
https://doi.org/10.1007/s10664-020-09819-6

What do Programmers Discuss about Deep Learning
Frameworks

Junxiao Han1 · Emad Shihab2 ·ZhiyuanWan1 · Shuiguang Deng1 ·Xin Xia3

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Deep learning has gained tremendous traction from the developer and researcher commu-
nities. It plays an increasingly significant role in a number of application domains. Deep
learning frameworks are proposed to help developers and researchers easily leverage deep
learning technologies, and they attract a great number of discussions on popular plat-
forms, i.e., Stack Overflow and GitHub. To understand and compare the insights from these
two platforms, we mine the topics of interests from these two platforms. Specifically, we
apply Latent Dirichlet Allocation (LDA) topic modeling techniques to derive the discus-
sion topics related to three popular deep learning frameworks, namely, Tensorflow, PyTorch
and Theano. Within each platform, we compare the topics across the three deep learn-
ing frameworks. Moreover, we make a comparison of topics between the two platforms.
Our observations include 1) a wide range of topics that are discussed about the three deep
learning frameworks on both platforms, and the most popular workflow stages are Model
Training and Preliminary Preparation. 2) the topic distributions at the workflow level and
topic category level on Tensorflow and PyTorch are always similar while the topic distri-
bution pattern on Theano is quite different. In addition, the topic trends at the workflow
level and topic category level of the three deep learning frameworks are quite different.
3) the topics at the workflow level show different trends across the two platforms. e.g.,
the trend of the Preliminary Preparation stage topic on Stack Overflow comes to be rela-
tively stable after 2016, while the trend of it on GitHub shows a stronger upward trend after
2016. Besides, the Model Training stage topic still achieves the highest impact scores across
two platforms. Based on the findings, we also discuss implications for practitioners and
researchers.

Keywords Empirical study · Deep learning frameworks · Tensorflow · Pytorch · Theano ·
LDA topic model

Communicated by: Filippo Lanubile

� Shuiguang Deng
dengsg@zju.edu.cn

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:2694–2747

Published online: 24 April 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09819-6&domain=pdf
mailto: dengsg@zju.edu.cn

1 Introduction

Deep learning (Erickson et al. 2017) is an emerging branch of machine learning, and pro-
poses a wide variety of neural network architectures to accomplish various tasks (Hinton
et al. 2006; Krizhevsky et al. 2012). Deep learning technologies have a significant impact on
several application domains (Erickson et al. 2017), e.g., computer vision (Krizhevsky et al.
2012; Russakovsky et al. 2015; Ledig et al. 2017), speech recognition (Ding et al. 2014;
Hannun et al. 2014), nature language processing (Cai et al. 2017; Duan et al. 2018), machine
translation (Weng et al. 2017; Hoang et al. 2017) and software engineering (Lee et al.
2017; Wan et al. 2018; Liu et al. 2018). The technologies significantly improve the perfor-
mance of those application domains (Bahrampour et al. 2015) in comparison with the state
of art.

Since deep learning is increasingly being used in software engineering domain (Lee
et al. 2017; Wan et al. 2018; Liu et al. 2018), it has become more and more important
for software engineering researchers. Researchers using these technologies can signifi-
cantly improve the performance of their methods and in turn, this will also provide some
ideal areas for researchers to perform further studies about deep learning. Deep learning
frameworks are proposed to help practitioners and researchers better use deep learning tech-
nologies. The findings in this paper can give guidance to software engineering researchers
in the research community, and also provide suggestions to practitioners to improve the
development process and improve the user experience. The deep learning frameworks of
Tensorflow, PyTorch and Theano are all typical in the deep learning domain. Tensorflow
represents the most widely-deployed deep learning framework (Abadi et al. 2016). PyTorch
is the framework with fastest increase trend recently (Ketkar 2017). And Theano is one of
the oldest deep learning frameworks (Bergstra et al. 2010).

Those frameworks attract a great number of discussions on popular platforms, e.g.,
GitHub and Stack Overflow. GitHub provides more developer perspectives, while Stack
Overflow provides more of a user’s perspective. Both platforms play a significant role in
improving the capabilities of software developers/users and accelerating software develop-
ment (Mo et al. 2015). Analyzing on the two platforms will point out the topics of interests
of the developers. There have existed many empirical studies concerning each of the two
platforms (Treude et al. 2011; Allamanis and Sutton 2013; Bajaj et al. 2014; Barua et al.
2014; Rosen and Shihab 2016; Treude and Robillard 2016; Yang et al. 2016; Azad et al.
2017; Wang et al. 2018; Wan et al. 2019). These empirical studies are mainly related to topic
trends on Stack Overflow, specific domain topics analysis, encumbrance in API usage, fac-
tors associated with question answering time and so on. Although there have existed many
studies via Stack Overflow or GitHub, respectively, there are almost no empirical studies on
deep learning frameworks using both the two platforms.

Besides, previous studies use Latent Dirichlet Allocation (LDA) topic modeling tech-
niques for various researches, e.g., Li et al. (2018) and Rosen and Shihab (2016). Our study
spans multiple frameworks in deep learning and the maturity of these frameworks are quite
different. LDA blindly captures topics without considering the diversity of datasets and the
domain-specific knowledge, where the derived LDA-topics are not linked to higher-level
domain-specific concepts. Therefore, it can not be used merely in our case. Hence, we intro-
duce the higher-level domain-specific workflow to link LDA-topics and make our analysis
more comprehensive.

Specifically, we derive a domain-specific workflow and incorporate it with the LDA topic
modeling techniques. First of all, we derive the generalized workflow for deep learning
frameworks, which is composed of seven stages: Preliminary Preparation, Data Preparation,

Empirical Software Engineering (2020) 25:2694–2747 2695

Model Setup, Model Training, Model Evaluation, Model Tuning and Model Prediction.
Then, we classify the dataset into six corpora according to the studied deep learning frame-
works (i.e., Tensorflow, PyTorch and Theano) and the platforms (i.e., Stack Overflow and
GitHub) and run LDA on each corpus independently. After that, we aggregate the LDA-
topics within the workflow and derive many different categories for each workflow stage,
which are topic categories. Furthermore, we analyze the impact trends of topics at differ-
ent levels and make a comparison across the three studied deep learning frameworks. Our
results show that the topic distribution patterns on Tensorflow and PyTorch remain the same
while the topic distribution pattern on Theano is quite different. Moreover, we also compare
the topics at different workflow levels between the two platforms, i.e., Stack Overflow and
GitHub. The results yield some interesting insights and give some suggestions to developers,
users, and researchers.

Our study answers the following research questions:

RQ1. What issues do practitioners discuss about deep learning frameworks?
A great variety of topics at different workflow stages are discussed for the three studied

deep learning frameworks. Especially, we derive 75 LDA-topics from the six corpora
in our dataset. We also observe that Model Training and Preliminary Preparation are
the most frequently discussed workflow stages for all the six corpora. Meanwhile, the
Preliminary Preparation stage for the corpus of Theano on GitHub takes up the largest
amount of LDA-topics. On the contrary, the Model Tuning stage has not been discussed
in all the six corpora, which means it is either not an issue or users are not concerned
with this stage. Also, our results show that the top 3 LDA-topics with largest increases
or largest decreases for the six corpora are quite different.

RQ2. What are the differences in the discussions across deep learning frameworks?
The topic distributions at the workflow level and topic category level on Tensorflow

and PyTorch always keep the same pattern while the topic distribution pattern on Theano
is quite different. For instance, the posts about Tensorflow and PyTorch on Stack Over-
flow are mainly concentrated on Preliminary Preparation, Data Preparation, Model Setup
and Model Training workflow stages, while the vast majority of the posts about Theano
on Stack Overflow fall into the Model Training stage. Nevertheless, the biggest similar-
ity is that across the three deep learning frameworks, Model Training stage still accounts
for the highest proportion.

In addition, we also find that only one LDA-topic has appeared twice on Tensorflow
and Theano on Stack Overflow, which is File Operation. Surprisingly, it showed the
decreasing trends of interests on Tensorflow, while showed the increasing trends of inter-
ests on Theano. Moreover, at the workflow level, we can observe that the overall impact
trends of the workflow stages on Tensorflow and Theano are relatively flat, while the
impact trends of the workflow stages on PyTorch fluctuates intensely.

RQ3. What are the differences in the discussions between Stack Overflow and GitHub?
We find that the topics at the workflow level show different trends across the two plat-

forms. For instance, the Preliminary Preparation stage shows an increasing trend on the
whole on both two platforms but the trend on Stack Overflow comes to be relatively sta-
ble after 2016, while the trend on GitHub shows a stronger upward trend after 2016. One
potential explanation for this finding is that the developers with problems on Preliminary
Preparation are apt to seek out answers on GitHub but not Stack Overflow after 2016.
In addition, we also find that whether on Stack Overflow or GitHub, the Model Training
stage still showed the highest impact in comparison with the other workflow stage topics
during the study time period.

Empirical Software Engineering (2020) 25:2694–27472696

Our contributions are as follows:

1. We first perform a large-scale empirical study across the deep learning frameworks of
Tensorflow, Pytorh and Theano both on Stack Overflow and GitHub platforms.

2. We derive the domain-specific workflow and aggregate the domain-specific topic
categories for each workflow stage of the deep learning frameworks.

3. We compare the topic distributions at the workflow level and topic category level, we
also compare the topic trends at the workflow level, topic category level and LDA-topic
level across the studied deep learning frameworks and make some key insights and
suggestions.

4. We compare the topics at different workflow stages across the two platforms and make
some significant insights.

The rest of the paper is organized as follows. In Section 2, we describe the deep learning
background. In Section 3, we introduce the research questions and methodology. The results
of our empirical study are elaborated in Section 4 and Section 5 discusses the implications
of this paper, LDA parameter analysis and the threats to validity. Section 6 presents the
related work and Section 7 draws conclusions and introduces the future work. Last but not
least, Section Appendix.

2 Background

Deep learning (DL), which is an artificial intelligence computational paradigm, is part
of a broader family of machine learning methods based on learning data representations
(Schmidhuber 2015; LeCun et al. 2015; Zhang et al. 2018).

Due to the popularity of deep learning, a number of deep learning frameworks have
emerged, which play a significant role in carrying out deep learning projects. Deep learn-
ing frameworks can be differentiated based on the supporting languages, i.e., python-based
framework, C++-based framework, lua-based framework and R-based framework, etc. The
characteristics of different deep learning frameworks are illustrated in Table 1.

TensorFlow (Abadi et al. 2016) is an open source software library for numerical com-
putation using data flow graphs, it was originally developed by researchers and engineers
at the Google Brain team of Google Machine Intelligence Research organization for the
purposes of conducting machine learning and deep neural network research. TensorFlow is
the most widely-deployed deep learning framework, which was first released in November
2015. PyTorch (Ketkar 2017) is an open source machine learning library based on Torch,
which is primarily developed by Facebook’s artificial-intelligence research group. In this

Table 1 Characteristics of deep
learning frameworks Framework Supporting languages

Tensorflow Python

PyTorch Python

Theano Python C++

Torch Lua Python

MXNet Python R Julia Scala

Caffe Python C++

CNTK Python C++

Empirical Software Engineering (2020) 25:2694–2747 2697

regard, PyTorch is a Python package that provides two high-level features, i.e., tensor com-
putation (like NumPy) with strong GPU acceleration and deep neural networks built on a
tape-based autograd system. Need to know, PyTorch was first released in October 2016.
Theano (Bergstra et al. 2010) is a Python library for fast numerical computation that can
be run on the CPU or GPU, which is primarily developed by a machine learning group
at the University of Montreal. As for the release time, Theano was first released in 2007,
which is one of the oldest and most stable libraries. Torch (Collobert et al. 2011) is an open
source machine learning library, a scientific computing framework, and a script language
based on the Lua programming language. Earlier than Theano, torch was first released in
October 2002. MXNet is a modern open-source deep learning framework used to train, and
deploy deep neural networks, which is scalable and supports a flexible programming model
and multiple languages (Li et al. 2014). As for caffe, it is a fast open framework for deep
learning and CNTK is also an open source deep learning toolkit built by Microsoft, but
the popularity and penetration rate of CNTK is not as good as Tensorflow, Theano and so
on. Apart from the deep learning frameworks mentioned above, there also exist many other
deep learning frameworks, such as caffe2,1 chainer,2 keras3 and so on.

3 Research Settings

In this section, we first motivate and present our three research questions. Then, we intro-
duce our research data and the collection process of our data sources. Lastly, we describe
our research methodology, e.g., metrics used to analyze our research data.

3.1 Research Questions

RQ1. What issues do practitioners discuss about deep learning frameworks? In the
past few years, the interest and use of deep learning frameworks have grown a lot, which
has gained tremendous traction from deep learning practitioners and software engineer-
ing researchers. Identifying the major topics of different deep learning frameworks across
different platforms can help find the major challenges that deep learning practitioners
face and give some feasible suggestions to them. Besides, it can also help the research
community understand the real issues that they face. Software engineering researchers
thus can perform their researches on specific issues to help support and improve the
development process of deep learning frameworks.

RQ2. What are the differences in the discussions across deep learning frameworks?
Developers dedicated to different deep learning frameworks may face different prob-
lems, which may lead to differences in discussed topics across the deep learning
frameworks. Therefore, we examine the distribution and evolution of issues that practi-
tioners face for the three typical deep learning frameworks, i.e., Tensorflow, PyTorch,
and Theano. Identifying and comparing the issues that practitioners face with different
deep learning frameworks will give some guidance when we need to choose a proper
deep learning framework to carry out deep learning related works. Moreover, it will

1https://caffe2.ai/
2https://chainer.org/
3https://keras.io/

Empirical Software Engineering (2020) 25:2694–27472698

https://caffe2.ai/
https://chainer.org/
https://keras.io/

help researchers better understand the issues for different deep learning frameworks and
guide future research and development efforts for these frameworks, which in turn, help
the deep learning community grow and mature.

RQ3. What are the differences in the discussions between Stack Overflow andGitHub?
Users on Stack Overflow and developers on GitHub may encounter different problems.
To figure out the similarities and differences between different platforms, we make a
comparison between Stack Overflow and GitHub platforms. Results show that discus-
sion topics of a specific deep learning framework on different platforms usually show
different development trends. By analyzing the growth and decline trends of discussion
topics on different platforms, developers dedicated to deep learning domain are capable
of mastering the direction of deep learning problems, which can help a big deal with
their development process. Moreover, the topics at the same workflow stages may have
a different focus on different platforms, e.g., developers may tend to find answers on
GitHub by submitting the pull requests or issues of bugs but not asking questions on
Stack Overflow. Identifying the tendency of developers to find answers on the two
different platforms will give some guidance when we need to choose a platform to solve
the problems.

3.2 Research Data

We collected our dataset from two platforms: Stack Overflow and GitHub. Stack Overflow
(Vasilescu et al. 2013) is a popular online programming question-answering community,
which provides its developers with convenient access to knowledge and expertise of their
peers. When developers face intractable problems during their development process, they
may ask questions and seek answers from Stack Overflow (Mo et al. 2015). In the pro-
cess of seeking questions and answers, if users consider a question or answer useful,
he/she can “vote” it up, otherwise, “vote” it down. Based on the values received by the
posts, users earn reputation score, which is the incentive system designed to encour-
age users to perform desirable activities (Wang et al. 2018). Many developers also share
and learn open-source projects in social coding sites such as GitHub. GitHub (Yu et al.
2014) is a large and popular open source project platform, which has changed the way
of development in a distributed collaborative manner and is widely adopted by software
developers.

The Stack Overflow dataset is publicly available in XML format (Barua et al. 2014),
which stores five XML documents: posts.xml, users.xml, comments.xml, votes.xml and
badges.xml. Posts.xml stores all the information of posted questions and answers. e.g., the
title and body of questions, the creation date, the tags that are associated with questions,
etc. In this regard, we use Posts.xml to make our research. The downloaded Stack Overflow
dataset was last updated in April 2018.

The GitHub dataset can be obtained via the GitHub API.4 Through the GitHub API,
we can crawl all the information that we need. e.g., the commit messages, pull request
messages, issues, etc. For our purpose, we crawled all the pull requests and issues of projects
tensorflow/tensorflow, pytorch/pytorch and theano/theano, which are the three framworks
that we attempt to analyze. The GitHub dataset was downloaded in July 2018. Notably, both
GitHub dataset and Stack Overflow dataset are all easy to obtain and analyze.

4https://api.github.com

Empirical Software Engineering (2020) 25:2694–2747 2699

https://api.github.com

Table 2 The statistics of the
posts with different deep learning
frameworks

Frameworks Statistics of posts

Tensorflow 23,908

PyTorch 615

Theano 2,364

3.2.1 Stack Overflow Data Collection

A tag is a keyword or label that categorizes your question with other similar questions.
Using the right tags makes it easier for others to find and answer your question. Also, tags
can be used to search and browse related issues. On Stack Overflow, each question post can
have up to five tags and must have at least one tag.

During the process of data collection on Stack Overflow, we leverage the tags of “ten-
sorflow”, “pytorch” and “theano” to obtain the question posts of Tensorflow, PyTorch and
Theano frameworks, respectively. Consequently, we extracted 23,908 question posts related
to Tensorflow, 615 question posts related to PyTorch and 2,364 question posts related to
Theano. The statistics of the posts are shown in Table 2.

After that, we transform the posts into records for each deep learning framework and
store it in aMongoDB database with three collections. For that every record includes the tex-
tual content (e.g., the title, the body and the tags) and the information of metadata (e.g., the
identifier, the timestamp and the viewcount). The records of the three deep learning frame-
works make up three Stack Overflow corpora which are used in the rest of the experiments.

3.2.2 GitHub Data Collection

Different deep learning frameworks have the open source projects on GitHub, for the
frameworks of Tensorflow, PyTorch and Theano, their open source projects on GitHub
are tensorflow/tensorflow,5 pytorch/pytorch6 and theano/theano,7 respectively. To collect
dataset from GitHub, we crawled all the pull requests and the issues of the three projects
aforementioned. As a result, we obtained 7,987 pull requests and 12,400 issues from the
project of tensorflow/tensorflow, 4,888 pull requests and 4,400 issues from the project of
pytorch/pytorch, 4,055 pull requests and 2,600 issues from the project of theano/theano,
respectively. All the data were collected between November 2015 and July 2018.

For every project, we then merged the pull requests and the issues to filter out the dupli-
cate records. The duplicate records are defined as the issues and pull requests are with
the same content (the same number, the same title, and the same body, etc.). Since the
pull requests and issues all have an unique number, we thus filter the duplicate records
like this: if a pull request has the same number with an issue, we remove the pull request.
After that, 15,333 records remained for the project of tensorflow/tensorflow, 6,736 records
remained for the project of pytorch/pytorch and 5,354 records remained for the project of
theano/theano. We would like to emphasize that the remained records may have different
states, e.g., “open” state or “closed” state. Since the closed records have completed and con-
tain more useful information, we then do a filter to remove the open records and leave only

5https://github.com/tensorflow/tensorflow
6https://github.com/pytorch/pytorch
7https://github.com/theano/theano

Empirical Software Engineering (2020) 25:2694–27472700

https://github.com/tensorflow/tensorflow
https://github.com/pytorch/pytorch
https://github.com/theano/theano

Table 3 The statistics of the dataset with different deep learning frameworks on GitHub

Frameworks Statistics of Statistics Statistics of Statistics of Statistics of

pull requests of issues pull requests deduplicate closed records

and issues records

Tensorflow 7,987 12,400 20,387 15,333 13,666

PyTorch 4,888 4,400 9,288 6,736 5,753

Theano 4,055 2,600 6,655 5,354 4,977

the closed records. In the end, the Tensorflow dataset on GitHub is composed of 13,666
records, the PyTorch dataset on GitHub is composed of 5,753 records and the Theano
dataset on GitHub is composed of 4,977 records, which make up our GitHub dataset that
will be used in the rest of the experiments. The statistics of the dataset are shown in Table 3.

Note that all the dataset of different deep learning frameworks on GitHub are obtained
via the GitHub API. Through the GitHub API, we extract the information of pull requests
and issues for every deep learning frameworks, i.e., the number, the title, the body, the state
and the creation time. After extracting the information that we needed, we then transform
the pull requests or issues into records and store it in the MongoDB database with three
collections. As a result, we obtain three GitHub corpora which are used in the rest of the
experiments.

3.3 ResearchMethodology

Our research methodology is composed of five steps, that are shown in Fig. 1. In the five
steps, we first introduce the process of data preprocessing, then, we present the generalized
workflow of deep learning frameworks. After that, we use topic model to find LDA-topics
and aggregate the generated LDA-topics into different topic categories in different workflow
stages. Lastly, we elaborate the metrics and analysis. Each step is detailed in the following
subsections.

3.3.1 Data Preprocessing

To filter out the noisy information in the textual content of the extracted Stack Overflow
dataset and GitHub dataset, we perform data preprocessing in five steps.

Data
Prepro-
cessing

Stack
Overflow
Dataset

GitHub
Dataset

Topic
Modeling

Determining
Deep Learning

Workflow

Aggrega�ng
LDA-Topics
into Topic
Categories

Metrics
and

Analysis
Results

1

2

3 4
5

Preproce-
ssd Data

Topic
Categories

Generalized
Workflow

Tensorflow
Topics

Pytorch
Topics

Theano
Topics

Fig. 1 An overview of research methodology

Empirical Software Engineering (2020) 25:2694–2747 2701

Step 1: Remove code snippets. Since posts on Stack Overflow are often accompanied
by code snippets and the code snippets usually contain programming language syntax
and keywords, which may lead to bad topic modeling results and introduce noises into
the future analysis (Barua et al. 2014). Furthermore, since most of the source code on
Stack Overflow only consists of small segments, there is not sufficient context to allow
meaningful content to be extracted from the code snippets (Barua et al. 2014). Therefore,
we remove the code snippets that are enclosed in <code>HTML tags of Stack Overflow
dataset, where the adopted preprocessing approach is the same as previous studies (Barua
et al. 2014; Yang et al. 2016). As for the GitHub dataset, we do not carry out this approach
for the reason that it does not contain HTML tags of <code>. Specifically, we search
for the backquote “ ’̀’ punctuation in the records of GitHub dataset, and remove the
code wrapped between the backquote. The rationale is that the writing of issues and pull
requests in GitHub basically follows the markdown syntax, and in the markdown syntax,
the code is wrapped with a backquote. Since the code snippets include the source code
and the code comments, after removing the code snippets, the source code and the code
comments are all excluded.

Step 2: Remove HTML tags and URLs. Owing to that the HTML tags (e.g., <p>,
<pre> and) and URLs are useless in the process of topic modeling, we remove all
the HTML tags and URLs of both Stack Overflow dataset and GitHub dataset.

Step 3: Remove numbers, punctuation marks and other non-alphabetic characters.
For better topic modeling results, we continue to remove the number, the punctuation
marks and other non-alphabetic characters of both Stack Overflow dataset and GitHub
dataset.

Step 4: Lemmatize. After step 3, we apply the NLTK WordNet Lemmatizer (Miller
1995) to transform words to their base forms (e.g., “makes” transformed to “make”).

Step 5: Filter out stop words. Finally, for that common English-language stop words do
not work for generating meaningful topics (Schütze et al. 2008), we filter out it by using
the NLTK stop words corpus (Loper and Bird 2002).

3.3.2 Determining Deep LearningWorkflow

The workflow of a specific domain defines the basic stages of the domain and the rela-
tionships between these stages. For deep learning domain, there also exists a workflow.
Starting from the architecture documentation of the various deep learning frameworks,
e.g., Tensorflow, PyTorch, and Theano, we develop the generalized workflow for the deep
learning domain with different deep learning frameworks. The generated workflow is com-
posed of seven stages, which can be seen in Fig. 2. Next, we elaborate the stages in
detail.

1) Preliminary preparation. Before using deep learning frameworks, we first need to
solve the installation problem, platform compatibility problem, version problem and
so on. All these problems pave the way for the subsequent use of deep learning
frameworks.

2) Data preparation. This category is a prerequisite for all deep learning frameworks for
that it is necessary to prepare data for different models. Only by converting the raw
data into the suitable input data format required by the deep learning frameworks can
the models be at the best performance. Most deep learning frameworks provide this
functionality.

Empirical Software Engineering (2020) 25:2694–27472702

Data Preprocessing

Preliminary prepara�on

Model Setup

Model Predic�on

Model
Training

Model
Evalua�onModel

Tuning

Fig. 2 The Workflow of Deep Learning Frameworks

3) Model setup. Model Setup category is one of the most crucial categories in all deep
learning frameworks. This category is dedicated to the problems with the model itself,
e.g., model selection, model setup, model loading and model saving.

4) Model training. After selecting a suitable model, it is time to train the model to gener-
ate better model accuracy and performance. It is worth mentioning that there are a lot
of techniques on model training, e.g., the model parameter selection, the loss funtion
selection, optimization strategy, gpu acceleration.

5) Model evaluation. The category of model evaluation is responsible for evaluating the
trained model generated in the previous step. Sometimes, it needs to visualize the
trained model, so that the developers can have a better understanding of the model
training process and easily assess the changes in loss function, model accuracy and so
on.

6) Model tuning. The model’s hyper-parameter tuning is responsible for improving the
model’s performance and accuracy. An inappropriate loss function may lead to a poor
model and bring about a low model accuracy, which explains the importance of hyper-
parameter tuning.

7) Model prediction. After training and evaluating the model, it is time to use the trained
model to predict the new input data. During the process of model prediction, we also
need to pay attention to the prediction accuracy and other problems appeared in stage.

3.3.3 Topic Modeling

Our goal involves finding the discussion topics in different deep learning frameworks and
our dataset is derived from both Stack Overflow platform and GitHub platform. Due to that
the tags on Stack Overflow are coarse-grained and fail to provide fine-grained categorization
information and the GitHub dataset includes no tags to provide categorization information,
we use LDA-based topic models to discover and capture the fine-grained discussion topics
in different deep learning frameworks.

LDA is a probabilistic topic model, which represents topics as probability distributions
over the words in the corpus of text. Moreover, it also represents the documents as the
probability distributions of the discovered topics. LDA uses the word frequencies and word
co-occurrences in the corpus of the documents to build a model of related words (Thomas
2012). The words in a referenced topic are usually semantically related, overall, which gives

Empirical Software Engineering (2020) 25:2694–2747 2703

a special implication to the referenced topic. However, due to the fact that the LDA model
has no semantic knowledge, the meanings of the referenced topics must be determined
by manually examining the set of words. For example, the words “model”, “tensorflow”,
“trained”, “file” and “save” presented in a topic indicate that this topic may related to model
saving on Tensorflow.

Due to that the topics generated by LDA are less likely to be overfitting and are easier
to interpret, LDA has been recognized as the widely used technique for generating discus-
sion topics of unstructured documents (Blei et al. 2012). Thus, a tremendous amount of
researches have emerged in Software Engineering domain, including extracting topics from
bug reports (Lukins et al. 2008), analyzing topics on Stack Overflow (Barua et al. 2014;
Rosen and Shihab 2016; Yang et al. 2016) and studying software loggings (Li et al. 2018).

LDA implementation. We use the implementation of the LDA model provided by the
gensim Python library,8 which is an implementation of the online LDA by Hoffman
et al. (2010) - an online variational Bayes (VB) algorithm for LDA. We use 5 passes (the
number of passes through the corpus during training) with K topics to run the gensim
LDA and all other parameters have default settings.

Number of Topics. The number of topics, denoted as K , is usually a parameter specified
by user, which can control the granularity of the discovered topics (Barua et al. 2014).
The value of K can neither be too large nor too small, too large of the value of K may
result in topic crossover and redundancy, while too small of the value of K may lead
to coarser-grained topics (Rosen and Shihab 2016). We experimented with different K

values to obtain the topics with the highest coherence measures. Here, the coherence
measures are used to quantify the coherence of fact sets (Bovens and Hartmann 2010),
which can also be used to assess the comprehensibility of the discovered topics (Newman
et al. 2010).

To better analyze the discussion topics in different deep learning frameworks, we run one
LDA per corpus to capture the discussion topics in our dataset. Our dataset are composed
of six corpora: 23,908 posts on Stack Overflow in Tensorflow corpus, 615 posts on Stack
Overflow in PyTorch corpus, 2,364 posts on Stack Overflow in Theano corpus, 13,666
records on GitHub in Tensorflow corpus, 5,753 records on GitHub in PyTorch corpus and
4,977 records on GitHub in Theano corpus. We generate different LDA models for each
corpus to obtain the discussion topics for each corpus in our dataset. Thus, we can use
different number of K values for each LDA models along with each corpus according to its
richness of the content.

For each corpus, to choose the proper K value that derives topics with high coherence
score, we set K range from 5 to 50 with a step of 5 (i.e., 5, 10, 15, 20, ..., 50). We calculate
the topic coherence for each LDAmodel by applying the gensim moduleCoherenceModel,
which has implemented the Roder et al.’s four stage topic coherence pipeline (Both and
Hinneburg 2015).

3.3.4 Aggregating the Generated LDA-topics into Topic Categories

Different deep learning frameworks implement the aforementioned workflow in different
ways. To study the discussion issues of different deep learning frameworks on different
platforms (i.e., Stack Overflow and GitHub) in more detail, the first author and a graduate

8https://radimrehurek.com/gensim/

Empirical Software Engineering (2020) 25:2694–27472704

https://radimrehurek.com/gensim/

student aggregate the generated LDA-topics to each workflow stage and derive the aggre-
gated topic categories in each workflow stage. We manually look into the LDA-topics and
categorize them to each workflow stage. Then we apply the card sorting approach (Spencer
2009; Wan et al. 2017) to derive the aggregated topic categories in each workflow stage.
The aggregated topic categories in each workflow stage for different deep learning frame-
works on different platforms are shown in Fig. 3 and Table 4. From Fig. 3 and Table 4, we
have the following observations:

Preliminary preparation. Tensorflow and PyTorch on GitHub both discuss the System
Installation, while Tensorflow, PyTorch and Theano on GitHub all raise the Version
Problem. Tensorflow on Stack Overflow, PyTorch on GitHub and Theano on GitHub
refer to Other API, and all the studied deep learning frameworks on the two platforms
involve Error.

Data preparation. Tensorflow and PyTorch on Stack Overflow are all related to theData
Reading problems, Tensorflow and Theano on GitHub match the Data Type problem.
Moreover, Tensorflow on Stack Overflow, Tensorflow, PyTorch and Theano on GitHub
all refer to the Data Shape problem. Different from the former, Tensorflow on Stack
Overflow, PyTorch on Stack Overflow and GitHub, and Theano on GitHub fall into the
category of Error, which pays attention to the errors that appear in this stage.

Model setup. Tensorflow and PyTorch on Stack Overflow all pay close attention to the
Model Application and Model Structure, and the Model Saving problem is followed by
Tensorflow on Stack Overflow and Theano on GitHub.

Model training. The process of model training is composed of many categories. In these
categories, many techniques are discussed and studied, e.g., the loss funtion, optimization

Data Preprocessing

Preliminary prepara�on

Model Setup

Model Predic�on

System
Installa�on

Version
Problem

Data Reading Data Type Data Shape

Model
Structure

Model
Saving

Model Training

Model Evalua�on

ErrorPredic�on Accuracy

Model
Tuning

Other API Error

Error

Gpu Training

Loss Func�on
Op�miza�on

Error/Bug

Visualiza�on

ST

SP

SH

Stack Overflow
Tensorflow

Stack Overflow
Theano

Stack Overflow
Pytorch

GT

GP

GH

GitHub
Tensorflow

GitHub
Theano

GitHub
Pytorch

ST

ST

ST

ST

ST

ST ST

GT GT

GT GT
GT

SP

SP

SP

SP

SP

SPGPGP GP

GP

SH

SH
GH

GH

GH

GH

Model
Selec�on

SP

Performance

ST GT

Model
Applica�on

ST

ST

Training Accuracy
ST

GT GH

ST ST
SP

GP

GP
GP

GH GH

GH GH

GH

GH

Fig. 3 The Aggregated Topic Categories of the Workflow for Different Deep Learning Frameworks on
Different Platforms

Empirical Software Engineering (2020) 25:2694–2747 2705

Table 4 The Aggregated Topic Categories of the Workflow for Different Deep Learning Frameworks on
Different Platforms

Topics categories SO Tensorflow SO PyTorch SO Theano GH Tensorflow GH PyTorch GH Theano

Preliminary Preparation

System Installation � �
Version Problem � � �
Other API � � �
Error � � � � � �
Data Preparation

Data Reading � �
Data Type � �
Data Shape � � � �
Error � � � �
Model Setup

Model Selection

Model Application � �
Model Structure � �
Model Saving � �
Model Training

Gpu Training � �
Loss Function � �
Optimization � �
Performance � � �
Training Accuracy �
Error/Bug � � �
Model Evaluation

Visualization � �
Model Tuning

Model Prediction

Prediction Accuracy

Error �

“�” indicates the distribution of topic categories at different deep learning frameworks on different
platforms. SO is the abbreviation of Stack Overflow and GH is the abbreviation of GitHub

strategy and gpu training. Moreover, the model performance also falls into the process of
model training. Also, there may exist a lot of errors in the training process.

PyTorch on Stack Overflow and GitHub are concerned about the issues of Gpu Training,
Loss Funtion and Error/Bug. Tensorflow on Stack Overflow and GitHub pay attention to the
issues of Loss Funtion,Optimization, Performance and Training Accuracy. Theano on Stack
Overflow and GitHub refer to the issues of Performance and Error/Bug. Interestingly, only
PyTorch on Stack Overflow and GitHub are concerned about the issue of Gpu Training and
only Tensorflow on Stack Overflow and GitHub pay attention to the issues of Optimization
and Training Accuracy.

Empirical Software Engineering (2020) 25:2694–27472706

Model evaluation. In the process of model evaluation, there is only one implementation,
which is the issue of Visualization concerned by Tensorflow on Stack Overflow and
Theano on GitHub.

Model tuning. Model tuning, which is also the hyper-parameter tuning, is significant
in improving the model’s performance and accuracy. However, there are no studied
frameworks related to model tuning, currently.

Model prediction. Only Theano on GitHub is associated with the issue of Error.

3.3.5 Metrics and Analysis

We apply LDA to each post/record in our dataset. Thus, each post/record derives K topics,
z1, z2, ..., zk . We define the topic membership value of topic zi in post/record dj as θ(dj , zi).
It is worth emphasizing that ∀i, k : 0 ≤ θ(di, zk) ≤ 1 and ∀i : ∑k

1θ(di, zk) = 1. Under
such conditions, we carry out computations on the following metrics to answer our research
questions.

Dominant Topic The topic with the highest probability value is the dominant topic for
each post/record. The dominant topic of a post/record dj is denoted as

dominant (dj) = zi : θ(dj , zi) = max(θ(dj , zk)), 1 ≤ j ≤ K (1)

Topic Trends over Time To make an analysis on the temporal trends of topics, we intro-
duce the impact metric of a topic zi in month m, which is defined in Barua et al.
(2014):

impact (zi , m) = 1

|D(m)|
∑

dj ∈D(m)

θ(dj , zi) (2)

where D(m) is the set of posts/records in month m. The impact metric is used to measure
the relative proportion of posts/records associated with one specific topic zi compared to
the other topics in that particular month m.

In addition, we also define the impact metric of topics at a specific workflow stage S in
month m, which is:

impact (S, m) = 1

|D(m)|
∑

dj ∈D(m),zi∈S

θ(dj , zi) (3)

where D(m) is the set of posts/records in month m.

4 Results

In this section, we present the results of applying the research methodology to our research
dataset and answer of each research question. It is worth noting that the topics discussed in
our paper consist of three levels, namely workflow stage (seven stages for the generalized
workflow), LDA-topic (the topics derived from LDA models directly), and topic category
(the aggregated topic categories in each workflow stage). We will then use the three terms
to analyze the distribution and evolution of topics at different levels.

Empirical Software Engineering (2020) 25:2694–2747 2707

4.1 RQ1. What issues do practitioners discuss about deep learning frameworks?

As described above, we generated different LDA models for each corpus and chose the
optimal K with the highest coherence score for each corpus respectively. As a result, we
derive 75 LDA-topics from the six corpora in our dataset, 20 LDA-topics for the corpus of
Tensorflow on Stack Overflow, 10 LDA-topics for the corpus of PyTorch on Stack Overflow,
5 LDA-topics for the corpus of Theano on Stack Overflow, 10 LDA-topics for the corpus of
Tensorflow on GitHub, 10 LDA-topics for the corpus of PyTorch on GitHub, and 20 LDA-
topics for the corpus of Theano on GitHub. Tables 7, 8, 9, 10, 11 and 12 illustrate the details
of the discovered LDA-topics and their top keywords, which can be seen in Appendix A.
Figures 17, 18, 19, 20, 21 and 22 shows the trendline of the top 3 LDA-topics with the
largest increases and decreases, which can be seen in Appendix B. These trendlines give
explanations of the rise and fall of interest on specific LDA-topics.

The topic categories aggregated by our methodology are shown in Table 5. From Table 5,
we can observe the workflow stages, the aggregated topic categories, the number of LDA-
topics matched to a specific topic category and the proportion of posts/records in a specific
topic category within a corpus. Then, we present the relationships between the workflow
and the LDA-topics and give a subset of representative example posts/records for each LDA-
topic, which can be seen in Appendix C.

Furthermore, we can gain some key insights from Table 5. From Table 5, we can observe
that the most popular workflow stages are Model Training and Preliminary Preparation.
Out of all the six corpora, they all make frequent discussions on the two stages and the
two stages all account for a large proportion of posts/records. Meanwhile, we can find that
the Preliminary Preparation stage for the corpus of Theano on GitHub takes up the largest
amount of LDA-topics, where the largest number is 9. We can also see that the Model
Tuning stage has not been discussed in all the six corpora, which is basically in line with our
normal knowledge. As we all know, deep learning frameworks only have a few parameters
to be debugged (e.g., learning rate and drop-out). The debugging of parameters is mostly
based on practitioners’ experience and are determined by constantly trying, thus there exist
no issues about the Model Tuning stage. Moreover, at the level of topic categories, results
show that only the topic category of Error makes discussions in all the 6 corpora. Besides,
the largest amount of LDA-topics also belong to the topic category of Error for the corpus
of Theano on GitHub, which is consistent with the results in workflow topic level.

Empirical Software Engineering (2020) 25:2694–27472708

4.2 RQ2. What are the Differences in the Discussions Across Deep Learning
Frameworks?

In this section, we make an analysis on the topics across different deep learning frameworks
within a specific platform, aiming to find out the similarities or differences across differ-
ent deep learning frameworks. We first elaborate on the topic distributions of different deep
learning frameworks, which can be seen in Table 5. Then, we can gain some interesting
insights from the topic trends at the LDA-topic level and topic category level across dif-
ferent deep learning frameworks. In the end, we make some comparisons about the topic

Table 5 The percentage of posts/records in the aggregated topic categories for the six corpora

Topics SO SO SO GH GH GH

Tensorflow PyTorch Theano Tensorflow PyTorch Theano

Preliminary 22.1% ×5 17.1% ×2 16.1% ×2 30.8% ×4 34.4% ×5 20.2% ×9

Preparation

System Installation 7.3% ×1 3.2% ×1

Version Problem 3.7% ×1 7.7% ×1 5.0% ×1

Other API 4.0% ×1 1.2% ×1 3.4% ×1

Error 16.0% ×3 17.1% ×2 11.8% ×1 16.5% ×2 20.4% ×2 9.3% ×6

Data Preparation 23.3% ×4 17.5% ×2 6.9% ×2 31.3% ×2 10.5% ×3

Data Reading 8.1% ×2 5.0% ×1

Data Type 2.7% ×1 4.2% ×1

Data Shape 7.4% ×1 4.2% ×1 14.1% ×1 4.8% ×1

Error 7.7% ×1 12.5% ×1 17.2% ×1 1.5% ×1

Model Setup 24.8% ×3 22.0% ×2 0.8% ×1

Model Selection

Model Application 13.9% ×3 10.6% ×1

Model Structure 5.4% ×1 11.4% ×1

Model Saving 5.5% ×1 0.8% ×1

Model Training 25.5% ×5 43.4% ×4 83.9% ×3 62.3% ×3 34.3% ×2 46.4% ×5

Gpu Training 10.9% ×1 3.2% ×1

Loss Function 5.3% ×1 13.2% ×1

Optimization 3.4% ×1 47.8% ×1

Performance 5.5% ×1 9.0% ×1 7.5% ×1

Training Accuracy 6.5% ×1

Error/Bug 9.4% ×1 27.6% ×1 36.5% ×3

Model Evaluation 4.3% ×1 9.2% ×1

Visualization 4.3% ×1 9.2% ×1

Model Tuning

Model Prediction 12.9% ×1

Prediction Accuracy

Error 12.9% ×1

“× number” indicates the number of LDA-topics matched with a particular topic category. SO is the
abbreviation of Stack Overflow and GH is the abbreviation of GitHub

Empirical Software Engineering (2020) 25:2694–2747 2709

trends at the workflow level. Notably, since there exist two platforms (i.e., Stack Over-
flow and GitHub), we thus compare the studied deep learning frameworks on each platform
separately.

4.2.1 Stack Overflow Platform

We first compare the deep learning frameworks on the Stack Overflow platform. The com-
parison process includes the following aspects: topic distribution pattern at the workflow
level, topic distribution pattern at the topic category level, LDA-topic trend, and topic
category trend.

Topic Distribution Pattern at the Workflow Level Firstly, we analyze the topic distribu-
tions at the workflow level.

– Tensorflow. As shown in Table 5, the posts about Tensorflow are mainly concentrated
on Preliminary Preparation (22.1%), Data Preparation (23.3%),Model Setup (24.8%)
and Model Training (25.5%). Especially, the Model Training stage accompanied by
the highest proportion as opposed to the Model Evaluation (4.3%) stage with the low-
est proportion. Furthermore, the Model Tuning and Model Prediction stages have no
proportions.

– PyTorch. Similarly, most of the posts about PyTorch fall into Preliminary Prepara-
tion (17.1%), Data Preparation (17.5%), Model Setup (22.0%) and Model Training
(43.4%). Particularly, the Model Training stage accounts for 43.4%, which is nearly
half of the whole and is consistent with the conclusion in Tensorflow. Also, there exist
no proportions on theModel Evaluation, Model Tuning andModel Prediction stages.

– Theano.As for Theano, the vast majority of the posts fall into theModel Training stage,
which accounts for 83.9%. The rest of the posts account for 16.1% on Preliminary
Preparation. Consistent with the previous conclusion, the Model Training stage also
takes up the highest proportion on the whole.

The topic distributions at the workflow level on Tensorflow and PyTorch always keep the
same pattern while the topic distribution pattern on Theano is quite different. Tensorflow
and PyTorch are mainly concentrated on Preliminary Preparation, Data Preparation,
Model Setup and Model Training, while Theano mainly fall into the Model Training
stage.
Nevertheless, the biggest similarity is that across the three deep learning frameworks,
Model Training stage still accounts for the highest proportion. In this regard, we can
speculate that the most practitioners suffer from confusions and doubts or have errors to
be solved on this stage, which indicates that more attention should be paied for this stage.

Topic Distribution Pattern at the Topic Category Level Then, we further analyze the topic
distributions in terms of different topic categories.

– Tensorflow. For Tensorflow, although the Model Training stage accounts for the high-
est proportion, the topic category of Error (16.0%) in Preliminary Preparation stage
accounts for the highest proportion compared to the other topic categories. Besides, the
Error topic is composed of 3 LDA-topics, which is also the largest amount in all the
topic categories. The proportions of the rest topic categories vary from 3.4% to 13.9%.

Empirical Software Engineering (2020) 25:2694–27472710

– PyTorch. For PyTorch, which is analogous to Tensorflow, the highest proportion
and the largest amount of 2 LDA-topics also belong to the topic category of Error
(17.1%) in Preliminary Preparation. While the Data Reading (5.0%) topic category
subordinates to the smallest proportion compared to the other topic categories.

– Theano. As for Theano, the majority of the posts divide into theModel Training stage,
and the majority of the proportion fall into Error/Bug (27.6%) inModel Training stage,
which is different from the former frameworks.

The topic distribution at the topic category level on Tensorflow and PyTorch keep the
same pattern to some extent, they focus more on the topic category of Error in Pre-
liminary Preparation stage. While the topic distribution pattern on Theano is quite
different, they focus more on the topic category of Error/Bug in Model Training stage.
Although their concerns are quite different, it indicates that there still need attention and
improvements to the errors in the two stages.

LDA-topic Trend Except the difference of topic distributions in terms of workflow level or
topic category level, we can also observe the discrepancy between different deep learning
frameworks from the top 3 LDA-topics with the largest increases or decreases in Figs. 17,
19 and 21. From Figs. 17, 19 and 21, we can draw a conclusion that whether on Tensorflow,
PyTorch or Theano, the top 3 LDA-topics with largest increases or decreases are always
different, which means that the users using different deep learning frameworks on Stack
Overflow show different concerns and interests. It is worth mentioning that in all the top
3 LDA-topics with the largest increases or decreases of Tensorflow, PyTorch and Theano,
only one LDA-topic has appeared twice, which is File Operation. Surprisingly, it showed the
decreasing trends of interests on Tensorflow, while showed the increasing trends of interests
on Theano. A proper explanation for this trend may be attributed to the fact that Tensorflow
has drawn more and more attention from users and the tutorials or answers towards File
Operation are becoming more and more complete, which results in the decreasing trends
of interests. However, although Theano is a veteran deep learning framework, there are still
many places to be completed.

The top 3 LDA-topics with largest increases or decreases are always different on the three
studied deep learning frameworks, which implies that users show different concerns and
interests on different deep learning frameworks. Surprisingly, only one LDA-topic has
appeared twice and shown different trend on different deep learning frameworks.

Topic Category Trend Moreover, due to the fact that the three frameworks all include
the topic category of Error in Preliminary Preparation stage, we take it as an example to
explore the similarities and differences of the topic category trend across different frame-
works, which is illustrated in Fig. 4. We find that all the three deep learning frameworks
showed a very high impact at the very beginning during the study time period. A reasonable
explanation for this trend can be attributed to the lack of tutorials and the insufficiency of
documentation system, which results in a sharp increase on Error at the beginning. On this
condition, we can improve the documentation system and provide more exhaustive tutori-
als to ameliorate this problem. Moreover, after the abnormal peak at the very beginning, the
trend of Error at all the three deep learning frameworks come to be steady and smooth with

Empirical Software Engineering (2020) 25:2694–2747 2711

Fig. 4 Comparative trend analysis of the Error topic category in Preliminary Preparation stage across deep
learning frameworks

impact scores vary from 0 to 0.2. In general, there exists no obvious monotonic trend for
Error at all the three deep learning frameworks.

The topic category of Error showed a very high impact at the very beginning during
the study time period, which can be attributed to the lack of tutorials and the insuffi-
ciency of documentation system at the beginning. On this condition, we can improve the
documentation system and provide more exhaustive tutorials to ameliorate this problem.

4.2.2 GitHub Platform

We then compare the deep learning frameworks on the GitHub platform. The comparison
process includes the following aspects: topic distribution pattern at the workflow level, topic
distribution pattern at the topic category level, LDA-topic trend, and topic category trend.

Topic Distribution Pattern at the Workflow Level The topic distributions of Tensorflow,
PyTorch and Theano on GitHub can be seen in Table 5.

– Tensorflow. From Table 5, we can speculate that the posts about Tensorflow are mainly
concentrated on Preliminary Preparation (30.8%),Data Preparation (6.9%) andModel
Training (62.3%), where the Model Training stage accounts for the highest propor-
tion as opposed to the Data Preparation stage with the lowest proportion. Besides, no
proportions are assigned for the other 4 stages.

– PyTorch.When it comes to PyTorch, the most of the posts fall into Preliminary Prepa-
ration (34.4%),Data Preparation (31.3%) andModel Training (34.3%), which presents
the same distribution pattern as Tensorflow. Furthermore, the other 4 stages also have
no proportions. It is worth mentioning that the proportion distribution on the three
workflow stages in PyTorch is relatively equal, which expresses discrepancy with the
proportion distribution in Tensorflow.

Empirical Software Engineering (2020) 25:2694–27472712

– Theano. In addition, we can speculate that Theano wrap up six of the seven workflow
stages, which are: Preliminary Preparation (20.2%), Data Preparation (10.5%),Model
Setup (0.8%),Model Training (46.4%),Model Evaluation (9.2%) andModel Prediction
(12.9%). Among them, theModel Training stage still accounted for the highest propor-
tion, which is consistent with the conclusion in Tensorflow. On this condition, we can
draw a conclusion that more useful tools and thorough tutorials should be provided to
help developers solving the problems emerged in theModel Training stage.

The topic distribution at the workflow level on Tensorflow and PyTorch presents the
same pattern, they all fall into Preliminary Preparation, Data Preparation and Model
Training. While Theano shows a quite different distribution pattern, they account for six
of the seven workflow stages. However, the distribution ratios of topics at the workflow
level for different deep learning frameworks are slightly different.

Topic Distribution Pattern at the Topic Category Level Furthermore, we compare the
topic distributions of topic categories across the three different deep learning frameworks.

– Tensorflow. In Tensorflow, the topic category of Optimization (47.8%) inModel Train-
ing stage occupies nearly half of the whole, which is aligned with the highest proportion
of Model Training stage. Although Optimization topic category takes up the highest
proportion compared to the other topic categories, it only consists of 1 LDA-topic. On
the contrary, the topic categories of Data Type, Version Problem and Data Shape take
up 2.7%, 3.7% and 4.2%, respectively.

– PyTorch. Different from Tensorflow, the highest proportion of the topic category in
PyTorch is Error (20.4%) in Preliminary Preparation. Besides, the second highest pro-
portion of the topic category is Error (17.2%) in Data Preparation stage. The Error
in Preliminary Preparation is composed of 2 LDA-topics while the Error in Data
Preparation only includes 1 LDA-topic.

– Theano. Lastly, the proportions of the topic categories in Theano are relatively equal.
The Error (36.5%) in Model Training stage accounts for the highest proportion with
3 LDA-topics while the Error (9.3%) in Preliminary Preparation stage takes up the
largest amount of 6 LDA-topics.

Tensorflow focuses more on the topic category of Optimization, while the highest pro-
portion of the topic category in PyTorch is Error in Preliminary Preparation and Error in
Data Preparation. Simultaneously, the topic category of Error in Model Training stage
accounts for the highest proportion in Theano. Results show that different deep learn-
ing frameworks on GitHub show different discussions and concerns on the topics at the
topic category level.

LDA-topic Trend After the comparison of the topic distributions at different levels, we then
compare the top 3 LDA-topics with the largest increases or decreases on different deep
learning frameworks, which can be seen in Figs. 18, 20 and 22. We can observe that out of
all the top 3 LDA-topics with the largest increases or decreases of Tensorflow, PyTorch and
Theano on GitHub, only two LDA-topics have appeared twice, which are Version Problem
and Performance. The LDA-topic of Version Problem presents the increasing trend both on

Empirical Software Engineering (2020) 25:2694–2747 2713

PyTorch and Theano, which implies that the two deep learning frameworks all need to better
solve the version problems and improve the compatibility between different versions.

Interestingly, the LDA-topic of Performance shows distinct trends on Tensorflow and
Theano. It shows an increasing trend on Tensorflow, while shows a decreasing trend on
Theano. To properly account for the phenomenon, we conjecture that on owing to that
Tensorflow has many defects when using, it can often lead to performance problems, e.g.,
memory explosion. Besides, many new developers have not mastered the skills well, which
may also result in performance problems. However, Theano shows less and less interest in
performance problems.

The LDA-topic of Version Problem presents the increasing trend both on PyTorch and
Theano, which implies that the two deep learning frameworks all need to better solve the
version problems and improve the compatibility between different versions.
The LDA-topic of Performance shows an increasing trend on Tensorflow and a decreas-
ing trend on Theano. A reasonable explanation for this trend can be attributed to that
many new developers have not mastered skills well, which may result in performance
problems.

Topic Category Trend It should be noted that the topic category of Version Problem in
Preliminary Preparation stage has distributions on all the three frameworks. We now probe
the similarities and differences of the topic trend across the three frameworks, which is
described in Fig. 5a. The impact score of Version Problem in the three frameworks all
presents an increasing trend on the whole from August 2011 to July 2018. Besides, we can
find that the time when Version Problem emerged is aligned with the time when the frame-
works began to appear, and the time when Version Problem spiked is aligned with the time
when the frameworks released a new version. It gives a hint that more endeavors should
be paid to ameliorate the version problems and try the best to improve the compatibility
between different versions.

After the trend analysis of Version Problem, we examine the topic category of Perfor-
mance in Model Training stage, which is illustrated in Fig. 5b. From Fig. 5b, we find that
there only two deep learning frameworks on GitHub have produced this topic category,
that are Tensorflow and Theano. The Performance topic category in Tensorflow has both
increases and decreases during the study time period. It was relatively smooth during 2016
to 2017, while presented a sharp increase after January 2017. A reasonable explanation for
this trend may be attributed to the release of Tensorflow 1.0, which results in many new
problems on Performance in a short-term. As for the Performance topic category in Theano,
we can observe that the topic category has both increases and decreases during the study
time period, while presents an relatively steady trend on the whole, which is quite different
from the topic trend in Tensorflow.

The impact score of Version Problem in the three frameworks all presents an increasing
trend on the whole. Besides, we can find that the time when Version Problem emerged
is aligned with the time when the frameworks began to appear, which gives a hint that
more endeavors should be paid to ameliorate the version problems.
The impact of Performance was relatively smooth during 2016 to 2017, while presented
a sharp increase after January 2017. A reasonable explanation for this trend may be
attributed to the release of Tensorflow 1.0, which results in many new problems on
Performance in a short-term.

Empirical Software Engineering (2020) 25:2694–27472714

(a) Comparative trend analysis of the Version Problem topic category

(b) Comparative trend analysis of the Performance topic category

Fig. 5 Comparative trend analysis of the Version Problem topic category in Preliminary Preparation stage
and the Performance topic category in Model Training stage across different deep learning frameworks

Workflow Stage Trend. After the trend analysis in topic category level, we further analyze
the topic trends in workflow level at different deep learning frameworks. We apply the
impact metric (3) to investigate the trends and the results are presented in Figs. 6, 7 and
8. We can first observe that Tensorflow includes 5 workflow stages, PyTorch includes 4
workflow stages, while Theano includes 6 workflow stages, which implies that different
deep learning frameworks show different concerns on the workflow stages.

Moreover, we can observe that the overall impact trends of the workflow stages on Ten-
sorflow and Theano are relatively flat, while the impact trends of the workflow stages on
PyTorch fluctuates intensely. From this phenomenon, we can draw a conclusion that the
discussions about workflow stages are generally stable on Tensorflow and Theano, while
the discussions about workflow stages vary greatly over time on PyTorch. In detail, we can
further observe that the Model Training stage on Tensorflow and Theano always accounts
for the highest impact score, while on PyTorch, it shows the relatively analogous highest

Empirical Software Engineering (2020) 25:2694–2747 2715

Fig. 6 The impact scores of topics at different workflow stages on Tensorflow between December 2015 and
June 2018

impact score with the Data Preparation stage. Although the Model Training stage takes
up the highest impact score on the whole, it is worth noting that it presents a decreasing
trend on the whole on PyTorch and Theano. Only on Tensorflow, the impact of it shows an
increasing trend.

Results show that the overall impact trends of the workflow stages on Tensorflow and
Theano are relatively flat, while the impact trends of the workflow stages on PyTorch
fluctuates intensely. From this phenomenon, we can draw a conclusion that the discus-
sions about workflow stages are generally stable on Tensorflow and Theano, while the
discussions about workflow stages vary greatly over time on PyTorch.

Fig. 7 The impact scores of topics at different workflow stages on PyTorch between September 2016 and
July 2018

Empirical Software Engineering (2020) 25:2694–27472716

Fig. 8 The impact scores of topics at differentworkflow stages onTheano betweenAugust 2011 and June 2018

4.3 RQ3. What are the differences in the discussions between Stack Overflow and
GitHub?

In this section, we analyze the topics of a specific deep learning framework across differ-
ent platforms to determine the similarities and differences across different platforms. For
that we have elaborated the topic distributions across different deep learning frameworks in
RQ2, here, we briefly compare the topic distribution on different platforms. We then empha-
size the topic trends at the LDA-topic level across different platforms. Lastly, we elaborate
on the workflow trends on different platforms. Notably, since there exist three deep learning
frameworks, we thus compare each framework on different platforms, separately.

4.3.1 TensorFlow

We first compare the TensorFlow framework on the two studied platforms. The comparison
process includes the topic distribution pattern at the workflow level and LDA-topic trend.

Topic Distribution Pattern at theWorkflowLevel For Tensorflow, we can see that whether
on Stack Overflow or GitHub, Preliminary Preparation andModel Training all account for
the highest proportion, which implies that both developers and users all pay close attention
to the two stages and derive many problems needed to be resolved. Furthermore, researchers
should pay more effort on the two stages, to provide more tools, system documentation, and
tutorials. In addition, we need to keep in mind that the posts of it have distributions inModel
Setup and Model Evaluation on Stack Overflow, while it has no distributions on GitHub in
terms of the two-stage topics. The results give a hint that users tend to discuss the two-stage
topics on Stack Overflow, while developers do not discuss the two-stage topics on GitHub.

Whether on Stack Overflow or GitHub, Preliminary Preparation and Model Training all
account for the highest proportion, which implies that both users and developers all pay
close attention to the two stages and derive many problems needed to be resolved.
Stack Overflow has topic distributions on Model Setup and Model Evaluation, while
GitHub has no distributions on the two workflow stages. The results give a hint that users
tend to discuss the two stage topics on Stack Overflow, while developers do not discuss
the two stage topics on GitHub.

Empirical Software Engineering (2020) 25:2694–2747 2717

LDA-topic Trend We can find that the top 3 LDA-topics with largest increases and
decreases on Stack Overflow and GitHub are quite different, which shows that users and
developers have different concerns. Making analyses on the differences can help clarify
the individual needs of users and developers. On Stack Overflow, the interests of users on
Model Training, Input Error and Model Saving show the highest increasing trends, which
indicates that more and more users are paying attention to the three LDA-topics. A reason-
able explanation for this trend may be attributed to the lack of tutorials and the complexity
of using for framework. Thus, it is desirable to complete the tutorials and make the frame-
work more easy-using in different stages. While on GitHub, the interests of developers on
Variable Shape, Installation in Linux and Performance present the highest increasing trends.
It is very likely that more and more developers face with such problems in their develop-
ment process, which implies that establishing a sound documentation system that provides
richer knowledge and experience is urgent. In the future, researchers can take into account
augmentation of documentation system and improvement of framework accessibility.

On the other hand, the top 3 LDA-topics with largest decreases on Stack Overflow and
GitHub show different results. The users on Stack Overflow show less and less interests
in Keras, Runtime Error and File Operation, while the developers on GitHub pay less and
less attention on Gradient and Fixing Error. The less and less interests in error means that
whether users or developers are becoming more and more mature when using the frame-
work, which is a good phenomenon. Besides, we need to keep in mind that although the
developers on GitHub show less and less interests in Gradient, the impact score of Gradi-
ent is still more higher than many other LDA-topics, which may explain that there still exist
many problems towards this issue. Last but not least, we can speculate that for the top 3
LDA-topics with largest increases and decreases, the discussions of developers on GitHub
is always earlier than the discussions of users on Stack Overflow.

On Stack Overflow, the interests of users on Model Training, Input Error and Model
Saving show the highest increasing trends. A reasonable explanation for this trend may
be attributed to the lack of tutorials and the complexity of using for framework. While
on GitHub, the interests of developers on Variable Shape, Installation in Linux and Per-
formance present the highest increasing trends. It is very likely that more and more
developers face with such problems in their development process, which implies that
establishing a sound documentation system that provides richer knowledge and experi-
ence is urgent.
The users on Stack Overflow show less and less interests in Keras, Runtime Error and
File Operation, while the developers on GitHub pay less and less attention on Gradient
and Fixing Error. The less and less interests in error means that whether users or devel-
opers are becoming more and more mature when using the framework, which is a good
phenomenon.

4.3.2 PyTorch

We then compare the PyTorch framework on the two studied platforms. The comparison
process includes the topic distribution pattern at the workflow level and LDA-topic trend.

Topic Distribution Pattern at the Workflow Level For PyTorch, it yields an insight that
whether on Stack Overflow or GitHub, developers and users all focus on the Preliminary
Preparation, Data Preparation andModel Training stages. The only difference is that users

Empirical Software Engineering (2020) 25:2694–27472718

on Stack Overflow are also absorbed in the Model Setup stage, while the developers on
GitHub pay no attention to this stage. Our analysis reveals that more mature tutorials and
system documentation are needed for Preliminary Preparation stage and more tools are
needed for Data Preparation and Model Training stages. In addition, the users on Stack
Overflow are concentrated on theModel Setup stage, which gives a hint that many users are
still confused with the Model Setup stage, researchers should derive more feasible tools to
help to select models, creating models and verifying models.

On Stack Overflow, the interests of users on Model Training, Input Error and Model
Saving show the highest increasing trends. A reasonable explanation for this trend may
be attributed to the lack of tutorials and the complexity of using for framework. While
on GitHub, the interests of developers on Variable Shape, Installation in Linux and Per-
formance present the highest increasing trends. It is very likely that more and more
developers face with such problems in their development process, which implies that
establishing a sound documentation system that provides richer knowledge and experi-
ence is urgent.
The users on Stack Overflow show less and less interests in Keras, Runtime Error and
File Operation, while the developers on GitHub pay less and less attention on Gradient
and Fixing Error. The less and less interests in error means that whether users or devel-
opers are becoming more and more mature when using the framework, which is a good
phenomenon.

LDA-topic Trend To this extent, we can find that the top 3 LDA-topics with largest
increases and decreases on Stack Overflow and GitHub are quite different. The interests of
users on Stack Overflow show the highest increasing trends on Loss Function,Gpu Training
and Tensor Error, while the interests of developers on GitHub show the highest increas-
ing trends on Tensor Operation, Code Error and Version Problem. From our observation,
we find that the users on Stack Overflow pay close attention to the Model Training stage
(i.e., Loss Function and Gpu Training) and the interests are becoming higher and higher,
which suggests that more tools should be generated to help selecting proper loss functions
and assisting gpu training process. Consequently, more and more researches can take into
consideration providing tools for assisting development processes. While the attention of
developers on GitHub are quite different. Their attention on Version Problem is becom-
ing higher and higher, which implies that there still exists much work to do with version
problems, e.g., improving the compatibility between different versions.

Moreover, the top 3 LDA-topics with largest decreases on Stack Overflow and GitHub
present different results. The interests of users on Stack Overflow show the highest decreas-
ing trends on Network Layer, Installation Error and Image Training, while the interests of
developers on GitHub show the highest decreasing trends on Function Operation, Build
Error and System Installation. The less and less interests of users on Stack Overflow in Net-
work Layer and Installation Error may be due to the fact that the installation tutorials and
the architecture design is getting better. As for the decreasing interests of users in Image
Training, a reasonable explanation for this trend may be attributed to that deep learning
is more and more widely used in many other fields. Furthermore, the decreasing interests
of developers in Build Error and System Installation also reveal the phenomenon that the
installation tutorials are becoming more and more complete, which is consistent with the
results of users on Stack Overflow. Last but not least, we can observe that for the top 3

Empirical Software Engineering (2020) 25:2694–2747 2719

LDA-topics with largest increases and decreases, the discussions of developers on GitHub
is always earlier than the discussions of users on Stack Overflow.

Whether on Stack Overflow or GitHub, users and developers all focus on the Prelimi-
nary Preparation,Data Preparation and Model Training stages. Our analysis reveals that
more mature tutorials and system documentations are needed for Preliminary Prepara-
tion stage and more tools are needed for Data Preparation and Model Training stages.
In addition, the users on Stack Overflow are concentrated on the Model Setup stage,
which gives a hint that many users are still confused with the Model Setup stage,
researchers should derive more feasible tools to help selecting models, creating models
and verifing models.

4.3.3 Theano

We lastly compare the Theano framework on the two studied platforms. The comparison
process includes the topic distribution pattern at the workflow level and LDA-topic trend.

Topic Distribution Pattern at the Workflow Level For Theano, the vast majority of the
posts on Stack Overflow fall into the Model Training stage and the rest of it falls into
Preliminary Preparation, while the posts of it on GitHub take up six out of the seven
workflow stages. In this regard, we can draw a conclusion that the developers on GitHub
encounter a wide range of problems and more solutions should be provided for the
developers.

The developers on GitHub encounter a wide range of problems and more solutions
should be provided for the developers.

LDA-topic Trend We find that the users on Stack Overflow show increasing interest in
File Operation, Code Error and Model Training, while the developers on GitHub show
the highest increasing trends of interests on File Operation, Version Problem and Using
Numpy. We can observe that the users and developers all show an increasing trends on
File Operation, which implies that there still exist many problems needed to be resolved
in this point. The increasing attention of users on Code Error and Model Training gives a
hint that more tutorials should be completed and more tools should be generated to assist
the development processes. The increasing attention of developers on Version Problem and
Using Numpy also imply that there still exists much work to do with version problems and
numpy using problems.

Furthermore, the users on Stack Overflow show the decreasing trends of interests on
Gpu Error, while the developers on GitHub show the highest decreasing trends of interests
on Data Shape, Code Graph and Performance. The decreasing interests of users in Gpu
Error may due to the mature of users in gpu training process. The decreasing interest of
developers in Data Shape, Code Graph and Performance may be due to the proficiency
in the use of framework and the richness of hardware resources. Last but not least, the
discussions of developers on GitHub is still earlier than the discussions of users on Stack
Overflow.

Empirical Software Engineering (2020) 25:2694–27472720

We can observe that the users and developers all show an increasing trends on File Oper-
ation, which implies that there still exist many problems needed to be resolved in this
point.
The decreasing interests of users in Gpu Error may due to the mature of users in gpu
training process. The decreasing interest of developers in Data Shape, Code Graph and
Performance may be due to the proficiency in the use of framework and the richness of
hardware resources.

Workflow Stage Trend We further use the impact metric (3) to investigate the trend of
topics at different workflow stages on Stack Overflow and GitHub, respectively. The results
are presented in Figs. 9 and 10. We can draw a conclusion that whether on Stack Overflow
or GitHub, Model Training stage still maintains the highest impact score compared to the
other workflow stages. The impact score of the Model Training stage on Stack Overflow
ranges from 1.0 to 0.3, while on GitHub, it ranges from 0.5 to 0.4. The trendlines of the
Model Training stage on Stack Overflow and GitHub all present a decreasing trend on the
whole. As for the Preliminary Preparation stage, we can see that the trendlines of it on both
two platforms show an increasing trend on the same. However, the trend of the Preliminary
Preparation stage on Stack Overflow comes to be relatively stable after 2016, while the
trend of it on GitHub shows a stronger upward trend after 2016. One potential explanation
for this finding is that the developers with problems on Preliminary Preparation are apt to
seek out answers on GitHub but not Stack Overflow after 2016.

Then, we make an observation on the Data Preparation stage and find that the overall
development trend of it is flat. Moreover, the Data Preparation stage on Stack Overflow
did not come into spring until the end of 2015, while the Data Preparation stage on GitHub
still stays impact during 2011 to 2018. It is reasonable to expect that before the end of 2015,
the developers tend to solve the Data Preparation problems on GitHub and start looking for
answers on Stack Overflow until the end of 2015. After the analysis on theData Preparation
stage, we analyze theModel Setup stage trend. The results show that theModel Setup stage
on Stack Overflow presents a sharp rise in the end of 2015, while the impact of it on GitHub

Fig. 9 The impact scores of topics at different workflow stages on Stack Overflow between April 2012 and
March 2018

Empirical Software Engineering (2020) 25:2694–2747 2721

Fig. 10 The impact scores of topics at different workflow stages on GitHub between August 2011 and July
2018

is still close to 0. From the results, we can speculate that the users are prone to discuss
Model Setup problems on Stack Overflow after the end of 2015 but not on GitHub.

When it comes to the Model Evaluation stage, the impact score of it is still close to 0.1
on both two platforms, but the trendlines of it on the two platforms are quite different. On
Stack Overflow, it comes to be active in the end of 2015, while on GitHub, it is still active
during the study time period. We can conjecture that the developers’ interests in this stage
are not high on both two platforms. Last but not least, we can only observe the trendline of
the Model Prediction stage on GitHub and the impact score of it is still close to 0.1. The
result implies that the developers only discuss the Model Prediction problems on GitHub
and the interests are not high on the whole.

We derive the trendlines of the topics at different workflow stages on different platforms
and observe that Model Training on the two platforms still showed the highest impact
compared to the other workflow stages during August 2011 to July 2018, Preliminary
Preparation and Data Preparation all showed an increasing trend on the whole on the
two platforms during the study time period, Model Setup experienced a sharp increase
since 2016 on Stack Overflow and the impact of it on GitHub is still slight. As for
Model Evaluation, the impact score of it is still small on both two platforms and Model
Prediction only existed on GitHub.

5 Discussions

5.1 Implications

5.1.1 Implications for Researchers

We find that the most popular workflow stages are Model Training and Preliminary Prepara-
tion for all the six corpora, where the practitioners all make frequent discussions on the two
stages and the two stages all account for a large proportion of posts/records. For researchers,

Empirical Software Engineering (2020) 25:2694–27472722

this will be an ideal area for further research, which can solve the common concerns of
developers and users. Moreover, researchers can study a specific issue in depth, e.g., they
can make researches on the specified topics, such as system installation, version problems,
errors in the model training process, etc.

Researchers addicted to specific issues in depth can provide strong support and guidance
for the development of deep learning frameworks, which will further promote and improve
the deep learning frameworks. For example, actual posts on Stack Overflow titled “tensor-
flow not found in pip” (id: 38896424), “Installing tensorflow with anaconda in windows”
(id: 37130489), “Trouble with TensorFlow in Jupyter Notebook” (id: 37061089), “How can
I install torchtext” (id: 42711144), and “PyTorch doesn’t import after installing Anaconda”
(id: 41818618) all belong to the LDA-topic of installation error. Therefore, researchers
can summarize and categorize the errors practitioners encountered in their installation pro-
cess. Simultaneously, researchers can also provide tools and documents for newcomers to
accelerate the installation process.

5.1.2 Implications for Practitioners

The impact trends of LDA-topics give a hint to practitioners and help them to better under-
stand the development trend of different problems in deep learning frameworks. Software
developers and users dedicated to different deep learning frameworks may encounter dif-
ferent problems. Therefore, identifying the issues that practitioners encounter for different
deep learning frameworks will give some guidance when they need to choose a deep learn-
ing framework to carry out deep learning works. In addition, the LDA-topics with the largest
increases or decreases on Tensorflow, PyTorch, and Theano are always different, which
means that the practitioners using different deep learning frameworks show different con-
cerns and interests. To choose a proper framework, they should pay more attention to the
problems that they may encounter on different deep learning frameworks.

Moreover, since the same topic category on different deep learning frameworks shows
different development trend, it can also provide some inspiration to the developers and users.
It can persuade them to consider completing the documentation system, augmenting the
tutorials, improving the framework accessibility, ameliorating the version problems, gener-
ating more tools to provide assistance in the development processes and helping to resolve
many other corresponding problems.

Furthermore, the impact trends of the topics at the workflow level also reveal a phe-
nomenon that the overall impact trends of the workflow stages on Tensorflow and Theano
are relatively flat, while the impact trends of the workflow stages on PyTorch fluctuate
widely. The phenomenon implies that if practitioners are fond of the frameworks with rel-
atively stable discussions, they can choose Tensorflow or Theano. Otherwise, they can
choose PyTorch, which is the latest deep learning framework with discussions that intensely
fluctuate, which may indicate many new features or novel ideas being suggested.

Discussion topics of a specific deep learning framework on different platforms may be
different and always show different development trends. For example, the LDA-topics with
the largest increases or decreases of the same deep learning framework between Stack Over-
flow and GitHub are quite different on the whole, which gives a hint that although using the
same deep learning framework, users on Stack Overflow and developers on GitHub always
show different concerns and interests. Moreover, the same workflow stages also have dif-
ferent trends on different platforms, e.g., more developers focus on the Model Prediction
stage, they may tend to find answers on GitHub by submitting the pull requests or issues
of bugs but not asking questions on Stack Overflow. Identifying the tendency of developers

Empirical Software Engineering (2020) 25:2694–2747 2723

and users to find answers on the two different platforms will give some guidance when we
need to choose a proper platform to solve the problems.

5.2 LDA Parameter Analysis

Previous studies show that default LDA parameters always lead to sub-optimal solutions (De
Lucia et al. 2014). Therefore, in the process of applying LDA, how to choose the optimal
LDA parameters are usually difficult. To choose an optimal value of K and alleviate the
threat, we use Roder et al.’s four stage topic coherence pipeline (Both and Hinneburg 2015)
to calculate the topic coherence for each LDA model with different values of K . After that,
we choose the topic models with optimal K that accompany with the highest coherence
score. Besides, since LDA itself is a probabilistic method, when it is run several times on
the same corpus, it may produce different results. Therefore, our topic results may vary to
a certain degree. To alleviate the variation in the results, we run LDA models at least three
times and compare the optimal number of topics in each run. The results of varied K values
with its coherence scores for each corpus are shown in Figs. 11, 12, 13, 14, 15 and 16. From
Figs. 11 to 16, we can find that there are no significant differences in the optimal K that
the LDA runs. Moreover, we can also observe that after the K value reaches the highest
coherence score, the coherence score then decreases as the K value increases overall.

Moreover, the default settings for parameters of α and β accompanied with K in gensim
LDA is shown in Table 6. Different K values are accompanied with different parameters of
α and β, e.g., the optimal K value for the corpus of Tensorflow on Stack Overflow is 20,
then the parameters of α and β are 0.05, respectively, which indicates that the LDA model
with K = 20, α = 0.05 and β = 0.05 reaches the highest coherence score.

5.3 Threats to Validity

Internal Validity. When applying topic models to find LDA-topics, we use information
in the title and body of posts/records. Using the body text can improve this process,
however, it may also introduce some noise. Since the publisher may add details about
their attempts, code errors thrown by the compiler, or other details. These details may

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

K value

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

C
o

h
er

en
ce

 S
co

re

coherence_score_1

coherence_score_2

coherence_score_3

Fig. 11 The vaired K values with its coherence scores for Tensorflow on Stack Overflow

Empirical Software Engineering (2020) 25:2694–27472724

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

K value

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

C
o

h
er

en
ce

 S
co

re

coherence_score_1

coherence_score_2

coherence_score_3

Fig. 12 The vaired K values with its coherence scores for PyTorch on Stack Overflow

take away from the topic that the publisher really asks. To alleviate this threat, when
determining the LDA-topics, we not only use the keywords but also randomly select 10
sample posts/records belong to this topic to help determine the final LDA-topics.

The mapping process from LDA-topics to workflow is manually done by two authors,
thus, some biases might exist in this mapping process. Nevertheless, in the mapping
process, we have referred to many online documents and consulted experienced users in
this domain to ensure the accuracy of our classification results to the utmost extent.

External Validity. Although we have incorporated Stack Overflow and GitHub in our
study, it may still not enough since there may exist some activities on other platforms. In
this regard, our study can be ameliorated by incorporating more sources in the future.

Moreover, in the process of data collection on Stack Overflow, we only leverage the tags
of “tensorflow”, “pytorch” and “theano” to obtain the question posts of Tensorflow, PyTorch

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

K value

0.35

0.40

0.45

0.50

0.55

0.60

C
o

h
er

en
ce

 S
co

re

coherence_score_1

coherence_score_2

coherence_score_3

Fig. 13 The vaired K values with its coherence scores for Theano on Stack Overflow

Empirical Software Engineering (2020) 25:2694–2747 2725

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

K value

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

C
o

h
er

en
ce

 S
co

re

coherence_score_1

coherence_score_2

coherence_score_3

Fig. 14 The vaired K values with its coherence scores for Tensorflow on GitHub

and Theano frameworks, respectively. This may result in the fact that some question posts
are related to Tensorflow, PyTorch and Theano frameworks, but was not obtained in our
dataset on owing to the absence of “tensorflow”, “pytorch” and “theano” tags. Therefore,
our study should identify all of the tags related to the Tensorflow, PyTorch and Theano
frameworks and use the tags to complete our dataset in the future.

Different deep learning frameworks pay attention to different issues. The discussions
on the topics at different levels in this paper may not be generalized to all the deep learn-
ing frameworks. To ensure the generalization, more deep learning frameworks should be
incorporated. However, the studied deep learning frameworks in this paper are typical in
the deep learning domain. Tensorflow represents the most widely-deployed deep learning
framework (Abadi et al. 2016). PyTorch stands for the framework with fastest increasing
trend recently (Ketkar 2017). And Theano is one of the oldest deep learning frameworks
(Bergstra et al. 2010). Through the studies on the three typical deep learning frameworks,

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

K value

0.48

0.50

0.52

0.54

0.56

0.58

C
o

h
er

en
ce

 S
co

re

coherence_score_1

coherence_score_2

coherence_score_3

Fig. 15 The vaired K values with its coherence scores for PyTorch on GitHub

Empirical Software Engineering (2020) 25:2694–27472726

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

K value

0.44

0.46

0.48

0.50

0.52

0.54

0.56

C
o

h
er

en
ce

 S
co

re

coherence_score_1

coherence_score_2

coherence_score_3

Fig. 16 The vaired K values with its coherence scores for Theano on GitHub

we believe that our findings have some representativeness. We also hope that the findings
can bring some enlightenments to developers, users and researchers who use other deep
learning frameworks.

Construct Validity After determining the LDA-topics, the first and third authors work
together to perform a manual inspection of partial data to guarantee the correctness of our

Table 6 The parameters of α and
β with K in LDA models K value α β

5 0.200 0.200

10 0.100 0.100

15 0.067 0.067

20 0.050 0.050

25 0.040 0.040

30 0.033 0.033

35 0.029 0.029

40 0.025 0.025

45 0.022 0.022

50 0.020 0.020

55 0.018 0.018

60 0.017 0.017

65 0.015 0.015

70 0.014 0.014

75 0.013 0.013

80 0.013 0.013

85 0.012 0.012

90 0.011 0.011

95 0.011 0.011

Empirical Software Engineering (2020) 25:2694–2747 2727

results. To mitigate the risk, we randomly select three sample posts/records for each LDA-
topic in each corpus (225 sample posts/records in total) and manually inspect it. We then
manually label the 225 sample posts/records and compare the manual-topics with the exist-
ing LDA-topics by applying the Cohen’s Kappa. As a result, an almost perfect agreement
(kappa=0.90) is achieved.

6 RelatedWork

6.1 Studies on Deep Learning

Zhang et al. (2018) aimed to find the characteristics and root causes of deep learning defects.
To achieve this goal, they studied the deep learning applications built on the basis of Ten-
sorFlow and collected program bugs related to TensorFlow from both Stack Overflow and
Github. They also studied the strategies deployed by TensorFlow users for bug detection
and localization, which can give some suggestions and implications to the researchers and
TensorFlow users. Another study related to deep learning came from Bahrampour et al.
(2015). In this paper, they introduced a comparative study of five deep learning frameworks
(Caffe, Neon, TensorFlow, Theano, and Torch) on three aspects, which are: extensibility,
hardware utilization, and speed. Experimental results showed that the most easily exten-
sible frameworks are Theano and Torch, and Torch is the most suitable framework for
all the deep architectures on CPU. However, the best performance on GPU is achieved
by Theano, which can be used to train and deploy the LSTM (Hochreiter and Schmid-
huber 1997) networks. In the end, TensorFlow is very flexible, which is analogous to
Theano.

6.2 Studies on Stack Overflow

The data dump of Stack Overflow has been widely used in many studies and the researchers
used Stack Overflow data dump to solve a diversity of problems. Out of all the stud-
ies, some researchers tended to study the development on Stack Overflow. Barua et al.
(2014) made an analysis on the textual contents of Stack Overflow discussions and ana-
lyzed the relationships and trends of the topics on Stack Overflow. Rosen and Shihab
(2016) summarized the mobile-related questions and determined the difficulty of it, they
also explored platform-specific issues and investigated the types of questions. Yang et al.
(2016) explored the security-related questions and determined the popularity and diffi-
culty of it. Moreover, Baltes et al. (2018) built SOTorrent, which is an open dataset based
on the official Stack Overflow data dump to analyze how content on Stack Overflow
evolves.

In addition to the researches dedicated to the development of Stack Overflow, there also
exist many other studies absorbed in resolving a variety of other problems. Li et al. (2013)
conducted an empirical research with 24 developers to identify the needs and challenges
developers face in performing development tasks. Bajaj et al. (2014) made a research on
the web developers to find the common challenges and misunderstandings of them. Chen
et al. (2016) presented an approach to recommend analogical libraries, which can be used
to solve analogical-libraries questions. Ye et al. (2016) exploited name synonyms and rich
semantic context of API mentions to extract API mentions in informal social text. Yao et al.
(2018) mined question-code pairs from Stack Overflow and predicted whether or not a code
snippet is a standalone solution to a question. Wang et al. (2018) used a logistic regression

Empirical Software Engineering (2020) 25:2694–27472728

model to analyze 46 factors along four dimensions so as to understand the relationship
between the studied factors and the needed time to get an accepted answer. Zagalsky et al.
(2018) reported a study of how the R software development community creates and curates
knowledge on Stack Overflow.

6.3 Applying LDA on Software Engineering Domains

Nguyen et al. (2011) proposed BugScout, which is an automated approach based on LDA
to locate buggy code. Panichella et al. (2013) introduced a solution called LDA-GA, which
uses Genetic Algorithms (GA) to determine the approximate optimal configuration of LDA
for different SE tasks. Chen et al. (2017) used topic models to generate topics of resources
and found that which topics are well tested and which are defect prone. Li et al. (2018) used
LDA topic modeling to study the relationship between the topics of a code snippet and the
likelihood of a code snippet being logged.

7 Conclusion and FutureWork

In this paper, we discover the discussion topics across three different deep learning frame-
works (Tensorflow, PyTorch and Theano) on two platforms (Stack Overflow and GitHub).
However, due to the fact that LDA blindly captures topics without considering the diversity
of datasets and the domain-specific knowledge, we introduce the higher-level domain-
specific workflow. After that, we aggregate the generated LDA-topics to the workflow and
derive the aggregated topic categories in each workflow stage. Furthermore, we make a
comparison across the studied deep learning frameworks and find that the topic distribu-
tions at the workflow level and topic category level on Tensorflow and PyTorch still keep
the same pattern. Moreover, we analyze the impact trends of topics at different topic lev-
els for a specific deep learning framework across different platforms and gain some key
insights. Besides, we also compare the discrepancy of the topics at different workflow lev-
els between the two platforms and yield many interesting conclusions and give many useful
suggestions to software developers, users and researchers.

In the future, we tend to analyze how the impact trends of topics at different topic levels
vary with respect to the number of newcomers and the number of unique users and gain
some key insights. Moreover, we can also incorporate more deep learning frameworks to
make the analysis more common and generalized.

Acknowledgment This research was partially supported by the National Key Research and Development
Program of China (No. 2017YFB1400601), Key Research and Development Project of Zhejiang Province
(No. 2017C01015), National Science Foundation of China (No. 61772461), Natural Science Foundation of
Zhejiang Province (No. LR18F020003 and No.LY17F020014).

Appendix

A LDA Topics and Keywords

Tables 7, 8, 9, 10, 11 and 12 illustrate the details of the discovered LDA-topics and their top
keywords.

Empirical Software Engineering (2020) 25:2694–2747 2729

Table 7 Topics Generated by LDA for tensorflow on Stack Overflow

Topic name Top keywords

Stack Overflow Tensorflow (K = 20)

Model Training object model tensorflow detection api estimator tf

train google using cloud contrib learn ml step

Image Classification image tensorflow using inception model class cnn

size label want classification one trained dataset input

Tensor Operation tensor tensorflow matrix shape x want like array

dimension numpy tf values get vector sparse

Training Accuracy training model accuracy data loss code learning

set network test problem epoch using results validation

Input Error error code shape tensor tensorflow following get

trying input valueerror using placeholder feed help array

Keras tensorflow keras using code way find know question

function could something one need implementation

learning

Installation Error tensorflow python error install import found pip

core windows cuda library version anaconda

environment module

Performance gpu memory tensorflow cpu time training using

device multiple one run model gb process performance

Runtime Error tensorflow error run version gpu using code python

following get tried problem cuda trying installed

Build Error tensorflow build bazel run distributed server

docker worker file serving using command project

error example

Word Embedding data one input features embedding like tensorflow

word feature model would example label use column

File Operation py tensorflow file line python lib packages site local

self users name op run usr

Tensorboard code tensorboard graph run tensorflow session get

following print error see like summary using however

Variable variable tensorflow weights tf use way like get value

new scope how function create need

Loss Function loss function tensorflow gradient softmax output cross

optimizer using tf cost entropy values mean compute

Network Layer layer network neural output input tensorflow

convolutional

weights fully connected cnn hidden size keras first

RNN LSTM rnn lstm sequence input time state output size length

cell tensorflow model decoder batch dynamic

Batch batch tf input graph size tensorflow queue function feed

data operation tensor run batches loop

Empirical Software Engineering (2020) 25:2694–27472730

Table 7 (continued)

Topic name Top keywords

Data Reading data file dataset tensorflow read training code images

mnist test csv set example tutorial like

Model Saving model tensorflow graph trained file save checkpoint

load android restore java inference want code weights

Table 8 Topics Generated by LDA for PyTorch on Stack Overflow

Topic name Top keywords

Stack Overflow PyTorch (K = 10)

Network Layer network layer pytorch output use neural input like

lstm implement way learning batch get weights

Input Size pytorch input size torch lstm layers module output

error call lib line nn state work

Code Error code error pytorch get rnn following new tensor word

input problem target anyone wrong data

Loss Function function loss pytorch variable code network gradients

backward understand parameters find update class

custom something

Installation Error pytorch install file error py python using code version

command get pip packages run conda

Model Training data model pytorch training example one loss sequence

batch simple time two test encoder question

Gpu Training code gpu using get pytorch training different run

work batch following tried something cpu results

Cuda Error pytorch error cuda following torch model code

method trying help gpu message function run loading

Tensor Error tensor torch size error floattensor pytorch numpy x

variable dimension array b w matrix way

Image Training model images dataset pytorch image cnn make load

trained sure one used convolution different models

Table 9 Topics Generated by LDA for Theano on Stack Overflow

Topic name Top keywords

Stack Overflow Theano (K = 5)

Gpu Error theano gpu error python using run get following code

installed keras version cuda windows trying

File Operation theano file line py lib packages site cuda python local

error import users usr anaconda

Function Operation theano function matrix tensor code variable using way

numpy vector gradient get example value shared

Empirical Software Engineering (2020) 25:2694–2747 2731

Table 9 (continued)

Topic name Top keywords

Code Error error code input theano shape output layer x keras size

get following model data batch

Model Training model network keras using neural data training layer

code learning output weights input loss image

Table 10 Topics Generated by LDA for Tensorflow on GitHub

Topic name Top keywords

GitHub Tensorflow (K = 10)

Value Type type device name value cpu framework float tensor kernel

node run tensorflow shape key list

Build Error tensorflow build error bazel core external contrib kernels

lib cuda cmake usr opt tools bin

Gradient gradients resnet float unit bottleneck dt mean dynamicpartition

batchnorm const truediv moving weights branch grads

Variable Shape tf x shape self variable size input batch ops name rnn layers

dtype output scope

Installation in Linux ocal bazel tensorflow test root bin linux usr build pip eigen

python org framework libtensorflow

File Operation tensorflow file python line lib packages site import contrib

local lite call self home toco

Fixing Error tensorflow fix java android github org add error issue support

api code trees master like

Performance tensorflow gpu core runtime device common allocator size

bfc cuda job task chunk cpu localhost

Model Training tf model train graph data image input run dataset batch fn

step estimator py def

Version Problem tensorflow version source code tf command problem python

gpu cuda ubuntu cudnn binary installed linux

Table 11 Topics Generated by LDA for PyTorch on GitHub

Topic name Top keywords

GitHub PyTorch (K = 10)

Function Operation code functions aten tests one make new add changes instead

change fixes need cuda fix

Tensor Fixing tensor grad fix backward add cudnn const long docs native

rnn function conv autograd input double

Tensor Operation tensor test torch add onnx type sparse variable fix scalar return

python x script size

Code Error torch x nn size import input model cuda data print loss return

output variable def

Empirical Software Engineering (2020) 25:2694–27472732

Table 11 (continued)

Topic name Top keywords

Distributed Process torch size type count jit temp build time autograd distributed

python process group win release

File Operation lib file py line packages torch home site usr linux local rw

data gnu call

Build Error test build pytorch error users fix desktop edward yang signed

tolia gpu windows api context

System Installation lib include install torch pytorch tmp cmake build home found

test cuda gaoxiang mkl performing

Third Party psimd pytorch party third src home cmakefiles usr aten error

include nnpack nvidia build mkl

Version Problem version cuda pytorch gpu conda python source cudnn pip build

error gcc os torch installed

Table 12 Topics Generated by LDA for Theano on GitHub

Topic name Top keywords

GitHub Theano (K = 20)

Data Shape shape id byte totalsize inplace elemsize elemwise x input tensorconstant

w dimshuffle shared b add

Object Error self n py node null var pyobject idx int ssize pylist call output

owner clazylinker

Code Error fix crash doc add txt news error code update bug gpu reported

test remove change

Cuda Error cuda usr dylib lib ndarray include versions users library system

framework nvcc home python error

Gpuarray Bug gpuarray pygpu cudnn mode test algo fwd dnn call convolution

gpu pyx hash milliseconds max

File Operation theano file line py lib packages gof site local opt error usr

compile home node

Clang Error error clang target feature argument unknown file directory us

miniconda theano ms users env int

Import Error theano import file mno lib packages site line compile py error files

module gof include

Installation Problems core inumpy src anaconda use run py numpy version ga ic configtest

file setup build

Warnings theano tensor py nnet tests conv use deprecated usr instead src shape

userwarning warn opt

Data Type theano x inputs self function outputs value dtype none tensor type scan

import np size

Theano Composite theano elemwise composite inplace time true apply scan gpuelemwise

switch ops scalar x add module gpu

Empirical Software Engineering (2020) 25:2694–2747 2733

Table 12 (continued)

Topic name Top keywords

Gpu Error theano cuda gpu device cudnn version error gpuarray import use

sandbox python flags init run

Code Graph code time op make function one use instead graph get way change

implementation also first

Errors on Windows users local appdata theano windows compiledir model family

stepping genuineintel mod numpy lib lazylinker undefined

Using Numpy theano numpy tensor function build builddir test import dot sparse

array opti rel batch updated

Performance gpu new code cpu backend problem running python memory cudnn

old work support results one

Storage Error py storage error pyobject input struct pyerr null pyarray int compiled

label item include void

Test Error test fix make add scan grad also check work new issue bug code

travis optimization

Compile Error theano compiledir linux mod cpp generic ubuntu cache invalid root

home error vivid lazylinker access

B LDA-topic Trends

We further make analyses on the development trends of LDA-topics, we first detemine the
dominant topics of the posts/records by applying the dominant topic metric (1). Then, we
calculate the topic trends of the LDA-topics using the impact metric (2). Figures 17, 18, 19,
20, 21 and 22 illustrate the top 3 LDA-topics with the largest increases or decreases over
time for the six different corpora.

C Examples of LDA Topics on Different Workflow Stages

Preliminary Preparation. Out of the derived 75 LDA-topics, 29 LDA-topics belong to
the preliminary preparation stage, which are: 1). File Operation for Tensorflow on Stack
Overflow, 2). Keras for Tensorflow on Stack Overflow, 3). Installation Error for Tensor-
flow on Stack Overflow, 4). Runtime Error for Tensorflow on Stack Overflow, 5). Build
Error for Tensorflow on Stack Overflow, 6). Code Error for PyTorch on Stack Overflow,
7). Installation Error for PyTorch on Stack Overflow, 8). File Operation for Theano on
Stack Overflow, 9). Code Error for Theano on Stack Overflow, 10). File Operation for
Tensorflow on GitHub, 11). Installation in Linux for Tensorflow on GitHub, 12). Version
Problem for Tensorflow on GitHub, 13). Build Error for Tensorflow on GitHub, 14). Fix-
ing Error for Tensorflow on GitHub, 15). File Operation for PyTorch on GitHub, 16).
System Installation for PyTorch on GitHub, 17). Version Problem for PyTorch on GitHub,
18). Third Party for PyTorch on GitHub, 19). Build Error for PyTorch on GitHub, 20).
Code Error for PyTorch on GitHub, 21). File Operation for Theano on GitHub, 22).
Version Problem for Theano on GitHub, 23). Using Numpy for Theano on GitHub, 24).
Import Error for Theano on GitHub, 25). Installation Error for Theano on GitHub, 26).
Warnings for Theano on GitHub, 27). Errors on Windows for Theano on GitHub, 28).

Empirical Software Engineering (2020) 25:2694–27472734

(a) Top 3 increasing trends for Tensor flow on Stack Overflow

(b) Top 3 decreasing trends for Tensor flow on Stack Overflow

Fig. 17 The top 3 LDA-topics with largest increasing and decreasing trends for the corpus of Tensorflow
on Stack Overflow, as measured by the percentage change in topic impact scores during November 2015 to
March 2018

Compile Error for Theano on GitHub, 29). Clang Error for Theano on GitHub. Some
example posts/records of these LDA-topics are shown as following:

– Detect object from video stream using Keras .h5 file
I am using keras and tensorflow to train a custom model using transfer
learning. I was wondering, is there any tutorial which covers custom object
detection from live video stream using keras .h5 file? Here is my sample
code for training based on https://github.com/fchollet/deep-learning-with-python-
notebooks/blob/master/5.3-using-a-pretrained-convnet.ipynb
Dominant Topic: Tensorflow on Stack Overflow/Keras

Empirical Software Engineering (2020) 25:2694–2747 2735

(a) Top 3 increasing trends for Tensorflow on GitHub

(b) Top 3 decreasing trends for Tensorflow on GitHub

Fig. 18 The top 3 LDA-topics with largest increasing and decreasing trends for the corpus of Tensorflow on
GitHub, as measured by the percentage change in topic impact scores during November 2015 to July 2018

– Install PyTorch on Windows
I am trying to install PyTorch on Windows8.1. I am using Python 3.6.4 and no
GPU. I’ve tried already the Anaconda package provided by peterjc123 by run-
ning conda install -c peterjc123 pytorch legacy cuda80 using a virtual environment.
While the installation goes smooth (without errors), after import torch I get the fol-
lowing error. Can somebody help me to install it? Dominant Topic: PyTorch on Stack
Overflow/Installation Error

– strides argument, the layer received both the legacy keyword argument subsample
and the Keras 2 keyword argument strides
when I try to run this code with keras 2.1.3 I get this error

Empirical Software Engineering (2020) 25:2694–27472736

(a) Top 3 increasing trends for PyTorch on Stack Overflow

(b) Top 3 decreasing trends for PyTorch on Stack Overflow

Fig. 19 The top 3 LDA-topics with largest increasing and decreasing trends for the corpus of PyTorch on
Stack Overflow, as measured by the percentage change in topic impact scores during January 2017 to March
2018

https://github.com/marcellacornia/sam
Dominant Topic: Theano on Stack Overflow/Code Error

– cannot import name bayesflow Error
Hi, I get the error I mentioned in the title. I did a search on Google and I usually
found a solution to update dask. I updated Dask to version 0.17.2 but I still get the
same error. I can not import BayesFlow. The Tensorflow version is 0.12.1. Thanks
for the answers.

Code : from tensorflow.examples.tutorials.mnist import input data mnist =
input data.read data sets(“/tmp/data/”)

OS : Ubuntu 16.04 LTS
Tensorflow version is 0.12.1

Empirical Software Engineering (2020) 25:2694–2747 2737

(a) Top 3 increasing trends for PyTorch on GitHub

(b) Top 3 decreasing trends for PyTorch on GitHub

Fig. 20 The top 3 LDA-topics with largest increasing and decreasing trends for the corpus of PyTorch on
GitHub, as measured by the percentage change in topic impact scores during September 2016 to July 2018

Cuda : 8.0
CuDNN : 5.1
GPU : 4 GB GTX 1050Ti
Dask : 0.17.2
Dominant Topic: Tensorflow on GitHub/Version Problem

– Install hpp headers for CPP Extensions
With the Cppzation of a few files in ‘TH’/‘THC’, the CPP extensions got broken
whenever the user uses feature from ‘THC’ in their files, when pytorch is installed

Empirical Software Engineering (2020) 25:2694–27472738

(a) Top 3 increasing trends for Theano on Stack Overflow

(b) Top 3 decreasing trends for Theano on Stack Overflow

Fig. 21 The top 3 LDA-topics with largest increasing and decreasing trends for the corpus of Theano on
Stack Overflow, as measured by the percentage change in topic impact scores during April 2012 to March
2018

via ‘python setup.py install’.

This addresses issues such as “/home/me/.conda/envs/pytorch/lib/python3.6/site-
packages/torch/lib/include/THC/THCDeviceTensorUtils.cuh:5:25: fatal error:
THCTensor.hpp: No such file or directory”
Dominant Topic: PyTorch on GitHub/File Operation

– Theano cannot detect clang++ in Mac OS X
I am using the dev version of theano under Mac OS X 10.11.3 with command line
tools for Xcode 7. Running theano gives me the following warning:

Empirical Software Engineering (2020) 25:2694–2747 2739

(a) Top 3 increasing trends for Theano on GitHub

(b) Top 3 decreasing trends for Theano on GitHub

Fig. 22 The top 3 LDA-topics with largest increasing and decreasing trends for the corpus of Theano on
GitHub, as measured by the percentage change in topic impact scores during August 2011 to July 2018

‘WARNING (theano.configdefaults): Only clang++ is supported. With g++, we
end up with strange g++/OSX bugs.’

I’ve also got g++ installed. It seems theano cannot detect the ‘clang++’.

Besides, I had strang NaN problems resulting from a simple calculation ‘T.dot(W,
X)’ where ‘W’ and ‘X’ do not have nan value (checked with ‘np.any(np.isnan)’). I
doubt this is because of I am not using ‘clang++’
Dominant Topic: Theano on GitHub/Clang Error

Empirical Software Engineering (2020) 25:2694–27472740

Data Preparation. We obtain 13 LDA-topics in the data preparation stage, that is: 1).
Variable for Tensorflow on Stack Overflow, 2). Data Reading for Tensorflow on Stack
Overflow, 3). Tensor Operation for Tensorflow on Stack Overflow, 4). Input Error for
Tensorflow on Stack Overflow, 5). Input Size for PyTorch on Stack Overflow, 6). Tensor
Error for PyTorch on Stack Overflow, 7). Value Type for Tensorflow on GitHub, 8). Vari-
able Shape for Tensorflow on GitHub, 9). Tensor Operation for PyTorch on GitHub, 10).
Tensor Fixing for PyTorch on GitHub, 11). Data Type for Theano on GitHub, 12). Data
Shape for Theano on GitHub, 13). Object Error for Theano on GitHub. The following is
the examples of posts/records of the LDA-topics.

– Dataset API ‘flat map’ method producing error for same code which works with
‘map’ method
I am trying to create a pipeline to read multiple CSV files using TensorFlow Dataset
API and Pandas. However, using the flat map method is producing errors. However,
if I am using map method I am able to build the code and run it in session. This is the
code I am using. I already opened #17415 issue in TensorFlow Github repository.
Dominant Topic: Tensorflow on Stack Overflow/Data Reading

– Image Captioning Example input size of Decoder LSTM PyTorch
I’m new to PyTorch, there is a doubt that am having in the Image Captioning
example code. We first embed the captions and then concat the embeddings with
the context feature from the EncoderCNN, but the concat increases the size from
embed size how we can forward that to the lstm? As the input size of lstm is already
defined as embed size.
Dominant Topic: PyTorch on Stack Overflow/Input Size

– Feature request: tf.as dtype(float) should work just as tf.as dtype(‘float’)
In NumPy, ‘np.dtype(float)’ works just the same as ‘np.dtype(“float”)’.
In TensorFlow ‘tf.as dtype(“float”)’ works but ‘tf.as dtype(float)’ crashes with
‘TypeError: Cannot convert value ¡class ‘float’¿ to a TensorFlow DType.’.
Is there a particular reason for this behaviour or was it just overlooked?
(same error for other builtins such as ‘int’ and ‘complex’)
Dominant Topic: Tensorflow on GitHub/Value Type

– Explicitly specify the output ndim in reshape
The whole code expects the shape to be of length 4, and the output to be 4D already.
Fixes #5613.
Dominant Topic: Theano on GitHub/Data Shape

Model Setup. We find 8 model setup LDA-topics in our dataset, namely: 1). Image Clas-
sification for Tensorflow on Stack Overflow, 2). Word Embedding for Tensorflow on
Stack Overflow, 3). RNN LSTM for Tensorflow on Stack Overflow, 4). Network Layer
for Tensorflow on Stack Overflow, 5). Model Saving for Tensorflow on Stack Overflow,
6). Image Training for PyTorch on Stack Overflow, 7). Network Layer for PyTorch on
Stack Overflow, 8). Storage Error for Theano on GitHub. Here are the 3 examples of
these LDA-topics.

– single neuron layer after softmax (keras)
I need to create a neural network (with keras) that has as last layer a single neuron
that contains the index of the neuron with the maximum value prediction in the

Empirical Software Engineering (2020) 25:2694–2747 2741

precedent softmax layer. For example my softmax layer gives as result this: [0.1,
0.1, 0.7, 0.0, 0.05, 0.05] And I want that the single neuron layer (after the softmax
layer) gives as result 2 (considering a 0 based valutation). How can I do that?
Dominant Topic: Tensorflow on Stack Overflow/Network Layer

– In tensorflow deep and wide tutorial, what’s the embedding principle
When I played tensorflow tutorial, one embedding trick is used in Wide and Deep
tutorial like this.
The tutorial shows how transfer sparse feature (usually one hot encoding) to embed-
ding vector. I knew there are some approaches to create this embedding, such as
word embedding, PCA or t-SNE or matrix factorization. But in this tutorial, they
did not show how to create an embedding for the sparse vector. Or did the tutorial
just use neural network to finish the embedding?
Dominant Topic: Tensorflow on Stack Overflow/Word Embedding

– Reading multiple images as custom dataset for PyTorch?
I want to read in multiple images for the main image set and blur image set. For
example, 5 main images and 5 blurred images. The goal is determine what values for
the kernel in the convolutional layer convert the main images to the blurred images.
The assumption is that the same kernel is used to blur each of the 5 original images
to produce the 5 blurred images.

My code is available at: https://pastebin.com/PWf7rjd4 and
https://pastebin.com/VxryDb7g

However, it seems to only be processing the first image, that is “1.png” for the
main and blurred images. It is not processing images 2.png, 3.png, 4.png, and 5.png
How can I fix this?
Dominant Topic: PyTorch on Stack Overflow/Image Training

Model Training. We discover 22 model training LDA-topics in our dataset, including: 1).
Model Training for Tensorflow on Stack Overflow, 2). Loss Function for Tensorflow on
Stack Overflow, 3). Batch for Tensorflow on Stack Overflow, 4). Performance for Ten-
sorflow on Stack Overflow, 5). Training Accuracy for Tensorflow on Stack Overflow, 6).
Model Training for PyTorch on Stack Overflow, 7). Gpu Training for PyTorch on Stack
Overflow, 8). Loss Function for PyTorch on Stack Overflow, 9). Cuda Error for PyTorch
on Stack Overflow, 10). Function Operation for Theano on Stack Overflow, 11). Model
Training for Theano on Stack Overflow, 12). Gpu Error for Theano on Stack Overflow,
13).Model Training for Tensorflow on GitHub, 14). Gradient for Tensorflow on GitHub,
15). Performance for Tensorflow on GitHub, 16). Function Operation for PyTorch on
GitHub, 17). Distributed Process for PyTorch on GitHub, 18). Theano Composite for
Theano on GitHub, 19). Performance for Theano on GitHub, 20). Gpu Error for Theano
on GitHub, 21). Cuda Error for Theano on GitHub, 22). Gpuarray Bug for Theano on
GitHub. The following are the examples of posts/records in our dataset.

– Try to define pearson correlation as loss function but got error
I would like to use pearson correlation as the loss function in Keras with backend
of tensorflow. The dimensions of the tensor is (Batch, Coils, Time). The correlation
coefficients are to be calculated along time and across coils. For example, if the
number of coils is 3, the averaged correlation coefficients will be calculated between

Empirical Software Engineering (2020) 25:2694–27472742

coil #1 and #2, #1 and #3, and #2 and #3.
Dominant Topic: Tensorflow on Stack Overflow/Loss Function

– RNN is not training (PyTorch)
I can’t get what I am doing wrong when training RNN. I am trying to train RNN
for AND operation on sequences (to learn how it works on simple task). But my
network is not learning, loss stays the same and it can’t event overfit the model. Can
you please help me to find the problem?
Dominant Topic: PyTorch on Stack Overflow/Model Training

– Enabling GPU with theano generates Exception
I have followed the steps from here to enable gpu with theano on an Ubuntu 16.04
machine. I installed cuda toolkit, cudnn, drivers but I am still not able to get it to
work.
Dominant Topic: Theano on Stack Overflow/Gpu Error

– [Java] Support addition of gradient operations in a graph
This calls the C-api ‘TF AddGradients’ method through a new JNI binding for
adding gradient nodes to a graph. It also includes an ‘AddGradients’ wrapper for
invoking this operation smoothly while building a graph using the new Java Ops
API. Dominant Topic: Tensorflow on GitHub/Gradient

– Use customized python interpreter for distributed launch util
For spawning sub-processes, I think it should be quite intuitive to use the interpreter
of ‘launch.py’ rather than the default ‘python’.
Dominant Topic: PyTorch on GitHub/Distributed Process

Model Evaluation. We find 2 model evaluation LDA-topics in our dataset, 1). Tensor-
board for Tensorflow on Stack Overflow , 2). Code Graph for Theano on GitHub. The
following example post is from these LDA-topics:

– Tensorboard not creating network graph (Python)
I really can’t understand why tensorboard is not showing the graph of my network. I
have followed the tutorials on Tensorboard Website and other stuff in the web, none
of these allowed to display the graph.
I am embedding the part of my code related to the network. I’ve tried to remove all
the other parts but I did not want to reduce to much otherwise it can create confusion.
The only thing it displays on the graph sections is the global step.
Dominant Topic: Tensorflow on Stack Overflow/Tensorboard

Model Tuning. In our derived 75 LDA-topics, no LDA-topic is related to the model
tuning stage.

Model Prediction. Only 1 LDA-topic is associated with the model prediction stage,
which is 1). Test Error for Theano on GitHub.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016)
Tensorflow: A system for large-scale machine learning. In: OSDI, vol 16, pp 265–283

Allamanis M, Sutton C (2013) Why, when, and what: Analyzing stack overflow questions by topic, type,
and code. In: Proceedings of the 10th working conference on mining software repositories, IEEE Press,
pp 53–56

Azad S, Rigby PC, Guerrouj L (2017) Generating api call rules from version history and stack overflow
posts. ACM Trans Softw Eng Methodol (TOSEM) 25(4):29

Empirical Software Engineering (2020) 25:2694–2747 2743

Bahrampour S, Ramakrishnan N, Schott L, Shah M (2015) Comparative study of deep learning software
frameworks. arXiv:151106435

Bajaj K, Pattabiraman K, Mesbah A (2014) Mining questions asked by web developers. In: Proceedings of
the 11th working conference on mining software repositories, ACM, pp 112–121

Baltes S, Dumani L, Treude C, Diehl S (2018) Sotorrent: Reconstructing and analyzing the evolution of stack
overflow posts. arXiv:180307311

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? an analysis of topics and trends
in stack overflow. Empir Softw Eng 19(3):619–654

Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio
Y (2010) Theano: A cpu and gpu math compiler in python. In: Proc. 9th python in science conf, vol 1

Blei DM, Ng AY, Jordan MI (2012) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: 8th ACM international

conference on web search and data mining, pp 399–408
Bovens L, Hartmann S (2010) Bayesian Epistemology. Clarendon
Cai R, Xu B, Yang X, Zhang Z, Li Z (2017) An encoder-decoder framework translating natural language to

database queries. arXiv:171106061
Chen C, Gao S, Xing Z (2016) Mining analogical libraries in q&a discussions–incorporating relational and

categorical knowledge into word embedding. In: 2016 IEEE 23rd international conference on software
analysis, evolution, and Reengineering (SANER), IEEE, vol 1, pp 338–348

Chen TH, Thomas SW, Hemmati H, Nagappan M, Hassan AE (2017) An empirical study on the effect of
testing on code quality using topic models: A case study on software development systems. IEEE Trans
Reliab R 66(3):806–824

Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: A matlab-like environment for machine learning. In:
BigLearn, NIPS workshop, EPFL-CONF-192376

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2014) Labeling source code with information
retrieval methods: An empirical study. Empir Softw Eng 19(5):1383–1420

Ding W, Wang R, Mao F, Taylor G (2014) Theano-based large-scale visual recognition with multiple gpus.
arXiv:14122302

Duan C, Cui L, Chen X, Wei F, Zhu C, Zhao T (2018) Attention-fused deep matching network for natural
language inference. In: IJCAI, pp 4033–4040

Erickson BJ, Korfiatis P, Akkus Z, Kline T, Philbrick K (2017) Toolkits and libraries for deep learning. J
Digit Imaging 30(4):400–405

Hannun A, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh S, Sengupta S, Coates
A et al (2014) Deep speech: Scaling up end-to-end speech recognition. arXiv:14125567

Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput
18(7):1527–1554

Hoang CDV, Haffari G, Cohn T (2017) Towards decoding as continuous optimisation in neural machine
translation. In: Proceedings of the 2017 conference on empirical methods in natural language processing,
pp 146–156

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
Hoffman MD, Blei DM, Bach F (2010) Online learning for latent dirichlet allocation. In: International

conference on neural information processing systems, pp 856–864
Ketkar N (2017) Introduction to pytorch. In: Deep learning with python, Springer, pp 195–208
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural

networks. In: Advances in neural information processing systems, pp 1097–1105
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken AP, Tejani A, Totz J, Wang Z et al

(2017) Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR,
vol 2, p 4

Lee SR, Heo MJ, Lee CG, Kim M, Jeong G (2017) Applying deep learning based automatic bug triager
to industrial projects. In: Proceedings of the 2017 11th joint meeting on foundations of software
engineering, ACM, pp 926–931

Li H, Xing Z, Peng X, Zhao W (2013) What help do developers seek, when and how? In: 2013 20th Working
Conference on Reverse Engineering (WCRE), IEEE, pp 142–151

Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging using topic models. Empir Softw
Eng 23(5):2655–2694

Li M, Andersen DG, Park JW, Smola AJ, Ahmed A, Josifovski V, Long J, Shekita EJ, Su BY (2014) Scaling
distributed machine learning with the parameter server. In: OSDI, vol 14, pp 583–598

Liu H, Xu Z, Zou Y (2018) Deep learning based feature envy detection. In: Proceedings of the 33rd
ACM/IEEE international conference on automated software engineering, ACM, pp 385–396

Empirical Software Engineering (2020) 25:2694–27472744

http://arxiv.org/abs/151106435
http://arxiv.org/abs/180307311
http://arxiv.org/abs/171106061
http://arxiv.org/abs/14122302
http://arxiv.org/abs/14125567

Loper E, Bird S (2002) Nltk: The natural language toolkit. In: Proceedings of the ACL-02 workshop
on Effective tools and methodologies for teaching natural language processing and computational
linguistics-Volume 1, Association for Computational Linguistics, pp 63–70

Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet
allocation. In: Working conference on reverse engineering, 2008. Wcre ’08, pp 155–164

Miller GA (1995) Wordnet: A lexical database for english. Commun ACM 38(11):39–41
Mo W, Shen B, Chen Y, Zhu J (2015) Tbil: A tagging-based approach to identity linkage across software

communities. In: Software Engineering Conference (APSEC) 2015 Asia-Pacific, IEEE, pp 56–63
Newman D, Lau JH, Grieser K, Baldwin T (2010) Automatic evaluation of topic coherence. In: Human

language technologies: Conference of the North American chapter of the association of computational
linguistics, Proceedings, June 2-4, 2010 Los Angeles, California, USA, pp 100–108

Nguyen AT, Nguyen TT, Al-Kofahi J, Nguyen HV, Nguyen TN (2011) A topic-based approach for narrow-
ing the search space of buggy files from a bug report. In: Proceedings of the 2011 26th IEEE/ACM
international conference on automated software engineering, IEEE Computer Society, pp 263–272

Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How to effectively use topic
models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings of the
2013 international conference on software engineering, IEEE Press, pp 522–531

Rosen C, Shihab E (2016)What are mobile developers asking about? a large scale study using stack overflow.
Empir Softw Eng 21(3):1192–1223

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M,
et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Netw 61:85–117
Schütze H, Manning CD, Raghavan P (2008) Introduction to information retrieval, vol 39. Cambridge

University Press, Cambridge
Spencer D (2009) Card sorting: Designing usable categories. Rosenfeld Media
Thomas S (2012) Mining unstructured software repositories using ir models
Treude C, Robillard MP (2016) Augmenting api documentation with insights from stack overflow. In: 2016

IEEE/ACM 38th international conference on software engineering (ICSE), IEEE, pp 392–403
Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer questions on the web?: Nier

track. In: 2011 33rd international conference on software engineering (ICSE), IEEE, pp 804–807
Vasilescu B, Filkov V, Serebrenik A (2013) Stackoverflow and github: Associations between software

development and crowdsourced knowledge. In: 2013 international conference on social computing
(SocialCom), IEEE, pp 188–195

Wan Y, Zhao Z, YangM, Xu G, Ying H,Wu J, Yu PS (2018) Improving automatic source code summarization
via deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE international conference on
automated software engineering, ACM, pp 397–407

Wan Z, Lo D, Xia X, Cai L (2017) Bug characteristics in blockchain systems: A large-scale empirical study
Wan Z, Xia X, Hassan AE (2019) What do programmers discuss about blockchain? a case study on the use of

balanced lda and the reference architecture of a domain to capture online discussions about blockchain
platforms across stack exchange communities. IEEE Trans Softw Eng 2019:1–1

Wang S, Chen TH, Hassan AE (2018) Understanding the factors for fast answers in technical q&a websites.
Empir Softw Eng 23(3):1552–1593

Weng R, Huang S, Zheng Z, Dai X, Chen J (2017) Neural machine translation with word predictions.
arXiv:170801771

Yang XL, Lo D, Xia X, Wan ZY, Sun JL (2016) What security questions do developers ask? a large-scale
study of stack overflow posts. J Comput Sci Technol 31(5):910–924

Yao Z, Weld DS, Chen WP, Sun H (2018) Staqc: A systematically mined question-code dataset from stack
overflow. arXiv:180309371

Ye D, Xing Z, Foo CY, Li J, Kapre N (2016) Learning to extract api mentions from informal natural language
discussions. In: 2016 IEEE international conference on software maintenance and evolution (ICSME),
IEEE, pp 389–399

Yu L, Mishra A, Mishra D (2014) An empirical study of the dynamics of github repository and its impact
on distributed software development. In: OTM confederated international conferences” on the move to
meaningful internet systems”, Springer, pp 457–466

Zagalsky A, German DM, Storey MA, Teshima CG, Poo-Caamaño G (2018) How the r community cre-
ates and curates knowledge: an extended study of stack overflow and mailing lists. Empir Softw Eng
23(2):953–986

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs

Empirical Software Engineering (2020) 25:2694–2747 2745

http://arxiv.org/abs/170801771
http://arxiv.org/abs/180309371

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Junxiao Han received the B.S degree in the College of Software
Engineering, Shandong University, China, in 2015. She is currently
working toward the PhD degree in the College of Computer Sci-
ence, Zhejiang University. Her research interests include software
engineering and repositories mining.

Emad Shihab is an Associate Professor and Concordia Research
Chair in the Department of Computer Science and Software Engi-
neering at Concordia University. Dr. Shihab’s research interests
are in Software Quality Assurance, Mining Software Repositories,
Technical Debt, and Software Predictive Analytics. He worked at
BlackBerry in Waterloo, Ontario and Microsoft Research in Red-
mond, Washington. Dr. Shihab is a senior member of the IEEE. More
information can be found at http://das.encs.concordia.ca.

ZhiyuanWan received the PhD degree in computer science from the
College of Computer Science and Technology, Zhejiang University,
China, in 2014. She is currently a postdoctoral research fellow in the
College of Computer Science and Technology, Zhejiang University,
China, and a research scientist in the School of Information Systems,
Singapore Management University, Singapore. Her research interests
include software engineering, software security, and programming
languages.

Empirical Software Engineering (2020) 25:2694–27472746

http://das.encs.concordia.ca

Shuiguang Deng is currently a full professor at the College of Com-
puter Science and Technology in Zhejiang University, China, where
he received a BS and PhD degree both in Computer Science in 2002
and 2007, respectively. He previously worked at the Massachusetts
Institute of Technology in 2014 and Stanford University in 2015
as a visiting scholar. His research interests include Edge Comput-
ing, Service Computing, Mobile Computing, and Business Process
Management. He serves as the associate editor for the journal IEEE
Access and IET Cyber-Physical Systems: Theory & Applications. Up
to now, he has published more than 100 papers in journals and refer-
eed conferences. In 2018, he was granted the Rising Star Award by
IEEE TCSVC. He is a fellow of IET and a senior member of IEEE.

Xin Xia is a lecturer at the Faculty of Information Technology,
Monash University, Australia. Prior to joining Monash University, he
was a post-doctoral research fellow in the software practices lab at
the University of British Columbia in Canada, and a research assis-
tant professor at Zhejiang University in China. Xin received both
of his Ph.D and bachelor degrees in computer science and software
engineering from Zhejiang University in 2014 and 2009, respectively.
To help developers and testers improve their productivity, his cur-
rent research focuses on mining and analyzing rich data in software
repositories to uncover interesting and actionable information. More
information at: https://xin-xia.github.io/.

Affiliations

Junxiao Han1 · Emad Shihab2 ·ZhiyuanWan1 · Shuiguang Deng1 ·Xin Xia3

Junxiao Han
junxiaohan@zju.edu.cn

Emad Shihab
eshihab@encs.concordia.ca

Zhiyuan Wan
wanzhiyuan@zju.edu.cn

Xin Xia
xin.xia@monash.edu

1 College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2 Department of Computer Science and Software Engineering, Concordia University, 1455 Boulevard de

Maisonneuve O, Montréal, QC, H3G 1M8, Canada
3 Faculty of Information Technology, Monash University, Wellington Road, Victoria, 3800, Australia

Empirical Software Engineering (2020) 25:2694–2747 2747

https://xin-xia.github.io/
mailto: junxiaohan@zju.edu.cn
mailto: eshihab@encs.concordia.ca
mailto: wanzhiyuan@zju.edu.cn
mailto: xin.xia@monash.edu

	What do Programmers Discuss about Deep Learning Frameworks
	Abstract
	Introduction
	Background
	Research Settings
	Research Questions
	Research Data
	Stack Overflow Data Collection
	GitHub Data Collection

	Research Methodology
	Data Preprocessing
	Determining Deep Learning Workflow
	Topic Modeling
	Aggregating the Generated LDA-topics into Topic Categories
	Metrics and Analysis

	Results
	RQ1. What issues do practitioners discuss about deep learning frameworks?
	RQ2. What are the Differences in the Discussions Across Deep Learning Frameworks?
	Stack Overflow Platform
	Topic Distribution Pattern at the Workflow Level
	Topic Distribution Pattern at the Topic Category Level
	LDA-topic Trend
	Topic Category Trend

	GitHub Platform
	Topic Distribution Pattern at the Workflow Level
	Topic Distribution Pattern at the Topic Category Level
	LDA-topic Trend
	Topic Category Trend
	Workflow Stage Trend.

	RQ3. What are the differences in the discussions between Stack Overflow and GitHub?
	TensorFlow
	Topic Distribution Pattern at the Workflow Level
	LDA-topic Trend

	PyTorch
	Topic Distribution Pattern at the Workflow Level
	LDA-topic Trend

	Theano
	Topic Distribution Pattern at the Workflow Level
	LDA-topic Trend
	Workflow Stage Trend

	Discussions
	Implications
	Implications for Researchers
	Implications for Practitioners

	LDA Parameter Analysis
	Threats to Validity
	Construct Validity

	Related Work
	Studies on Deep Learning
	Studies on Stack Overflow
	Applying LDA on Software Engineering Domains

	Conclusion and Future Work
	Appendix A
	A LDA Topics and Keywords
	B LDA-topic Trends
	C Examples of LDA Topics on Different Workflow Stages
	References
	Affiliations

