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Abstract

On the Impact and Detection of Biceps Muscle Fatigue in Wearable Sensors-Based
Human Activity Recognition

Mohamed Elshafei, Ph.D.

Concordia University, 2022

Nowadays, modern sport and athletic training are very interested in wearable-based

Human Activity Recognition (HAR) systems due to their cost-efficiency, portability, and

convenience. However, this leads the developers to compete in developing the various HAR

applications with little attention to HAR’s-related problems such as fatigue. In this thesis,

we select the bicep curls as an example of a HAR activity to study the fatigue problem

in wearable-based HAR. We approach the fatigue problem through three studies: first, we

study the impact of fatigue in wearable-based HAR. Second, we detect the presence of

fatigue during human activity, e.g., biceps curls exercise. Third, we improve the perfor-

mance of fatigue detection models while reducing the test’s data consumption. Throughout

our studies, we use our dataset, which consists of 3,750 repetitions of biceps curls from

twenty-five volunteers between 20–46 years and with body mass index (BMI) between

24–46.

Our first study on the impact of fatigue in wearable-based HAR shows that fatigue

often occurs in later sets of biceps curls. During fatigue, the completion time of later sets

extends by up to 31%, while muscular endurance decreases by 4.1%. Also, our study

shows that changes in data patterns often occur during fatigue, turning some features to be

statistically insignificant. This can lead to a substantial decrease in performance in both

subject-specific and cross-subject models. In addition, muscle fatigue can lead to various
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injuries such as muscle strain and tendons rupture, which may require up to 22 weeks of

treatment. Therefore, it is essential to be aware of fatigue during human activity, which we

address in our second study.

The second study proposes a wearable-based approach to detect fatigue in biceps curls.

We provide a set of 16 most fatigue representative features from 33 extracted features.

Then, we employ these features in five models to detect fatigue in biceps curls. Our study

shows that a two-layer FNN achieves the highest accuracy of 98% and 88% for subject-

specific and cross-subject models, respectively. We observe that the cross-subject models

are preferable for a large crowd since these models can utilize crowd data. However, we

observe that inter-subject data variability is usually high in the large crowd due to the

physical differences among the individuals, resulting in different data patterns for the same

activities. As a result, researchers may suggest using subject-specific models for each user

in the crowd to achieve higher performance. Still, such a performance comes with a higher

data cost of the user’s subject-specific model; therefore, improving fatigue detection in

cross-subject models is essential, which is the goal of our third study.

In the third study, we propose a personalization approach as a solution to improve the

cross-subject models’ performance by utilizing data from the crowd based on similarities

between the test subject and users from the crowd. We extract 11 hand-crafted features to

measure the similarities between the test subject and the individuals in the crowd. Then,

we employ these similarities to prioritize and select the training data from the crowd for

two cross-subject models. Our study shows that the personalization approach improves the

performance of the cross-subject models in terms of precision by up to 7.25%, recall by up

to 5.69%, accuracy by up to 6.67%, and F1-measure by up to 6.52%. Furthermore, adding

20% of the test subject’s data into the training dataset of the personalized cross-subject

models can produce accurate results closer to the ones from subject-specific models.
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Chapter 1

Introduction and Research Statement

Human Activity Recognition (HAR) is one of the active research areas in pervasive

computing that monitors the human body’s movements or gestures via sensors to detect

human activities (Golestani & Moghaddam, 2020). HAR utilizes learning algorithms and

data analysis techniques to comprehend human activities from input data sources, such as

sensors and multimedia devices (Dang, Hassan, Im, & Moon, 2019). As a result, HAR

plays an essential role in ubiquitous computing, which may involve direct or indirect in-

teractions between humans and smart devices (Dang et al., 2020). For example, HAR is

often the primary and innovative comportment in surveillance systems (Jalal, Kim, Kim,

Kamal, & Kim, 2017; X. Ji, Cheng, Feng, & Tao, 2018), behavior analysis (Batchuluun,

Kim, Hong, Kang, & Park, 2017), gesture recognition (Pigou, Van Den Oord, Diele-

man, Van Herreweghe, & Dambre, 2018), and various healthcare systems (Aviles-Cruz,

Rodriguez-Martinez, Villegas-Cortez, & Ferreyra-Ramirez, 2019; Qi, Yang, Hanneghan,

Tang, & Zhou, 2018).

Nowadays, sensor technology has achieved exceptional development in multiple per-

spectives, including computational power, size, accuracy, and manufacturing costs (Liu,
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Nie, Liu, & Rosenblum, 2016). These advancements enable the integrations of various sen-

sors in smart wearables, resulting in more convenient, cost-efficient, and portable wearable-

based HARs (Dang et al., 2020). Furthermore, many of today’s handheld devices (e.g.,

smartphones and watches) contain inertia sensors like accelerometers, magnetometers, and

gyroscopes, which boost users’ views in favor of wearable-based HARs (Ignatov, 2018; Ra-

manujam, Perumal, & Padmavathi, 2021). Recent surveys show that scientists and physi-

cians in sports science often utilize wearable-based HARs in their examinations or research

due to their performance, portability, and power-efficient (Dang et al., 2020; Demrozi,

Pravadelli, Bihorac, & Rashidi, 2020; Fu, Damer, Kirchbuchner, & Kuijper, 2020; Nweke,

Teh, Al-Garadi, & Alo, 2018). However, they also present some obstacles of their works in

the form of challenges in wearable-based HARs, such as transfer learning, lack of datasets,

and subject exhaustion, also known as fatigue (K. Chen et al., 2021; Nweke et al., 2018).

Despite the plethora of works in the literature about wearable-based HAR systems in sports

and daily lives, little is known about the impact of HAR challenges, specifically fatigue, on

HAR’s performance (Enoka & Duchateau, 2016; Ramasamy Ramamurthy & Roy, 2018).

Also, a prior work shows that despite such challenges can affect HAR’s performance, de-

velopers are more likely to compete in developing more cost-effective HAR systems rather

than addressing HAR challenges (Demrozi et al., 2020).

In this thesis, we focus on addressing the muscle fatigue challenge in the wearable-

based HAR systems and demonstrate how such a challenge can affect body movements

to the point where altering sensory data patterns may impair the performance of HAR sys-

tems (Elshafei, Costa, & Shihab, 2021). There are three reasons of interest in this particular

challenge, which are:

(1) Muscle fatigue is one of the most recurring HAR challenges, especially in recent

wearable-based HAR applications (Biagetti, Crippa, Falaschetti, Orcioni, & Turchetti,

2017).
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(2) Muscle fatigue often occurs during over-training or intensive physical activity, which

push muscles into a vulnerable state, where muscles are prone to fatigue injuries (Kell-

mann, 2010; Opar, Williams, & Shield, 2012).

(3) Fatigue-induced muscle injuries pose a devastating threat to muscles to the extent of

losing muscle strength and flexibility permanently (Thalman, Lam, Nguyen, Sridar,

& Polygerinos, 2018).

After considering the above three reasons, we realize the necessity to address such a

challenge for the wearable-based HAR systems. We choose biceps concentration curls,

or biceps curls for short, as an example of a HAR activity because it involves flexing one

of the most active skeletal muscles, namely biceps, at the elbow joint countless times to

pick, lift, and pull objects (Steffen et al., 2006; Troiano et al., 2008). Also, fatigue-induced

biceps injuries may delay athletes’ training schedules for weeks, forcing their immediate

withdrawal from competitions sometimes (Hopkins, Marshall, Quarrie, & Hume, 2007).

1.1 Research Statement

Motivated by the challenge above, we propose three studies that together form the goal

of this thesis: detect biceps muscle fatigue and study its impact on the wearable-based

HAR systems. We hypothesize that muscle fatigue impacts the collected data by altering

its patterns, leading to a snowball effect, hindering the extracted features and HAR models’

performance. Also, detecting biceps muscle fatigue during activity, e.g., bicep concen-

tration curls, can help individuals to avoid fatigue-induced injuries and reduce the risk of

long-term muscle injuries. Therefore, we state our research statement as follows:

“Given the literature’s abundance of works on wearable-based HAR systems

and the devastating effects of muscle fatigue-induced injuries, we believe it is

3



time to address the muscle fatigue challenge in these systems. Therefore, we

conduct three studies: 1) study the impact of muscle fatigue in wearable-based

HAR system, 2) detect the presence of muscle fatigue during exercises, and 3)

propose an approach to improve fatigue detection and reduce data consumption

in HAR systems.”

1.2 Thesis Overview

In this section, we provide an overview of the works presented in this thesis and high-

light the main results of each work.

Chapter 2: Background and Related Work

Before diving into fatigue detection in bicep muscles, we first present a background

of muscle fatigue, biceps muscles, and related fatigue injuries. Then, we present studies

related to fatigue detection in the literature where we discuss three approaches for fatigue

detection. After that, we present the studies related to fatigue’s impact in HAR to highlight

the importance of addressing such a challenge.

Chapter 3: Dataset Collection, Processing, and Challenges

To carry out our experiments throughout the three proposed studies, we need to have

a high-quality dataset with sufficient data entries. Our dataset consists of 3,750 bicep curl

repetitions from 25 volunteers ranging between 20 and 46 years old. We provide the vol-

unteers with a 4.5 kg weight dumbbell and attach a 50 Hz Neblina inertial measurement

unit (IMU) to their wrist and an Apple Watch Series 4 to their opposite wrist during the

exercise. We explain and provide the Borg’s scale to each volunteer, which allows them to

express their fatigue level through the rate of perceived exertion (RPE).
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Also, we discuss the applied solutions to two challenges encountered during our data

collection procedure. The first challenge is the dumbbell weight, where we have to select

a suitable dumbbell so that volunteers do not reach a fatigued state quickly, resulting in

few data points, nor do they last long during the exercise and produce many redundant data

points. The second challenge is the familiarity of Borg’s scale, where we try to introduce

the concept of fatigue self-evaluation to the volunteers so that they do not misevaluate their

fatigue by over or under-estimating their perceived exertion rates.

Chapter 4: On the Impact of Biceps Muscle Fatigue in Human Activity

Recognition

With the rapid development of wearables and smart devices, the number of HAR appli-

cations has been increasing proportionally. In light of this development, the developer took

it upon themselves to compete in developing the various HAR applications with little atten-

tion to the side/hidden problems such as fatigue (Demrozi et al., 2020). There is no work

so far that focuses on studying the impacts of fatigue on HAR systems; instead, fatigue

is just presented in online discussions or informal literature and interviews as unwanted

noise in datasets. Therefore, we use the biceps data we collected as an example of a HAR

activity to observe the impact of fatigue in HAR. Then, we quantify the fatigue share in

our dataset and locate its presence. Also, we study the possible data pattern changes during

fatigue presence and their impact on significant features. Finally, we examine the decrease

in performance in both subject-specific and cross-subject models during fatigue presence.
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Chapter 5: Towards Detecting Biceps Muscle Fatigue in Gym Activity

Using Wearables

After realizing the impact of fatigue on HAR systems, the question of whether one

should be aware of fatigue presence is an important complementary decision to improve

HAR systems and prevent fatigue-induced injuries. Although there have been several works

on fatigue detection in the literature, the rapid development of wearables has shown promis-

ing results in monitoring fatigue levels. Therefore, we adopt a wearable approach to detect

biceps muscle fatigue during a bicep concentration curl exercise as an example of gym ac-

tivity. We use the aforementioned dataset to extract fatigues’ significant features. These

features are the most overall representative and correlated with bicep curl movement, yet

they are fatigue-specific features. Then, we utilize these features in five fatigue detection

models, including subject-specific and cross-subject models.

Chapter 6: The Personalization of Biceps Fatigue Detection Model For

Gym Activity: An Approach To Utilize Wearables’ Data From The

Crowd

We investigate an approach that can help us to improve the performance of HAR sys-

tems which tends to degrade the most in the case of cross-subject models. Although

subject-specific models tend to outperform the cross-subject ones, those models have a

higher demand for subjective data. This is an obstacle for developing high-performance

fatigue detection models. On the other hand, if we look at cross-subject models, we find

that these models suffer from lower performance but can utilize crowds’ data. Therefore,

we plan to boost cross-subject models’ performance while reducing the demand for data

from the test subject. We propose a personalized model to detect biceps muscle fatigue that

uses data from the crowd for training; in addition, we inject a small portion of the test’s
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data to boost its performance while training. We measure the similarities between the test

subject and the subjects in the crowd. Then, we rank the crowd’s data according to their

similarities factor. Thus, subjects similar to the test subject will have more shares and ef-

fects in training the personalized model. Then, we will evaluate the personalized model’s

performance in compression with both subject-specific and cross-subject models.

1.3 Thesis Contributions

The main contributions of the thesis are:

(1) Addressing bicep muscle fatigue challenge, one of the most recurring HAR chal-

lenges in recent wearable-based HAR applications.

(2) Studying the impact of bicep muscle fatigue using the wearable-based HAR approach

instead of the clinical approaches.

(3) Detecting bicep muscle fatigue during exercise to avoid fatigue-induced injuries.

(4) Providing a more practical and feasible approach for fatigue detection in daily life

compared to early approaches.

(5) Propose a personalization approach to reduce the demand for test subjects’ data and

improve the performance of cross-subject models by utilizing wearables’ data from

the crowd.

(6) Utilize the similarities between test subjects and individuals from the crowd to reduce

inter-subject variability in the training datasets for the fatigue detection models.

(7) Publishing a biceps muscle fatigue dataset in the form of a concentration curl exer-

cise. The columns in the dataset show sensory data from the 3-axis of the accelerom-

eter, gyroscope, and magnetometer separately, while the raws present a point in time
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where the data are sampled. (bicep fatigue dataset—https://zenodo.org/

record/3698242#.XmFZ5qhKguU).

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 provides general background on HAR and

presents the literature review. In Chapter 3, we provide the details of the data collection

process and discuss the related challenges. Then, we present our first study on the impact of

bicep muscle fatigue in wearable-based HAR systems in Chapter 4. Chapter 5 presents our

second study on biceps muscle fatigue detection in bicep curls using a wearable approach.

Last but not least, in Chapter 6, we present our third study on the personalization of bicep

muscles fatigue detection and the utilization of wearables’ data from the crowd. Chapter 7

summarizes the thesis, lists the work limitation, and proposes future work.
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Chapter 2

Background and Related Work

This chapter provides an overview of the relevant background to our research, includ-

ing a brief description of muscle fatigue, biceps muscles, and related injuries. Also, we

present reasons of interest in muscle fatigue as a challenge in the wearable-based HAR

systems. Then, we list the related works to fatigue detection and the impact of fatigue in

the literature.

2.1 Background

Nowadays, HAR systems have become a task of high interest within the data science

and sports field, where physical activities often describe any bodily movement produced by

skeletal muscles result in energy expenditure above resting level (Hsu, Yang, Chang, & Lai,

2018). Fatigue is a natural phenomenon that describes physiological impairments or lack of

energy often caused by prolonged activities (Enoka & Duchateau, 2008). A previous study

classifies fatigue into two types, subjective and objective fatigues (Enoka & Duchateau,

2016). The subjective fatigue causes a decline in alertness and mental concentration due

to intense mental tasks (De, 1984). In comparison, objective fatigue, also known in the

literature as muscle fatigue, causes a decrease in the capability to exert mechanical work
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due to intense physical activities (Gruet et al., 2013). During muscle fatigue, the capability

to exert physical activities decreases while the risk of fatigue-induced injury increases.

Such injuries may require up to 22 weeks of treatment, while tendons rupture may result

in a substantial loss in muscle’ strength permanently (Enoka & Duchateau, 2016; Ma, Li,

Cao, Wang, & Wu, 2014; Nesterenko, Domire, Morrey, & Sanchez-Sotelo, 2010).

Biceps is a muscle in the anterior compartment of the upper arm, along with the brachialis

muscle and the coracobrachialis muscle (Bogart & Bogart, 2007). Commonly, biceps rep-

resents an attribute of strength within a variety of worldwide cultures (Mueller-Wohlfahrt

et al., 2013). Biceps is one of the most active functional skeletal muscle where, it flexes

the arm at the elbow joint countless times each day for picking, lifting, and pulling ob-

jects (Steffen et al., 2006; Troiano et al., 2008). Also, biceps collaborate between brachialis

and brachioradialis for flexion at the elbow joint, as well as utilizes shoulders and back mus-

cles as stabilizers. Although it seems that biceps are essential for upper limb skeletal muscle

movements, it has limited repetitive movements due to its placement in the anterior com-

partment of the upper arm. These repetitive movements stress the biceps’ structures (e.g.,

muscle tissues, tendons, or joints) over time, leading to muscle fatigue. Unfortunately,

fatigue reduces muscle exertion gradually, until it exceeds the structure’s stress tolerance,

where overuse injuries occur (Nesterenko et al., 2010).

Previous studies on muscle injuries indicate that muscle fatigue often occurs priorly,

making the muscles vulnerable to fatigue injuries (Mueller-Wohlfahrt et al., 2013; Opar

et al., 2012). Biceps muscle fatigue injuries include muscle tear, contusion, and tendons

rupture. In extreme cases, muscle fatigue may cause rhabdomyolysis, a potentially life-

threatening condition resulting from the breakdown of skeletal muscle fibers and leakage of

muscle contents into the circulation (Garrett Jr, 1996; Mair, Seaber, Glisson, & Garrett JR,

1996; Nesterenko et al., 2010). Also, biceps injuries can escalate to a series of intricacies in
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the lower-back and upper-limb that can hinder pronation and supination movements (Thal-

man et al., 2018). Economically, fatigue-induced injuries can result in a total cost of $190

billion and over 1.1 million lost days of work yearly (LEIGH, 2011; of Labor Statistics,

2016). Hence, it is essential to detect muscle fatigue priorly to prevent fatigue-induced

injuries; however, the proposed approaches in the literature are often too complicated to be

practically integrated into a person’s daily life.

2.2 Related Work

In this section, we present the works most related to this thesis. We divide the prior

works into two main areas; work related to fatigue detection in the literature and impact of

fatigue in the literature.

2.2.1 Fatigue Detection in the Literature

Muscle fatigue is a complex and multifaceted phenomenon with various definitions.

A common definition for muscle fatigue is the failure to maintain the required force to

continue performing a task (Robergs, Ghiasvand, & Parker, 2004). While, a quantifying

definition for muscle fatigue is the decline in the maximal force or the power capacity of the

muscles after performing a prolonged task (Enoka & Duchateau, 2008). Nowadays, litera-

ture is abundant on fatigue detection approaches to monitor fatigue and reduce the risk of

fatigue-induced injuries. There are three main categories for fatigue detection approaches:

the invasive approach, the cardio-respiratory approach, and the wearable approach (Ab-

bood, Al-Nuaimy, Al-Ataby, Salem, & AlZubi, 2014; Halson, 2014).
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The Invasive Approach

The approach is one of the earliest methods used to detect fatigue. This approach usu-

ally requires instruments to puncture the skin or contact with the mucosa. A previous work

uses blood lactate concentration test to muscle endurance in athletes to reduce the risk of

over-training and injuries (Bosquet, Léger, & Legros, 2001). The work’s findings show that

blood lactate analysis provides high accuracy (up to 97%) in evaluating muscle endurance;

however, it often requires several blood samples from the swimmers during and after pro-

gressive incremental swimming. Another previous work measures, the lactic acid in the

bloodstream to determine the maximal muscle effort that a person can maintain without

risking fatigue injuries (Stoudemire et al., 1996). The work’s findings indicate that blood

lactate concentration levels are significantly different (P <0.05) in muscles during mod-

erate to fatigue intensities. Another previous work measures lactate and creatine kinase

levels in the bloodstream to assess the risk of skeletal muscle injuries during a marathon

run (Kobayashi, Takeuchi, Hosoi, Yoshizaki, & Loeppky, 2005). The work’s findings indi-

cate that high levels of lactate and creatine kinase can indicate insufficient oxygen intake

to the muscles, causing fatigue. In some extreme levels of creatine kinase, the injuries be-

come inevitable. A less painful method was presented in a previous work that measures

rectal temperature to predict exercise duration until fatigue occurs in different environmen-

tal conditions (Crewe, Tucker, & Noakes, 2008). The work’s findings show that rectal

temperature increased linearly throughout exercise trials and correlated significantly (r =

0.92) with exerted force to predict the duration of exercise to fatigue. Although the afore-

mentioned approach provides an accurate estimation of fatigue, a practical drawback is that

it requires several blood samples during different incremental exercise stages.
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The Cardio-Respiratory Approach

The approach is based on a person’s metabolic system and it requires a face mask to

measure the rate of oxygen intake during an exercise. Some studies refer to this approach as

VO2 max, which stands for the maximum volume of oxygen consumption measured during

incremental exercise. A previous work measures the circulatory and respiratory systems’

ability to supply oxygen (O2) to skeletal muscles during sustained physical activity with-

out risking fatigue injuries (Robson-Ansley, Gleeson, & Ansley, 2009).The work’s findings

indicate that Oxygen consumption provides an accurate indication (>94%) of exercise in-

tensity, yet this requires costly equipment and technical expertise, which outweighs its

usefulness for quantifying load during routine training. Another previous work measures

the volume of oxygen consumption (VO2) to determine the time to reach fatigue between

various runners (Billat & Koralsztein, 1996). The work’s findings indicate that the run-

ner’s body requires far more oxygen consumption at the maximum speed, which cannot

be satisfied; therefore, the oxygen debt continuously increases, causing the body to slow

down—also known as fatigue. Another previous work measures the volume of oxygen

consumption (VO2) to study the development of muscle fatigue in healthy humans during

incremental cycling (Kobayashi et al., 2005). The work’s findings indicate that the rate

of oxygen consumption increases as resistance increases to postpone the development of

muscle fatigue evoked by incremental cycling. Another previous work shows that a reduc-

tion in work efficiency, also known as fatigue, results from an additional energy cost and

oxygen requirement during high-intensity exercise (Cannon, White, Andriano, Kolkhorst,

& Rossiter, 2011). The work’s findings show that muscle fatigue can be detected while

performing the (VO2) max test, as the body cannot maintain maximum (VO2) values until

it fully recovers from fatigue. Although the aforementioned approach provides an accurate

estimation of fatigue, a practical drawback is that the required setup of equipment is too

complex to be operated singularly.
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The Wearable Approach

The approach is a promising approach which recently developed to overcome such pre-

vious drawbacks. A previous work (Seshadri et al., 2019) uses mouth-guard and Galvanic

Skin Response (GSR) biosensors to monitor athletes’ metabolites from saliva and eccrine

sweat continuously. The work’s findings show that monitoring biomarkers from saliva or

sweat allows us to detect up to 95% of over-training during incremental training accu-

rately. Another previous work uses an Inertial Measurement Unit (IMU) to collect data

from outdoor marathon runners and analyzes the data using Machine Learning to predict

fatigue (Op De Beéck, Meert, Schütte, Vanwanseele, & Davis, 2018). Another previous

work used wearable Electromyography (EMG) to evaluate workers’ muscle fatigue as a

means of assessing their physical stress on construction sites (Jebelli & Lee, 2019).

2.2.2 Impact of Fatigue in the Literature

There are a plethora of works on the impact of fatigue in the literature; however, most

of these works focus on the physiological implications. Outwardly, fatigue impacts hu-

man performance through degradation of exerted force, while internally, it impacts heart

rate, blood pressure, and core temperature, which can be measured using the appropriate

tools. Some studies adopt the clinical approach to study human fatigue, where they provide

an in-depth definition, characterization, and examination of fatigue. Clinically, the impact

of fatigue is not limited to short periods of exhaustion only, but it often has a prolonged

dormant effect. For example, before the pre-season, professional Basketball athletes al-

ways go under long training sessions, which may result in an accumulation of perceptual

and performance fatigue (Edwards et al., 2018). In this case, fatigue’s prolonged impact

is measured through the creatine kinase enzyme test, where muscle cells often release the

enzyme into the blood reflecting after heavy exercise, reflecting the severity of muscle dam-

age. Several studies on the impact of fatigue on the human body show that the impairment
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of muscle contraction is the superficial remanence of fatigue while other impacts of fatigue

remain at the cellular level (E. Debold, 2015; E. P. Debold, Walcott, Woodward, & Turner,

2013; Karatzaferi, Franks-Skiba, & Cooke, 2008; Theofilidis, Bogdanis, Koutedakis, &

Karatzaferi, 2018). Such impacts often derive from either : (a) alterations in excitability

of the muscle fiber, (b) accumulation of metabolic by-products, (c) production of reactive

oxygen species, and (d) Ca2+ movements in the fiber compartments.

Our literature survey shows that previous studies usually cover the impact of fatigue on

human performance and internal body changes. Also, these studies often focus on clinical

approaches that measure levels of lactate, creatine kinase, and V O2 max (Orizio, Gobbo,

Diemont, Esposito, & Veicsteinas, 2003; Sadoyama & Miyano, 1981; Smith & Newham,

2007). On the other hand, in this thesis, we study the impact of fatigue on detection models

using the recent wearable approach instead of the clinical ones. Furthermore, we focus

on how fatigue impacts the collected data, extracted features,and performance of detection

models rather than focusing on human performance and internal body changes as in the

clinical approaches. Fatigue may naturally occur in any human activity, but it poses a

bigger challenge for HAR models when identifying physically demanding activities, such

as gym activities. For this reason, we focus on studying the biceps concentration curls

exercise, which involves flexing one of the most active skeletal muscles at the elbow joint.

2.3 Summary

This chapter provides background about muscle fatigue, biceps muscles, and their rel-

evant definitions. Then, it surveys previous works on fatigue detection and the impact of

fatigue. In the next chapter, we describe our dataset and related challenges.
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Chapter 3

Dataset: Collection, Processing, and

Challenges

This chapter details our data collection and processing. Also, it presents possible solu-

tions to overcome such challenges to provide a high-quality dataset for the thesis. The main

goal in this chapter is to present the process of building a dataset with a sufficient number

of data entries and the least number of defects for three reasons:

(1) To have enough data entries that capture bicep muscle fatigue.

(2) To observe the variations of fatigue across the volunteers during the exercise.

(3) To capture the kinetic changes that occur due to fatigue during the exercise.

Our dataset consists of 3,750 concentration curl repetitions from 25 male volunteers

who are diverse in age, ranging between 20 and 46. Previous studies show that the selected

age covers three distinct stages of athletes’ performance: early, middle, and late, where

athletes usually notice physical declines (Adirim & Cheng, 2003; Burt & Overpeck, 2001).

Also, the volunteers are diverse in weight and height, ranging between 69–127 and 165–

190, respectively. It is essential to have such diversity because physical characteristics such
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as weight and height may affect arm movements and the severity of injuries, including

fatigue-induced ones (Green & Pizzari, 2017). We calculated the Body Mass Index (BMI)

for the twenty-five volunteers using the following formula Prentice and Jebb (2001):

BMI =
Weight (kg)
Height(m)2

(a) (b) (c) (d)

Figure 3.1: Boxplots to display the distribution of volunteers’ age, weight, height, and BMI
in our dataset. (a) Age (years). (b) Weight (kg). (c) Height (cm). (d) BMI (kg/m2).

Although our dataset is too small to represent nationwide, the volunteers in this dataset

are diverse in BMI, ranging between 24 and 46, to include normal weight (18.5 ≤ BMI ≤

24.9), overweight (25 ≤ BMI ≤ 29.9), and obesity (30 < BMI) (Borga et al., 2018). The

two black dots in Figure 3.1d are for two volunteers with outlier BMI values of 41 kg/m2

and 46 kg/m2 who are considered extremely obese (Burkhauser & Cawley, 2008). Previous

studies show a correlation between BMI and risks of overexertion injuries, where trainees

with the lowest BMIs exhibit the highest injury risks for both genders and across all fitness

levels (Janssen, Katzmarzyk, & Ross, 2002; Jones et al., 2017). In addition, the volunteers

have no chronic diseases, no muscle or bone surgeries, and have been gym-goers for at
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least 1 year. Moreover, the volunteers are not on prescribed drugs or substances expected

to affect their physical performance.

3.1 Dataset Collection

First of all, our dataset collection process meets the guidelines of the Declaration of

Helsinki and is approved by Concordia University’s Faculty Research & Ethics Advisory

Committee (summary protocol form number: 30008716). Also, all volunteers must sign

an informed consent before participating in the data collection process. We ask twenty-

five volunteers to perform concentration curls while we use the following tools to con-

struct our dataset: (1) We attach a 50 Hz Neblina inertial measurement unit (IMU) to the

volunteer’s wrist to measure its acceleration and calculate the linear and angular veloci-

ties. Previous studies show velocity loss as an early indicator of muscle fatigue during

resistance training, especially when blood lactate and ammonia accumulate in muscle tis-

sues (Apriantono, Nunome, Ikegami, & Sano, 2006; Coelho et al., 2015; Sanchez-Medina

& González-Badillo, 2011). (2) We attach an Apple Watch Series 4 to the volunteer’s op-

posite wrist to measure their heart rate during the exercise. (3) We provide the volunteers

with a 4.5 kg weight dumbbell to perform concentration curls. (4) We provide the volun-

teers with Borg’s scale presented in Table 3.1 to express their fatigue levels. Such a scale is

often used as a subjective method to estimate the rate of perceived exertion (RPE), which

expresses the fatigue intensity during an exercise. During data collection sessions, we ask

each volunteer to complete 5 warm-up repetitions followed by 15 repetitions per set for a

total of 5 sets per hand, as shown in Figure 3.2. Moreover, the volunteers report their RPE

after each set, including the warm-up, yielding 6 RPE values per hand.
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Table 3.1: Borg G.A. Psychophysical bases of perceived exertion (G. A. Borg, 1982).

Perceived Exertion Borg Rating Examples

None 6 Reading a book, watching television
Very, very light 7 to 8 Tying shoes
Very light 9 to 10 Chores like folding clothes with little effort
Fairly light 11 to 12 Slow Walking (without speeding breath)
Somewhat hard 13 to 14 Brisk walking (with effort and speeding breath)
Hard 15 to 16 Bicycling (high effort and heart pounding)
Very hard 17 to 18 Intense activity but can be sustained
Very, very hard 19 to 20 Very intense activity that can’t be sustained

Figure 3.2: Visualization of data acquisition sessions of biceps concentration curl exercise.
Rating of Perceived Exertion (RPE).

Figure 3.2 illustrates a data collection session for a concentration bicep curl exercise

where each volunteer starts with five repetitions to warm-up, followed by 15 repetitions per

set for a total of five sets. The volunteer reports their RPE values for each set, including the

warm-up, yielding six RPE values. Then, we ask the volunteer to repeat the exercise using

the other arm. We explain the exercise to each volunteer as the following:

(1) The volunteer should sit down on a flat bench with one dumbbell placed between

their legs.

(2) The volunteer should be in a release position by using their right arm to pick the

dumbbell up. Then, place the back of their right upper arm on the top of the inner
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right thigh. The volunteer should rotate the palm of their hand until it is facing

forward away from the thigh. Once, their arm is extended with the dumbbell above

the floor then; the volunteer is in the correct release position.

(3) While the volunteer is holding the left arm stationary, they curls the weights forward

while contracting the biceps as they breathe out. With the forearms movement only,

the volunteer continues until their biceps are fully contracted, and the dumbbells are

at shoulder level. The volunteer should hold the contracted position for a second.

(4) The volunteer should slowly begin to bring the dumbbells back to the release position

as their breathe in. Avoid swinging motions at any time.

(5) Repeat for 15 repetitions. Then repeat the exercise the left arm to carry the dumbbell.

(6) The volunteers are equally allowed to rest for 2 min between sets.

It is essential to explain the rationale behind the tools used in the data collection ses-

sions, such as the Borg’s scale, the Apple Watch, and the 4.5 kg dumbbell. We use the

Borg’s scale in our work because we think that RPE is an appropriate marker of fatigue as

previous studies within sport science have proven that RPE is capable of modeling a per-

son’s performance better in the real world compared to only heart rate monitoring (G. Borg,

1998; G. A. Borg, 1982; Crewe et al., 2008). We use the Apple Watch in our work as a way

to strengthen the validity of the reported RPE by each volunteer. Borg’s scale ranges from

6 to 20, where by multiplying these values by ten, we can estimate the volunteer’s heart

rate during the exercise. For example, if a volunteer reports 13 on Borg’s scale, we should

expect to measure their heart rate around 130 to 140 by the Apple Watch. However, in the

rare cases of dissimilarity between the Borg scale and the measured heart rates, we average

the reported RPE with the measured heart rate converted to RPE, as similarly performed

in previous work (Yoo, Ackad, Heywood, & Kay, 2017). In total, there are 88 cases of

dissimilarity, which count for 2.35% of our dataset. We use the 4.5 kg weight dumbbell in

20



our work because of three reasons. The first reason is that several previous works have used

medium-weight dumbbells ranging between 3.5 kg and 5.5 kg to study muscular strength

and fatigue (Bergquist, Iversen, Mork, & Fimland, 2018; Hwang, Chung, Song, Lim, &

Kim, 2016; Liao et al., 2021). The second reason is that medium-weight dumbbells are

often reported as the most commonly used dumbbells across gym-goers (Reis et al., 2017).

The third reason is that the 4.5 kg weight dumbbell provides the best trade-off between

number data points recorded in data sessions and time to reach fatigue during an exercise,

as we explain in Section 3.3.

To summarize, each volunteer completed 5 warm-up repetitions followed by 15 repe-

titions per set for a total of 5 sets per hand, as shown in Figure 3.2. In total, our dataset

consists of 3750 concentration bicep curl repetitions from 25 volunteers, where each rep-

etition required approximately 2 seconds to complete. Given the fact that we use a 50 Hz

IMU unit, a single repetition is captured in approximately 100 data samples. As a result,

this allows us to distinctly capture signs of fatigue as muscle performance and exerted force

decline overtime.

3.2 Dataset Processing

This section describes how we label our dataset through data processing as well as

extracting fatigued and non-fatigued biceps repetitions from the collected data. Our col-

lected data consists of an accelerometer, gyroscope, and magnetometer modules, where

each module provides three-dimensional Cartesian coordinates (x, y, z). In addition, we

have the RPE values reported by the volunteers for each bicep curls set. So far, our data

contains a total of nine signals readings: The 3-axis of accelerometer, gyroscope, and mag-

netometer, along with their RPE values.
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Figure 3.3: An example of extracting and labeling repetitions of the fifth set from the
gyroscope’s x-axis.

In Figure 3.3, we present an example of the fifth set of repetitions in its raw data form.

In this example, the raw data is extracted from the gyroscope’s x-axis along with their

corresponding RPE values reported by the volunteer. A previous study on quantifying

muscle fatigue suggests an RPE value of 16 as the threshold of true fatigue to estimate the

declines in muscle strength during tasks (Whittaker, Sonne, & Potvin, 2019). Therefore,

we extract and label each repetition manually according to the RPE values reported for

the set, where we label repetitions with reported RPE values larger than 16 as fatigue and

others as non-fatigue repetitions. The Figure shows two distinct groups of non-fatigue and

fatigue repetitions extracted from the set. The non-fatigue repetitions are highlighted by

the red border, while the blue border highlights the fatigue ones.

(a) Extracting a non-fatigue bicep curl repetition from the fifth set

(b) Extracting a fatigue bicep curl repetition from the fifth set.

Figure 3.4: A zoom-in at the bicep’s repetitions data from the x-axis of the gyroscope.

Figure 3.4a shows a zoomed-in look on eight non-fatigue repetitions from the fifth
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set, where we extract a complete non-fatigue repetition between two troughs. Similarly in

Figure 3.4b, we extract a complete fatigue repetition between two troughs. However, we

observe that non-fatigue repetitions are relatively symmetrical while the fatigue repetitions

are often skewed positively, as shown in Figure 3.4. The troughs indicate full extension of

the volunteer’s arm at which the volunteer reaches the release position. In contrast, peaks

indicate full flexion at which the volunteer reaches the contraction position.

It’s important to mention that IT’s modules record the data signal synchronously, which

eases the data process task for each volunteer. In other words, we only need to fully extract

and label all five sets recorded by one axis per volunteer, e.g., gyroscope’s x-axis. Then,

we use the same timestamps from the gyroscope’s x-axis to extract and label repetitions

for all the remaining signals (other axes of gyroscope, accelerometer, and magnetometer).

In total, our dataset consists of 3,750 repetitions recorded from nine signals readings: The

3-axis of accelerometer, gyroscope, and magnetometer, along with their RPE values.

3.3 Dataset Challenges

This section discusses the applied solutions to two major challenges encountered dur-

ing our data collection procedure. We presumed that selecting a certain dumbbell weight

for collecting data from different volunteers may induce a loose variance in their fatigue

measures, such as the number of repetitions or completion time per set. In addition, using

subjective measures, such as RPE, we could introduce a dependency between the correct-

ness of the selected Borg rating and the volunteers’ body awareness.

3.3.1 Dumbbell Suitability

We believe that selecting a certain dumbbell weight for collecting data from different

volunteers may cause volunteers to get exhausted quickly, hindering us from capturing
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fatigue over time. This could cause a steady decline in muscle performance and its exerted

force to plummet, which is less likely to occur naturally. To address this challenge, we

provided all volunteers with three groups of dumbbells: Light-weight which includes 1.1 kg

and 2.2 kg dumbbells, medium-weight which includes 4.5 kg dumbbells, and heavy-weight

which includes 9 kg dumbbells, as shown in Table 3.2. Then, we asked each volunteer

to perform at least 2 sets of bicep concentration curl repetitions until they felt fatigued.

As expected, when volunteers used light-weight dumbbells, they were able to perform a

high number of repetitions per set but fewer sets in total (see row 1 and 2 in Table 3.2).

This resulted in long recording sessions with a lot of similar data entries until volunteers

reached fatigue.

Table 3.2: The nominated dumbbells weights for the data collection process, the values
reported are averages.

Weight (kg) Repetitions Sets Repetitions/Set Completion Time

1.1 kg 2960 60 42.0 2 Min, 30 S
2.2 kg 2417 79 31.0 1 Min, 45 S
4.5 kg 1580 100 16.0 1 Min, 17 S
9 kg 860 60 9.0 1 Min, 10 S

On the other hand, when we look at the results obtained with a heavy-weight dumbbell

(9 kg), volunteers were able to accomplish fewer repetitions and fewer sets in total (see row

4 of Table 3.2). This resulted in short recording sessions with fewer data entries however,

momentum changes were not captured clearly throughout the exercise because volunteers

reached fatigue quickly. We found the results obtained with medium-weight dumbbells

(4.5 kg) to be the best compromise between the recording time length and the momentum

changes as volunteers reached fatigue more gradually. Volunteers were able to perform 16

repetitions per set, which each set taking on average 1 min and 17 s to complete (see row 3

in Table 3.2).
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3.3.2 RPE’s Subjectivity and Familiarity

We believe that using subjective measures, such as RPE, might introduce a dependency

between the correctness of selected Borg rating and volunteers’ awareness. Additionally,

introducing the RPE to a volunteer for the first time may cause them to misevaluate their

perceived exertion rate. To address both of these challenges, we apply a min-max normal-

ization to the RPE value based on the current set to account for subjective differences in

RPE. For illustration, we set the minimum value based on the RPE reported after the warm-

up, which often ranges from 10 to 12. Then, we set the maximum value to the highest RPE

on the Borg scale, which is 20. We use such a fixed value as the maximum RPE because if

we use the values reported from the set, it will cause the current label to depend on future

data, which is not methodologically sound. The longitudinal nature of the data acquisition

sessions also helped participants to become more familiar with the scale as they performed

more sets. Therefore their use of the RPE potentially evolved across consecutive sets.

3.4 Summary

This chapter illustrates how we collect and process our dataset. Also, it lists the possible

solutions for the data challenges in our research. In the next chapter, we present our work

on the impact of biceps muscle fatigue in wearable-based HAR systems. Also, we show

that muscle fatigue may affect the bicep’s movements, resulting in data patterns changes.

Please note that we use our dataset in chapters 4 and 5 while it contains data processed

from 20 volunteers. Later, we extend our dataset to reach 25 volunteers whom we utilize

all of their data in chapter 6.

25



Chapter 4

On the Impact of Biceps Muscle Fatigue

in Human Activity Recognition

This chapter introduces how we set up our experiment to evaluate the impact of fatigue

in wearable-based HAR. Our main goal is to study the fatigue’s direct and indirect impact

on HAR systems, including the changes in collected data, extracted features, and models’

performance during the presence of fatigue.

4.1 Introduction

Fatigue is an inevitable consequence when it comes to athletics and incremental exer-

cises (Enoka & Duchateau, 2016). Nowadays, the literature floods with works on fatigue

detection; however, there is no work on the impacts of fatigue in HAR systems. Instead,

there are several works that study the impact of fatigue on the human body and perfor-

mance. To study the impact of muscles fatigue in HAR systems, we have to examine the

collected data, the extracted features, and the models’ performance. Figure 4.1 shows an

overview of the methodology used in this chapter.
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Figure 4.1: Overview of the wearable approach based human activity recognition system.

First, we use the collected biceps data from section 3.1 to extract a non-fatigue subset.

We group all the non-fatigue repetitions labeled in section 3.2 into the subset. Then, we

extract two sets of features: 1) a feature set from the complete dataset, 2) a feature set

from the non-fatigue subset. After that, we compare the two sets of extracted features to

find whether fatigue affects the number of significant features in detecting biceps curls.

Next, we train five models to detect biceps concentration curls to observe the performance

with and without the presence of fatigue. The five models are from comparative works

which provide high-performance rates in detecting human activities using wearable IMU

on the wrist (Kuhn et al., 2008; Min, Htay, & Oo, 2020; Moradi, Aghapour, & Shirbandi,

2019). The first model is the Generalized Linear Models (GLM) which has been adopted

to analyze and count the number of walking steps in a previous study (Zhou, Ogihara,

Nishimura, & Jin, 2017). The second model is the Logistic Regression (LR) which has

been used to analyze and detect human activities (Alsheikh et al., 2016). The third model

is Random Forest (RF), which has been used to detect and classify human actions using

wearable motion sensor networks (Xu, Yang, Cao, & Li, 2017). The fourth model is the

Decision Trees (DT) which has been used to count and classify ambulatory activities using

eight plantar pressure sensors within smart shoes in a previous study (Jeong, Truong, &

Choi, 2017). The fifth model is the Feedforward Neural Network (FNN) which has been

used to detect and count repetitions for complex physical exercises (Soro, Brunner, Tanner,

& Wattenhofer, 2019). We use the default settings of hyperparameter optimization for all

the models. Furthermore, we consider two variations for each model: cross-subject and
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subject-specific models. In cross-subject models, we train the models using data from dif-

ferent individuals while testing on unseen data from newcomers. While in subject-specific

models, we train the models using data from an individual while testing on unseen data

from the same individual.

Our main goal in this chapter is to study the impact of fatigue on the collected data,

the number of significant features, and the models’ performance. In addition, we evaluate

the impact of fatigue on subject-specific and cross-subject models. Specifically, we address

the following research questions:

• RQ1: How does fatigue impact the collected data?

• RQ2: What impact can fatigue impose on the extracted features?

• RQ3: What is the impact of fatigue on subject-specific biceps repetitions models?

• RQ4: What is the impact of fatigue on cross-subject biceps repetitions models?

Next, we detail the motivation, approach, and the findings for each research question. In

section

4.2 The Impact of Fatigue on the Collected Data

In this section, we investigate and examine the data changes in the presence of fatigue

to answer RQ1: How does fatigue impact the collected data? Motivation: We hypothesize

that fatigue impacts the collected data by changing its patterns, leading to a snowball effect,

affecting the extracted features and HAR models’ performance. Hence, we want first to

capture the data pattern changes, which might occur during the data collection process.

Approach: To fulfill our motivation, first, we quantify the fatigue in our data and then

capture the data pattern changes. We calculate the average of fatigue repetition share per

volunteer, as shown in Figure 4.2. The volunteers did not report any fatigue repetitions at
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the warmup set thus, the share of fatigue for this set is 0%. However, in the first set, 19

volunteers reported the last repetition as fatigue, which represents 1 out of 15 repetitions

(6.6%), while 1 volunteer reported no fatigue (0%). Hence, the average share of fatigue

repetitions in the first set was reported at 6.2%. As we see in Figure 4.2, the average

share of fatigue repetitions increases at each subsequent set as volunteers become more

progressively tired, reaching an average of 56.0% of fatigue repetitions per volunteer in the

fifth set.

Figure 4.2: A visualization of the weighted average of fatigue shares per exercise sets in
the collected data.

For capturing data pattern changes, we start with looking into the data provided by the

IMU that contains the 3-axis gyroscope and accelerometer. We excluded the magnetometer

for simplicity as it did not show any significant changes in the magnetic field regarding

direction or strength during the exercise. We started with a visualization of the impact of

fatigue on collected data to evaluate the data pattern changes. Figure 4.3 shows an example

of the five sets of biceps repetitions using the gyroscope and the accelerometer signals.

The X-axis represents the vertical displacement, which is the distance between the highest

and lowest positions of the volunteer’s hand during bicep extension and flexion. The Y-axis

represents the horizontal displacement, which is the sideways vibration of the volunteer’s

hand during bicep extension and flexion. The Z-axis represents the depth displacement,

which is the farthest and nearest positions of the volunteer’s hand from their body during

bicep extension and flexion. We select the X-axis from the gyroscope and Y-axis from

the accelerometer because they provide the best visualization for the angular velocity and
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Figure 4.3: A visualization of the impact of fatigue on collected data.

sideways vibration of the volunteer’s hand. Similarly, we showcase the Z-axis from the

gyroscope as it provides the best visualization of the farthest and nearest positions of the

volunteer’s hand. We use the first set of bicep repetition as a reference set to comparatively

measure the data pattern changes. The rationale behind this is that the first set usually

contains the least number of fatigue repetitions. Therefore, as the fatigue accumulates in

later sets, we would be able to differentiate the changes in the data patterns. The first set

also always contains 15 biceps repetitions for all of the 20 volunteers.

We look for data pattern changes along the horizontal axis which indicates the changes

in completion time whereas the vertical axis indicates the changes in angular velocity ac-

cording to muscular endurance (Lee, Eun, Kim, Park, & Jee, 2017). To analyze the data

pattern changes in the horizontal axis, we measured the time required to complete the first

set of biceps repetitions for each volunteer, which is the time interval from the 1st repetition
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until the end of the 15th repetition. We repeated the same approach to measure the comple-

tion time of the remaining sets separately. Then, we calculate the difference in completion

time between each set compared to the first set. To analyze the data pattern changes in

the vertical axis, we measured the absolute magnitude of each repetition in the first set to

calculate the muscular endurance (Lee et al., 2017) during the first set of biceps repetitions.

We repeated the same approach to measure the muscular endurance for the remaining sets

separately. Then, we calculate the drop in muscular endurance between each set compared

to the first set.

Findings: Table 4.1 shows the increase in completion time for each set in relation

to the first set. In the 2nd set, the average increase in completion time is 1.7%, which

is considerably a small change to the 1st set. The reason is that the 2nd set is usually

the introductory stage of fatigue, where fatigue occurs for the first time at the last 1 or 2

repetitions. When we look at the 3rd set, we found the average increase in completion time

to have increased to 8.1%. At the 4th set, volunteers take on average 14.3% more time to

finish their exercises, compared to the time they took in the 1st set. Comparing the 4th set

to the 3rd set, the 4th set contains almost twice the number of fatigue repetitions than the

3rd set, resulting on substantial increase in the time to complete metric, from 8% to 14%.

At the 5th set, we found that the average increase in completion time is 31.0%, more than

twice the increase observed in the 4th set. The reason is that the 5th set contains at least

eight fatigue repetitions, which indicates that fatigue impacts later sets to a much larger

extent, slowing down bicep movements and increasing the time completion for the set.

As a result, fixed-size and non-overlapping windows will no longer be suitable to capture

full repetitions because of its narrow fit, especially, at the 4th and 5th sets.

In Table 4.2, we present the changes of muscular endurance for each of the five sets

as the fatigue accumulates during repetitions in the later sets. It is possible to measure the

muscular endurance using the angular velocity from the gyroscope (Lee et al., 2017) rather
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Table 4.1: The increase in the time to complete a set compared to the 1st set.

Axis-Sensor 2nd Set 3rd Set 4th Set 5th Set Avg.

X-Gyroscope +2.0% +6.0% +17.0% +33.0% +14.5%
Z-Gyroscope +1.7% +11.0% +15.0% +45.0% +18.2%
Y-Accelerometer +1.5% +7.4% +11.0% +15.0% +8.7%

Avg./set +1.7% +8.1% +14.3% +31.0%

Table 4.2: The change in muscular endurance represented in vertical shrinks, compared to
the 1st set.

Axis-Sensor 2nd Set 3rd Set 4th Set 5th Set Avg.

X-Gyroscope +0.7% +1.2% −6.3% −5.2% −2.4%
Z-Gyroscope +0.5% +1.7% −10.4% −7.5% −3.9%
Y-Accelerometer +0.6% +0.3% +0.3% +0.4% 0.4%

Avg./set +0.6% +1.1% −5.5% −4.1%

than using the accelerometer. Therefore, we observe that fatigue decreases the muscular

endurance according to the X- and Z-axes from the gyroscope by an average of −2.4% and

−3.9%, respectively. However, we do not observe a substantial decrease on the muscular

endurance using the Y-axis from the accelerometer, with a small average change of only

0.4%. Overall, we observe that the average muscular endurance decreases in the later sets

as the fatigue accumulates in the repetitions. For example, the 2nd and 3rd sets maintain

a muscular endurance similar to the compared 1st set. However, the muscular endurance

decreases by an average of 5.5% in the 4th set, and 4.1% in the 5th set, as fatigue accumu-

lates over time. This could negatively impact data filtering, especially in the case of peak

filtering, because such a filter may exclude a complete bicep repetition if it did not meet the

peak threshold, especially, at the 4th and 5th sets.
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4.3 The Impact of Fatigue on the Extracted Features

In this section, we investigate the features’ significance in the presence of fatigue to

answer RQ2: What impact can fatigue impose on the extracted features? Motivation: We

hypothesize that if fatigue affects the collected data, it may affect the extracted features

from the same data. In other words, some features may appear to be significant in detecting

biceps repetitions without fatigue, but become less significant at later sets, where fatigue

often occurs. We think that a factor such as fatigue can deform the patterns of these features

reducing their correlation hence, some extracted features may be more sensitive to fatigue

than others.

Approach: To fulfill our motivation, we extract three main features: mean, mean abso-

lute deviation (MAD), and standard deviation (SD). We split our extracted features into two

groups: extracted features from the complete dataset and extracted features from the non-

fatigue subset. Our goal is to investigate whether fatigue can affect the significance of the

extracted features in HAR models. Our complete dataset and the non-fatigue subset con-

tain 12 data signals. There are 9 data signals from the 3-axes of gyroscope, accelerometer,

and magnetometer, and there are three representative data signals for the rotations on X-, Y-

, and Z-axes which are roll, pitch, and yaw. We use Spearman’s rank correlation coefficient

with a significance allowance of 0.1 to show how these extracted features correlate with

bicep repetitions (Hauke & Kossowski, 2011). Previous works show that these features

can improve the detection of human activities and achieve better performance overall (Fer-

rari, Micucci, Mobilio, & Napoletano, 2020; Janidarmian, Roshan Fekr, Radecka, & Zilic,

2017; Op De Beéck et al., 2018). In addition, these features are fit to capture patterns in

data changes and are often immune against data anomalies or disturbance, especially when

it comes to periodic or repetitive activities such as bicep curls (Javaid, Rashid, Tiwana, &

Anwar, 2018).
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Table 4.3: Table of the significant (✓) and insignificant (×) features extracted from both
none-fatigue subset and complete dataset; the changed features are in highlighted bold.

Non-Fatigue subset Complete dataset

Mean MAD SD Mean MAD SD

Sensors and Axes

Acc.

X-axis ✓ ✓ ✓ × × ×

Y-axis ✓ ✓ ✓ ✓ ✓ ✓

Z-axis ✓ ✓ ✓ ✓ ✓ ✓

Mag.

X-axis × × × × × ×

Y-axis × ✓ × × × ×

Z-axis × × ✓ × × ✓

Gyro.

X-axis ✓ ✓ ✓ × ✓ ×

Y-axis ✓ ✓ ✓ ✓ ✓ ✓

Z-axis ✓ ✓ ✓ ✓ ✓ ✓

Roll ✓ ✓ ✓ ✓ ✓ ✓

Pitch ✓ ✓ ✓ ✓ ✓ ✓

Yaw ✓ ✓ ✓ ✓ × ✓

Table 4.3 shows the features extracted from each datasets. In section 4.2, we show that

the X-axis represents the vertical displacement, which has the largest angle of movement

and linear acceleration. However, fatigue often affects acceleration greatly compared to the

angle of movement due to the movement nature of the biceps muscle (Ghazal, Alhalabi,

Fraiwan, Yaghi, & Alkhatib, 2019). Therefore, changes on the linear acceleration, mea-

sured by the accelerometer, affected the significance of its extract features. On the other

hand, the angular velocity, measured by the gyroscope, remains relatively steady because

of the fixed angle of movement of bicep muscles. Regarding the low number of signifi-

cant features from the magnetometer, we think that fatigue does not impact these features.
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Besides, the magnetometer is not an optimal sensor in fatigue detection as it does not re-

veal any significant characteristics in data readings about the magnetic field’s direction or

strength, as shown section 4.2. Therefore, most of the features extracted from the magne-

tometer are insignificant.

Findings: Our findings show that fatigue significantly impacts the extracted features,

by hindering their correlation coefficient values to the extent of turning some significant

features into insignificant ones. We were able to extract 9 mean, 10 MAD, and 10 SD

features from the none-fatigue subset for a total of 29 significant features with a significance

allowance of 0.1. However, once the fatigue was introduced in the data, we were only

able to extract 7 mean, 7 MAD, and 8 SD features for a total of 22 significant features,

as shown in Table 4.3. This indicates that fatigue, once introduced in the dataset, reduced

the significance of 7 features (24% of total significant features).

4.4 The Impact of Fatigue on Subject-Specific Biceps Rep-

etitions Models

In this section, we examine the subject-specific models’ performance in the presence of

fatigue to answer RQ3: What is the impact of fatigue on subject-specific biceps repetitions

models? Motivation: After observing the impact of fatigue on the collected data and the

extracted features, we investigate how it may affect the performance of biceps detection

models, especially the subject-specific models. We hypothesize that the presence of fatigue

may decrease the model’s performance in recognizing human activities; therefore, we ex-

amine their performance in detecting biceps curls while fatigue progressively pervades in

the dataset.
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Approach: To fulfill our motivation, we use the five detection models in section 4.1.

These models use the 22 significant features extracted from our complete dataset to elim-

inate weak features that turn to insignificant once fatigue occurs. We use these models to

detect biceps repetitions in our dataset. Then, we calculate the accuracy using the confusion

matrix shown in Table 4.4, where non-repetition represents an incomplete repetition or any

random movement, and repetition represents a completed repetition, whether it contains

fatigue or not.

Table 4.4: Confusion matrix for biceps repetitions

Actual

Repetition Non-Repetition

Detect Repetition TRUE Repeat FALSE Repeat
Non-Repetition FALSE Non-Repeat TRUE Non-Repeat

We perform six 10-fold cross-validation runs using the non-fatigue subset where we

replace 10% of the non-fatigue repetitions in the subset with fatigue repetitions from our

complete dataset per experiment. This allows us to gradually observe fatigue effects on the

detection models while fatigue propagates in the dataset. Naturally, fatigue should exist in

both training and testing datasets since it is a byproduct of physical activities. Therefore, we

train and test all five models under fatigue levels similar to Figure 4.2 approximately. Also,

we use the first run in the 10-fold cross-validation as a reference point because it contains

no fatigue repetitions to hinder models’ performance. Then, we calculate the accuracy (1),

precision (2), recall (3), and F1 (4) per run. Table 4.5 shows the performance averages

for the six 10-fold cross-validation runs over all participants per model. Each △ F1* row

shows the difference in the model’s performance, compared to the performance of the first

run.
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Accuracy =
True(Repeat+NonRepeat)

True(Repeat+NonRepeat) + False(Repeat+NonRepeat)
(1)

Precision =
True(Repeat)

True(Repeat) + False(Repeat)
(2)

Recall =
True(Repeat)

True(Repeat) + False(NonRepeat)
(3)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(4)

Findings: Our findings show that the more fatigue in the dataset, the steeper the five

models’ performance decline. In fact, Table 4.5 shows that replacing as little as 10% of

the repetitions with fatigue repetitions can drop the GLM models’ performance by 8%,

and 11% for DT. If we replace an additional 10% of the repetitions with fatigue repetitions,

all models’ performance decrease by at least 21% (FNN and DT). The decrease in the

performance can be as severe as 30% in the RF model. Such findings indicate that, for some

models (e.g., GLM, LR, and RF), it only takes 20% of fatigued repetitions to decrease a

model’s performance by more than 20%. The impact in the model’s performance is even

more significant when we reach to 40% and 50% of fatigue repetitions. With half the

repetitions containing fatigue, the models lose between 47% (DT) to 57% (GLM) of its

original performance, which may compromise the reliability of HAR systems that do not

take fatigue properly into account.
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Table 4.5: The performance averages for subject-specific models to detect biceps repeti-
tions throughout the incremental replacement of fatigue repetitions.

% of fatigue repetitions in dataset

0%* 10% 20% 30% 40% 50%

M
od

el
s

G
L

M

Precision 0.94 0.89 0.78 0.71 0.65 0.44
Recall 0.91 0.81 0.61 0.60 0.52 0.37
Accuracy 0.9 0.84 0.80 0.76 0.63 0.45
F1 0.92 0.85 0.68 0.67 0.58 0.40
%△ F1* – -8% -26% -30% -38% -57%

L
R

Precision 0.9 0.85 0.71 0.63 0.49 0.40
Recall 0.81 0.73 0.53 0.44 0.55 0.36
Accuracy 0.88 0.83 0.76 0.62 0.57 0.49
F1 0.85 0.79 0.61 0.52 0.52 0.38
%△ F1* – -9% -29% -40% -41% -56%

R
F

Precision 0.88 0.82 0.68 0.6 0.56 0.45
Recall 0.78 0.7 0.52 0.5 0.43 0.39
Accuracy 0.85 0.81 0.75 0.49 0.29 0.19
F1 0.83 0.76 0.59 0.55 0.49 0.42
%△ F1* – -10% -30% -34% -42% -50%

D
T

Precision 0.86 0.75 0.66 0.57 0.46 0.44
Recall 0.7 0.64 0.57 0.43 0.4 0.4
Accuracy 0.81 0.77 0.73 0.61 0.46 0.24
F1 0.77 0.69 0.61 0.49 0.43 0.42
%△ F1* – -11% -21% -36% -45% -47%

FN
N

Precision 0.98 0.89 0.76 0.68 0.58 0.5
Recall 0.91 0.79 0.71 0.65 0.6 0.48
Accuracy 0.99 0.91 0.86 0.8 0.73 0.67
F1 0.94 0.84 0.73 0.66 0.59 0.49
%△ F1* – -10% -21% -31% -38% -49%

* Reference to the first set which does not include fatigue.
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4.5 The Impact of Fatigue on Cross-Subject Biceps Repe-

titions Models

In this section, we examine the cross-subject models’ performance in the presence of

fatigue to answer RQ4: What is the impact of fatigue on cross-subject biceps repetitions

models? Motivation: After observing the impact of fatigue on the subject-specific models,

we investigate the generality of the models and the ability to detect biceps repetitions across

different subjects. Also, we expect fatigue to impact the performance of the cross-subject

models to a greater extent since these models tend to perform less than the subject-specific

ones.

Figure 4.4: A partial representation of the six LOOCVs with K = 20 and different percent-
ages of fatigue.

Approach: Similar to our approach in section 4.4, we use the five detection models

in section 4.1 with the 22 significant features extracted from our complete dataset. We

perform six Leave-One-Out Cross-Validations (LOOCV) runs where K equals the number

of volunteers, K = 20. Figure 4.4 shows a partial representation of the six LOOCV runs

with K = 20 for using the data of 20 volunteers individually. Each LOOCV run consists

of 20 iterations, in the 1st iteration, we use the data from 19 volunteers to train our mod-

els then use the 20th volunteer’s data to test the models. At last, in the 20th iteration, we

39



should have used all volunteers data for testing except the 1st volunteer therefore, we train

the model using all the 19 volunteers dataset then, used the 1st volunteer’s data for test-

ing. We calculate the precision, recall, accuracy, and F1-score per iteration then report the

averages. We repeat the LOOCV run after we replace 10% of each volunteer’s data with

fatigue repetitions from each individuals data, recursively. We use the first LOOCV run as

a reference point because there are no fatigue repetitions in the individuals data to affect

the models’ performance. We train and test all five models under fatigue levels similar to

our approach in section 4.4. Then, we calculate the accuracy (1), precision (2), recall (3),

and F1 (4) for each run. Table 4.6 shows the performance averages for the six LOOCV runs

per model. Each △ F1* rows show the comparison of the model’s performance against the

performance obtained in the first run (no fatigue repetitions).

To further examine whether our approach adequately accounts for the impact of fatigue,

we repeat RQ3 and RQ4 using all features. We use all the 36 extracted features, including

the seven features that became insignificant due to the presence of fatigue. This allows

us to observe the performance of detection models using all features versus models using

only fatigue-resistant features. According to Table 4.7 and 4.8, fatigue impacts a model’s

performance to an even greater extent compared to the models based on 22 fatigue-resistant

features presented in RQ3 and RQ4.

Findings: Our finding indicates fatigue impacts the performance in all five models sig-

nificantly. Table 4.6 shows that replacing as little as 10% of the repetitions with fatigued

ones can drop a model’s performance by 6% for RF, and down to 13% for GLM and LR.

If we replace an additional 10% of the repetitions with fatigued ones, the models’ per-

formance decrease by 20% for FNN and DT, and down to 25% for LR. Once the fatigue

reaches 30% of repetitions, we see a sharp decrease in all models by at least 30%. This

trend continues, as once the fatigue repetitions reach 50% of the dataset, the HAR mod-

els’ performance decrease by at least 41%. We observe a negative linear effect in some
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Table 4.6: The performance averages for cross-subject models to detect biceps repetitions
throughout the incremental replacement of fatigue repetitions.

% of fatigue repetitions in individuals data

0%* 10% 20% 30% 40% 50%

M
od

el
s

G
L

M

Precision 0.85 0.73 0.60 0.52 0.45 0.41
Recall 0.8 0.71 0.72 0.50 0.32 0.31
Accuracy 0.87 0.71 0.66 0.52 0.41 0.33
F1 0.82 0.72 0.65 0.51 0.37 0.35
%△ F1* – -13% -21% -38% -55% -57%

L
R

Precision 0.87 0.79 0.66 0.53 0.45 0.40
Recall 0.78 0.65 0.58 0.41 0.36 0.30
Accuracy 0.82 0.75 0.66 0.52 0.43 0.29
F1 0.82 0.71 0.62 0.46 0.40 0.34
%△ F1* – -13% -25% -44% -51% -58%

R
F

Precision 0.78 0.71 0.64 0.58 0.5 0.46
Recall 0.67 0.65 0.51 0.45 0.43 0.39
Accuracy 0.79 0.73 0.58 0.43 0.39 0.21
F1 0.72 0.68 0.57 0.51 0.46 0.42
%△ F1* – -6% -21% -30% -36% -41%

D
T

Precision 0.78 0.73 0.64 0.53 0.45 0.44
Recall 0.71 0.63 0.55 0.41 0.41 0.32
Accuracy 0.81 0.76 0.53 0.42 0.33 0.18
F1 0.74 0.68 0.59 0.46 0.43 0.37
%△ F1* – -9% -20% -38% -42% -50%

FN
N

Precision 0.9 0.81 0.73 0.66 0.58 0.57
Recall 0.84 0.75 0.66 0.55 0.48 0.46
Accuracy 0.95 0.87 0.81 0.74 0.53 0.49
F1 0.87 0.78 0.69 0.60 0.53 0.51
%△ F1* – -10% -20% -31% -40% -41%

* Reference to the first set which does not include fatigue.
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Table 4.7: The performance averages for subject-specific models to detect biceps repeti-
tions, using the 36 features, throughout the incremental replacement of fatigue repetitions.

% of Fatigue Repetitions in Dataset

0% * 10% 20% 30% 40% 50%

M
od

el
s

G
L

M

Precision 0.96 0.83 0.56 0.49 0.42 0.38
Recall 0.91 0.81 0.67 0.47 0.30 0.29
Accuracy 0.99 0.81 0.62 0.49 0.38 0.31
F136 0.94 0.82 0.61 0.48 0.35 0.33
%△ F136* – -13% -35% -49% -63% -65%

L
R

Precision 0.95 0.86 0.60 0.47 0.37 0.33
Recall 0.85 0.71 0.53 0.37 0.29 0.24
Accuracy 0.89 0.82 0.60 0.46 0.35 0.24
F136 0.90 0.78 0.56 0.41 0.33 0.28
%△ F136* – -13% -37% -54% -64% -69%

R
F

Precision 0.94 0.65 0.59 0.50 0.42 0.38
Recall 0.80 0.60 0.47 0.39 0.36 0.32
Accuracy 0.95 0.67 0.54 0.37 0.32 0.17
F136 0.86 0.62 0.52 0.44 0.38 0.35
%△ F136* – -28% -39% -49% -56% -59%

D
T

Precision 0.90 0.78 0.58 0.42 0.38 0.37
Recall 0.82 0.67 0.50 0.32 0.35 0.27
Accuracy 0.93 0.81 0.48 0.33 0.28 0.15
F136 0.86 0.72 0.54 0.37 0.36 0.31
%△ F136* – -15% -37% -57% -57% -63%

FN
N

Precision 0.99 0.97 0.63 0.57 0.50 0.49
Recall 0.93 0.90 0.57 0.47 0.41 0.40
Accuracy 0.99 0.96 0.70 0.64 0.46 0.42
F136 0.96 0.93 0.60 0.52 0.45 0.44
%△ F136* – -3% -38% -46% -53% -54%

* Reference to the first set which does not include fatigue.
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Table 4.8: The performance averages for cross-subject models to detect biceps repetitions,
using the 36 features, throughout the incremental replacement of fatigue repetitions.

% of Fatigue Repetitions in Dataset

0% * 10% 20% 30% 40% 50%

M
od

el
s

G
L

M

Precision 0.92 0.80 0.63 0.58 0.53 0.36
Recall 0.89 0.73 0.49 0.49 0.42 0.30
Accuracy 0.88 0.76 0.65 0.62 0.51 0.36
F136 0.91 0.76 0.56 0.53 0.47 0.33
%△ F136* – -16% -39% -42% -48% -64%

L
R

Precision 0.82 0.76 0.63 0.56 0.40 0.33
Recall 0.74 0.65 0.47 0.39 0.45 0.29
Accuracy 0.80 0.74 0.68 0.55 0.46 0.40
F136 0.78 0.70 0.54 0.46 0.42 0.31
%△ F136* – -10% -30% -40% -46% -60%

R
F

Precision 0.85 0.77 0.59 0.52 0.46 0.37
Recall 0.76 0.66 0.45 0.44 0.36 0.32
Accuracy 0.82 0.76 0.65 0.43 0.24 0.16
F136 0.80 0.71 0.51 0.47 0.40 0.35
%△ F136* – -11% -36% -41% -50% -57%

D
T

Precision 0.91 0.80 0.59 0.45 0.39 0.37
Recall 0.74 0.69 0.51 0.34 0.34 0.34
Accuracy 0.85 0.82 0.65 0.48 0.39 0.20
F136 0.81 0.74 0.55 0.39 0.36 0.36
%△ F136* – -9% -33% -52% -55% -56%

FN
N

Precision 0.99 0.89 0.65 0.58 0.50 0.43
Recall 0.92 0.79 0.61 0.56 0.52 0.41
Accuracy 0.99 0.91 0.74 0.69 0.63 0.58
F136 0.96 0.83 0.63 0.57 0.51 0.42
%△ F136* – -13% -34% -40% -47% -56%

* Reference to the first set which does not include fatigue.
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models’ performance as the fatigue increases. For instance, the performance of DT models

decreases by an average of 10% for every 10% increase of fatigue in the dataset.

The results corroborate with our previous analyses, showing that the extraneous features

are unlikely to contribute in detecting biceps concentration curls when fatigue is present. It

is important to mention that models using all features do outperform the fatigue-resistant

models when the presence of fatigue is very low in the dataset (no fatigue or fatigue data at

10%).

4.6 Discussion

In this section, we discuss the findings from our four research questions. In RQ1, our

finding shows that fatigue can lead to changes in data patterns over time. A similar finding

to ours is shown in a previous work, which suggests a decrease in the mean power frequency

of the accelerometer readings trend with increasing biceps muscle fatigue (Mokaya, Lucas,

Noh, & Zhang, 2016). Also, the work suggests that accelerometers should be used to sense

skeletal muscle vibrations, which can reduce the error of estimating fatigue up to 50%.

Therefore, we adopt a similar approach in RQ1, where we use a time series dataset collected

using an inertial sensor that includes accelerometers to observe data pattern changes along

the horizontal and vertical axes. In other words, this allows us to find a correlation between

fatigue and data pattern changes that occur horizontally related to completion time and

vertically associated with the muscular endurance and angular velocity.

In RQ2, we investigate the impact of fatigue in feature extraction. A previous work

shows that muscle fatigue affects the collected biceps data signals from Electromyogra-

phy (EMG) sensor by increasing the Root Mean Square Error (RMSEs) of the extracted

features (Triwiyanto, Wahyunggoro, Nugroho, & Herianto, 2018). Similarly, our findings

show that fatigue can hinder the correlation values of some of the extracted features to the

extent of turning them into insignificant features. However, if we look at this problem from
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another perspective, we can label the extracted features as fatigue-resistant. Meaning, al-

though fatigue existed in the dataset, these features remain significant. As a result, we can

develop a group of fatigue-resistant features that can counter data pattern changes due to

fatigue and remain valuable to detect bicep activity such as biceps concentration curls. It

is important to mention, however, that these features are still affected by fatigue as their

correlation coefficient values drop.

(a) (b)

Figure 4.5: Graphical display of the differences in the correlation matrices of the 12 ex-
tracted features (mean) and the bicep repetitions with and without fatigue. (a) Correlation
matrix of the 12 mean features and the bicep repetitions in the non-fatigue subset. (b) Cor-
relation matrix of the 12 mean features and the bicep repetitions in our complete dataset.

Figure 4.5 presents the correlation matrix for 12 mean features and the bicep repetitions.

The positive correlations are displayed in blue and negative correlations are presented in

red. The color intensity and the size of the circle are also proportional to the correlation co-

efficients whereas, the insignificant correlations are marked with ×. Figure 4.5a shows that

bicep repetitions have significant correlations with 9 out of 12 mean features extracted from

the non-fatigue subset. These 9 significant features are (X,Y,Z)-Accelerometer, (X,Y,Z)-

Gyroscope, pitch, roll, and yaw. On the other hand, Figure 4.5b shows that bicep rep-

etitions have significant correlations with 7 out of 12 mean features extracted from our
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complete dataset where fatigue exists during the exercise. These 7 significant features are

(Y,Z)-accelerometer, (Y,Z)-gyroscope, pitch, roll, and yaw. We can observe two impacts of

fatigue on extracted features. First, some mean features correlations became insignificant

to bicep repetitions such as X-accelerometer and X-gyroscope. Second, an overall drop

in the correlation coefficient values for all mean features, as presented by the faint color

intensity and the shrink of circle sizes.

(a) (b)

Figure 4.6: Graphical display of the differences in the correlation matrices of the 12 ex-
tracted features (MAD: Mean Absolute Deviation) and the bicep repetitions with and with-
out fatigue. (a) Correlation matrix of the 12 MAD features and the bicep repetitions in the
non-fatigue subset. (b) Correlation matrix of the 12 MAD features and the bicep repetitions
in our complete dataset.

To strengthen the evidence that points to fatigue as the potential cause of these impacts,

we believe that similar observations should exist for MAD and SD features. Figure 4.6

presents the correlation matrix for 12 MAD features and the bicep repetitions in our com-

plete dataset and the non-fatigue subset. Figure 4.6a shows that bicep repetitions have

significant correlations with 10 out of 12 MAD features extracted from the non-fatigue

subset. On the other hand, Figure 4.6b shows that bicep repetitions have significant cor-

relations with seven out of 12 MAD features extracted from our complete dataset. Again,

we encounter a similar effect to the aforementioned ones in extracted features (mean).
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Some MAD features correlations became insignificant to bicep repetitions such as X-

accelerometer, Y-magnetometer, and yaw. However, we did not observe a major drop in all

MAD features’ correlation coefficient values, only the newly three mentioned insignificant

suffered from a drop in the correlation coefficient values.

(a) (b)

Figure 4.7: Graphical display of the differences in the correlation matrices of the 12 ex-
tracted features (SD: Standard Deviation) and the bicep repetitions with and without fa-
tigue. (a) Correlation matrix of the 12 SD features and bicep repetitions in the non-
fatigue subset. (b) Correlation matrix of the 12 SD features and the bicep repetitions in
our complete dataset.

Figure 4.7 presents the correlation matrix for 12 SD features and the biceps repetitions

in our complete dataset and the non-fatigue subset. Figure 4.7a shows that bicep repetitions

have significant correlations with 10 out of 12 SD features extracted from the non-fatigue

subset. On the other hand, Figure 4.7b shows that bicep repetitions have significant corre-

lations with eight out of 12 SD features extracted from our complete dataset. Once more,

some SD features correlations became insignificant to bicep repetitions such as the X-axis

for both accelerometer and gyroscope. We also observe a slight drop in the correlation co-

efficient values for all SD features, as presented by the faint color intensity and the shrink

of circle sizes. At this point, we clearly observe the same recurring effects when fatigue

is introduced to the data, which indicates that fatigue impacts the significant features of a
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HAR model.

In RQ3, our findings show that the more fatigue is added to the dataset, the steeper the

decline in performance is on the five subject-specific models. Our findings show that the

impact of fatigue can indeed disrupt the models’ performance if not taken properly into

account. From the evaluated models, our results indicate that FNN outperforms all other

models in terms of precision, recall, accuracy, and F1-score in most cases. We did expect

the highest performance from FNN compared to other models as this occurred in previ-

ous studies (Al-Mulla, Sepulveda, & Colley, 2011; González-Izal, Malanda, Gorostiaga,

& Izquierdo, 2012; Lan, Feng, & Crago, 1994; Subasi & Kiymik, 2010). These studies

show that neural networks have significantly better pattern recognition compared to other

machine learning models especially, when it comes to periodic activities where extracted

features inherit periodicity. Moreover, a popular reason for FNN performance supremacy

is its robustness against small-to-moderate changes in the data. Other models, such as DT,

has shown to be less robust to fatigue, as even smaller data pattern changes can cause a

large change in the structure of the tree.

In RQ3 and RQ4 we compare the performances of the subject-specific and the cross-

subject models. We observe a similar and significant performance loss in both models,

with a loss of more than 20% if the dataset contains 20% or more of fatigue repetitions.

Once again, the FNN has shown to be the most robust of the five evaluated models. Such

a result is corroborated by another related work (Ghazal, Haeyeh, Abed, & Ghazal, 2018),

which reported that FNN maintained the highest rate of accuracy in cross-subject experi-

ments, when detecting fatigue in volunteers driving their vehicles.

4.7 Summary

Throughout this chapter, we introduce the impact of fatigue on HAR models for biceps

concentration curls as an interesting and impactful data science problem. Specifically, its
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significant challenges arise from analyzing the IMU collected data, selecting the suitable

features, and evaluating the performance of HAR models in a dataset with realistic levels

of fatigue. Throughout our study, we find that fatigue often occurs in later sets extending

duration time up to 31% compared to the first set and decreasing the muscular endurance

down to 4.1%. This leads to a change in data patterns, which causes a series of impacts

such as hindering extracted features thus, decreasing models’ performance.

As a result, the higher the presence of fatigue in the dataset, the steeper the performance

of all models decline. Our findings show that FNN maintained the highest performance

for cross-subject and subject-specific validations, respectively. Our results indicate that

fatigue was a serious problem for machine learning models and we advise practitioners to

take fatigue into consideration to develop and deploy accurate HAR systems. This chapter

presents useful results and a solid start for enhancing real-world applications for HAR to

overcome the inevitable impact of fatigue.
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Chapter 5

Towards Detecting Biceps Muscle

Fatigue in Gym Activity Using

Wearables

In this chapter, we adopt a wearable approach to detect biceps muscle fatigue during

a bicep concentration curl exercise as an example of a gym activity. This presents a so-

lution to avoid fatigue-induced injuries by detecting fatigue levels in bicep muscles using

wearable-based HAR models.

5.1 Introduction

Muscle fatigue is a complex and multifaceted phenomenon with various definitions;

however, one of the most common definition of fatigue is ”failure to maintain the required

force to continue performing a task” (Maughan, Maughan, & Gleeson, 2010; Robergs et

al., 2004). Several publications in the literature have recently proposed fatigue detection

approaches to avoid fatigue-induced injuries. Earlier studies usually propose the invasive

approach, which requires measuring the lactic acid in the bloodstream to determine the
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maximal muscle effort that a person can maintain (Stoudemire et al., 1996). While, other

studies present the cardio-respiratory approach as the first non-invasive approach to detect

fatigue; however, it requires a face mask to measure the circulatory and respiratory systems’

ability to supply oxygen (O2) to skeletal muscles during sustained physical exercise (Billat

& Koralsztein, 1996). Recently, the wearable-based approach has gained momentum and

interest after the rapid development of sensors technology. Nowadays, a wearable-based

approach uses one or more wearable IMU to detect fatigue based on the rating of perceived

exertion (RPE) (Op De Beéck et al., 2018).

In this chapter, we search for the most significant features to detect bicep muscle fatigue

during bicep curls exercise, where participants have to train their muscles through incre-

mental exercises. Since the bicep curls exercise has a repetitive nature, the collected data

also have repetitive patterns. However, these patterns may not last for long in the presence

of fatigue. Therefore, we have to find the changes in data patterns and extract the most

significant features from these changes to detect fatigue once it kicks in. Also, we consider

two variations for fatigue detection models: cross-subject and subject-specific models. In

this work, we use our dataset from chapter 4 to extract fatigue detection features. We ex-

tract 16 significant features from a total of 33 features. Then, we employ these features to

train and test five fatigue detection models.

5.2 Data Processing

Similar to section 3.2, we process the data collected from each volunteer by extracting

their five sets of concentration curls. Then, for each set, we associate each concentration

curl with the RPE values reported by the volunteers to identify whether a repetition contains

fatigue or not. We extract and label each repetition manually, according to the RPE values

reported for the set. In section 3.2, we mention the three-dimensional Cartesian coordinates

(x, y, z) from gyroscope, magnetometer, and accelerometer; in this work, we add two more
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computed signals from the accelerometer data, as the following:

• Total Acceleration: this is the vector sum of the tangential and centripetal accelera-

tions, which makes it a place-independent signal, which means it does not rely on the

exact attachment of the accelerometer because it combines x, y, and z acceleration

signals at time ti to compute a total acceleration, defined as:
√
a2xi

+ a2yi + a2zi .

• Exerted Force: Fexerted = m × a is the exerted force by the a volunteer to lift the

dumble. Fexerted is calculated by multiplying the mass m of the lifted dumble by

acceleration a.

Next, we detail the motivation, approach, and the findings for each research question.

In addition, we evaluate the performance of the fatigue detection models and address the

following research questions:

• RQ1: What are the most significant features to detect bicep muscles fatigue?

• RQ2: How accurately can we detect bicep muscles fatigue using subject-specific

models?

• RQ3: How accurately can we detect bicep muscles fatigue using cross-subject mod-

els?

5.3 Significant Fatigue Detection Features for Bicep Curls

This section examines the significance of our extracted features and their correlation

with the reported RPE values to answer RQ1: What are the most significant features to de-

tect bicep muscles fatigue? Motivation: We hypothesize that the performance of detection

models may degrade if we input non-relevant features. These features may increase the
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uncertainty in the detection models, showing a decline in models’ accuracy. Also, redun-

dant features can introduce redundant information which may have no value to the model,

hindering the model’s performance (Suto, Oniga, & Sitar, 2017; M. Zhang & Sawchuk,

2011).

Approach: To fulfill our motivation, we group all the fatigue repetitions into a subset,

so that we have a complete dataset and a fatigue subset. Then, we extract two sets of

the 33 features, a set from the complete dataset and another set from the fatigue subset.

Each set of features includes the mean, MAD, and SD of the three-dimensional Cartesian

coordinates (x, y, z) from the gyroscope, magnetometer, and accelerometer; in addition,

to the exerted force and total acceleration. Next, we apply a filter-based feature selection

using Spearman’s rank with a significance allowance of 0.1 on the features extracted from

the fatigue subset to identify the most correlated features with the fatigue RPE values.

Now, we repeat the previous step using the complete dataset. So, we apply a filter-based

feature selection using Spearman’s rank with a significance allowance of 0.1 on the features

extracted from the complete dataset to identify the most correlated features with the overall

reported RPE values. After that, we compare the two extracted sets features to select the

overlapping features. These features are the most correlated with the reported RPE, yet are

fatigue specific features.

Findings: Figure 5.1 presents the correlation matrices for 33 extracted features and

the RPE values in the fatigue subset and our complete dataset. The positive and negative

correlations are displayed in blue and red color, respectively. Additionally, the color in-

tensity and the size of the circle are proportional to the correlation coefficients, whereas

the insignificant correlations are marked with (×). Figure 5.1a shows that the reported

RPE values have overlapping significant correlations with 6 out of 11 mean features ex-

tracted from the fatigue subset and our complete dataset. These six significant features are

(Y,Z)-Accelerometer, (Y,Z)-Gyroscope, total acceleration, and exerted force. In addition,
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(a) Correlation matrix of the
mean features and RPE.

(b) Correlation matrix of the
SD features and RPE.

(c) Correlation matrix of the
MAD features and RPE.

Figure 5.1: Graphical display of the differences in the correlation matrices of the 33 ex-
tracted features (mean, SD, MAD) and the RPE values in the fatigue subset and our com-
plete dataset.

Figure 5.1b shows that the reported RPE values have overlapping significant correlations

with 5 out of 11 SD features extracted from the fatigue subset and our complete dataset.

These five significant features are (Y,Z)-Accelerometer, (Z)-Gyroscope, total acceleration,

and exerted force. Furthermore, Figure 5.1c shows that the reported RPE values have over-

lapping significant correlations with 5 out of 11 MAD features extracted from the fatigue

subset and our complete dataset. These five significant features are (Y,Z)-Accelerometer,

(Z)-Magnetmeter, total acceleration, and exerted force. We can observe that the overlapped

features remain significant and have higher correlation coefficient values to fatigue-reported

RPE values, which indicate that these features are valuable to detect bicep muscle fatigue.

Table 5.1 summarizes the 33 extracted features and highlights the 16 overlapping fea-

tures after applying spearman’s rank. These features correlate most with the reported RPE

and fatigue significantly.
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Table 5.1: Table of the significant (✓) and insignificant (×) features extracted from both
fatigue subset and complete dataset; the overlapping features are in highlighted bold.

Fatigue subset Complete dataset

Mean SD MAD Mean SD MAD

Sensors and Axes

Gyro.
X-axis × × × × × ×
Y-axis ✓ × ✓ ✓ ✓ ×
Z-axis ✓ ✓ ✓ ✓ ✓ ×

Mag.
X-axis × × × × × ×
Y-axis × ✓ × × × ×
Z-axis × × ✓ × ✓ ✓

Acc.

X-axis ✓ ✓ ✓ × × ×
Y-axis ✓ ✓ ✓ ✓ ✓ ✓
Z-axis ✓ ✓ ✓ ✓ ✓ ✓
Total ✓ ✓ ✓ ✓ ✓ ✓
Ex.Force ✓ ✓ ✓ ✓ ✓ ✓

5.4 Biceps Muscle Fatigue Detection Models Evaluation

After the feature extraction, we utilize the 16 overlapping features and the five models

in section 4.1 to detect bicep muscle fatigue repetitions during biceps curls. Then, we

evaluate the models’ performance in the two variations: cross-subject and subject-specific

models.

5.4.1 Performance Evaluation: Subject-Specific Models

This section estimates RPE values for each bicep curls repetition through subject-

specific models to answer RQ2: How accurately can we detect bicep muscles fatigue us-

ing subject-specific models? Motivation: This section examines the performance of five

subject-specific models in bicep muscle fatigue detection. Therefore, we measure the ac-

curacy, precision, recall, and F1 for each model. For simplicity purposes, we start with

subject-specificity, where we assess the reliability of our work and its ability to predict

fatigue for a specific subject across different periods of time.
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Table 5.2: Fatigue detection confusion matrix

Actual

Fatigue ∈ [17,20] Non-Fatigue ∈ [6,16]

Predict Fatigue ∈ [17,20] TRUE Fatigue FALSE Fatigue
Non-Fatigue ∈ [6,16] FALSE Non-Fatigue TRUE Non-Fatigue

Approach: To fulfill our motivation, we use these models to estimate each repetition’s

Borg rating (RPE) to determine whether it is fatigue or non-fatigue repetition. Then, we

calculate the accuracy using the confusion matrix shown in Table 5.2, where non-fatigue

repetition represents a Borg score from 6 to 16, and fatigue status represents a Borg score

from 17 to 20. We calculate the accuracy using Equation (5), precision using Equation (6),

recall using Equation (7), and F1 using Equation (8).

Accuracy =
True(Fatigue+NonFatigue)

True(Fatigue+NonFatigue) + False(Fatigue+NonFatigue)
(5)

Precision =
True(Fatigue)

True(Fatigue) + False(Fatigue)
(6)

Recall =
True(Fatigue)

True(Fatigue) + False(NonFatigue)
(7)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(8)

Findings: In Table 5.3, we present the average subject-specific validations results using

the five models. The two-layer Feedforward Neural Network seems to outperform all other

models in terms of precision (95%), recall (93%), accuracy (94%), and F1-measure (94%).

We did expect such high performance from FNN, compared to other models. Previous

studies show that neural networks are often significantly better in pattern recognition, com-

pared to other machine learning models; especially, when it comes to periodic activities

such as bicep curls (Al-Mulla et al., 2011; González-Izal et al., 2012). Another reason for
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the FNN’s superior performance is that robustness against small-to-moderate changes in

the data patterns. Whereas in DT, these changes can cause wide reformations in the tree’s

structure, causing instability. We observe that DT shows the lowest performance among

the five models in terms of precision (66%), recall (61%), accuracy (58%), and F1-measure

(63%). On the other hand, the GLM maintains the averaged performance across the five

models in terms of precision (86%), recall (83%), accuracy (84%), and F1-measure (84%).

Table 5.3: Average precision, recall, and accuracy for subject-specific validations using the
16 extracted features to detect fatigue in biceps repetitions.

Models
Subject-Specific

Precision Recall Accuracy F1

GLM 86% 83% 84% 84%
LR 81% 77% 79% 79%
RF 78% 76% 76% 77%
DT 66% 61% 58% 63%
FNN 95% 93% 94% 94%

5.4.2 Performance Evaluation: Cross-Subject Models

This section estimates RPE values for each bicep curls repetition through cross-subject

models to answer RQ3: How accurately can we detect bicep muscles fatigue using cross-

subject models? Motivation: This section examines the generality of the extracted features

and the five models in bicep muscle fatigue detection across different subjects. Therefore,

we measure the accuracy, precision, recall, and F1 for each model using leave-one-out cross

validation (LOOCV).

Approach: To fulfill our motivation, we utilize the 16 extracted features with the five

models, however, we use LOOCV to examine the performance of the five models. This

is the same as a K-fold cross-validation, with K = 20 being equal to the number of vol-

unteers. Figure 4.4 shows for a single model in the first iteration, we use 19 volunteers’

datasets for training, excluding the 20th volunteer’s dataset, which we use for testing. We
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Figure 5.2: A representation of leave-one-out cross validation for a model using the 20
volunteers’ datasets.

use the model to predict each repetition’s Borg rating (RPE) to determine whether it is

fatigue or non-fatigue repetition. Then, we calculate the precision, recall, and accuracy.

Similarly, in the second iteration, we uses 19 volunteers’ dataset for training, excluding the

19th volunteer’s dataset, which we use for testing the model and calculating the precision,

recall, and accuracy. In the 20th iteration, we should have used all volunteers’ datasets for

testing, except for the first volunteer’s dataset; therefore, we train the model using all the

19 volunteers’ datasets, then we use the first volunteer’s dataset for testing the model and

calculating the precision, recall, and accuracy. Finally, we compute the average values for

precision, recall, and accuracy for the model using the same equations and the confusion

matrix in section 5.4.1.

Findings: In Table 5.4, we present the average cross-subject validation results using

the five models. The two-layers Feedforward Neural Network seems to outperforms all the

other models in terms of precision (87%), recall (89%), accuracy (88%), and F1-measure

(88%). In the case of cross-subject, we did expect FNN to maintain a superior perfor-

mance compared to other models as this occurred in a previous study on detecting fatigue

while driving where it did archive 95.8% of cross-validation accuracy (Ghazal et al., 2018).

We observe that DT’s performance drops significantly in terms of precision (47%), recall

(49%), accuracy (43%), and F1-measure (48%). While, the GLM maintains the average
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performance across the five models in terms of precision (78%), recall (71%), accuracy

(75%), and F1-measure (74%).

Table 5.4: Average precision, recall, and accuracy for cross-subject validations using the
16 extracted features to detect fatigue in biceps repetitions.

Models
Cross-Subject

Precision Recall Accuracy F1

GLM 78% 71% 75% 74%
LR 73% 74% 76% 73%
RF 69% 73% 70% 71%
DT 47% 49% 43% 48%
FNN 87% 89% 88% 88%

5.5 Discussion

Although RPE may pose a risk due to subjectivity due to individual differences such

as physical fitness. The volunteers in this work are very close to athletic fitness. They are

middle-age volunteers because athletes usually notice physical declines between 20 to 46

years with BMI ranging between 24 and 46 (Adirim & Cheng, 2003; Burt & Overpeck,

2001; Prentice & Jebb, 2001). Additionally, they have been gym-goers for at least 1 year.

We construct a gold standard to counter RPE risks by combining heart rate and RPE value.

The Borg rating ranges from 6 to 20, whereby multiplying the Borg rating by ten, we can

estimate the person’s heart rate during the activity. This serves as a way to strengthen the

validity of the reported RPE for each volunteer. We employ a tolerance of ±10 bpm to

convert the measured heart rate to RPE before verifying the convergence between the Borg

scale and the measured heart rate. We only found a small minority of repetitions where

the heart rate metrics and the Borg scale diverge. In the worst case scenario, we found

a volunteer that reported 5 out of 80 repetitions (6.2%) with a Borg scale dissimilar to

the measured heart rate. To address these cases, we averaged between the measured heart

59



rate converted to RPE and the reported RPE, as done in similar work (Yoo et al., 2017).

For example, if a volunteer reported a repetition of an RPE of 17, but we measured their

heart rate as 145 bpm, we first converted the heart rate to RPE: 14.5. Then we averaged

both metrics, (17 + 14.5)/2 = 15.75, rounded up to 16. The RPE of 16 is used for the

labeling of this repetition (repetition without fatigue).

Our work adopts the wearable approach to detect bicep muscle fatigue using a wear-

able IMU and smartwatch. This allows us to overcome drawbacks from early approaches,

such as complexity, discomfort, and invasion. First, regarding complexity, our work is

simple compared to the works of early approaches. Our work requires only an IMU and

a smartwatch as data acquisition devices, which are fairly easy to interact with and setup,

whereas other approaches may require expert supervision, such as fatigue monitoring sys-

tems (Koutsos, Cretu, & Georgiou, 2016). Second, regarding discomfort, our work spins

around portability and being light-weight compared to the works of early approaches. Our

work used a Neblina IMU and an Apple Watch Series 4 that weigh 1.3 g and 40 g, re-

spectively. Such light-weight devices do not hinder or interfere with the person’s activ-

ity, whereas other approaches may require a face mask to measure oxygen consumption

VO2, which is inconvenient in public and often hinders a person’s comfort (Billat & Ko-

ralsztein, 1996). Third, regarding invasion, our work was non-invasive compared to the

works of early approaches. Our work does not introduce any instruments into a person’s

body or require a puncture of the skin. We simply attach the Neblina IMU and Apple

Watch Series 4 on the person’s wrist, unlike, the invasive approaches that often require

blood lactate (Stoudemire et al., 1996), creatine kinase (Kobayashi et al., 2005), or rectal

temperature (Crewe et al., 2008).

In this work, we present 16 overlapping features highlighted in Table 5.1, which are

the most fatigue-specific and highly correlated with the reported RPE. However, if we look

at the Table from another perspective, we would notice six non-overlapping but significant
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features under the fatigue subset. This means fatigue may disturb data patterns over time,

alternating features from significant into insignificant status or vice versa. A previous work

suggests a decrease in the mean power frequency of the accelerometer readings trend with

increasing bicep muscle fatigue, altering some of the extracted features from significant to

insignificant (Mokaya et al., 2016). A fatigue implication can be viewed if we consider

building a model to detect/count repetitions of biceps concentration curls and neglect fa-

tigue’s significant features. This may cause the model failure to in detecting/counting the

fatigued biceps concentration curls as repetitions. The reason for such a dilemma is fa-

tigue affects the collected data; its impacts will extend to the extracted features from the

same data. A previous work (Triwiyanto et al., 2018) shows that muscle fatigue affects the

electromyography (EMG) data signals collected from biceps by increasing the Root Mean

Square Error (RMSEs), leading to the misclassification of some activities.

5.6 Summary

Throughout this chapter, we select 16 most fatigue representative features from a total

of 33 features. Then, we employ these features in five fatigue detection models to detect

fatigue in bicep curls. Our findings show that a two-layer FNN can achieve an accuracy of

98% and 88% for subject-specific and cross-subject models, respectively. Moreover, our

methodology aims to detect fatigue for one of the most active skeletal muscles at the elbow

joint, which is achievable according to our findings. Thus, we advise athletes to take fatigue

into consideration to avoid fatigue-induced injuries. The results presented in this work are

useful and represent a solid start for moving into real-world applications for detecting the

fatigue level in bicep muscles using wearable sensors.
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Chapter 6

The Personalization of Biceps Fatigue

Detection Model For Gym Activity: An

Approach To Utilize Wearables’ Data

From The Crowd

This chapter proposes a personalization approach that utilizes a portion of user-specific

data to evaluate crowd data based on similarity metrics, resulting in less variability in train-

ing datasets and improving the cross-subject model’s performance. Our motivation comes

from observing the cross-subject models perform less than subject-specific ones when we

detect bicep muscle fatigue by estimating the RPE during bicep curls (Elshafei & Shihab,

2021). Sometimes, using cross-subject models is preferable in serving a large crowd since

these models utilize crowd data, thus, reducing the demand for user-specific data. So, given

the advantage of using cross-subject for a large crowd and the detrimental effects of bicep

fatigue injuries, such as muscle strain and tendon rupture (Nesterenko et al., 2010), we are

eager to improve the performance of cross-subject models in fatigue detection.
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6.1 Introduction

HAR applications in motion tracking and athletic training have become more prominent

as wearable technology and machine learning techniques advance (Barshan & Yüksek,

2014; Shoaib, Bosch, Incel, Scholten, & Havinga, 2014). Yet, a common obstacle in

such applications is having sufficient data to train the HAR models reliably (Barshan &

Yurtman, 2016; Lockhart & Weiss, 2014). Training HAR models using insufficient data

limits their performance and may even make them impractical for their user base. One

way to work around this obstacle is to collect data from a large pool of users and train

a cross-subject HAR model. However, this does not guarantee an accurate performance

from the cross-subject HAR model because even with sufficient data from a large pool

of users, individuals may perform the same activity differently. This increases the inter-

subject data variability, which hinders the performance of HAR applications (Barshan &

Yurtman, 2016). The inter-subject data variability is often high in places where there is a di-

verse crowd of users with different physical traits (Barshan & Yurtman, 2016; Kristiansen,

Madeleine, Hansen, & Samani, 2015). A way to reduce the inter-subject data variability is

to address each user separately by collecting data from the user of the HAR application to

train a subject-specific HAR model. However, the cost of training a subject-specific HAR

model is often prohibitive and requires labeled data from the user (Kobsar & Ferber, 2018;

Lubetzky-Vilnai, Ciol, & McCoy, 2014; Mourão-Miranda et al., 2011). Therefore, there

is an inherent trade-off between cross-subject models (cheaper but less accurate) versus

subject-specific models (more expensive and more accurate). Furthermore, such a trade-

off often exacerbates in specialized cases in HAR (e.g., muscle fatigue detection), where

manual or semi-supervised labeling is usually required (Fredriksson, Mattos, Bosch, &

Olsson, 2020; Nweke et al., 2018). As a result, this increases the data cost in the case of

the subject-specific models; or, if we want to spare that data cost, we will choose the less

accurate option, the cross-subject models.
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In this chapter, we attempt to bridge the trade-off between cross-subject and subject-

specific models. We propose a personalization approach to improve the performance of

cross-subject fatigue detection models. Recently, other researchers suggest breaking down

the crowd into smaller groups and using a cross-subject model to serve each group based

on the common features extracted per group known as the personalized model (Ferrari et

al., 2020; Khan, Roy, & Misra, 2018; Palmius et al., 2018). Therefore, in this chapter, we

hypothesize that utilizing the personalization approach in bicep muscle fatigue detection is

beneficial to the cross-subject models’ performance and it can reduce the hindering effect of

the inter-subject data variability. Also, to strengthen our hypothesis, we study the similarity

traits between the test subject and individuals in the crowd to improve the quality of selected

data for training our models. We believe that our hypothesis is achievable for two reasons:

(1) Previous studies show that the personalization of the cross-subject models can im-

prove their performance in classifying the activities of daily living with promising

results (Fallahzadeh & Ghasemzadeh, 2017; Ferrari et al., 2020; Sztyler & Stucken-

schmidt, 2017).

(2) Other studies show that prioritizing collected data from individuals in the crowd who

share similarities with the test subject can reduce inter-subject variability in the train-

ing dataset (Y. Chen, Wang, Huang, & Yu, 2019; Khan et al., 2018; Lane et al., 2011).

6.2 Data Processing

Similar to section 3.2, we extract and label the data collected from each volunteer man-

ually, according to the RPE values reported for the set. In this section, we use the three-

dimensional Cartesian coordinates (x, y, z) from gyroscope and accelerometer; in addition

to the two computed signals: total acceleration and exerted force from section 5.2. Also,
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we use Acc–gyro data fusion to compute a 3rd additional signal combined from the ac-

celerometer and the gyroscope data: Kalman filter.

• Total Acceleration: this is the vector sum of the tangential and centripetal accelera-

tions, which makes it a place-independent signal, which means it does not rely on the

exact attachment of the accelerometer because it combines x, y, and z acceleration

signals at time ti to compute a total acceleration, defined as:
√
a2xi

+ a2yi + a2zi .

• Exerted Force: Fexerted = m × a is the exerted force by the a volunteer to lift the

dumble. Fexerted is calculated by multiplying the mass m of the lifted dumble by

acceleration a.

• Acc–gyro data fusion (Kalman filter): A complementary filter is often used to detect

human body movement patterns by combining the gyroscope and the accelerome-

ter (Alarfaj, Qian, & Liu, 2021; Webber & Rojas, 2021). Gyroscope’s data are used

for precision because it is not vulnerable to external forces, while the accelerome-

ter’s data are used for long-term tracking as it does not drift. We use the Kalman

filter algorithm to estimate roll, pitch, and yaw angles (Q. Li, Li, Ji, & Dai, 2015).

However, we use the yaw angle because it indicates the sideways vibration for the

volunteer’s hand during the extension and flexion of the bicep. Previous studies show

fatigue may cause a temporary movement disorder, such as skeletal muscles vibra-

tion, which indicates fatigue backlogs and increases the vibration angle (Nweke, Teh,

Mujtaba, & Al-Garadi, 2019; Palumbo, Gallicchio, Pucci, & Micheli, 2016; Y. Wang,

Cang, & Yu, 2018; Wichit & Choksuriwong, 2015). In the filter’s simplest form, the

equation is defined as: angle = 0.98× (angle+ gyro× dt) + 0.02× acc.
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6.3 Feature Extraction

Feature extraction is a crucial component of HAR systems because it establishes the

most significant parameters to identify or predict human body movements. In addition,

feature extraction reduces the data dimensionality while preserving the relevant character-

istics of the signal. In this section, we compute a total of eleven hand-crafted features, as

shown in Table 6.1. Eight of the selected features are proven accurate in previous works, es-

pecially in the general classification of human activities (Bianco, Napoletano, & Schettini,

2019; Ferrari, Micucci, Mobilio, & Napoletano, 2019; Z. Huang, Niu, You, & Pau, 2021;

Janidarmian et al., 2017; Op De Beéck et al., 2018; Vanrell, Milone, & Rufiner, 2017).

These features include min, max, mean, median, SD, variance, kurtosis, and RMS. Besides

the eight features mentioned before, we also select three other features often associated

with fatigue for better performance: skewness, IoP, and MSP (Aghamohammadi-Sereshki,

Bayazi, Ghomsheh, & Amirabdollahian, 2019; Q. Ji, Lan, & Looney, 2006; Mallis, Mej-

dal, Nguyen, & Dinges, 2004; Sant’Ana, Li, & Zhang, 2019). A previous study suggests

considering the skewness of the data when detecting fatigue in repetitive muscle move-

ments such as bicep curls (Elshafei et al., 2021). We select skewness as a fatigue feature

because, during the repetitions’ extraction and labeling process, we observed the following:

(1) Non-fatigue repetitions are relatively symmetrical during the repetitions’ extraction and

labeling process. (2) In contrast, fatigue repetitions are often positively skewed. Another

work shows that fatigue often occurs in later sets, which increases the time to complete

repetitions of bicep curls while decreasing the force exerted by the muscles (Elshafei &

Shihab, 2021). This is observable through the increments of intervals between peaks, e.g.,

IoP, and decrements of peaks’ amplitudes, e.g., MSP. For each volunteer, we extract the

eleven features on all repetitions, across all nine signals, including the two 3D signals (x,

y, z) from the accelerometer and the gyroscope, total acceleration, exerted Force, and acc–

gyro signal fusion.
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Table 6.1: Eleven hand-crafted features: eight HAR-related features and three fatigue-
related features.

Feature Formula

Centralized

Minimum min = mini=1,...N(xi)

Maximum max = maxi=1,...N(xi)

Mean x = 1
N

∑N
i=1 xi

Median M =

{
xN+1

2
, N odd

1
2
(xN

2
+ xN

2
+1),N even

Standard Deviation (SD) σ =
√

1
N

∑N
i=1(xi − x)2

Variance σ2 = 1
n

∑n
i=1(xi − x)2

Kurtosis K = 1
N

∑N
i=1

(xi−x)4

σ4

Root Mean Square (RMS) RMS =
√

1
N

∑N
i=1(x−x)2

Fatigue

Skewness Sk = 1
N

∑N
i=1

(xi−x)3

σ3

Interval of Peaks (IoP) IoP = Tp − Tp−1 : p = 2, ...N

Mean Slope between Peaks (MSP) MSP = 1
N2

∑N
i=1

∑N
j=1

pj−pi
Tpj−Tpi

6.4 Measuring Similarities

To visualize the concept of our work, let us assume that a test subject is selected from

a diverse population P of size n, as shown in Figure 6.1. Each member of the population

reports their physical traits along with bicep concentration curl data signals. Meanwhile,

the test subject provides only partial data, often one set of repetitions, of their bicep con-

centration curl data signals along with their physical traits. We measure the similarities

between the test subject and members of the population so that the data from whom the

test subject is similar gain more weight while training the model. We are keen to utilize

two types of similarities, physical similarity and signal similarity, because previous studies

have reported gains in performance when harnessing those similarities to weight data from
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the crowd (Ferrari et al., 2020; Lane et al., 2011).

Figure 6.1: Visualization of the concept of personalizing general model using crowd-
sourced wearables’ data.

We hypothesize that combining both physical and signal similarities may further im-

prove the personalized models’ performance. Therefore, we measure and compare the per-

formance between the personalized models trained using the weighted data and the cross-

subject models. Furthermore, it comes to our minds that if we already possess and use a

part of the test subject’s data to measure the similarities between the test subject and the

crowd, then we may let the personalized models consume it in training to improve their

learning. Therefore, we also decided to let subject-specific models consume the same part

of the test subject’s data; then, we compare the performances of personalized and subject-

specific models. Moreover, we allow the subject-specific models to consume more of the

test subject’s data if needed until it can reach the same performance of personalized models

so that we quantify the amount of spared data by using personalized models.

Measuring Physical Similarity

Physical characteristics of people (e.g., age, weight, height, or BMI) vary from one per-

son to another within a large population. Such differences can affect the way people move

and perform physical activities. We believe that a user with different physical traits, e.g.,

age and BMI, may show signs of fatigue differently. At the same time, we expect groups
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of people who share similar physical traits to show similar signs of fatigue (Morgan, Sme-

uninx, & Breen, 2020; Tomlinson et al., 2021). For example, let us capture the signs of

fatigue using the three fatigue-related features, skewness, IoP, and MSP, and plot the prin-

cipal component analysis (PCA). In Figure 6.2a, we often observe that individuals within

specific limits of BMI values tend to share similar signs of fatigue. Moreover, Figure 6.2b

shows similar observations where we use age instead of BMI. We can observe that individ-

uals of certain ages tend to share similar signs of fatigue. This strengthens our hypothesis

that if we construct the training data from individuals within the population who are more

similar, it may reduce the inter-subject data variability and hence improve the performance

of the fatigue detection model.

(a) (b)

Figure 6.2: PCA plots showing signs of fatigue captured by the three fatigue-related fea-
tures and BMI/age. (a) BMI perspective. (b) Age perspective.

To compute the physical similarity value between a pair of users, we employ four types

of physical traits: age, height, weight, and BMI. To limit the widespread of the values, due

to subjects’ variations, we apply min–max normalization to each physical trait, on training

data, to normalize each trait between 0 and 1. We combine these four traits per user to form

a dedicated physical vector V Phy = {age, height, weight, BMI} representing their physical

traits separately. We measure the distance dPhy between the physical traits V Phy of two

users (q, p) based on the Manhattan distance, as shown in Equation (9). Previous works

show that Manhattan distance is preferable to Euclidean for high dimensional data and if
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the dimensions are not comparable (Aggarwal, Hinneburg, & Keim, 2001; Malkauthekar,

2013; Shirkhorshidi, Aghabozorgi, & Wah, 2015). The physical similarity between users

(q, p) is based on the universal law of generalization proposed in previous works (Ferrari et

al., 2020; Lane et al., 2011; Shepard, 1987; Tenenbaum & Griffiths, 2001), where distance

and perceived similarity are related via an exponential function, as shown in Equation (10):

dPhy(q, p) =
4∑

k=1

|V Phy
qk

− V Phy
pk

| (9)

simPhy(q, p) =
1

eγdPhy(q,p)
(10)

where γ is an empirically determined scaling parameter that affects the shape of the ex-

ponential function. For example, limγ→∞ simPhy(q, p) = 0, which indicates that as γ

approaches infinity, the physical similarity approaches zero, causing more segregation be-

tween users. This can be a double-edged sword because as we segregate dissimilar users

from each other, we may increase the segregation between similar users unintentionally.

On the other hand, limγ→0 sim
Phy(q, p) = 1, which indicates that as gamma approaches

zero, the physical similarity approaches one, implying that all subjects show similar signs

of fatigue; in other words, the changes in their data patterns are similar. Again, this is a

double-edged scenario where we may unintentionally pull dissimilar users near to the sim-

ilar users. Therefore, further investigation is required to estimate the optimal value of γ.

Measuring Signal Similarity

In the context of signal similarities, we use one set of repetitions, approximately 20%

of the subject’s data needed for the subject-specific models. We believe that users within

the same population may show similar signs of fatigue, leading to similar changes in data

patterns while performing the exercise. To compute the signal similarity value between a
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pair of users, we employ the 11 extracted features in Table 6.1 to form a dedicated signal

vector V Sig = {min, max, ... , MSP} for each user. We measure the distance dSig between

the signal traits V Sig of two users (q, p) based on the Manhattan distance for all repetitions

l = {1, 2, ... , L}, as shown in Equation (11).

dSig(q, p) =
11∑
k=1

L∑
l=1

|V Sig
q(k,l)

− V Sig
p(k,l)

| (11)

simSig(q, p) =
1

eγdSig(q,p)
(12)

The signal similarity between users (q, p) is based on the distance between their vectors,

as shown in Equation (12).

Measuring Total Similarity

We measure the total similarity simTotal between two users (q, p) by summing their

weighted physical simPhy(q, p) and signal simSig(q, p) similarities, as shown in Equa-

tion (13).

simTotal(q, p) = α× simPhy(q, p) + β × simSig(q, p) (13)

where α + β = 1. If α is greater than β, the physical similarity will contribute more

than signal similarity in determining the total similarity value. On the other hand, if β is

greater than α, the signal similarity will be the one that dominates the total similarity value.

Therefore, we further investigate the impact of (α, β) values on the performance of the

personalized models. Moreover, we examine (γ) values to achieve the highest performance

possible.

Next, we evaluate the personalization approach in boosting the performance of cross-

subject models and answer the following research questions:
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• RQ1: What is the impact of the physical and signal parameters on the performance

of the personalized biceps fatigue detection models?

• RQ2: Can the personalization approach improve the performance of cross-subject

models in detecting biceps muscle fatigue?

• RQ3: Can the personalization approach reduce the consumption of the test subject’s

data in comparison to subject-specific models?

6.5 Examining the Parameters in the Personalized Biceps

Fatigue Detection Model

This section searches through different values of personalization parameters and ob-

serves their effects on the models to answer RQ1: What is the impact of the physical and

signal parameters on the performance of the personalized biceps fatigue detection mod-

els? Motivation: We think that the performance of users similarity-based models, such as

those driven from the personalization approach, may degrade if the inadequate parameters

are selected. In other words, valuable data from the crowd, e.g., similar users, may be dis-

carded due to an unintended preference for the physical similarity over signal similarity and

vice versa. Previous work shows that finding a balance between the extracted similarities

is important to improve the accuracy of the models constantly (Zhu, Wang, Zhang, & Xu,

2014).

Approach: To fulfill our motivation, we examine the possible values for the parameters

(α, β, γ) in Equations (10), (12), and (13) so that we observe the impact of these param-

eters on the models’ performance. We start with Equations (10) and (12) to examine γ,

which has an arbitrary value between (0, ∞). To observe the impact of the different γ

values on the models’ performance, we employ each γ value to run two pairs of models:
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AdaBoost-DT and AdaBoost-ANN. The first pair is physical similarity-based models of

AdaBoost-DT and AdaBoost-ANN, while the second pair is signal similarity-based mod-

els of AdaBoost-DT and AdaBoost-ANN. Then, we compute the changes in these models’

performance as the value of γ increases and select the gamma value that corresponds to the

best performance. In Equation (13), we examine the physical α and signal β parameters

while satisfying the condition α + β = 1. We experiment with different α and β values

and observe the effect by running two similarity-based models (AdaBoost-DT, AdaBoost-

ANN). Then, we compute the models’ performance as the values of α and β change; then,

we select the (α, β) values that correspond to the best performance.

Findings: Figure 6.3 shows the average changes in both models’ performance as the

value of γ increases. The performance in this context is measured using accuracy. We

use the accuracy at γ = 0 as the reference point to measure the changes in accuracy

(∆Accuracy) as the γ value increases. We observe that ∆Accuracy increases as the γ

value increases until both reach maximum values of 3.83 and 14 at the dashed line, respec-

tively. Then, the changes in accuracy start to decline as the γ value continues to increase.

Therefore, we select the γ = 14 to let the models perform at maximum accuracy.

Figure 6.3: The average changes in both models’ accuracy as the value of γ increases.

Figure 6.4 shows the impact of the physical α and signal β parameters on models’ per-

formance and there are three important findings in the figure. In the first finding, at α = 0
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Figure 6.4: The average models’ accuracy as the values of α and β change.

and β = 1, the models (AdaBoost-ANN, AdaBoost-DT) solely depend on the signal sim-

ilarity, leading the training dataset, for these models, to be selected from the crowd with

whom the test subject’s signal is similar while discarding the physical similarity. In this

case, the two models (AdaBoost-ANN, AdaBoost-DT) achieve accuracy of 82.13% and

62.49%, respectively. In the second finding, at α = 1 and β = 0, the models (AdaBoost-

ANN, AdaBoost-DT) solely depend on the physical similarity, leading the training dataset,

for these models, to be selected from the crowd with whom the test subject’s physical traits

is similar while discarding the signal similarity. In this case, the accuracy for the two mod-

els (AdaBoost-ANN, AdaBoost-DT) drops to 81.07% and 62.52%, respectively. In the

third finding, at α = [0.25, 0.50] and β = (1−α), the models (AdaBoost-ANN, AdaBoost-

DT) depend on both physical and signal similarities; however, the training dataset, for these

models, is selected from the crowd with whom the test subject’s is similar while prioritiz-

ing those with the highest signal similarity. In this case, we observe that the accuracy
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for the two models (AdaBoost-ANN, AdaBoost-DT) rises to reach 84.54% and 65.88%,

respectively.

Our findings show that both physical and signal similarities are important. Moreover,

the models’ performance reaches its peak when γ = 14. The best selected values for

α = 0.4 and β = 0.6 which we use for the rest of the evaluations.

6.6 Evaluating the Performance of Personalized Models

This section uses personalized fatigue models to estimate RPE values bicep curls rep-

etition with a leave-one-out cross-validation (LOOCV) to answer RQ2: Can the person-

alization approach improve the performance of cross-subject models in detecting biceps

muscle fatigue? Motivation: The common trade-off for having cross-subject models to

server large crowds is accuracy loss, especially for users with particular activity patterns.

In other words, users who do not share enough similarities with the crowd may look as

outliers where the cross-subject models are less accurate to detect their biceps muscle fa-

tigue. We think that adding weight to user’s data from whom the test subject is similar can

improve model accuracy, including marginal users. Results of a previous study show that

the personalization of cross-subject models constantly improves their accuracy compared

with the standard cross-subject models (Sztyler & Stuckenschmidt, 2017).

Approach: To fulfill our motivation, we use the 11 hand-crafted features along with

the 2 similarity-based models (AdaBoost-DT, AdaBoost-ANN) to predict the Borg rating

for each repetition and detect whether a repetition contains fatigue or not; therefore, we run

two experiments.

In the first experiment, we set (α = 0, β = 0) in both models to mimic the standard

cross-subject models. This means that the training dataset for these models is collected

without considering any type of similarity between the crowd and the test subject. For

this experiment, we use LOOCV, which is a K-fold cross-validation with K equal to the

75



number of volunteers (K = 25). In the second experiment, we set (α, β) to optimal values

as identified in section 6.5, leading the training dataset, for these models, to be selected

based on physical and signal similarities, in addition to prioritizing data coming from users

of highest signal similarity in the crowd. For each experiment, we calculate the accuracy

using the confusion matrix shown in Table 6.2, where non-fatigue repetition represents a

Borg score from 6 to 16, and fatigue status represents a Borg score from 17 to 20. We

calculate the accuracy using Equation (14), precision using Equation (15), recall using

Equation (16), and F1 using Equation (17).

Table 6.2: Fatigue detection confusion matrix

Actual

Fatigue ∈ [17,20] Non-Fatigue ∈ [6,16]

Predict Fatigue ∈ [17,20] TRUE Fatigue FALSE Fatigue
Non-Fatigue ∈ [6,16] FALSE Non-Fatigue TRUE Non-Fatigue

Accuracy =
True(Repeat+NonRepeat)

True(Repeat+NonRepeat) + False(Repeat+NonRepeat)
(14)

Precision =
True(Repeat)

True(Repeat) + False(Repeat)
(15)

Recall =
True(Repeat)

True(Repeat) + False(NonRepeat)
(16)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(17)

Findings: It is important to mention that we use one set of 15 repetitions approximately

from the test subject’s data during the personalization of DT and ANN to measure the

signal similarity between the test subject and individuals in the crowd. However, we do

not include these 15 repetitions nor any data from the test subject in the training set. Our

findings show that the personalization approach improves the accuracies for the models
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by 5.89% (DT) and by 3.38% (ANN), as shown in Table 6.3. The accuracy improved

after prioritizing training data from the crowd based on the total similarity score, where

individuals with high scores contribute more to the models’ training dataset. Moreover,

we observe other improvements in terms of precision, recall, and F1-measure across the

models. The results show that the personalization improves the DT model in terms of

precision by (1.20%), recall by (4.51%), and F1-measure to (2.81%). On the other hand,

the personalization improves the ANN model in terms of precision by (6.96%), recall by

(4.55%), and F1-measure to (5.82%). Moreover, we observe that the standard cross-subject

ANN model outperforms both DT models, which is expected in fatigue detection wherein

ANN models often perform better than other cross-subject models (Ghazal et al., 2018).

Table 6.3: Average precision, recall, and accuracy, with a CI of 95%, for detecting fatigue
in biceps repetitions before and after the personalization of cross-subject models.

Models

DT ANN
Cross-Subject Personalized ∆ Cross-Subject Personalized ∆

Precision 60.57% ± 0.66 61.77% ± 0.58 1.20% 73.29% ± 0.43 80.25% ± 0.47 6.96%
Recall 61.32% ± 0.53 65.83% ± 0.49 4.51% 78.53% ± 0.39 83.08% ± 0.43 4.55%
Accuracy 60.08% ± 0.49 65.97% ± 0.67 5.89% 82.41% ± 0.58 85.79% ± 0.48 3.38%
F1 60.94% ± 0.59 63.75% ± 0.53 2.81% 75.82% ± 0.41 81.64% ± 0.45 5.82%

Overall, our findings indicate that the personalization approach improves both models

in terms of performance. For the DT model, the personalization improves its F1-measure

from (60.94%) to (63.75%), while for the ANN model, the personalization improves its F1-

measure from (75.82%) to (81.64%).
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6.7 Examining the Consumption of the Test Subject’s Data

in the Personalization Approach

This section measures the test subject’s required data for subject-specific models to de-

tect fatigue in bicep curls accurately compared to personalized models to answer RQ3: Can

the personalization approach reduce the consumption of the test subject’s data in compar-

ison to subject-specific models? Motivation: The subject-specific models are known for

their high performance and demand of the test subject data. In contrast, the cross-subject

models have relatively lower performance and no test subject data demand. We hypothe-

size that the personalized approach can combine the best aspects of these two models. In

other words, the personalization approach can improve the performance of the cross-subject

models while consuming less test subject data than the subject-specific models. A previous

work shows that adding a small amount of the test subject’s data to the training dataset for

personalized models helps to improve the performance further closer to the subject-specific

models (Weiss & Lockhart, 2012).

Approach: To fulfill our motivation, we utilize the 11 hand-crafted features and 4 mod-

els: subject-specific (DT, ANN) models and personalization (AdaBoost-DT, AdaBoost-

ANN) models. We use these models to predict the Borg rating for each repetition to deter-

mine whether it is fatigue repetition or not. Similar in section 6.6, we set (α, β) to optimal

values so that the training dataset for these models is selected based on physical and signal

similarities while prioritizing the signal similarity selection. Our experiment consists of

seven runs where we incrementally add 10% of the test subject’s data to the training set af-

ter each run. This means, there is 0% of the test subject’s data added to the training dataset

at the 1st run, while at the 7th run, there is 60% of the test subject’s data added to the train-

ing dataset. We stop at 60% of the test subject’s data to prevent overfitting the personalized

model; otherwise, there will not be much of a difference between the subject-specific and
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the personalization approaches. Moreover, this allows us to measure the amount of the

test subject’s data needed to improve the personalization models’ performance closer to the

subject-specific models. Or, in other words, how little data we need from the test subject if

we use the personalized models instead of subject-specific ones while keeping the accuracy

relativity high. For each run, we calculate the accuracy using Equation (1) and accuracy

gain ratio (AGR) using Equation (18).

AGR =
∆accuracy

Test subject’s data (repetitions)
(18)

Table 6.4: The accuracy averages for the subject-specific and personalized models after
adding 10% of the test subject’s data to the training set in each run incrementally. We
include a version of this table with the confidence intervals in the appendix .1.

Number of biceps repetitions collected from the
test subject (% of used test’s data)

0
(0%)

8
(10%)

15
(20%)

23
(30%)

30
(40%)

38
(50%)

45
(60%)

M
od

el
s

D
T

Subject-specific
Accuracy 15.34% 41.30% 58.40% 68.60% 78.90% 82.20% 84.03%
∆accuracy - 25.96% 17.10% 10.20% 10.30% 3.30% 1.83%
AGR - 3.25% 1.14% 0.44% 0.34% 0.09% 0.04%

Personalized
Accuracy 65.88% 70.64% 76.08% 77.77% 79.15% 79.55% 79.91%
∆accuracy - 4.76% 5.44% 1.69% 1.38% 0.40% 0.36%
AGR - 0.60% 0.36% 0.07% 0.05% 0.01% 0.01%

A
N

N

Subject-specific
Accuracy 55.23% 62.48% 74.68% 82.95% 87.37% 90.45% 92.99%
∆accuracy - 7.25% 12.20% 8.27% 4.42% 3.08% 2.54%
AGR - 0.91% 0.81% 0.36% 0.15% 0.08% 0.06%

Personalized
Accuracy 84.54% 87.37% 92.74% 93.56% 93.88% 94.25% 94.78%
∆accuracy - 2.83% 5.37% 0.82% 0.32% 0.37% 0.53%
AGR - 0.35% 0.36% 0.04% 0.01% 0.01% 0.01%

Findings: Our findings show that the more the test subject’s data are added to the train-

ing set, the higher the accuracy of the subject-specific and personalized models. Table 6.4

shows that the subject-specific DT model achieves an accuracy of 78.90% after consuming

40% of the test subject’s data. On the other hand, the personalization of the DT model
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achieves an accuracy of 76.08% after consuming 20% of the test subject’s data while com-

pensating the rest of the training data from the similar users in the crowd. In other words,

the subject-specific DT model requires twice the amount of test subject data, at 40%, to

achieve similar accuracy to the personalized DT at 20% of the test subject’s data consump-

tion with taking into consideration that the personalized DT model compensates the rest of

the training data from the crowd. Moreover, our findings show that with 20% of the test

subject’s data, the personalized DT model reaches the lowest accuracy gain ratio of 0.36%

per test subject’s repetition while maintaining the highest accuracy gain of 5.44%.

Furthermore, the subject-specific ANN model achieves an accuracy of 92.99% after

consuming 60% of the test subject’s data. On the other hand, the personalization of the

ANN model achieves an accuracy of 92.74% after consuming 20% of the test subject’s data

while compensating the rest of the training data from the similar users in the crowd. In other

words, the subject-specific ANN model requires triple the amount of test subject’s data, at

60%, to achieve similar accuracy to the personalized ANN at 20% of the test subject’s data

consumption with taking into consideration that the personalized ANN model compensates

the rest of the training data from the crowd. Moreover, our findings show that with 20%

of the test subject’s data, the personalized ANN model reaches the lowest accuracy gain

ratio of ≈0.36% per test subject’s repetition while maintaining the highest accuracy gain

of 5.37%.

Our findings show that the personalization approach may reduce the test subject’s data

consumption by 33.3% up to 50.0% while reducing the accuracy gap compared to the

subject-specific models.

6.8 Discussion

In RQ1, we observe that ∆Accuracy increases following a γ increase until it reaches

a maximum of 3.83 at γ = 14. Then, the accuracy starts to drop slightly with higher
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values of γ. Previous studies report similar behavior for the gamma parameter in their

results sections (Ferrari et al., 2020; Lane et al., 2011). They observe their models’ ac-

curacy increases with an increase in γ value until γ reaches an optimal point, where their

models then start losing accuracy. Although gamma’s behavior seems similar, the γ values

are different and depend on the dataset. The reason behind gamma’s behavior resides in

Equations (10) and (12) where we find that the physical and signal similarities approach

zero as γ → ∞. This means, if we keep increasing the gamma values, we will push the

test subject further away from the crowd. In other words, we, unintentionally, decrease

the possibility of finding similar users in the crowds, resulting in fewer similar data points,

and hence smaller training data. On the other hand, when γ → 0, the physical and signal

similarities approach 1. This means, if we keep decreasing the gamma values, we will push

the test subject closer toward the crowd, increasing the possibility of finding similar users.

However, this can increase the risk of including low-quality data points from similar users

with low ranks, which is usually the case in a cross-subject model; therefore, the accuracy

often drops.

In RQ2, our findings show improvements in accuracy for both personalized models,

AdaBoost-DT and AdaBoost-ANN, compared to the standard cross-subject ones, by 5.89%

and 3.38%, respectively. Such improvements occur because the training datasets for the

personalized models are selected from users who’s physical and signal traits are similar to

the test subject. A previous study reports similar findings to ours, indicating that personal-

ized models often perform +3% better than standard cross-subject models (Sztyler & Stuck-

enschmidt, 2017). However, their proposed personalized model averages 0.78 for F1-score,

while our AdaBoost-ANN model performs 3.64% better with an average of 81.64% ± 0.45

for F1-score. Overall, while this has been shown in previous works, our results help con-

solidate the benefits on relying on similarity as a method for boosting the performance of

cross-subject models.

81



In RQ3, our finding indicates that the personalized models, AdaBoost-DT and AdaBoost-

ANN, achieve comparable performance to subject-specific models while consuming 50.0%

and 66.77% less test subject data. This is an important finding to motivate approaches that

rely less on the data of the subject, particularly in cases where the test subject’s data are

difficult to obtain or very limited. A previous study utilized a personalization approach

to cut down the cost of data labeling by up to 90% for new users (Hong, Ramos, & Dey,

2016). The study reports model accuracy between 77.7% and 83.4%. In contrast, we can

observe that our personalized models, AdaBoost-DT and AdaBoost-ANN, achieve closer

or higher accuracies at 76.08% ± 0.71 and 92.74% ± 0.49 at similar rates of 20% test data

consumption, respectively, as shown in Table 6.5. This table shows the accuracy achieved

by fatigue detection models including the cross-subject, subject-specific, and personalized

models. As an implication, our findings suggest that personalized models are an effective

approach to reduce data dependency—when data on the target subject is scarce—without

severely compromising the model’s performance.

Table 6.5: Percent accuracy achieved on, with a CI of 95%, the cross-subject, subject-
specific, and personalization models.

(% of Used Test’s Data) Accuracy
∆Accuracy

Cross-Subject Personalized Subject-Specific

M
od

el
s D

T

Cross-Subject (0%) 60.08% ± 0.49 − -16.00% -28.67%
Personalized (20%) 76.08% ± 0.71 16.00% − -12.67%
Subject-Specific (100%) 88.75% ± 0.59 28.67% 12.67% −

A
N

N Cross-Subject (0%) 82.41% ± 0.58 − -10.33% -16.89%
Personalized (20%) 92.74% ± 0.49 10.33% − -6.56%
Subject-Specific (100%) 99.30% ± 0.37 16.89% 6.56% −

Moreover, we can observe that both of the personalization models achieve higher ac-

curacies compared to the cross-subject models. However, we find that the personalization

ANN models achieve lesser accuracy improvement than the personalization DT models.
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This agrees with previous work that shows that AdaBoost usually achieves higher improve-

ment results on weak classifiers such as DT than stronger ones such as ANN (Subasi et al.,

2018).

6.9 Summary

This work aims to mitigate the hindering effect of subject data variability in fatigue

detection. We propose the personalization approach to utilize data from the crowd based

on the total similarity score between the test subject and the crowd. Our dataset consists

of 3,750 concentration curl repetitions from 25 volunteers with ages and BMI ranging

between 20–46 and 24–46, respectively. We compute the total similarity score between

each individual in the crowd and the test subject based on the physical and signal similar-

ity scores. Then, we extract a weighted dataset to train our models. Our findings show

that the AdaBoost-DT model outperforms the cross-subject-DT model by 5.89%, while

the AdaBoost-ANN model outperforms the cross-subject-ANN model by 3.38%. On the

other hand, at 50.0% less of the test subject’s data consumption, our AdaBoost-DT model

outperforms the subject-specific-DT model by 16%, while the AdaBoost-ANN model out-

performs the subject-specific-ANN model by 10.33%. Our findings indicate that crowd

data are usable to build personalized bicep fatigue detection models to prevent athletes

from fatigue-induced injuries. Moreover, our personalization approach benefits real-life

applications when the data from the test subject is unavailable or insufficient. We believe

that our work is useful and represents a solid start for moving into real-world applications

for detecting the fatigue level in bicep muscles using wearables’ data from the crowd.
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Chapter 7

Conclusions and Future Work

This chapter concludes our research thesis where we summarize research findings, list

work limitations, and propose future works.

7.1 Conclusion and Findings

Chapter 4: On the Impact of Biceps Muscle Fatigue in Human Activity

Recognition

In this chapter, we used the biceps concentration curls exercise as an example of a

gym activity to observe the impact of fatigue in wearable-based HAR system. Our findings

indicate that fatigue often occurs in later sets of an exercise and extends the completion time

of later sets by up to 31% and decreases muscular endurance by 4.1%. Another finding

shows that changes in data patterns are often occurring during fatigue presence, causing

seven features to become statistically insignificant. Further findings indicate that fatigue

can cause a substantial decrease in performance in both subject-specific and cross-subject

models. Finally, we observed that a FNN showed the best performance in both cross-

subject and subject-specific models in all our evaluations.
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Chapter 5: Towards Detecting Biceps Muscle Fatigue in Gym Activity

Using Wearables

In this chapter, we adopted a wearable approach to detect biceps muscle fatigue during

a bicep concentration curl exercise as an example of a gym activity. We observed from our

data that fatigue reduces the biceps’ angular velocity; therefore, it increases the completion

time for later sets. We extracted a total of 33 features from our dataset, which have been re-

duced to 16 features. These features are the most overall representative and correlated with

bicep curl movement, yet they are fatigue-specific features. We utilized these features in

five detection models; however, we found that using a two-layer FNN achieves an accuracy

of 98% and 88% for subject-specific and cross-subject models, respectively. The results

presented in this chapter are useful and represent a solid start for moving into a real-world

application for detecting the fatigue level in bicep muscles using wearable sensors as we

advise athletes to take fatigue into consideration to avoid fatigue-induced injuries.

Chapter 6: The Personalization of Biceps Fatigue Detection Model For

Gym Activity: An Approach To Utilize Wearables’ Data From The

Crowd

In this chapter, we presented a personalized model that achieves higher performance

than the cross-subject model while maintaining a lower data cost than the subject-specific

model. Our personalization approach sources data from the crowd based on similarity

scores computed between the test subject and the individuals in the crowd. We compute

11 hand-crafted features and train two personalized models: AdaBoost-DT and AdaBoost-

ANN, using data from whom the test subject shares similar physical and single traits. Our

findings show that the AdaBoost-DT model outperforms the cross-subject-DT model by

5.89%, while the AdaBoost-ANN model outperforms the cross-subject-ANN model by
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3.38%. On the other hand, at 50.0% less of test subject’s data consumption, our AdaBoost-

DT model outperforms the subject-specific-DT model by 16% while the AdaBoost-ANN

model outperforms the subject-specific-ANN model by 10.33%. Yet, the subject-specific

models achieve the best performances at 100% of test subjects’ data consumption.

7.2 Limitations

7.2.1 Limited Data

The first limitation of our work is the data size, which may affect the external validity

of our study. While some HAR studies have opted to use public datasets, datasets with

fatigue data are not common nor often available to the public (Ferrari et al., 2020; Lin

& Marculescu, 2020). Since we have to collect our fatigue data during the COVID-19

pandemic, it has been a daunting task due to social distancing and restrictive measures.

Although our dataset may look small in size, we believe it is suitable for our research

under such circumstances as other studies also collected their dataset with similar sizes to

ours (Jebelli & Lee, 2019; Wan, Qi, Xu, Tong, & Gu, 2020). We agree that a bigger dataset

is beneficial to our work, but we believe our experiments/ approach can generate similar

performance approximately.

7.2.2 Technology and Equipment

The second limitation of our work is the reliance on the Apple Watch Series which uses

the photoplethysmography (PPG) sensor to measure participants’ heart rate during the ex-

ercise. Although Apple Watch can provide the most accurate readings amongst the optical

wrist wearables (Gillinov et al., 2017), previous works show that PPG often suffers from

inaccuracies. This means our results may be indirectly impacted (Gil et al., 2010; Schäfer

& Vagedes, 2013); however, we believe such technology does not compromise our findings,
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especially in real-life applications. Previous works show that PPG achieves clinically ac-

ceptable accuracy and might be considered safe for rehabilitation training programs (Falter,

Budts, Goetschalckx, Cornelissen, & Buys, 2019; Shcherbina et al., 2017).

On the other hand, dumbbell weight can directly vary the data points collected during

the exercise because of each participant’s physical capacity or strength. A previous study

shows lightweight dumbbells lead to a long recording session with many similar data points

until participants reach fatigue (Reis et al., 2017). In contrast, heavyweight dumbbells lead

to shorter recording sessions with fewer data entries, which do not capture kinetic changes

clearly throughout the exercise because participants reach fatigue quickly. Although we

use a 4.5 kg weight dumbbell as recommended by previous studies, we believe having

dumbbell weights will provide us with more information and different patterns of biceps

muscle fatigue (Bergquist et al., 2018; Hwang et al., 2016; Liao et al., 2021).

7.2.3 Reliability of Borg Scale

The third limitation of our work is the use of the Borg scale and the dumbbell weight.

Although the Borg scale is often used in sports science, some studies are often cautious

about its implications (Arney et al., 2019; Ciolac et al., 2015; Sala et al., 2021). Using sub-

jective measures such as the Borg scale to report RPE may introduce a dependency between

the correctness of selected Borg rating and participants’ awareness. Therefore, we intro-

duce the concept of the Borg scale to the participants in advance to avoid misevaluating

their perceived exertion rate. Also, a previous study on an Asthma Quality of Life Ques-

tionnaire (AQLQ) study shows that the Borg scale can provide highly correlated fatigue as-

sessment scores with other accurate fatigue approaches (e.g., correlation coefficients with

%HRmax, VO2max, and total AQLQ score were 0.86, 0.89 and 0.61, respectively). Thus,

overall, the Borg scale is more convenient yet considered valid and reliable scale to assess

fatigue (Grammatopoulou, Skordilis, Koutsouki, & Baltopoulos, 2008).
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7.3 Future Work

Although this thesis has taken several steps towards addressing the muscle fatigue chal-

lenge in HAR, many different avenues for future work remain unexplored. This section

lists some of the potential and interesting future work.

7.3.1 Replication: Using a Different Data Source in Fatigue Detection

Our work uses inertia data collected from a 50 Hz Neblina IMU alongside an Apple

Watch Series 4. Chapter 3 of this thesis describes how we collected our data set from

25 volunteers and processed the data for labeling. However, an important question is left

unanswered: What about different data sources such as Electromyography (EMG) in

fatigue detection?

Previous studies show that the EMG sensors can provide detailed information about

muscle conditions during incremental exercises (De la Peña, Polo, & Robles-Algarı́n, 2019;

Jebelli & Lee, 2019). Moreover, recent studies that utilize the EMG sensors show that

some EMG-based fatigue detection models can achieve average accuracies ranging be-

tween 97.2% – 98.5% during incremental exercises (L. K. Huang et al., 2020; M. Li, Li, &

Shu, 2020; S. Wang, Tang, Wang, & Mo, 2021; G. Zhang, Morin, Zhang, & Etemad, 2018).

We believe utilizing such a different data source like EMG can improve the performance of

our fatigue detection models. However, collecting and processing EMG sensors data from

bicep muscles will require effort, coding, and time; therefore, we opt for EMG sensors in

our future work.

7.3.2 Investigation: Is Fatigue Just Noise?

Chapter 4 evaluates the impact of fatigue in wearable-based HAR, including the col-

lected data, extracted features, and models performance. Our findings showed that the
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performance of HAR models tends to decrease in the presence of fatigue. However, an

important question is left unanswered: What differentiates fatigue from data noise in

the HAR’s dataset?

Previous studies mention fatigue as one of the main challenges of HAR in healthcare

applications because it often, especially in elderly cases, accounts for a considerable por-

tion of the data (Dinarević, Husić, & Baraković, 2019; Nguyen, Coelho, Bastos, & Krish-

nan, 2021; Schrader et al., 2020). However, previous studies present fatigue as a natural

symptom that manifests due to decreases in muscles’ ability to perform exercise over time.

Therefore, omitting fatigue from the HAR dataset would weaken the models in real-life

applications. Also, the data analysis of the previous datasets shows fatigue presence is too

frequent for it to be data noise in the data collected from elderly volunteers (Dinarević et

al., 2019; Triwiyanto et al., 2018; Yu et al., 2019). We believe that a comparison study

between fatigue and data noise may shed light on the differences between these two. Also,

this will answer whether noise reduction approaches apply to fatigue or not. This requires

a dedicated effort, coding, and time to select the proper exercise for the elderly; then, col-

lecting and processing their data; therefore, we propose such a comparison study in our

future work.

7.3.3 Extension: Exploring Deep Learning in Fatigue Detection

Chapter 5 combines the wearable approach and learning models to detect biceps muscle

fatigue during bicep curls. Although we used hand-crafted features and conventional learn-

ing models, our findings show that a two-layer FNN can achieve an accuracy of 98% and

88% for subject-specific and cross-subject models, respectively. In chapter 6, we propose

a personalization approach to improve the performance of cross-subject fatigue detection

models; we select DT and ANN models to examine our personalization approach (Elshafei

et al., 2021; Elshafei & Shihab, 2021). However, an important question is left unanswered:
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What can deep learning achieve in fatigue detection?

After applying deep learning, a recent study shows a significant improvement in HAR

systems performance, from 89.83% to 96.62% (Gil-Martı́n, San-Segundo, Fernandez-Martinez,

& Ferreiros-López, 2020). However, none of the experiments presented in the study in-

cluded fatigue detection or exhaustion rates prediction; therefore, future work should ex-

pand to include deep learning in fatigue detection, believing that it may provide better

accuracy results. Furthermore, future work should examine the features extracted by Con-

volutional Neural Networks (CNNs) and compare their performance with the hand-crafted

ones.

7.3.4 Application: Personalized Fatigue Detection in Parkinson’s Pa-

tients

This section lists a potential application for the fatigue personalization approach. This

application is based on the multi-agent system (MAS) and usability of crowdsource data. In

chapter 6, we mitigated the hindering effect of subject data variability in fatigue detection

from previous works to improve the cross-subject models’ performance (Elshafei et al.,

2021; Elshafei & Shihab, 2021). Now, an important question is left unanswered: What are

the applications of the fatigue personalization approach in real-life?

Data collection is often a common challenge in applying HAR to elderlies, especially

Parkinson’s patients (Antar, Ahmed, & Ahad, 2019; Dinarević et al., 2019; Y. Wang et al.,

2018; Y. Wang, Cang, & Yu, 2019). The challenge lies in two problems: 1) Parkinson’s

fatigue data is usually small because Parkinson’s patients often describe fatigue as quick

and extensive exhaustion that prevents them from moving. 2) Parkinson’s disease leads to

muscle shaking and stiffness which builds up fatigue continuously. As a result, fatigue may

suddenly reach extreme levels and become life-threatening with the slightest patient activ-

ities (e.g., making breakfast, answering a call, taking a shower). Therefore, making use of
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each bit of collected fatigue data from Parkinson’s patients is crucial. With the fatigue per-

sonalization approach, we can utilize fatigue data from similar Parkinson’s patients to train

and improve the performance of cross-subject Parkinson’s fatigue models while demanding

fewer data points from the target Parkinson’s patient. Therefore, we suggest applying our

proposed fatigue personalization approach in fatigue detection for Parkinson’s patients in

future work.
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Table .1: Appendix-A The accuracy averages for the subject-specific and personalized models after adding 10% of the test subject’s
data to the training set in each run incrementally.

Number of biceps repetitions collected from the test subject (% of used test’s data)

0
(0%)

8
(10%)

15
(20%)

23
(30%)

30
(40%)

38
(50%)

45
(60%)

M
od

el
s

D
T

Subject-specific
Accuracy 15.34%±0.83 41.30%±0.78 58.40%±0.71 68.60%±0.63 78.90%±0.57 82.20%±0.48 84.03%±0.41
∆accuracy - 25.96% 17.10% 10.20% 10.30% 3.30% 1.83%
AGR - 3.25% 1.14% 0.44% 0.34% 0.09% 0.04%

Personalized
Accuracy 65.88%±0.65 70.64%±0.68 76.08%±0.71 77.77%±0.66 79.15%±0.59 79.55%±0.51 79.91%±0.47
∆accuracy - 4.76% 5.44% 1.69% 1.38% 0.40% 0.36%
AGR - 0.60% 0.36% 0.07% 0.05% 0.01% 0.01%

A
N

N

Subject-specific
Accuracy 55.23%±0.79 62.48%±0.72 74.68%±0.64 82.95%±0.58 87.37%±0.45 90.45%±0.47 92.99%
∆accuracy - 7.25% 12.20% 8.27% 4.42% 3.08% 2.54%
AGR - 0.91% 0.81% 0.36% 0.15% 0.08% 0.06%±0.33

Personalized
Accuracy 84.54%±0.63 87.37%±0.55 92.74%±0.49 93.56%±0.42 93.88%±0.48 94.25%±0.45 94.78%±0.39
∆accuracy - 2.83% 5.37% 0.82% 0.32% 0.37% 0.53%
AGR - 0.35% 0.36% 0.04% 0.01% 0.01% 0.01%
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Table .2: Appendix-B Abbreviations list

Abbreviations Meaning Page

HAR Human Activity Recognition 1
IMU Inertial Measurement Unit 4
RPE Rate of Perceived Exertion 4
VO$ 2$ max Maximum Volume of Oxygen Consumption 13
O$ 2$ Oxygen 13
VO$ 2$ Volume of Oxygen Consumption 13
GSR Galvanic Skin Response 14
BMI Body Mass Index 17
GLM Generalized Linear Model 27
LR Logistic Regression 27
RF Random Forest 27
DT Decision Trees 27
FNN Feedforward Neural Network 27
MAD Mean Absolute Deviation 33
SD Standard Deviation 33
LOOCV Leave-One-Out Cross-Validation 39
EMG Electromyography 44
RMSE Root Mean Square Error 44
IoP Interval of Peaks 67
MSP Mean Slope between Peaks 67
PCA Principal Component Analysis 69
ANN Artificial Neural Network 73
AdaBoost-ANN AdaBoost-Artificial Neural Network 73
AdaBoost-DT AdaBoost-Decision Trees 73
AGR Accuracy Gain Ratio 79
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