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ABSTRACT
Background: Open source software has an increasing importance in
modern software development. However, there is also a growing
concern on the sustainability of such projects, which are usually
managed by a small number of developers, frequently working as
volunteers. Aims: In this paper, we propose an approach to identify
GitHub projects that are not actively maintained. Our goal is to alert
users about the risks of using these projects and possibly motivate
other developers to assume the maintenance of the projects.Method:
We train machine learning models to identify unmaintained or
sparselymaintained projects, based on a set of features about project
activity (commits, forks, issues, etc). We empirically validate the
model with the best performance with the principal developers
of 127 GitHub projects. Results: The proposed machine learning
approach has a precision of 80%, based on the feedback of real
open source developers; and a recall of 96%. We also show that
our approach can be used to assess the risks of projects becoming
unmaintained. Conclusions: The model proposed in this paper can
be used by open source users and developers to identify GitHub
projects that are not actively maintained anymore.
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1 INTRODUCTION
Open source projects have an increasing relevance in modern soft-
ware development [12]. For example, many critical software is
currently available under open source licenses, including operating
systems, compilers, databases, and web servers. Similarly, it is com-
mon nowadays to depend on open source libraries and frameworks
when building and evolving proprietary software. For example, in
a recent survey—conducted by Black Run’s consulting firm—78%
of the over 1,300 companies surveyed acknowledge the use of open
source in their daily development.1 Concretely, Instagram—the
popular photo-sharing social network—is currently implemented
using more than 20 open source libraries.2 Furthermore, the emer-
gence of world-wide code sharing platforms—GitHub is the most
well-known example—is contributing to transform open source
development in a competitive market. Indeed, in a recent survey
with open source maintainers we found that the most common
reason for the failure of open source projects is the appearance of
a stronger competitor in GitHub [9].

However, GitHub does not include clear and aggregated data
about project status, in terms of maintenance activity. Users can
1https://www.slideshare.net/blackducksoftware/2015-future-of-open-source-survey-results
2https://www.instagram.com/about/ legal/ libraries/

access historical data about commits or global project metrics, like
number of stars, forks, and watchers. However, based on the values
of theses metrics, they should judge themselves whether a project
is being actively maintained (and therefore if it is worth to use it or
not). Therefore, in this paper we propose and evaluate a machine
learning approach to identify unmaintained (or sparsely maintained
projects) on GitHub. Our goal is to provide a simple and effective
mechanism to alert users about the risks of depending on a GitHub
project. This information can also contribute to attract new main-
tainers to a project. For example, users of libraries facing the risks
of continuation can be motivated to assume their maintenance.

Previous work in this area relies on the last commit activity to
classify projects as unmaintained or in similar status. For exam-
ple, Khondhu et al. use an one-year inactivity threshold to classify
dormant projects on SourceForge [16]. The same threshold is used
in works by Mens et al. [25], Izquierdo et al. [15], and in our pre-
vious work about the motivations for the failure of open source
projects [9]. However, in this paper, we do not use this definition
when investigating unmaintained projects due to three reasons.
First, because defining a threshold to characterize unmaintained
projects is not trivial. For example, in the mentioned works, this
decision is arbitrary and it is not empirically validated. Second,
our intention is to detect unmaintained projects as soon as possi-
ble; preferably, without having to wait for one year of inactivity.
Third, our definition of unmaintained projects does not assume
a complete absence of commits during a given period; instead, a
project is considered unmaintained even when sporadic and few
commits happen in a given time interval. Stated otherwise, by our
definition, unmaintained projects do not necessarily need to be
dead, deprecated or archived.

In this paper, we first train ten machine learning models to
identify unmaintained projects, using as features standard met-
rics provided by GitHub about a project’s maintenance activity,
e.g., number of commits, forks, issues, and pull requests. Then, we
select the model with the best performance and validate it by means
of a survey with the owners of projects classified as unmaintained
and also with a set of deprecated GitHub projects. Particularly, we
ask three research questions about properties of this model:
RQ1: What is the precision according to GitHub developers? The in-
tention is to check precision in the field, according to the feedback
provided by the principal developers of popular GitHub projects.
RQ2: What is the recall when identifying unmaintained projects?
Usually, recall is more difficult to compute in the field, because it
requires the identification of all unmaintained projects in GitHub.
To circumvent this problem, we compute recall considering only

https://www.slideshare.net/blackducksoftware/2015-future-of-open-source-survey-results
https://www.instagram.com/about/legal/libraries/


Table 1: Features used to identify unmaintained projects.

Dimension Feature Description

Project

Forks Number of forks created by developers
Open issues Number of issues opened by developers
Closed issues Number of issues closed by developers
Open pull requests Number of pull requests opened by the project developers
Closed pull requests Number of pull requests closed by the project developers
Merged pull requests Number of pull requests merged by the project developers
Commits Number of commits performed by developers
Max days without commits Maximum number of consecutive days without commits
Max contributions by developer Number of commits of the developer with the highest number of commits

Contributor New contributors Number of contributors who made their first commit in the considered period
Distinct contributors Number of distinct contributors that committed in the considered period

Owner Projects created by the owner Number of projects created by a given owner
Number of commits of the owner Number of commits performed by a given owner

projects that declare in their README3 they are not under mainte-
nance.
RQ3: How early the model identifies unmaintained projects? As men-
tioned, the proposed model does not depend on an inactivity inter-
val to classify a project as unmaintained. Therefore, in this final
question, we investigate whether this ability is effective in the field,
when identifying the maintenance status of real GitHub projects.

Our contributions are twofold: (1) we propose amachine learning
approach to identify unmaintained (or sporadically maintained)
projects on GitHub, which achieved a precision of 80% and a recall of
96% when validated with real open source developers and projects;
(2) we propose a metric to reveal the maintenance activity level of
GitHub projects.

This paper is organized as follows. In Section 2, we present
and evaluate a machine learning model to identify unmaintained
projects. Section 3 validates this model with GitHub developers
and projects that are documented as deprecated. Section 4 defines
and discusses the Level of Maintenance Activity (LMA) metric.
Section 5 lists threats to validity and Section 6 discusses related
work. Section 7 concludes the paper and outlines further work.

2 MACHINE LEARNING MODEL
In this section, we describe our machine learning approach to iden-
tify projects that are no longer under maintenance.

2.1 Experimental Design
Dataset. We start with a dataset containing the top-10,000 most
starred projects on GitHub (in November, 2017). Stars—GitHub’s
equivalent for likes in other social networks—is a common proxy
for the popularity of GitHub projects [5]. Then, we follow three
strategies, in order, to discard projects from this initial selection.
First, we remove 2,810 repositories that have less than two years
from the first to the last commit (because we need historical data
to compute the features used by the prediction models). Second,
we remove 331 projects with null size, measured in lines of code

3READMEs are the first file a visitor is presented to when visiting a GitHub repository.

(typically, these projects are implemented in non-programming lan-
guages, like CSS, HTML, etc). Finally, we remove 74 non-software
projects, which are identified by searching for the following topics:
books and awesome-lists.4 We end up with a list of 6,785 projects.

Next, we label these projects in two groups: active and unmain-
tained. The active (or under maintenance) group is composed by
754 projects that have at least one release in the last month, in-
cluding well-known projects, like facebook/react, d3/d3, and
nodejs/node. Thus, we assume that projects with recent releases
are active (under maintenance). By contrast, the unmaintained
group is composed by 248 projects, including 104 projects that were
explicitly declared by their principal developers as unmaintained
in our previous work [9] and 144 archived projects. Archiving is
a recent feature provided by GitHub that allows developers to ex-
plicitly move their projects to a read-only state. In this state, users
cannot create issues, pull requests, or comments, but can still fork
or star the projects.

Features. Our hypothesis is that a machine learning classifier can
identify unmaintained projects by considering features about (1)
projects, including number of forks, issues, pull requests, and com-
mits; (2) contributors, including number of new and distinct contrib-
utors (the rationale is that maintenance activity might increase by
attracting new developers); (3) project owners, including number
of projects he/she owns and total number of commits in GitHub
(the rationale is that maintenance might be affected when project
owners have many projects on GitHub). In total, we consider 13
features, as described in Table 1. However, these features are not ex-
tracted considering the whole history of a project, but considering
only the last n months, counting from the last commit; moreover,
we collect each feature in intervals of m months. The goal is to
derive temporal series of feature values, which can be used by a
machine learning algorithm to infer trends in the project evolution,
e.g., an increasing number of opened issues or a decreasing num-
ber of commits. Figure 1 illustrates the feature collection process

4GitHub topics allow tagging a repository with keywords.
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assuming that n is 24 months and thatm is 3 months. In this case,
for each feature, we collect 8 data points, i.e., feature values.

Months

Last commit

3 months

24 months

Figure 1: Feature collection during 24 months in 3-month
intervals.

We experiment with different combinations of n andm; each one
is called a scenario, in this paper. Table 2 describes the total number
of data points extracted for each scenario. This number ranges
from 13 data points per feature (scenario with features extracted
in intervals of 6 months during 6 months) to 104 data points per
feature (scenario with features extracted in intervals of 3 months
during 24 months, as in Figure 1).

Table 2: Scenarios used to collect features and train the ma-
chine learning models (length and intervals are in months;
data points is the total number of data points collected for
each scenario).

Scenario 1 2 3 4 5 6 7 8 9 10
Length 6 6 12 12 12 18 18 24 24 24
Intervals 3 6 3 6 12 3 6 3 6 12
Data points 26 13 52 26 13 78 39 104 52 26

Correlation Analysis. As usual in machine learning experiments,
we remove correlated features, following the process described by
Bao et al. [3]. To this purpose, we use a clustering analysis—as im-
plemented in a R package named Hmisc5—to derive a hierarchical
clustering of correlations among data points (extracted for the fea-
tures in each scenario). For sub-hierarchies with correlations larger
than 0.7, we select only one data point for inclusion in the respec-
tive machine learning model, as common in other works [3, 38].
For example, Figure 2 shows the final hierarchical clustering for
the scenario with 24 months, considering a 3-month interval (sce-
nario 8). The analysis in this scenario checks correlations among
104 data points (13 features × 8 data points per feature). As a result,
78 data points are removed due to correlations with other points
and therefore do not appear in the dendogram presented in Fig-
ure 2. Finally, Table 3 shows the total number and percentage of
data points removed in each scenario, after correlation analysis. As
we can see, the percentage of removed points is relevant, ranging
from 43% (scenario 7) to 75% (scenario 8).

Machine Learning Classifier. We use the data points extracted
in each scenario to train and test models for predicting whether
a project is unmaintained. In other words, we train and test ten
machine learning models, one for each scenario. After that, we
select the best model/scenario to continue with the paper. Particu-
larly, we use the Random Forest algorithm [6] to train the models
5http://cran.r-project.org/web/packages/Hmisc/index.html
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Figure 2: Correlation analysis for the 104 data points col-
lected for the features in scenario 8 (24 months, 3-month
interval). 78 data points (75%) are removed in this case, due
to correlations with other data points, and therefore do no
appear in this final clustering.

Table 3: Total number and percentage of data points re-
moved in each scenario, after correlation analysis.

Scenario 1 2 3 4 5 6 7 8 9 10
# 17 6 38 18 7 56 17 78 34 19
% 65 46 73 69 54 72 43 75 65 73

because it has several advantages, such as robustness to noise and
outliers [38]. In addition, it is adopted in many other software en-
gineering works [2, 14, 26, 29, 31, 35]. We compare the result of
Random Forest with two baselines: baseline #1 (all projects are
predicted as unmaintained) and baseline #2 (random predictions).
We use the Random Forest implementation provided by random-
Forest’s R package6 and 5-fold stratified cross validation to evaluate
the models effectiveness. In 5-fold cross validation, we randomly
divide the dataset into five folds, where four folds are used to train
a classifier and the remaining fold is used to test its performance.
Specifically, stratified cross validation is a variant, where each fold
has approximately the same proportion of each class [6]. We per-
form 100 rounds of experiments and report average results.

Evaluation Metrics.When evaluating the projects in the test fold,
each project has four possible outcomes: (1) it is truly classified as
unmaintained (True Positive); (2) it is classified as unmaintained but
it is actually an active project (False Positive); (3) it is classified as
an active project but it is actually an unmaintained one (False Nega-
tive); and (4) it is truly classified as an active project (True Negative).
Considering these possible outcomes, we use six metrics to evaluate
the performance of a classifier: precision, recall, F-measure, accu-
racy, AUC (Area Under Curve), and Kappa, which are commonly
adopted in machine learning studies [11, 18, 22, 37, 38]. Precision
and recall measure the correctness and completeness of the clas-
sifier, respectively. F-measure is the harmonic mean of precision
and recall. Accuracy measures how many projects are classified

6https://cran.r-project.org/web/packages/randomForest/
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Table 4: Prediction results (mean of 100 iterations, using 5-cross validation); best results are in bold.

Metrics 0.5 Year 1 Year 1.5 Years 2 Years
3 months 6 months 3 months 6 months 12 months 3 months 6 months 3 months 6 months 12 months

Accuracy 0.90 0.91 0.91 0.90 0.89 0.91 0.90 0.92 0.91 0.90
Precision 0.83 0.87 0.87 0.84 0.82 0.86 0.83 0.86 0.85 0.83
Recall 0.78 0.74 0.77 0.75 0.72 0.78 0.76 0.81 0.79 0.73
F-measure 0.80 0.79 0.81 0.79 0.77 0.82 0.79 0.83 0.82 0.78
Kappa 0.74 0.74 0.76 0.73 0.70 0.76 0.73 0.78 0.76 0.71
AUC 0.86 0.85 0.86 0.85 0.83 0.87 0.85 0.88 0.87 0.84

correctly over the total number of projects. AUC refers to the area
under the Receiver Operating Characteristic (ROC) curve. Finally,
kappa evaluates the relationship between the observed accuracy
and the expected one [32], which is particularly relevant in imbal-
anced datasets, as the dataset used in this paper (754 active projec0ts
vs 248 unmaintained ones).

2.2 Experimental Results
Table 4 shows the results for each scenario. As we can see, Random
Forest has the best results (in bold) when the features are collected
during 2 years, in intervals of 3 months. In this scenario, precision
is 86% and recall is 81%, leading to a F-measure of 83%. Kappa is
0.78—usually, kappa values greater than 0.60 are considered quite
representative [19]. Finally, AUC is 0.88, which is an excellent result
in the Software Engineering domain [22, 36, 38]. Table 5 compares
the results of the best scenario/model with baseline #1 (all projects
are predicted as unmaintained) and baseline #2 (random predic-
tions). Despite the baseline under comparison, there are major
differences in all evaluation metrics. For example, F-measure is 0.37
(baseline #1) and 0.30 (baseline #2), against 0.83 (proposed model).

Table 5: Comparison of the proposed machine learning
model with baseline #1 (all projects are predicted as unmain-
tained) and baseline #2 (random predictions).

Metrics Model Baseline #1 Baseline #2

Accuracy 0.92 0.22 0.49
Precision 0.86 0.22 0.22
Recall 0.81 1.00 0.48
F-measure 0.83 0.37 0.30
Kappa 0.78 0.00 0.01
AUC 0.88 0.50 0.49

Random Forest also produces a measure of the importance of the
predictor features. Table 6 shows the top-5 most important features
by Mean Decrease Accuracy (MDA), for the best model. Essentially,
MDA measures the increase in prediction error (or reduction in
prediction accuracy) after randomly shifting the feature values [7,
23]. As we can see, the most important feature is the number of
commits in the last time interval (i.e., the interval delimited by
months 22-24, T22,24), followed by the maximal number of days
without commits in the same interval and in the interval delimited
by months 10-12 (T10,2). As also presented in Table 6, the first four

features are related to number of commits; the first feature non-
related with commits is the number of issues closed in the first time
interval (T1,3).

Table 6: Top-5 most relevant features, by Mean Decrease Ac-
curacy (MDA).

Feature Period MDA

Commits T22,24 38.5
Max days without commits T22,24 28.6
Max days without commits T10,12 21.9
Max contributions by developer T16,18 21.1
Closed issues T1,3 18.0

3 EMPIRICAL VALIDATION
In this section, we validate the proposed machine learning model by
means of a survey with the owners of projects classified as unmain-
tained and also with a set of deprecated GitHub projects. Overall,
our goal is to strengthen the confidence on the practical value of
the model proposed in this work. Particularly, we provide answers
to three research questions about this model:
RQ1: What is the precision according to GitHub developers?
RQ2: What is the recall when identifying deprecated projects?
RQ3: How early the model identifies unmaintained projects?

3.1 Methodology
RQ1: To answer RQ1, we conduct a survey with GitHub developers.
To select the participants, we first apply the proposed machine
learning model in all projects from our dataset that were not used
in the model’s construction, totaling 5,783 projects (6,785 − 1,002
projects). Then, we select 2,856 projects classified as unmaintained
by the proposed model. From this sample, we remove 264 projects
whose developers were recently contacted in our previous sur-
veys [9, 10]. We make this decision to do not interrupt again these
developers, with new e-mails and questions. Finally, we remove
2,270 projects whose owners do not have a public e-mail address
on GitHub. As a result, we obtain a list of 323 survey participants
(2,856 − 2,270 − 264). However, before e-mailing these participants,
the first author inspected the main page of each project on GitHub,
to check whether it includes mentions to the project status, in terms
of maintenance. We found 21 projects whose documentation states
they are no longer maintained, by means of messages like this one:

4



This project is deprecated. It will not receive any future updates or
bug fixes. If you are using it, please migrate to another solution.

Therefore, we do not send mails to the project owners, in such
cases; and automatically consider these 21 projects as unmaintained.

Survey Period: The survey was performed in the first two weeks of
May, 2018. It is important to highlight that the machine learning
model was constructed using data collected on November, 2017.
Therefore, the unmaintained predictions evaluated in the survey re-
fer to this date. We wait five months to ask the developers about the
status of their projects because it usually takes sometime until devel-
opers actually accept the unmaintained condition of their projects.
In other words, this section is based on predictions performed and
available on November, 2017. However, these predictions are vali-
dated five months later, on May, 2018.

Survey Pilot and Questions: Initially, we perform a pilot survey with
75 projects (≈ 25%), randomly selected among the remaining 302
projects (323 − 21 projects). We e-mail the principal developers of
these projects with a single open question, asking them to confirm
(or not) if their projects are unmaintained. We received 23 answers,
which corresponds to a response ratio of 30.6%. Then, two authors
of this paper analyzed together the received answers to derive a
list of recurrent themes. As a result, the following three common
maintainability status were identified:7

(1) My project is under maintenance and new features are
under implementation (6 answers): As an example, we can
mention the following answer:
[Project-Name] is still maintained. I maintain the infrastructure
side of the project myself (e.g. make sure it’s compatible with the
latest Ruby version, coordinate PRs and issues, mailing list, etc.)
while community provides features that are still missing. One
such big feature is being developed as we speak and will be the
highlight of the next release. (P57)

(2) My project is finished and I only plan to fix important
bugs (13 answers): As an example, we mention the following
answers:
It’s just complete, at least for now. I still fix bugs on the rare occa-
sion they are reported. (P10)
I view it as basically “done”. I don’t think it needs any new fea-
tures for the foreseeable future, and I don’t see any changes as
urgent unless someone discovers a major security vulnerability
or something. I will probably continue to make changes to it a
couple times per year, but mostly bugfixes. (P68)

(3) My project is deprecated and I do not plan to implement
new features or fix bugs (4 answers): As an example, we can
mention the following answer:
The project is unmaintained and I’ll archive it. (P74)
After the pilot study, we proceed with the survey, by e-mailing

the remaining 227 projects. However, instead of asking an open
question—as in the pilot—we provide an objective question to
the survey participants, about the maintainability status of their
projects. In this objective question, we ask the participants to select

7Project names are omitted, to preserve the respondent’s anonymity; survey partici-
pants are identified by means of labels, in the format Pxx, where xx is an integer.

one (out of three) status identified in the pilot study, plus an other
option. This fourth option also includes a text form for the partici-
pants detailing their answers, if desired. Essentially, we change to
an objective question format to make answering the survey easier,
but without limiting the respondents’ freedom to provide a different
answer from the listed ones. In this final survey, we received 89
answers, representing a response ratio of 39.2%. When considering
both phases (pilot and final survey), we sent 302 e-mails, received
112 answers, representing an overall response ratio of 37.1%. After
adding the 21 projects that document their maintainability status,
this empirical validation is based on 133 projects.

RQ2: To answer this second question, we construct a ground truth
with projects that are no longer being maintained. First, we build
a script to download the README (the main page of GitHub’s
projects) and search for a list of sentences that are commonly used
to declare the unmaintained state of GitHub projects. This list is
reused from our previous work [9], where we study the motivations
for the failure of open source projects. It includes 32 sentences; in
Table 7, we show a partial list, with 17 sentences.

Table 7: Sentences documenting unmaintained projects

no longer under development, no longer supported or updated,
deprecation notice, dead project, deprecated, unmaintained,
no longer being actively maintained, not maintained anymore,
not under active development, no longer supported
is not supported, is not more supported, no longer supported,
no new features should be expected, isn’t maintained anymore
no longer be shipping any updates, don’t want to maintain

We searched (in May, 2018) for these sentences in the README
of 5,783 projects, which represent all 6,785 projects selected for this
work minus 1,002 projects used in Section 2. In 451 READMEs (7.8%)
we found the mentioned sentences. Then, the first author of this
paper carefully inspected each README, to confirm the sentences
indeed refer to the project’s status, in terms of maintenance. In the
case of 112 projects (≈ 25%), he confirmed this fact. Therefore, these
projects are considered as a ground truth for this investigation.8

RQ3: To answer this third research question, we rely on projects
whose unmaintained status, as predicted by the proposed model,
is confirmed by the participants of the survey conducted in RQ1.
Then, we compute the number of days between November, 30, 2018
(when the machine learning model proposed in this paper was built)
and the last commit of the mentioned projects. For projects where
this interval is less than one year, there is a gain, compared with
the strategy adopted in previous work [9, 15, 16, 25] that requires
one year of commit inactivity to identify unmaintained projects.

3.2 Results
RQ1: Precision according to GitHub developers

Before presenting the precision results, Figure 3 shows the survey
results, including answers retrieved from the project’s documenta-
tion, answers received in the pilot and answers received in the final
8Usually, the unconfirmed cases refer to the deprecation of specific elements, e.g.,
methods or classes.
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Figure 3: Survey answers about projects’ status.

survey. As we can see, the most common status, with 54 answers
(42%) refers to finished projects, i.e., cases where maintainers see
their projects as feature-completed and only plan to resume the
maintenance work if relevant bugs are reported.9 We also received
41 answers (32%) mentioning the projects are deprecated and no
further maintenance is planned, including the implementation of
new features and bug fixes. Finally, we received 18 answers in the
other option. In this case, four participants did not describe their
answer or provide unclear answers; furthermore, one participant
mentioned his project is in a limbo state:
The status of [Project-Name] fits into a special category. Some of the
tools it’s based on are either deprecated or not powerful enough for
the goal of the project. This is part of the reason what’s keeping the
project from being “done”. I would call this status limbo. (P24)

Seven participants answered their projects are stalled, as in this
answer:
It is under going a rewrite... but has been stalled based on my own
priorities (P33)

To compute precision, we consider as true positive answers re-
lated to the following status: finished (54 answers), deprecated (41
answers), stalled (7 answers), and limbo (1 answer). The remain-
ing answers are interpreted as false negatives, including answers
mentioning that new features are being implemented (20 answers)
and the answers associated to the fourth option (other option), but
without including a description or with an unclear description (4
answers). By following this criteria, we received 103 true positive
answers and 26 false negative ones, which results in a precision of
80%.

By validating the proposed model with 20 GitHub developers,
we achieve a precision of 80%, which is a result very close
to the one obtained when building the model (86%).

RQ2: Recall considering deprecated projects

The proposed machine learning model classifies 108 (out of 112)
projects of the constructed ground truth as unmaintained, which
represents a recall of 96%. This value is significantly greater than
the one computed when testing the model in Section 2. Probably,
9In our previous work [9], we also identified finished or completed open source projects.
However, we argued these projects do not contradict Lehman’s Laws about software
evolution [21], because they usually deal with a very stable or controlled environment
(whereas Lehman’s Laws focus on E-type systems, where E stands for evolutionary).
In fact, we manually classified the application domain of the 54 projects considered by
their developers as finished in our survey. 41 (76%) are libraries and frameworks, 10
(18%) are software tools, and only 3 (6%) are applications.

81
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Figure 4: Days since last commit for projects classified as un-
maintained (considering the date of November, 2017, when
the proposed model was computed).

this difference is explained by the fact that only projects that are
completely unmaintained expose this situation in their READMEs.
Therefore, it is easier to detect and identify this condition.

By validating the proposed model with projects that declare
themselves as unmaintained, we achieve a recall of 96%.

RQ3: How early can we detect unmaintained projects?
77 (out of 103) projects classified as true positives by the sur-

veyed developers have commits after November, 2016. Therefore,
these projects would not be classified as unmaintained using the
strategy followed in the literature, which requires one year of com-
mit inactivity. In other words, in November, 2017, the proposed
model classified 77 projects as unmaintained, despite the existence
of recent commits, with less than one year. Figure 4 shows a violin
plot with the age of such commits, considering the date of Novem-
ber, 2017. The first, second, and third quartiles are 35, 81, and 195.
Interestingly, for two projects the last commit occurred exactly on
November, 30, 2018. Despite this fact, the proposed model classified
these projects as unmaintained in the same date. If we relied on
the standard threshold of one year without commits, these projects
would have had to wait one year to receive this classification.

75% of the studied projects are classified as unmaintained
despite having recent commits, performed in the last year.

4 LEVEL OF MAINTENANCE ACTIVITY
In this section, we define a metric to express the level of maintenance
activity of GitHub projects, i.e., a metric that reveals how often a
project is being maintained. The goal is to alert users about projects
that although classified as under maintenance by the proposed
model are indeed close to an unmaintained status.

4.1 Definition
The proposed machine learning model—generated by Random For-
est —consists of multiple decision trees built randomly. Each tree
in the ensemble determines a prediction to a target instance and
the most voted class is considered as the final output. One possible
prediction type of the Random Forest is the matrix of class probabil-
ities. This matrix represents the proportion of the trees’ votes. For
example, projects predicted as under maintenance have probability
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Figure 6: Comparing number of commits, issues, pull request, and forks over time of ten projects with maximal LMA (green
lines) and ten projects with the lowest LMA in our dataset (red lines). Metrics are collected in intervals of 3 months (x-axis).

p ranging from 0.5 to 1.0. If p = 0.5, the project is very similar to
an unmaintained project; by contrast, p = 1.0 means the project is
actively maintained. Using these probabilities, we define the level
of maintenance activity (LMA) of a GitHub project as follows:

LMA = 2 ∗ (p − 0.5) ∗ 100

This equation simply converts the probabilities p computed by
Random Forest to a range from 0 to 100; LMA equals to 0 means
the project is very close to an unmaintained classification (since
p = 0.5); and LMA equals to 100 denotes a project that is actively
maintained (since p = 1.0).

4.2 Results
Figure 5 shows the LMA values for each project predicted as under
maintenance (2,927 projects, after excluding the projects used to
train and test the proposed model, in Section 2). The first, second,
and third quartiles are 48, 82, and 97, respectively. In other words,
most studied projects are under constant maintenance (median
82). Indeed, 171 projects (5.8%) have a maximal LMA, equal to
100. This list includes well-known and popular projects such as
twbs/bootstrap, meteor/meteor, rails/rails, webpack/web-
pack, and elastic/elasticsearch.

Figure 6 compares a random sample of 10 projects with LMA
equals to 100 (actively maintained, therefore) with ten projects with
the lowest LMA (0 ≤ LMA ≤ 0.4). These projects are compared using
number of commits (Figure 6a), number of issues (Figure 6b), num-
ber of pull requests (Figure 6c), and number of forks (Figure 6d), in

82
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Figure 5: Level of maintenance activity (LMA).

the last 24 months. Each line represents the project’s metric values.
The figures reveal major differences among the projects, regarding
these metrics. Usually, the projects with high LMA present high val-
ues for the four considered metrics (commits, issues, pull requests,
and forks), when compared with projects with low LMA. In other
words, the figures suggest that LMA plays an aggregator role of
maintenance activity over time.

Figure 7 shows scatterplots correlating LMA and number of
stars, contributors, core contributors, and size (in LOC) of projects
classified as under maintenance. To identify core contributors, we
use the most common heuristic described in the literature: core
contributors are the ones responsible together for at least 80% of
the commits in a project [17, 27, 33]. To measure the size of the
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(c) LMA vs Core contributors (ρ = 0.15) (d) LMA vs LOC (ρ = 0.38)

Figure 7: Correlating LMA with (a) stars, (b) contributors, (c) core contributors, and (d) size. Spearman’s ρ is also presented.

projects, in lines of code, we used the tool AlDanial/cloc10, con-
sidering only the programming languages in the TIOBE list.11 We
also compute Spearman’s rank correlation test for each figure. The
correlation with stars and with core contributors is very weak (ρ =
0.10 and ρ = 0.15, respectively); with size, the correlation is weak (ρ
= 0.38); and with contributors, it is moderate (ρ = 0.44); all p-values
are less than 0.01. Therefore, it is common to have highly popular
projects, by number of stars, presenting both low and high LMA
values. For example, one project has 50,034 stars, but LMA = 8.
A similar effect happens with size. For example, one project has
≈2 MLOC, but LMA = 10.8. The highest correlation is observed
with contributors, i.e., projects with more contributors tend to have
higher levels of maintenance activity.

4.3 Validation with False Negative Projects
In Section 3, we found four projects that although declared by their
developers as unmaintained are predicted by the proposed machine
learning model as under maintenance. Therefore, these projects are
considered false negatives, when computing recall. Two of such
projects has a very low LMA: nicklockwood/iRate (LMA = 2)
and gorangajic/react-icons (LMA = 12). Therefore, although
predicted as under maintenance, this project is similar to projects
classified as unmaintained, as suggested by its low LMA. A second
project has an intermediate LMA value: spotify/HubFramework
(LMA = 39.2). Finally, one project Homebrew/homebrew-php has a
high LMA value (LMA = 99.2). However, this project was migrated

10https://github.com/AlDanial/cloc
11https://www.tiobe.com/tiobe-index

to another repository, when facing continuous maintenance. In
other words, in this case, the GitHub repository was deprecated,
but not the project; therefore, Homebrew/homebrew-php is a false,
false negative (or a true negative).

5 THREATS TO VALIDITY
The threats to validity of this work are described as follows:

External Validity: Our work examines open source projects on
GitHub. We recognize that there are popular projects in other plat-
forms (e.g., Bitbucket, SourceForge, and GitLab) or projects that
have their own version control installations. Thus, our findings
may not generalize to other open source or commercial systems.
A second threat relates to the features we have considered. There
might be additional features that could be more help improve the
the prediction of unmaintained projects, however, given our high
prediction performance, we feel confident that our features are
effective. Also, some of the features we use may not be available in
other projects, however, most of our features are available in most
code control repositories/ecosystems. In the future, we intend to
investigate additional projects and consider more features.

Internal Validity: The first threat relates to the selection of the
survey participants. We surveyed the project owner, in the case
of repositories owned by individuals, or the developer with the
highest number of commits, in the case of repositories owned by
organizations. We believe that developers who replied to our survey
are the most relevant given their level of activity in the project. The
themes of the surveys were defined and organized by the authors of
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the paper. As with any human activity, the derived themes may be
subject to bias and different researchers might reach different ob-
servations. However, to mitigate this threat, a first choice of themes
was conducted in parallel by the first two authors of this paper. Also,
they attended several meetings during a whole week to improve
the initial selected themes. A third threat relates to the parameters
used to perform our experiment. We set the number of trees to
100 to train our classifier. To attenuate the bias of our results, we
run 5-fold cross-validation and use the average performance for
100 rounds. A forth threat is related to how the accuracy of our
machine learning approach was evaluated. We relied on developer
replies about their project to evaluate the performance of our ma-
chine learning classifier. In some cases, the developer replies (or
developers who did not reply) may impact our results. That said,
our survey had a response rate of 37.1%, which is very high for a
software engineering study, giving us confidence in the reported
performance results.

Construct Validity: A first threat relates to the definition of ac-
tive projects. We consider as active projects those with at least one
release in the last year (Section 2). We acknowledge a threat in the
definition of the time frame. To mitigate this threat, the first pa-
per’s author inspected each selected project to look for deprecated
projects (21 projects declare they are no longer being maintained)
and we conduct a survey with 112 developers to confirm our find-
ings. A second threat is related to the projects we studied. Our
dataset is composed of the most starred projects (and additional
filtering). Although the starred projects may not be representative
of all open source projects, we did carefully select such projects to
ensure that our study is conducted on real (and not toy) projects.

6 RELATEDWORK
Machine Learning. Recently, the application of machine learn-
ing in software engineering contexts has gained much attention.
Several researchers have used machine learning to accurately pre-
dict defects(e.g. [29]), improve issue integration (e.g., [1]), enhance
software maintenance (e.g., [13]), and examine developer turnover
(e.g., [3]). For example, Gousios et al. [13] investigate the use of
machine learning to predict whether a pull request will be merged.
They extract 12 features organized into three dimensions: pull re-
quest, project, and developer. They conduct their study using six
algorithms (Logistic Regression, Naive Bayes, Decision Trees, Ad-
aBoost with Decision Trees, and Random Forest). Bao et al. [3] build
a model to predict developer turnover, i.e., whether a developer will
leave the company after a period of time. They collect several fea-
tures based on developers monthly report from two companies. The
authors evaluate the performance of five classifiers (KNN, Naive
Bayes, SVM, Decision Trees, and Random Forest). In both studies,
Random Forest outperforms the results of other algorithms. In an-
other study, Martin et al. [24] train a Bayesian model to support
app developers on causal impact analysis of releases. They mine
time-series data about Google Play app over a period of 12 months
and survey developers of significant releases to check their results.
Tian et al. [38] use Random Forest to predict whether an app will
be high-rated. They extract 28 factors from eight dimensions, such
as app size and library quality. Their findings show that external
factors (e.g., number of promotional images) are the most influential

factors. Our study also uses machine learning techniques, however,
our main goal is to detect projects that are not going to be actively
maintained. Moreover, our study extracts project, contributor and
owner features that we input to the machine learning models.
Open source projects maintainability. In previous work [9], we
survey maintainers of 104 failed open source projects to under-
stand the rationale for such failures. Their findings revealed that
projects fail due to reasons associated with project properties (e.g.,
low maintainability), project team (e.g., lack of time of the main
contributor), and to environment reasons (e.g., project was usurped
by a competitor). Later, we report results of a survey with 52 devel-
opers who recently became core contributors on popular GitHub
projects [10]. Our results show the developer’s motivations to as-
sume an important role in FLOSS projects (e.g., to improve the
projects because they use them), the project characteristics (e.g.,
a friendly community), and the obstacles they faced (e.g., lack of
time of the project leaders).

Also related is the work by Yamashita et al. [39], which adapts
two population migration metrics in the context of open source
projects. Their analysis enables the detection of projects that may
become obsolete. Khondhu et al. [16] report that more than 10,000
projects are inactive on SourceForge. They use the maintainability
index (MI) [28] to compare the maintainability between inactive
projects and projects with different statuses (active and dormant).
Their results reveal that the majority of inactive systems are aban-
doned with a similar or increased maintainability, when compared
to their initial status. Nonetheless, there are critical concerns on us-
ingMI as a predictor of maintainability [4]. Eghbal [12] reports risks
and challenges to maintain modern open source projects. She ar-
gues that open source plays a key role in the digital infrastructure of
our society today. Opposed to physical infrastructure (e.g., bridges
and roads), open source projects still lack a reliable and sustainable
source of funding. Other recent research on open source has fo-
cused on the organization of successful open source projects [27]
and on how to attract and retain contributors [8, 20, 30, 34, 40]. Our
work enhances the aforementioned work by contributing factors
and proposing the use of machine learning to accurately identify
projects that are not going to be actively maintained.

7 CONCLUSION
In this paper, we proposed a machine learning model to identify un-
maintained GitHub projects. By our definition, this status includes
three types of projects: finished projects, deprecated projects, and
stalled projects. We validated the proposed model with the princi-
pal developers of 127 projects, achieving a precision of 80% (RQ1).
Then, we used the model with 112 deprecated projects—as explicitly
mentioned in their GitHub page. In this case, we achieved a recall
of 96% (RQ3). We also showed that the proposed model can identify
unmaintained projects early, without having to wait for an one year
of inactivity, as commonly proposed in the literature (RQ3). Finally,
we defined a metric, called Level of Maintenance Activity (LMA), to
assess the risks of projects become unmaintained. We provided evi-
dence on the applicability of this metric, by investigating its usage
in 2,927 projects classified as under maintenance, in our dataset.

Due to its high accuracy (precision= 80% and recall= 96%), the
model proposed in this paper can be used by developers to check
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the maintenance status of an open source project, before deciding
to use it. This information has a key value, since there is a growing
concern on the sustainability of modern open source projects [12].

As future work, we intend to implement a tool to provide infor-
mation about the maintenance status and the level of maintenance
activity of open source projects. We also intend to evaluate the
accuracy of other machine learning results, besides Random Forest.

The dataset used in this paper is available at: https://goo.gl/
K8pZdV [we plan to move it to a permanent repository, in case of
acceptance]. Due to privacy concerns, we are omitting the name of
the unmaintained projects, as classified by the surveyed developers.
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