-fixing commits. Now, we want to conduct a

deeper analysis by examining the quality impact of trivial packages in JavaScript files. We examine

JavaScript files since they are the building blocks of an application and trivial packages are instanti-

ated and its APIs are invoked from within JavaScript files. Therefore, examination at the JavaScript

files level provides us with more insight into the quality impact of trivial packages.

Approach: To answer this research question, we focus on analyzing the 3,158 applications that have

at least one trivial dependent file. We analyze each dependency of each file. We flag files that use

at least one trivial package as a trivial dependent file. We then analyze each commit of these ap-

plications and extract files that are being modified in the commit. Therefore, we know in a commit

which files are being modified and if these files are trivial dependent files or not. Moreover, we

49

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●
●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●●●●●●

●

●

●●● ●●● ●

●

●

●

●

●

●●●

●

●●●● ●

●

●

●

●●

●

●● ●● ● ●●●● ●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

● ●●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

● ●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●●

●

●

●

●

●●

●

● ●●

●

●

● ●●●●

●

● ● ●● ●●●●●●

●

●

●

●

● ●● ●●● ●●●

●

●● ●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●● ●●

●

●●●●●●●

●

●●●●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

● ●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●● ●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●●●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●● ● ●● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

● ● ●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●●●●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●● ●●

●

● ●

●

●●●

●

●

●

●●

●

●

● ●●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

● ●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●
●

●● ●●

●

● ●●● ●●● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

● ●

●

●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●●●

●

●●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●

●

●

●

● ●● ●

●

●

●

●

●

●

●●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●● ●●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

● ●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●●●

●

●

●

●●● ●

●

●●● ●●

●

●

●

●● ●●

●

●

●● ●

●

●

●

●●

●

●

●

● ●●

●●

●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●●

●

●

● ●

●

●

●

●

●

● ●

● ●

●●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●

● ●

●

●

●

●

●

●

● ●● ●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●● ● ●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

Spearman Correlation −0.0311

0

25

50

75

100

0 20 40 60 80
Percentage of Used Trivial Packages

Pe
rc

en
ta

ge
 o

f B
ug

 F
ix

in
g

C
om

m
its

Figure 4.5: The correlation between the percentage of number of trivial package used and percent-
age of number of the bug-fixing commits in file.

analyze to check if the commit itself is bug-fixing commit or not. To understand the quality impact

of trivial packages on the file level, we again conduct the two-fold complimentary analysis. First,

we examine the distribution of bug-fixing commits on a file level. In trivial dependent applications,

some files depend on trivial packages and some do not. We compare the distribution of the percent-

age of bug-fixing commits between these two types of files. Percentage of bug-fixing commits in

a JavaScript file is calculated by accounting all the commits that touch the file and examining how

many of these commits are bug-fixing. Additionally, in the trivial dependent files, we examine the

relationship between the percentage of bug-fixing commits in the files and the percentage of trivial

packages used in that file. We calculate the percentage of the trivial packages used by consider-

ing the total number of third npm packages used in the observed file and out of those packages how

many are trivial. To determine the statistical measure of the strength of a linear relationship between

the percentage of bug-fixing commits and the percentage of trivial packages used in files, we use

Spearman rank correlation tests (p) (Spearman function — R Documentation (2010)). The reason

50

0 20 40 60 80 100

Percentage of Bug−fix Commit.

After trivial package introduced in files
Before trivial package introduced in files

Figure 4.6: The distribution of bug-fixing commits before and after trivial package introduction in
files that are converted from non-trivial dependent to trivial dependent in that commit. The solid
horizontal lines represent the medians of the distribution. The dotted horizontal line is the overall
median.

for using this rank correlation in preference to other types of correlation (e.g., Pearson, Kendall)

since our data is not normally distributed (Bonett and Wright (2000); Fieller, Hartley, and Pearson

(1957)). Second, we calculate the percentage of bug-fixing commits before and after a trivial pack-

age introduction in trivial dependent files. The first trivial package may be introduced to a file, as

a dependency, in the commit that created the file or in a later commit that transforms the file from

non-trivial package dependent to trivial package dependent. For the files that are created with a triv-

ial package dependency, we analyze its percentage of the bug-fixing commit. On the other hand, if a

file is transformed from non-trivial dependent to trivial dependent then we compare the percentage

of bug-fixing commits before and after its trivial introductory commit.

Results: Figure 4.4 shows the comparison of the distribution of bug-fixing commits in trivial de-

pendent and non-trivial dependent files. Here, we observe that the median value of the percentage

of bug-fixing commits for trivial dependent files is 17.33 whereas the value for non-trivial depen-

dent files is zero. We observe that the result is statistically significant(p-value = 2.2e-16) and the

effect size is small (Cliff’s Delta value is 0.3273). From this analysis, we observe that files using

trivial packages are involved in more bug-fixing commits compared to files that do not depend on

trivial packages. Interestingly, Figure 4.4 shows a small number of JavaScript files that have a large

51

percentage of bug-fixing commits. To understand this phenomenon, we examined the files having

more than 50% of bug-fixing commits and found that these files consist of only 11.5% of files in our

dataset and these files have a very low number of changes (median=3). Besides, we examine if there

is a relation between the percentage of bug-fixing commits and the percentage of trivial packages

used in trivial dependent files. Figure 4.5 shows the correlation between the percentage of bug-fixing

commits and the percentage of trivial packages used in trivial dependent files in our dataset. Here

we see that the value of Spearman rank correlation is -0.0311, which suggests a weak correlation,

which potentially indicates that there is no correlation between percentage of used trivial packages

and percenatge of bug-fixing commits in these files.

In the second part answering to this research question, we compare the percentage of bug-fixing

commits before a trivial package being introduced in a trivial dependent file with that after a triv-

ial package is introduced in that file. Since some trivial dependent files are created with trivial

dependency and others are converted from non-trivial dependent files to trivial dependent files at

some later commits, we first want to examine the distribution of these different files. In our dataset,

61.99% of trivial dependent files are created with a trivial package dependency and 31.01% files

imported trivial dependency later in their development. Since we want to examine the quality of

the JavaScript files before and after the use of trivial packages in term of percentage of bug-fixing

commit, we focus on the 31.01% files imported trivial dependency later in their development. Fig-

ure 4.6 shows the distribution of bug-fixing commits in these files before and after they became

trivial dependent files. From Figure 4.6, we see that, before trivial packages introduction into a triv-

ial dependent file the median value of percentage of bug-fixing commits is 12.31% and after trivial

introduction the value is 16.46%. We observe that the result is statistically significant(p-value =

2.2e-16) with small effect size (Cliff’s Delta value is 0.1473).

Observation - Our findings shows that files that depend on trivial packages tend to be more buggy

compared to files that do not use trivial packages. In addition, we observe that JavaScript files

have more bug-fixing after they depend on trivial packages.

52

Percentage of Fix−Inducing Commit

Trivial introductory Commits
Other Commits

0 20 40 60 80 100

Figure 4.7: Distribution of percentage of fix-inducing commits in trivial introduction commits in
files and other commits. The solid horizontal lines represent the medians of the distribution. The
dotted horizontal line is the overall median.

4.3.4 RQ3: Are commits that introduce trivial packages in JavaScript files risky?

Motivation: Thus far, we saw that overall projects that use trivial packages tend to have a higher

percentage of bug-fixing commits compare to project that do not use trivial packages. However, up

to know To better understand the role of the these trivial packages in the introduction of bugs into

the studied applications, we examine whether commits that introduce trivial package are the ones

that introduce the bug to the projects. In addition, we want to examine which the type of trivial

packages are introduced in these commits .

Approach: To examine whether the trivial introducing commits are risky changes, first, we identify

the commits that introduce trivial packages into a trivial dependent file. To do that, we analyzed

the development history of trivial dependent files and register the commit that introduces first triv-

ial packages into a file. Furthermore, we categorize these commits based on the type of trivial

package they introduce. Then we utilize the well-known SZZ algorithm (Williams and Spacco

(2008)) to analyze the development history of the applications and identify the commits that are

fix-inducing (Misirli, Shihab, and Kamei (2016); Shihab et al. (2012); Śliwerski et al. (2005)). The

main goal of the SZZ algorithm is to detect the commit that induces future fixes in software appli-

cations. This algorithm identifies the commit that fixes a defect and then, it detects the lines that

53

Table 4.4: The percentage of fix-inducing commits for each of the different type of functionalist
that trivial packages provide. *The percentage of fix-inducing commits all commits for each of
the different type of functionalities. **The percentage of fix-inducing commits for each type to all
fix-inducing commits related to trivial packages.

Category #Fix-inducing
commits

*% to trivial
inducing

**% to All
Fix-inducing

Utility 789 47.13 37.04
Data structure, numerical and logical operation 207 47.70 9.72
Error handle, debug and testing 168 45.16 7.89
Project design 137 57.56 6.43
Compiling, parsing and compression 121 41.02 5.68
Dependency management 120 31.33 5.63
Extend or optimize functionality 117 45.17 5.49
Communication, networking and RPC 83 36.89 3.90
Concurrency control 78 36.79 3.66
Security 75 40.54 3.52
Front-end development 72 36.18 3.38
Build 61 32.33 2.86
Performance optimize 49 46.23 2.30
Wrapper 26 54.17 1.22
Event handle 19 50.00 0.89
Process and server management 5 35.71 0.23
Documentation 3 30.00 0.14

are modified by that fixing commit. Finally, it tracks back the development history to identify the

commit in which the line was changed and identify this commit as a fix-inducing commit. To extract

fix-inducing commits, we use the SZZ implementation provided by the CommitGuru tool (Rosen,

Grawi, and Shihab (2015)). Since analyzing all the applications in our dataset using the SZZ al-

gorithm is prohibitively expensive, we run the techniques on a randomly selected sample of 1,364

applications from the 3,158 trivial dependent applications in our dataset. This sample represents a

statistically significant sample with 95% confidence level and confidence interval of 2. Once we

get the list of fix-inducing commits and trivial inducing commits for an application, we crosscheck

them and flag the commits that introduce trivial packages and are fixing-inducing. We consider

these commits as risky trivial introducing commits. To put our analysis in perspective, we compare

riskiness of trivial introducing commits with that of all other commits in trivial dependent files. Be-

sides, we categorize trivial introducing commits based on the type of trivial packages they introduce

and compare riskiness in these commit categories.

54

Results: Figure 4.7 shows the percentage of risky commits that introduce trivial packages in trivial

dependent files. We observe that trivial inducing commits tend to be more risker commits compared

to other commits in the trivial dependent files. Figure 4.7 shows that median value for percentage of

risky changes for the commits that introduce trivial packages is 33.33% whereas for all other com-

mits that touch trivial dependent files this value is 14.46%. We found that this result is statistically

significant (p-value = 1.808e-07) with negligible effect size (d = -0.1209313).

We categorize trivial package introduction commits based on what type of trivial package they

introduce and examine risky commits for each of these categories. Table 4.4 shows the percentage of

risky commits for different types of trivial package introduction commits. Here, the second column

shows the number of risky trivial introduction commits for each type of trivial package introductory

commit categories whereas the third column shows what percentage of these commits are risky (fix-

inducing). The fourth column shows what percentage of the total risky commit is associated with

each category of trivial introduction commits.

From table 4.4, we observe that trivial packages in the Utility category are the largest con-

tributors in term of risky commits, almost one-third of fix-inducing commits are attributed to this

category. Moreover, we observe that roughly one out of two commits that introduce trivial packages

in the “Project design”, “Wrapper”, “Error handle”, “Datastructure, numeric and logical operation”

and “Utility” categories are risky.

Observation - Commits that introduce trivial packages in JavaScript files are more risky compared

to other commits. Also, our result shows that on median 33.33% of the commits that introduce

trivial packages requires future fixes.

4.4 Threats to validity

In this section, we discuss the threats of validity related to our study.

55

4.4.1 Internal validity

Internal validity concerns factors that could have influenced our results. Our study heavily

depends on the use of Depchecker tool (depcheck-npm (2013)) that extracts the used dependencies

in the studied JavaScript applications. Thus, we are limited to the accuracy of the Depchecker tool.

To mitigate this threat, we randomly selected 10 applications from our dataset and manually examine

the output of the tool. We found that in all the examined applications the Depchecker tool correctly

identified the used dependencies. To investigate the type of functionalities trivial packages provide,

the two authors perform a manual examination of all the used trivial packages in our study. This

process is subject to human bias and to mitigate this threat, the first two of the authors separately

classify trivial packages and measure the inter-agreement between them. We found their agreement

to be excellent (Cohen’s Kappa value of 0.75).

To examine the impact of using trivial packages in an application, we use bug-fixing commits

as a proxy for application quality. It can be debated if bug-fixing can be used as a proxy for quality,

however, several prior studies adopted this approach (Abdalkareem, Shihab, and Rilling (2017);

Foucault et al. (2015); Kim et al. (2008); McIntosh et al. (2014); Śliwerski et al. (2005); Wehaibi et

al. (2016)). Bug-fixing commits are more certain and can be pointed out specifically with minimum

error. Prior studies suggest that the automatic extraction process of bug-fixing commits introduces

some errors (Bird et al. (2009); Bissyande et al. (2013); Herzig, Just, and Zeller (2013)) but as our

dataset is fairly big and have rich development history thus manually extract bug-fixing commit is

not possible. To mitigate this threat, we first adopted well-accepted methods to automatically select

bug-fixing commits based on keywords that is used in prior work (Abdalkareem, Shihab, and Rilling

(2017); Eyolfson et al. (2011); Mockus and Votta (2000); Śliwerski et al. (2005)). Second, we took

a statistical sample of 384 bug-fixing commits with 95% confidence level and confidence interval

of 5. We then manually analyzed each of the selected identified bug-fixing commits and found that

there is only 2.84% of these commits that may not introduce bug-fixes.

56

4.4.2 External validity

Threats to external validity concern the generalization of our findings. In this study, we focus

on JavaScript packages published on npm, which is one of the most popular and largest package

managers for developers; hence, our results may not generalize to other package manager platforms.

To alleviate this threat, more suggest that another package manager should be studied in the future.

The examined applications in our study present only open-source applications hosted on GitHub

that do not reflect proprietary applications and applications from another hosting platform such as

GitLab.

4.5 Chapter Summary

In this chapter, we investigate the impact of using trivial packages on the quality of JavaScript

applications that depend on them. We conduct an empirical study through analyzing more than

3,000 open-source JavaScript applications that use at least one trivial npm package. We start first by

examining the type of development activities that introduce the trivial packages to the studied appli-

cations and the functionalities that trivial packages provide. We find that modifying functionalities,

building, and refactoring are the most development activities related to the use of trivial packages.

We observe that trivial package provides variate of functionalities such as utility and data structure,

numeral and logical operation.

Second, we investigate the impact of using trivial packages on the file- and application-level in

terms of the percentage of bug-fixing commits. We find that files and applications that use trivial

packages tend to have a higher percentage of the bug-fixing commit. Finally, we examine the

riskiness of the commits that introduce trivial packages into JavaScript files in our studied JavaScript

applications. We notice that the commits that introduce trivial packages in JavaScript files are riskier

compared to other commits. Also, our result shows that on median 33.33% of the commits that

introduce trivial packages require future fixes.

57

Chapter 5

Summary, Contributions and Future

Work

This chapter concludes the thesis. We present a summary of the results presented throughout

this thesis. Then, we discuss possible directions for future work.

5.1 Summary of findings

This thesis focuses on trivial packages not as standalone units but assesses their contribution

as building blocks in software applications. In this thesis, first, we conduct an empirical study to

understand how these packages are used in software applications and evaluate their relative impor-

tance. Then, we evaluate the impact of using trivial packages on software quality. The following

are the summaries of this thesis chapters.

Chapter 3 examines the use of trivial packages in software applications. In this chapter, we

examine the relative importance of trivial packages. In our empirical analysis, we observed that:

1) trivial packages are used in important parts of a software application. 2) these packages are

very important within JavaScript files as a significant percentage of API calls in these files are

attributed to trivial packages. 3) trivial packages are also vital in the package dependency network.

The packages dependency network is composed of direct and transitive dependencies of software

applications. Therefore, our overall analysis shows that these packages are vital building blocks in

58

modern software development.

Chapter 4 assesses the impact of using trivial packages on software quality. From the previ-

ous chapter, we observe that trivial packages are vital and are used in important parts of software

applications. Moreover, from the previous study by Abdalkareem et al. (Abdalkareem (2017); Ab-

dalkareem, Nourry, et al. (2017)) it is evident that more than 50% of trivial packages do not have any

test case. Therefore, in this chapter, we looked into the quality impact of trivial packages in software

applications. Additionally, we qualitatively and quantitatively analyze the commits that introduce

trivial packages in software applications in order to fathom the development scenario that ships

these small packages into these matured software applications. Our analysis shows that: 1) trivial

packages are introduced in software applications while developers are doing various development

activities like “Building”, “Refactoring”, “Improving Performance” etc. 2) Software applications

and files that depend on trivial packages are significantly buggier than the applications and files

that do not depend on trivial package. 3) We found that commits that introduce these packages in

JavaScript files are significantly riskier than other commits as they often induce future fixes.

5.2 Contribution

The contributions of this thesis are as follows:

• We provide a novel approach to evaluate how important trivial npm packages are by exten-

sively analyzing their usage from applications and ecosystems perspective.

• We formulate various metrics to understand the importance of a package in a dependency

network of the npm ecosystem.

• We provide an extensive insight on the development activities that introduce trivial packages

in to an application and the functionalities trivial packages provide.

• We conducted a large scale empirical study to examine the quality impact of using trivial

packages in JavaScript applications.

59

5.3 Future Work

We believe that our thesis makes a positive contribution towards the goal of understanding the

use of trivial packages in software applications. However, there are still many open challenges that

need to be tackled to improve the development practice of using trivial packages. We now highlight

some avenues for future work.

5.3.1 Detecting Trivial Packages That Provide Similar Functionalities:

During our studies and throughout our manual examination of trivial npm packages, we ob-

served that there are several trivial packages in the npm ecosystem that provide similar functionality.

For example, filereader, file-reader, and @tanker/file-reader packages offer the functionality of read-

ing files from the browser. We believe developing an automated technique to identify these trivial

packages would increase the maintainability of the npm ecosystem and improve overall quality.

5.3.2 Generate Automated Test Cases for the Packages:

The previous study by Abdalkareem et al. (Abdalkareem, Nourry, et al. (2017)) points out that

more than 50% of the trivial packages do not have any test case. Our analysis of the top 1000

most depended on trivial packages also reveals that some of these packages have poor test score.

Techniques should be developed to generate automated tests so that the test score for those trivial

packages can be increased and thus reduce the chances of packages breakage.

5.3.3 Automate the Evaluation of Ecosystem Health:

In this thesis, we observed that some packages are vital for the stability of the npm ecosystem

as a large number of other packages depend on them. We preliminarily evaluated the top 1000 most

depended on trivial packages but they have health issues like less test coverage, use outdated or

vulnerable packages as their dependency, less maintained, etc. Scrutiny and improving the health

of the packages that are vital for the npm ecosystem should be of high priority.

60

5.3.4 Automatically Generate Smaller Packages:

During our studies, we observed that JavaScript developers proclaim that trivial packages are

analogous to “Lego Blocks”, where large complex systems can be built without having to know

every single detail of how everything works (Sorhus (2018)). There are some popular packages in

npm that are very well accepted and of high quality such as react, babel. However, these packages

are huge in size and provide so many functionalities that developers of an applications may not need

all their functionalities. We believe that one future work and be done to analyze those packages and

develop an automatic technique to segment those packages into smaller more usable packages.

61

References

Abdalkareem, R. (2017). Reasons and drawbacks of using trivial npm packages: The develop-

ers’ perspective. In Proceedings of the 2017 11th joint meeting on foundations of software

engineering (pp. 1062–1064). ACM.

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., & Shihab, E. (2017). Why do developers

use trivial packages? an empirical case study on npm. In Proceedings of the 2017 11th joint

meeting on foundations of software engineering (pp. 385–395). ACM.

Abdalkareem, R., Oda, V., Mujahid, S., & Shihab, E. (2019, may). On the Impact of Using Trivial

Packages: An Empirical Case Study on npm and PyPI. Zenodo.

Abdalkareem, R., Shihab, E., & Rilling, J. (2017). On code reuse from stackoverflow : An ex-

ploratory study on android apps. Information and Software Technology, 88(C), 148–158.

Aric Hagberg, D. S., & Swart, P. (2005, July). Networkx - network graph analysis. https://

networkx.github.io/. ((Accessed on 02/17/2019))

Basili, V. R., Briand, L. C., & Melo, W. L. (1996, October). How reuse influences productivity in

object-oriented systems. Communications of the ACM, 39(10), 104–116.

Bavota, G., Canfora, G., Penta, M. D., Oliveto, R., & Panichella, S. (2013). The evolution of

project inter-dependencies in a software ecosystem: The case of apache. In Proceedings

of the 2013 ieee international conference on software maintenance (pp. 280–289). IEEE

Computer Society.

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu, P. (2009). Fair

and balanced?: Bias in bug-fix datasets. In Proceedings of the the 7th joint meeting of the eu-

ropean software engineering conference and the acm sigsoft symposium on the foundations of

62

https://networkx.github.io/
https://networkx.github.io/

software engineering (pp. 121–130). New York, NY, USA: ACM. Retrieved from http://

doi.acm.org/10.1145/1595696.1595716 doi: 10.1145/1595696.1595716

Bissyande, T. F., Thung, F., Wang, S., Lo, D., Jiang, L., & Reveillere, L. (2013). Empir-

ical evaluation of bug linking. In Proceedings of the 2013 17th european conference on

software maintenance and reengineering (pp. 89–98). Washington, DC, USA: IEEE Com-

puter Society. Retrieved from http://dx.doi.org/10.1109/CSMR.2013.19 doi:

10.1109/CSMR.2013.19

Bloemen, R., Amrit, C., Kuhlmann, S., & Ordóñez Matamoros, G. (2014). Gentoo package de-

pendencies over time. In Proceedings of the 11th working conference on mining software

repositories (pp. 404–407). ACM.

Bonett, D. G., & Wright, T. A. (2000, Mar 01). Sample size requirements for estimating pearson,

kendall and spearman correlations. Psychometrika, 65(1), 23–28. Retrieved from https://

doi.org/10.1007/BF02294183 doi: 10.1007/BF02294183

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine (Vol. 30)

(No. 1-7). Elsevier.

Cadini, F., Zio, E., & Petrescu, C.-A. (2009). Using centrality measures to rank the importance of the

components of a complex network infrastructure. In Proceedings of the critical information

infrastructure security (pp. 155–167). Springer Berlin Heidelberg.

cliff.delta function. (2010). https://www.rdocumentation.org/packages/

effsize/versions/0.6.4/topics/cliff.delta. ((Accessed on 06/05/2019))

Cox, R. (2019, August). Surviving software dependencies. Commun. ACM, 62(9), 36–43.

da Costa, D. A., McIntosh, S., Shang, W., Kulesza, U., Coelho, R., & Hassan, A. E. (2017, July).

A framework for evaluating the results of the szz approach for identifying bug-introducing

changes. IEEE Transactions on Software Engineering, 43(7), 641-657.

Decan, A., & Mens, T. (2019). What do package dependencies tell us about semantic versioning?

IEEE Transactions on Software Engineering, 1-1. doi: 10.1109/TSE.2019.2918315

Decan, A., Mens, T., Claes, M., & Grosjean, P. (2016). When github meets cran: An analysis of

inter-repository package dependency problems. In 2016 ieee 23rd international conference on

software analysis, evolution, and reengineering (saner) (Vol. 1, p. 493-504). IEEE Computer

63

http://doi.acm.org/10.1145/1595696.1595716
http://doi.acm.org/10.1145/1595696.1595716
http://dx.doi.org/10.1109/CSMR.2013.19
https://doi.org/10.1007/BF02294183
https://doi.org/10.1007/BF02294183
https://www.rdocumentation.org/packages/effsize/versions/0.6.4/topics/cliff.delta
https://www.rdocumentation.org/packages/effsize/versions/0.6.4/topics/cliff.delta

Society.

Decan, A., Mens, T., & Constantinou, E. (2018, May). On the impact of security vulnerabilities

in the npm package dependency network. In 2018 ieee/acm 15th international conference on

mining software repositories (msr) (p. 181-191).

Decan, A., Mens, T., & Grosjean, P. (2019). An empirical comparison of dependency network

evolution in seven software packaging ecosystems. Empirical Softw. Engg., 24(1), 381–416.

depcheck-npm. (2013). https://www.npmjs.com/package/depcheck. ((Accessed on

06/05/2019))

Eyolfson, J., Tan, L., & Lam, P. (2011). Do time of day and developer experience affect commit

bugginess? In Proceedings of the 8th working conference on mining software repositories

(pp. 153–162). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/1985441.1985464 doi: 10.1145/1985441.1985464

Fard, A. M., & Mesbah, A. (2017). Javascript: The (un)covered parts. 2017 IEEE International

Conference on Software Testing, Verification and Validation (ICST), 230-240.

Feldthaus, A., Schfer, M., Sridharan, M., Dolby, J., & Tip, F. (2013). Efficient construction of

approximate call graphs for javascript ide services. In Proceedings of the 2013 35th interna-

tional conference on software engineering (icse) (p. 752-761). ACM.

Fieller, E. C., Hartley, H. O., & Pearson, E. S. (1957). Tests for rank correlation coefficients.

i. Biometrika, 44(3/4), 470–481. Retrieved from http://www.jstor.org/stable/

2332878

Fleiss, J., Levin, B., & Paik, M. (2013). Statistical methods for rates and proportions. Wiley.

Retrieved from https://books.google.ca/books?id=9VefO7a8GeAC

Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation

coefficient as measures of reliability. Educational and psychological measurement, 33(3),

613–619.

Foucault, M., Palyart, M., Blanc, X., Murphy, G. C., & Falleri, J.-R. (2015). Impact of developer

turnover on quality in open-source software. In Proceedings of the 2015 10th joint meeting on

foundations of software engineering (pp. 829–841). New York, NY, USA: ACM. Retrieved

from http://doi.acm.org/10.1145/2786805.2786870 doi: 10.1145/2786805

64

https://www.npmjs.com/package/depcheck
http://doi.acm.org/10.1145/1985441.1985464
http://doi.acm.org/10.1145/1985441.1985464
http://www.jstor.org/stable/2332878
http://www.jstor.org/stable/2332878
https://books.google.ca/books?id=9VefO7a8GeAC
http://doi.acm.org/10.1145/2786805.2786870

.2786870

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks,

1(3), 215–239.

German, D. M., Adams, B., & Hassan, A. E. (2013). The evolution of the r software ecosystem. In

Proceedings of the 2013 17th european conference on software maintenance and reengineer-

ing (p. 243-252). IEEE.

Godfrey, & Qiang Tu. (2000, Oct). Evolution in open source software: a case study. In Proceedings

2000 international conference on software maintenance (p. 131-142). IEEE.

Gousios, G. (2013). The ghtorrent dataset and tool suite. In Proceedings of the 10th working

conference on mining software repositories (pp. 233–236). Piscataway, NJ, USA: IEEE Press.

Retrieved from http://dl.acm.org/citation.cfm?id=2487085.2487132

Gruber, J. (2013, May). isarray-npm. https://www.npmjs.com/package/isarray.

((Accessed on 07/24/2019))

Haefliger, S., von Krogh, G., & Spaeth, S. (2008, January). Code reuse in open source software.

Manage. Sci., 54(1), 180–193. Retrieved from http://dx.doi.org/10.1287/mnsc

.1070.0748 doi: 10.1287/mnsc.1070.0748

Haenni, N., Lungu, M., Schwarz, N., & Nierstrasz, O. (2013). Categorizing developer informa-

tion needs in software ecosystems. In Proceedings of the 2013 international workshop on

ecosystem architectures (pp. 1–5). ACM.

Haney, D. (2016, March). Npm & left-pad: Have we forgotten how to program? - blogging

my experiences as a developer and engineering manager. https://www.davidhaney

.io/npm-left-pad-have-we-forgotten-how-to-program/. ((Accessed on

09/30/2019))

Hassan, A. E. (2009, May). Predicting faults using the complexity of code changes. In Proceedings

of the 2009 ieee 31st international conference on software engineering (p. 78-88).

Henningsson, P. (2014, April). madge-npm. https://www.npmjs.com/package/madge.

((Accessed on 06/05/2019))

Herzig, K., Just, S., & Zeller, A. (2013). It's not a bug, it's a feature: How mis-

classification impacts bug prediction. In Proceedings of the 2013 international conference

65

http://dl.acm.org/citation.cfm?id=2487085.2487132
https://www.npmjs.com/package/isarray
http://dx.doi.org/10.1287/mnsc.1070.0748
http://dx.doi.org/10.1287/mnsc.1070.0748
https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/
https://www.npmjs.com/package/madge

on software engineering (pp. 392–401). Piscataway, NJ, USA: IEEE Press. Retrieved from

http://dl.acm.org/citation.cfm?id=2486788.2486840

Holmes, R., & Walker, R. J. (2007). Informing eclipse api production and consumption. In Pro-

ceedings of the 2007 oopsla workshop on eclipse technology exchange (pp. 70–74). ACM.

Inoue, K., Sasaki, Y., Xia, P., & Manabe, Y. (2012). Where does this code come from and where

does it go? - integrated code history tracker for open source systems -. In Proceedings of the

34th international conference on software engineering (pp. 331–341). IEEE Press.

Kabbedijk, J., & Jansen, S. (2011). Steering insight: An exploration of the ruby software ecosystem.

In International conference of software business (pp. 44–55).

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D. (2014).

The promises and perils of mining github. In Proceedings of the 11th working conference on

mining software repositories (pp. 92–101). ACM.

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., & Ubayashi, N. (2013,

June). A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on

Software Engineering, 39(6), 757-773.

Kikas, R., Gousios, G., Dumas, M., & Pfahl, D. (2017). Structure and evolution of package de-

pendency networks. In Proceedings of the 14th international conference on mining software

repositories (pp. 102–112). IEEE Press.

Kim, S., Whitehead, E. J., Jr., & Zhang, Y. (2008, March). Classifying software changes: Clean or

buggy? IEEE Trans. Softw. Eng., 34(2), 181–196.

Kim, S., Zimmermann, T., Pan, K., & Jr. Whitehead, E. J. (2006, Sep.). Automatic identification of

bug-introducing changes. In 21st ieee/acm international conference on automated software

engineering (ase’06) (p. 81-90). doi: 10.1109/ASE.2006.23

Kula, R. G., Germán, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018). Do developers update their

library dependencies? - an empirical study on the impact of security advisories on library

migration. Empirical Software Engineering, 23(1), 384–417. Retrieved from https://

doi.org/10.1007/s10664-017-9521-5 doi: 10.1007/s10664-017-9521-5

Kula, R. G., Ouni, A., Germán, D. M., & Inoue, K. (2017). On the impact of micro-packages: An

empirical study of the npm javascript ecosystem. CoRR, abs/1709.04638. Retrieved from

66

http://dl.acm.org/citation.cfm?id=2486788.2486840
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5

http://arxiv.org/abs/1709.04638

Kula, R. G., Ouni, A., German, D. M., & Inoue, K. (2017). On the impact of micro-packages: An

empirical study of the npm javascript ecosystem.

Lehman, M. M. (1980). Programs, life cycles, and laws of software evolution. Proceedings of the

IEEE, 68(9), 1060-1076.

Lertwittayatrai, N., Kula, R. G., Onoue, S., Hata, H., Rungsawang, A., Leelaprute, P., & Matsumoto,

K. (2017, Dec). Extracting insights from the topology of the javascript package ecosystem.

In 2017 24th asia-pacific software engineering conference (apsec) (p. 298-307).

Lim, W. C. (1994). Effects of reuse on quality, productivity, and economics. IEEE Software, 11,

23-30.

Macdomald, F. (2016, March). A programmer almost broke the internet last week by deleting 11

lines of code - sciencealert. http://www.sciencealert.com/how-a-programmer-almost-broke-

the-internet-by-deleting-11-lines-of-code. ((accessed on 06/03/2016))

Manikas, K. (2016, jul). Revisiting software ecosystems research: A longitudinal literature study.

Journal of Systems and Software, 117, 84–103.

McCamant, S., & Ernst, M. D. (2003). Predicting problems caused by component upgrades. In Pro-

ceedings of the 9th european software engineering conference held jointly with 11th acm sig-

soft international symposium on foundations of software engineering (pp. 287–296). ACM.

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014). The impact of code review coverage

and code review participation on software quality: A case study of the qt, vtk, and itk projects.

In Proceedings of the 11th working conference on mining software repositories (pp. 192–

201). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

2597073.2597076 doi: 10.1145/2597073.2597076

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2016). An Empirical Study of the Impact of

Modern Code Review Practices on Software Quality. Empirical Software Engineering, 21(5),

2146-2189.

Mens, T. (2016). An ecosystemic and socio-technical view on software maintenance and evolu-

tion. In Proceedings of the 2016 ieee international conference on software maintenance and

evolution (icsme) (Vol. 00, p. 1-8). IEEE.

67

http://arxiv.org/abs/1709.04638
http://doi.acm.org/10.1145/2597073.2597076
http://doi.acm.org/10.1145/2597073.2597076

Metcalf, C. (2015, May). process-nextick-args - npm. https://www.npmjs.com/package/

process-nextick-args. ((Accessed on 07/24/2019))

Mileva, Y. M., Dallmeier, V., & Zeller, A. (2010). Mining api popularity. In Proceedings of

the 5th international academic and industrial conference on testing - practice and research

techniques (pp. 173–180). Springer-Verlag.

Misirli, A. T., Shihab, E., & Kamei, Y. (2016, Apr 01). Studying high impact fix-inducing changes.

Empirical Software Engineering, 21(2), 605–641. Retrieved from https://doi.org/

10.1007/s10664-015-9370-z doi: 10.1007/s10664-015-9370-z

Mizuno, O., & Hata, H. (2013). A metric to detect fault-prone software modules using text filtering.

International Journal of Reliability and Safety, 7(1), 17-31.

Mockus, A. (2007). Large-scale code reuse in open source software. In Proceedings of the first

international workshop on emerging trends in floss research and development (pp. 7–). IEEE

Computer Society.

Mockus, A., & Votta, L. G. (2000). Identifying reasons for software changes using historic

databases. In Proceedings of the international conference on software maintenance (icsm’00)

(pp. 120–). Washington, DC, USA: IEEE Computer Society. Retrieved from http://

dl.acm.org/citation.cfm?id=850948.853410

Mohagheghi, P., Conradi, R., Killi, O. M., & Schwarz, H. (2004). An empirical study of software

reuse vs. defect-density and stability. In Proceedings of the 26th international conference on

software engineering (pp. 282–292). IEEE Computer Society.

Mujahid, S., Sierra, G., Abdalkareem, R., Shihab, E., & Shang, W. (2018, Dec 01). An empirical

study of android wear user complaints. Empirical Software Engineering, 23(6), 3476–3502.

Retrieved from https://doi.org/10.1007/s10664-018-9615-8 doi: 10.1007/

s10664-018-9615-8

Murphy-Hill, E., Jaspan, C., Sadowski, C., Shepherd, D., Phillips, M., Winter, C., . . . Jorde, M.

(2019). What predicts software developers’ productivity? IEEE Transactions on Software

Engineering.

npm-ls. (2010). https://docs.npmjs.com/cli/ls.html. ((Accessed on 04/21/2019))

npm-pack. (2009). https://docs.npmjs.com/cli/pack/. ((Accessed on 06/05/2019))

68

https://www.npmjs.com/package/process-nextick-args
https://www.npmjs.com/package/process-nextick-args
https://doi.org/10.1007/s10664-015-9370-z
https://doi.org/10.1007/s10664-015-9370-z
http://dl.acm.org/citation.cfm?id=850948.853410
http://dl.acm.org/citation.cfm?id=850948.853410
https://doi.org/10.1007/s10664-018-9615-8
https://docs.npmjs.com/cli/ls.html
https://docs.npmjs.com/cli/pack/

npm-registry. (2009). https://docs.npmjs.com/misc/registry/. ((Accessed on

06/05/2019))

npm search. (2018, July). escape-string-regexp - npm. https://www.npmjs.com/package/

escape-string-regexp. ((accessed on 10/02/2019))

npms-ponyfill. (2009). https://npms.io/search?q=keywords%3Aponyfill. ((Ac-

cessed on 07/05/2019))

Qi, X., Fuller, E., Wu, Q., Wu, Y., & Zhang, C.-Q. (2012). Laplacian centrality: A new centrality

measure for weighted networks. Information Sciences, 194, 240 - 253.

Rosen, C., Grawi, B., & Shihab, E. (2015). Commit guru: Analytics and risk prediction of software

commits. In Proceedings of the 2015 10th joint meeting on foundations of software engineer-

ing (pp. 966–969). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/2786805.2803183 doi: 10.1145/2786805.2803183

Scitools.com. (1996). https://scitools.com/. ((Accessed on 06/05/2019))

Seaman, C. B. (1999, 07). Qualitative methods in empirical studies of software engineer-

ing. IEEE Transactions on Software Engineering, 25, 557-572. Retrieved from doi

.ieeecomputersociety.org/10.1109/32.799955 doi: 10.1109/32.799955

Shihab, E., Hassan, A. E., Adams, B., & Jiang, Z. M. (2012). An industrial study on the risk

of software changes. In Proceedings of the acm sigsoft 20th international symposium on the

foundations of software engineering (pp. 62:1–62:11). New York, NY, USA: ACM. Retrieved

from http://doi.acm.org/10.1145/2393596.2393670 doi: 10.1145/2393596

.2393670

Śliwerski, J., Zimmermann, T., & Zeller, A. (2005). When do changes induce fixes? In Acm sigsoft

software engineering notes (Vol. 30, pp. 1–5).

Sorhus, S. (2013). npm. https://www.npmjs.com/˜sindresorhus. ((Accessed on

07/05/2019))

Sorhus, S. (2014, July). sindresorhus/awesome: awesome lists about all kinds of interesting

topics. https://github.com/sindresorhus/awesome#readme. ((Accessed on

07/05/2019))

Sorhus, S. (2016, September). like polyfill but with pony pureness. https://github.com/

69

https://docs.npmjs.com/misc/registry/
https://www.npmjs.com/package/escape-string-regexp
https://www.npmjs.com/package/escape-string-regexp
https://npms.io/search?q=keywords%3Aponyfill
http://doi.acm.org/10.1145/2786805.2803183
http://doi.acm.org/10.1145/2786805.2803183
https://scitools.com/
doi.ieeecomputersociety.org/10.1109/32.799955
doi.ieeecomputersociety.org/10.1109/32.799955
http://doi.acm.org/10.1145/2393596.2393670
https://www.npmjs.com/~sindresorhus
https://github.com/sindresorhus/awesome#readme
https://github.com/sindresorhus/ponyfill
https://github.com/sindresorhus/ponyfill

sindresorhus/ponyfill. ((Accessed on 07/05/2019))

Sorhus, S. (2018, October). Small focused modules. https://blog.sindresorhus.com/

small-focused-modules-9238d977a92a. ((Accessed on 10/15/2019))

Spearman function — r documentation. (2010). https://www.rdocumentation.org/

packages/SuppDists/versions/1.1-9.4/topics/Spearman. ((Accessed on

06/05/2019))

Wagner, S., & Murphy-Hill, E. (2019). Factors that influence productivity: A checklist. In C. Sad-

owski & T. Zimmermann (Eds.), Rethinking productivity in software engineering (pp. 69–84).

Berkeley, CA.

Wehaibi, S., Shihab, E., & Guerrouj, L. (2016, March). Examining the impact of self-admitted

technical debt on software quality. In 2016 ieee 23rd international conference on software

analysis, evolution, and reengineering (saner) (Vol. 1, p. 179-188). IEEE.

White, S., & Smyth, P. (2003). Algorithms for estimating relative importance in networks. In

Proceedings of the ninth acm sigkdd international conference on knowledge discovery and

data mining (pp. 266–275). ACM.

wilcox.test function. (2010). https://www.rdocumentation.org/packages/stats/

versions/3.5.1/topics/wilcox.test. ((Accessed on 06/05/2019))

Williams, C., & Spacco, J. (2008). Szz revisited: Verifying when changes induce fixes. In Proceed-

ings of the 2008 workshop on defects in large software systems (pp. 32–36). New York, NY,

USA: ACM. Retrieved from http://doi.acm.org/10.1145/1390817.1390826

doi: 10.1145/1390817.1390826

Wittern, E., Suter, P., & Rajagopalan, S. (2016, May). A look at the dynamics of the javascript pack-

age ecosystem. In 2016 ieee/acm 13th working conference on mining software repositories

(msr) (p. 351-361). doi: 10.1109/MSR.2016.043

Xie, G., Chen, J., & Neamtiu, I. (2009, Sep.). Towards a better understanding of software evolu-

tion: An empirical study on open source software. In 2009 ieee international conference on

software maintenance (p. 51-60).

Xu, B., An, L., Thung, F., Khomh, F., & Lo, D. (2019, Sep 05). Why reinventing the wheels? an

empirical study on library reuse and re-implementation. Empirical Software Engineering.

70

https://github.com/sindresorhus/ponyfill
https://github.com/sindresorhus/ponyfill
https://blog.sindresorhus.com/small-focused-modules-9238d977a92a
https://blog.sindresorhus.com/small-focused-modules-9238d977a92a
https://www.rdocumentation.org/packages/SuppDists/versions/1.1-9.4/topics/Spearman
https://www.rdocumentation.org/packages/SuppDists/versions/1.1-9.4/topics/Spearman
https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/wilcox.test
https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/wilcox.test
http://doi.acm.org/10.1145/1390817.1390826

Yeoman. (2012). https://yeoman.io/. ((Accessed on 07/05/2019))

Zapata, R. E., Kula, R. G., Chinthanet, B., Ishio, T., Matsumoto, K., & Ihara, A. (2018). Towards

smoother library migrations: A look at vulnerable dependency migrations at function level

for npm javascript packages. In Proceedings of the 2018 ieee international conference on

software maintenance and evolution (icsme) (p. 559-563).

Zimmermann, M., Staicu, C., Tenny, C., & Pradel, M. (2019). Small world with high risks: A study

of security threats in the npm ecosystem. CoRR, abs/1902.09217.

71

https://yeoman.io/

	List of Figures
	List of Tables
	Introduction
	Motivating Example
	Thesis Statement
	Thesis Overview
	Chapter 3: Untriviality of Trivial Packages: An Empirical Study of the npm JavaScript Packages
	Chapter 4: An Empirical Study on the Impact of Using Trivial Packages on Software Quality

	Thesis Contributions
	Related Publications

	Related Work
	Third-party Package Usage
	Software Ecosystems
	Impact of Reusing source code
	Summary

	Untriviality of Trivial Packages: An Empirical Study of the npm JavaScript Packages
	Introduction
	Case Study Design
	Dataset of Candidate Applications
	Pruning List of Applications
	Identifying JavaScript Applications that Use Trivial Packages

	Case Study Result
	RQ1: Are trivial packages used in important parts of JavaScript applications?
	RQ2: How widely used are trivial packages in JavaScript Applications?
	RQ3: Do trivial packages play an important role at the ecosystem level?

	Discussion
	Threats to validity
	Construct validity
	External validity

	Chapter Summary

	An Empirical Study on the Impact of Using Trivial Packages on Software Quality
	Introduction
	Case Study Design
	Dataset of candidate applications
	Select active and large JavaScript applications
	Select applications with rich development history
	Identify applications that use trivial packages

	Case Study Result
	RQ0: In which context trivial packages are introduced into a software application and what types of functionalities trivial packages provide?
	RQ1: Does using trivial JavaScript packages impact the overall quality of applications?
	RQ2: What is the impact of trivial packages on the quality of the files?
	RQ3: Are commits that introduce trivial packages in JavaScript files risky?

	Threats to validity
	Internal validity
	External validity

	Chapter Summary

	Summary, Contributions and Future Work
	Summary of findings
	Contribution
	Future Work
	Detecting Trivial Packages That Provide Similar Functionalities:
	Generate Automated Test Cases for the Packages:
	Automate the Evaluation of Ecosystem Health:
	Automatically Generate Smaller Packages:

	Bibliography

