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Abstract
Background. In modern software development, the use of exter-

nal libraries and packages is increasingly prevalent, streamlining

the software development process and enabling developers to de-

ploy feature-rich systems with little coding. While this reliance on

reusing code offers substantial benefits, it also introduces serious

risks for deployed software in the form of malicious packages -

harmful and vulnerable code disguised as useful libraries. Aims.
Popular ecosystems, such PyPI, receive thousands of new package

contributions every week, and distinguishing safe contributions

from harmful ones presents a significant challenge. There is a dire

need for reliable methods to detect and address the presence of ma-

licious packages in these environments. Method. To address these

challenges, we propose a data-driven approach that uses machine

learning and static analysis to examine the package’s metadata,

code, files, and textual characteristics to identify malicious packages.

Results. In evaluations conducted within the PyPI ecosystem, we

achieved an F1-measure of 0.94 for identifying malicious packages

using a stacking ensemble classifier. Conclusions. This tool can
be seamlessly integrated into package vetting pipelines and has the

capability to flag entire packages, not just malicious function calls.

This enhancement strengthens security measures and reduces the

manual workload for developers and registry maintainers, thereby

contributing to the overall integrity of the ecosystem.

CCS Concepts
• Security and privacy → Intrusion/anomaly detection and
malware mitigation;
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1 Introduction
Code reuse drives technological innovation by enhancing developer

productivity and enabling the creation of feature-rich, maintainable

systems [10, 25, 36]. Package managers like npm and PyPI facilitate

this innovation, with PyPI allowing developers to contribute freely

to a vast repository of Python packages [29, 58]. PyPI meets diverse

needs, including those in artificial intelligence, with millions of

packages available [32]. Its popularity has made Python the most

favored programming language as of April 2024, according to the

TIOBE index.
1

Developers are increasingly reusing code, which inadvertently

heightens the risk of integrating malicious code into applications

1
https://www.tiobe.com/tiobe-index/

[31]. Malicious actions can include inserting backdoors and stealing

sensitive data. The PyPI registry faces various attacks, including

compromised accounts, where attackers gain full control of a main-

tainer’s account to publish malware [29, 59]. Typosquatting [1, 2]

exploits typographical errors in package names, while combosquat-

ting [52, 59] leverages the order of nouns in names. A notable

example is the malicious package "jeIlyfsh," which replaced a char-

acter in the benign "jellyfsh" package name to steal SSH and GPG

keys, remaining undetected for a year [58].

Several code-scanning methods have been proposed to identify

malicious packages in popular ecosystems like NPM, PyPI, and

Maven. These approaches encompass both traditional methods

(e.g., anomaly detection [32], dynamic and static analysis [20, 21],

and machine learning-based methods (e.g., unsupervised k-means

clustering [23], supervised learning [48]). However, managers of

large package registries, such as PyPI, struggle to handle the daily

influx of packages, making it challenging for manual oversight

[26, 64]. According to the libraries.io database [3], which is an

open source repository and dependency database that catalogues

libraries of the most popular ecosystems, and it has been used

by previous work as a source of library metadata [5, 18], analysis

reveals that over the course of one week, PyPI developers publish

around 1,800 public package versions, including both new packages

and updated versions of existing packages. To this end, prior works

show that many existing scanning tools face limitations such as

scalability issues [34, 48], a narrow focus on specific ecosystem

aspects like package updates [23, 48], high resource costs [34], and

high false alerts [8, 34]. In this context, we have detailed code

scanners that work well if we analyse a few packages, however,

there is a necessity for an approach that can extend its scalability

to encompass the entire ecosystem. Our approach is designed to

fill this gap, addressing issues of false positives and negatives. Its

strength lies in the integration of newly crafted features operating

at the package level, distinguishing it from most existing tools

that operate at the function call level. Our approach considers the

interactions of multiple factors across code, function, file levels,

and package metadata, to provide a scalable classification of the

likelihood of a malicious package.

To evaluate the effectiveness of our approach, we conduct a study

to answer the following three research questions.

RQ1: How accurate is our approach in classifying malicious
packages?We developed six machine learning classifiers—Random

Forest, Decision Tree, Support Vector Machine, Multilayer Percep-

tron, Naive Bayes (Bernoulli version), and stacking—using eight

features: 2 metadata-related, 2 file-related, 3 code-related, and 1 text

feature. The classifiers were evaluated on a dataset of 5,193 benign

and 138 malicious packages. Additionally, we tested the method’s
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generalizability on an unseen dataset of 397 typical and 143 new

malicious packages. The stacking ensemble classifier achieved an

F1-score of 94.2% in predicting malicious packages, particularly

when incorporating the text-related feature. Our findings indicate

strong performance and generalizability of the approach.

RQ2:What features are the best indicators ofmalicious pack-
ages? The study investigates features that differentiate malicious

packages from benign ones, identifying metadata-related features

as the best indicators. Key tokens like getattr, connect, read,

open are crucial for malicious package identification. The research

also examines the effects of keyword removal, stop word removal,

and stemming on classifier performance. It concludes that stem-

ming does not influence performance, while removing keywords

and stop words has minimal impact.

RQ3: Is our approach useful? We assess the viability and effi-

ciency of our approach by comparing it with two state of the art

tools, namely bandit and packj. This evaluation is conducted on a

random subset comprising 50 benign packages and an additional 50

samples of malicious packages obtained from an external dataset

and is performed on two scenarios: the entire package and the

setup.py file. The results suggest that our approach effectively de-

tects a considerable number of malicious packages in real-world

scenarios, demonstrating a low rate of false alerts when compared

to the tested tools. As an illustration, our tool successfully detected

4 out of 5 recently released malicious packages, outperforming the

tested tools that proved unsuccessful in this regard. Furthermore,

by selecting features related to the Python ecosystem, our method

can detect a broader spectrum of malicious Python packages, in

contrast to the state-of-the-art approach [37].

Our study contributes to the research and practice on four fronts.

• Unlike existing strategies that focus on detecting suspicious

function calls, our approach operates at the package level,

applicable to the entire ecosystem.

• This is the first study to employ a vocabulary-based method

to automatically detect malicious packages within the PyPI

ecosystem.

• We introduce significant new features previously unexplored

in predicting malicious functions and packages.

• We publicly share our dataset [7] for further research on

enhancing the security of package managers against supply

chain attacks, comprising 5,331 packages (138 malicious and

5,193 popular) with various features.

2 Background
Malicious packages are software components intentionally designed

to harm systems, often containing malware or code for unautho-

rized activities like stealing sensitive information or installing back-

doors [11, 50]. In contrast, benign packages are safe and intended to

perform their designated functions without compromising security.

Numerous studies indicate that malware is continuously evolv-

ing, employing diverse techniques to evade detection tools [21,

61, 62]. Attackers target all stakeholders in the software supply

chain, including end-users, developers, package maintainers, and

registry maintainers. One prevalent tactic is typosquatting and com-

bosquatting [52, 59], as many registries lack security policies [21].

In typosquatting, malicious packages are published with names sim-

ilar to popular packages to deceive developers into downloading

them. Combosquatting manipulates the order of words in package

names, such as changing ’python-nmap’ to ’nmap-python.’ An illus-

trative incident occurred in May 2022 when attackers published a

malicious package named pymafka, which mimicked the legitimate

PyKafka package, leading to 325 downloads before its removal [43].

Additionally, attackers publish new malicious packages directly,

often employing code obfuscation methods to conceal harmful code

from analysis. Techniques like encoding and encryption are com-

monly used, as seen in the colourama@0.1.6 typosquatting variant

of colorama, which utilized base64 encoding to evade detection as

shown in listing 1 (Line 1). Malicious packages like hipid and hpid

[22] have been reported using uncommon base32 encoding, while

the botaa3 typosquatting package employs bitwise XOR encryption

and base64 encoding to obscure its malicious payloads [13].

Many tools are developed to detect malicious attacks against

popular ecosystems (e.g., NPM and PyPI) such as Malware-check

[35], OSSGadget [40], Maloss [34], Packj [41], Bandit4mal [9], and

Bandit [8]. To the best of our knowledge, the proposed tools work

in detecting risky factors in Python packages, always reporting

alerts at the level of Python functions. To put our results into per-

spective, we opt to select both Packj and Bandit as baselines in

our evaluation because 1) they have been selected as benchmarks

in previous research [48, 56, 58] and 2) they are mature tools that

provide detailed reports that facilitate our manual analysis. The

Bandit tool [8] is a widely-used static analysis tool designed for

identifying security vulnerabilities in Python files. It employs pre-

defined rules and the Abstract Syntax Tree (AST) representation

of source code to enhance its analysis. Bandit rates issues based

on severity and confidence levels (low, medium, high), providing

insights into potential impact and reliability [46]. It has also been

used as a benchmark in previous research [55, 56]. On the other

hand, the Packj tool [41] employs a comprehensive analysis ap-

proach with three steps: static code analysis, metadata analysis, and

optional dynamic analysis. It examines package code for filesys-

tem, network, and process API usage, validates metadata attributes,

and can perform dynamic analysis. Packj is built upon the Mal-

OSS project [34] and is recognized in research as a benchmarking

framework [48, 56, 58]. Given that attackers employ diverse tactics

to obfuscate the detection of malicious packages, and existing reg-

istries lack a robust review process for package publication [21],

and most existing tools suffer from considerable limitations, our

emphasis is on integrating various features. These include meta-

related, code-related, and text-related features. These features aim

to effectively capture the range of tactics employed by attackers,

enhancing the ability to identify malicious packages.

Listing 1: colourama package [17] uses code obfuscation in
setup.py file to defeat analysis (snippet code).
def run(self):

exec("b3MxID0WNv...cmludA==".decode('base64')) \\Line 1
os = platform.system()
req = urllib2.Request('https://grabify.link/...',
texto = urllib2.urlopen( req ).read()
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Table 1: Existing techniques for analyzing PyPI suspicious/-
malicious packages.
Tool Input Technique
Malware Checks [35] setup.py file static (Regular Expression)

OSSGadget [40] package+artifacts static (Regular Expression)

MalOSS [21] package hybrid (metadata, static, dynamic)

Packj [41] package hybrid (metadata, static, dynamic)

bandit4mal [9] package static (Abstract Syntax Tree)

bandit[8] package static (Abstract Syntax Tree)

3 Related work
Traditional approaches. Several methods have been proposed

for identifying malicious packages. Liang et al. [32] used anomaly

detection, combining abstract syntax tree (AST) and regular expres-

sion techniques, achieving a 97.51% reduction in review workload,

though it struggles with small malicious artifacts. Duan et al. [20] re-

ported 339 malicious packages through dynamic and static analysis

but lacked false positive analysis. Their MALOSS framework, while

comprehensive, requires significant resources. Vu et al. [55] identi-

fied differences between published packages and source repositories

but missed packages without repositories. Ohm et al. [39] relied on

dynamic analysis with heavy manual intervention, while Rieck et al.

[45] monitored behavior in a sandbox but lacked detailed analysis.

Various methods targeting typosquatting often suffer from false

positives and negatives due to their focus on Levenshtein distance

alone [49, 52, 59].

Machine learning approaches. Related work includes Garrett

et al. [23], who used unsupervised learning to identify suspicious

NPM package updates based on features like resource access and

API usage, flagging 539 updates but not investigating malicious

packages in depth. Sejfia and Schäfer [48] proposed an automated

method for detecting malicious NPM packages that examined ver-

sion changes and employed classifiers, successfully identifying 95

out of 96,287 unknown malicious packages with acceptable false

positives. However, their approach lacks scalability and is limited to

package updates, unable to address single-release packages. Halder

et al. [27] developed MeMPtec, which utilizes features from pack-

age metadata. However, our approach goes deeper by analyzing

metadata and file-related features. We parse the contents of license

and configuration files, rather than simply reporting their existence.

Recent research by Ohm et al. [37] focuses on detecting malicious

NPM packages using a combination of classifiers, achieving true

positive rates over 70% by evaluating 25,210 models. Their optimal

combination involved Support Vector Machine, Multi Layer Per-

ceptron, and Random Forest, successfully identifying 13 previously

unknown malicious packages. This work is the most closely related

to ours, as it also seeks to classify malicious packages within the

NPM ecosystem. However, our methodology differs significantly.

We adopt a more holistic approach by incorporating features re-

lated to code, licenses, file configurations, and author information.

Unlike Ohm et al. [37], which treats suspicious APIs as boolean

features, we analyze entire lines of code as text features. To our

knowledge, no previous research has integrated linter outputs with

metadata to classify software packages as malicious. Ohm et al.

[37] developed a methodology tailored for the NPM ecosystem,

specifically focusing on identifying malicious JavaScript packages

with features relevant to that environment. In contrast, our work

is explicitly designed for the Python ecosystem. We have crafted

features that incorporate python-specific setup configuration files,

Figure 1: The workflow for identifying malicious packages.

allowing for a more accurate analysis of potential threats within

Python packages. This distinction highlights the adaptability of

security measures to different programming ecosystems.

Python malware detection tools. In the literature, a multitude

of methods such as malware-check [35], OSSGadget [40], Maloss

[34], Packj [41], Bandit4mal [9], and bandit [8] have been suggested

for detecting suspicious package. The majority of these methods

examine various facets of a package through the utilization of

metadata, static analysis, or dynamic analysis as shown in Table

1. Analysis methods for metadata (such as package name and au-

thor information) involve scrutinizing these metadata elements to

detect potentially problematic packages. One instance of this is

the utilization of package names and their popularity to identify

suspicious packages that might involve tactics like typosquatting

or combosquatting.

However, existing tools struggle with unproductive time use,

overlooked security issues, and high resource demands for dynamic

analysis. Many, like OSSGadget and malware-check, rely on lim-

ited rule-based detection, potentially missing harmful code and

hindering efficient detection of malicious actions.

Unlike previous research efforts that created comparative frame-

works for different ecosystems or aimed at identifying suspicious

packages at the function calls level, our research stands out by

focusing on identifying malicious packages at the package level.

Notably, it surpasses the scope of proposed works by evaluating

six classifiers on a comprehensive set of newly crafted features and

features inherited from existing literature, ensuring the successful

detection of malicious packages throughout the entire ecosystem.

4 Study Setup
The main goal of our study is to identify malicious packages from

a set of suspicious packages. Many techniques are proposed for

this purpose as shown in Table 1, however, they do not work at

the package level, and requiring maintainers to inspect multiple

alerts before identifying malicious packages. Therefore, in order to

attain our objective and address the limitations of current methods,

we develop a machine learning (ML) approach. This approach is

centered around combining specific static features, as demonstrated

in the upcoming Section 4.2. We resort to use ML technique as it is a

popular technique in the area of information security [21, 28, 37, 48].

For a comprehensive view, Figure 1 shows the full workflow of

our approach, which consists of three phases: collecting benign and

malicious PyPI packagess (Section 4.1), feature extraction including

metadata, file, code, and text related features (Section 4.2), and

classification phase which details the machine learning classifiers

and presents the evaluation process (Section 4.3).
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Table 2: An overview of feature set used to identify malicious packages in PyPI, including reused features from Ohm et al. [37].
Dimensions Features Definition Reused Features From Ohm et al. [37]

Metadata-related Has invalid or no homepage The package includes invalid or no homepage. ✗

Has invalid or no author email The package includes invalid or no author email. ✗

Text-related Suspicious LOC Lines of code including suspicious APIs. ✓
(Consider each API as a boolean feature)

Code-related Has (post) install command The package includes install script. ✓
Has suspicious URL The package includes suspicious URL or IP address. ✓
Has long string The package includes very long string (obfuscation). ✓

File-related Has minimum setup configuration The developer does not specify the package details in the setup.cfg file. ✗

Has mismatch license The package is missing license type uniformity in the three core positions. ✗

4.1 Collecting Training and Testing Datasets
Training dataset. One of the main challenges in building a classi-

fier model to identify malicious packages is the quality and abun-

dance of data. As thousands of packages are published weekly, it

is well known that only a small fraction of malicious packages are

immediately flagged as security threats; hence, we cannot assume

that other recently published packages are benign (non-malicious).

To solve this problem, we use popular packages that have been

used by projects for years to compose the training/validation set of

non-malicious packages, similarly as done in prior work [37, 49, 63].

Also, widely used and trusted popular packages are often copied

by malicious packages (e.g., typosquatting), aiming to camouflage

their activities and reach a larger number of users and developers

[26, 38]. As such, our approach must be able to distinguish between

popular packages and their malicious copies. It is important, how-

ever, to note that 1) we refrain from using any popularity metric as

a feature of our classifier, our classifier should use only code and

metadata-related features, and 2) we also test our model’s perfor-

mance on a set of benign packages that are also not popular, to

simulate a real-case scenario of using our approach.

To build our training and validation dataset, we collect 5,193
benign packages. We first collect the top 5,000 most downloaded

PyPI packages, from the PyPI registry [54] and select the top 5,000

most dependent upon packages from PyPI, as recorded in the li-

braries.io database [3]. We then merge both datasets, removing all

duplicates (the vast majority), leading to a total of 5,193 popular

Python packages in the PyPI ecosystem.

To build our set of malicious packages for model training, we use

the dataset of 252 malicious packages collected by Ohm et al. [38].

As this dataset contains multiple versions of the same malicious

packages, we only kept the latest version of malicious packages,

similarly as done in previous work [32], to avoid overrepresenting

a single package in out training set. We also remove (18) packages

that were deemed not complete (e.g., package that included only the

setup.py file or just the malicious payload). Finally, the malicious

dataset contains (138) packages. This dataset of malicious packages

spans 2015 to 2023, and the majority of attack vectors target install

time rather than runtime. The dataset includes a variety of differ-

ent injection techniques, such as TypoSquatting (52%) and Trojan

Horse (27%), with varying infiltration objectives, e.g., data exfiltra-

tion (44%), droppers (15%), backdoors (8%). More information can

be found in the study of Ohm et al. [38].

Test dataset. While using popular packages as a proxy for benign

packages is a sensible choice, it is expected that distinguishing

between popular packages and malicious packages is easier than

finding malicious packages in a batch of newly published Python

packages [57]. Thus, we craft a test dataset that, by definition, does

not contain any package (malicious or not) seen by the model dur-

ing training but also better represents the average packages in the

PyPI ecosystem. To achieve this, we 1) randomly select 397 pack-

ages from the PyPI registry, hereby named as typical packages.
For the malicious packages, we incorporated a new collection of

143 malicious packages, distinct from our training dataset se-

lected from the dataset introduced by Ohm et al. [38]. During the

implementation of the study, the dataset maintainer supplemented

the collected training dataset with these 143 malicious packages,

which we subsequently designated as the test dataset.

4.2 Feature Extraction
We need to collect features that capture different characteristics

of malicious packages. We observed that majority of related work

targeted NPM ecosystem, thus a set of features are adapted from

NPM ecosystem [23, 48], called Code-related features in our case.

Other features were chosen based on the grey literature [33] and

expert knowledge of the differences between benign and malicious

packages (in our case called File-related features). Moreover, a few

of metadata-related features ( e.g., README length, dependency

analysis, author information, homepage, number of versions) are ex-

plored in the context of machine learning based solution [32, 48, 55].

In general, it’s important to note that not all metadata features hold

significance; certain attributes might introduce noise and subse-

quently impact the model’s performance. Hence, we expand the fea-

ture set to include metadata-related features. Finally, a text-related

feature was derived from various sensitive APIs and permissions

included in the source code. These APIs have the following be-

haviours: produce new code during runtime ("getattr"), create forks

or terminate operating system processes ("exit", "Thread", "system"),

access obfuscated (hidden) code, modify system or environment

variables ("clear"), access files and directories ("open"), establish con-

nections with external networks ("open_connection"), or readwrite

user input ("input", "mkdtemp").

Our approach involves integrating eight different sets of features

summarized in Table 2, to capitalize on the synergies that can arise

from the interactions among these distinct features.

Metadata-related features. Every PyPI package has a set of meta-

data that contains different information such as homepage, project-

url, authors and maintainer-email. For the computation of these

features, we analyze the PKG-INFO file associated with each pack-

age. The validity of the email address is assessed by confirming its

domain, while the homepage URL’s validity is verified by ensur-

ing its security and association with a well-known domain. The
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compilation of popular domains is derived from the list provided

in [19]. We consider two features of this dimension in our approach.

Has invalid or no homepage (repository): Previouswork showed that
the differences in source code between build artifacts of a package

and the respective source code repository are a strong indicator for

its maliciousness [55, 63]. Our hypothesis suggests that this feature

could aid in differentiating between malicious and benign packages,

as supported by previous studies that emphasize the importance

of having a homepage or/and source code repository for a given

package. Moreover, based on a quantitative analysis of our dataset,

we find that only 20% of malicious packages have a valid homepage

or repository, while 73% of benign packages own a valid homepage.

Has invalid or no author email: A recent investigations highlight

that packages lacking a valid author email address, often a result

of improper packaging guidelines, may raise suspicion and serve

as an indicator of potential malicious intent [57, 65]. Among the

inspected packages of the before mentioned dataset, we find about

87% of benign packages have a valid author’s email address in

comparison to only 46% valid email address in malicious packages.

Listing 2: Snapshot of a generated report from packj tool
"performs a process operation": [{

"filepath": "10Cent10-999.0.4\\setup.py",
"api_name": "spawn",
"lineno": "17"

}]

Text-related feature: Most known attacks had malicious code

injected into setup.py file [38, 58]. In this particular situation, our

hypothesis revolves around the possibility that the malicious at-

tacker might disperse the harmful payload among various files. To

better understand and address this scenario, we extract lines of

code corresponding to the suspicious APIs. To avoid reinventing

the wheel, we rely on the generated static analysis report of the

packj tool [41] to construct a portion of text feature. These APIs

are linked to file paths and line numbers, as demonstrated in listing

2. To formulate a complete text feature, we enrich these suspicious

lines of code by including the source code that originates from the

setup.py file, in addition to any other .py source code that involve

suspicious URLs. Moreover, based on a quantitative analysis of

our dataset, we observe that setup.py file was the most targeted

file by attackers (75%). Our observation is inline with prior works

[9, 38, 55] showed that setup.py file is the most likely file to be

manipulated by attackers.

Code-related features.Many characteristics have been exten-

sively discussed in prior research studies like [23, 32, 37, 48], high-

lighting their significance in proficiently recognizing malicious

software packages. These characteristics include installation com-

mand, suspicious URL, and long string. In this context, we leverage

the previously discussed generated text feature to extract the fol-

lowing features.

Has (post) install command: Prior works [37, 48] show that the in-

stall command initiates an external operation, which is a common

characteristic observed in malicious packages. Thus, we use regular

expressions to search for the install command in the generated text

feature.

Has suspicious URL: Different studies showed that attackers often

inject their IP address or URL address in malicious code [32, 37].

We use regular expression to extract URLs and IP addresses for a

particular package, then we record the suspicion of each URL/IP

based on different criteria such if the URL is insecure, and if it

belongs to unpopular domain. We rely on a list of approved URL

domains provided by Amazon to verify the domain of a URL. This

list contains the top 1 million most popular domains from Alexa,

and if the domain of the URL is not present in the list we mark the

URL as suspicious [19].

Has long string: The obfuscated code is often very long [30, 32].

Attackers commonly apply specialized encoding methods such as

base64 to obscure harmful payloads. A string is categorized as

lengthy when its length surpasses a specific threshold (40 charac-

ters) [14]. Consequently, we adopt this characteristic with string

length larger than 40, following prior works [14, 32, 37]. Our dataset

indicates that this attribute seldom appears in harmless packages.

File-related features. Research conducted earlier in the NPM

ecosystem [47] demonstrated that during typosquatting and com-

bosquatting attacks, the malicious package imitated a popular pack-

age by utilizing the README file. Therefore, we resort to examine

files other than .py files, such as PKG-INFO and setup.cfg files. Sub-

sequently, we formulate the hypothesis that these files might play

a role in discerning between malicious and benign packages. From

this perspective, we extract two distinct features.

Has minimum setup configuration: In the last few years, package

distribution guidelines are constantly evolving [44, 53]. In Python

development, both setup.cfg and setup.py are common for the pur-

pose of packaging and distribution. The setup.cfg file includes the

configuration of various aspects of package distribution, such as

metadata details. This approach is considered cleaner, more con-

temporary, and modular, enabling efficient management of settings

without cluttering the main script. We compute this feature by

parsing the content of the setup.cfg file. We define the minimal

configuration as equivalent to the default contents automatically

generated by the utilized packaging tool. We hypothesize that at-

tackers focus on the malicious payload rather than the package

design. In some instances, attackers may leave the setup.cfg file

untouched, adhering to a minimal configuration. Hence, we assume

that the absence of a robust design is posited as a potential indicator

of a malicious package, particularly when the setup.cfg contents

resemble the minimum configuration. To support our assumption,

we examine our dataset, discovering that 79% of the malicious pack-

ages exhibit inadequate design, while only 45% of benign packages

deviate from the best practices.

Has mismatch license:Agrey literature [33] highlighted that around

10% of PyPI packages lack clear usage licenses, posing a potential

risk for malicious attacks. Python packages employ three methods

to express licenses: license classifier, field, and file [33, 60]. We

calculate this feature by examining the agreement among the types

of licenses employed in the aforementioned three methods. Trusted

packages adhere to proper license usage, as indicated by a recent

study[15]. However, our dataset analysis reveals that approximately

66% of malicious packages exhibit license discrepancies, compared

to just 1% in benign packages.
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Until this point, we have prepared all the features for both ma-

licious and benign packages. Next, we perform pairwise Pearson

correlation [12] between the features to checkwhether two indepen-

dent variables have a linear relationship. We found no correlation.

4.3 Classifiers and Performance Evaluation
To perform our predictions, we leverage six machine learning classi-

fiers from Scikit-learn python library [42]: Random Forest, Support-

Vector Machine, Decision Tree, Multilayer Perceptron, Naive Bayes

(Bernoulli version), and Stacking. These classifiers have been used

in prior works [37, 48], as well as other software engineering works

[4, 24, 51]. To measure the performance of each classifier, we com-

pute the precision, recall, and F1-score.

5 Case Study Results

5.1 RQ1: How accurate is our approach in
classifying malicious packages?

Motivation: Most registries have little to no review process for

publishing packages [21], which can be exploited by attackers to

publish different types of malware to harm all downstream stake-

holders. To maintain the ecosystem health from malicious actions,

we need to identify the malicious packages among millions of pub-

lished packages. Furthermore, different scanning methods have

been developed to detect packages that raise suspicion rather than

those that are undoubtedly malicious. In this RQ, we aim to evaluate

the effectiveness of our approach in detecting malicious packages.

Our approach helps registry maintainers to have a timely and accu-

rate prediction of the malicious packages even before publishing

them, and keeps the registry clean.

Approach: To answer this question, we evaluated the classifiers

in predicting malicious packages in the two datasets discussed in

Section 4.2. During training and validation, we performed a strati-

fied 10-fold cross-validation, which trained six classifiers on 90%

of the dataset and measured precision, recall, and F1-score on the

remaining 10%. To ensure that the results are not skewed by a

particular random initialization or split, this process is repeated

ten times for each classifier, and then an average performance of

these runs is computed to present the overall performance for that

classifier. Moreover, to understand the sort of vocabulary used in

distinguishing malicious packages from benign ones, we extracted

all tokens from a text feature and converted them to lowercase.

We removed stop words from the set of tokens, and we evaluated

the impact of these choices on the performance of classifiers. Then

we used a combination of standard NLP techniques, including key-

words and stop-word removal to convert the text into tokens. Then

we fed these tokens as inputs for the text classification algorithms

with/without the feature set extracted from the metadata-related,

code-related, and file-related features. We relied on Scikit-learn
python library [42] for all classifiers, with the best configurations

as shown in Table 4, and Keras python library [16] for text pre-

possessing (Tokenizer). Next, to understand the generalizability of

our model, we tested our trained model on the test set discussed in

Section 4.1, applying the same process shown in Figure 1 to extract

the corresponding features. For this evaluation, we reported only

results from our best model, the Stacking classifier.

Fitness results: Table 4 presents the performance of experimented

classifiers in terms of precision, recall, and F1-score values. Gener-

ally, the classifiers achieve high performance (F1-score > 87%) in

identifying malicious packages in all classifiers except the Naive

Bayes (52%). Ensemble stacking classifier outperforms all other clas-

sifiers achieving the highest F1-score (94.2%) considering text vocab-

ulary and metadata-related, file-related, and code-related features.

Upon closer examination of the impact of using text vocabulary for

the best performed classifier (i.e., stacking), the results show that

the text vocabulary has a significant contribution to the prediction.

When comparing the performance of stacking classifier only on

metadata-related, file-related, and code-related as input features,

we find that while the combination of most extracted features (i.e.,

metadata-related, file-related, and code-related features) achieve

F1-score (84%) , text vocabulary feature achieves higher F1-score

(89%) as shown in Table 3. The evaluation assures our conjecture

that text vocabulary could be used as a strong candidate feature to

distinguish malicious package from benign one.

Test results: To test the generalizability of our trained model, we

report the classification performance when inferring only the test

set (the model was not trained further). The results shown in Table

5 display both the instances of false positives and false negatives

generated by our approach when employed on the test set. We

observe that our approach performs consistently well, reaching a

F1-score of 90%, suggesting that our trained model is capable of

identifying malicious packages even when regular (non-popular)

Python packages are in the mix. We can observe from Table 5 that

all typical packages are correctly classified as benign packages. On

the other hand, when looking at the malicious packages, we observe

that 105 out of 143 are classified correctly as malicious packages.

However, the 38 malicious packages that were wrongly classified

as benign were clones of popular packages, to inject their malicious

payload. Upon manual analysis, we note some of these package’s

malicious payloads seem insufficient for our model to distinguish

them from their benign counterparts. Further exploration of other

features may help reduce these false negative mistakes.

The stacking ensemble classifier performs best in
detecting malicious packages, with a fitting F1-score
of 94.2% and a test F1-score of 90% on unseen data.
The text vocabulary features contribute significantly
to distinguishing malicious from benign packages.

5.2 RQ2: What features are the best indicators
of malicious packages?

Motivation: Given that stacking classifier achieves a high fitting

and test performance in identifying the malicious packages, we

want to better understand the most important features that con-

tribute to the prediction. By knowing these important features, we

can set the characteristics that distinguish malicious packages from

benign ones.

Approach:We rely on the permutation feature importance tech-

nique [6] to find the most useful features in the stacking classifier.

This technique randomly permutes the values of one feature while

preserving the values of the remaining features. This process is
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Table 3: Performance of stacking classifier on a train dataset.
Best configuration (bold): num-folds = [10, 15] num-trees = [12,100, 200] num-words =[200, 500,1000, 2000]

tokenizer modes = [binary, tfidf, count, freq] lower-states = [ False, True] (M/B) = (Malicious/Benign)

Overall Per-class (M/B)
Input Features Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

Metadata-Code-File 94 77 84 (89/99) (55/100) (68/99)

Text 97 83 89 (96/99) (67/100) (79/100)

Text + preprocessing 98 83 89 (97/99) (67/100) (79/100)

Text + Metadata-Code-File 98 91 94 (96/100) (82/100) (88/100)

Text + Metadata-Code-File + preprocessing 98 91 94 (97/100) (81/100) (89/100)

Table 4: Performance of different classifiers under precision
(P), recall (R), and F1 score.
Classifier P (%) R (%) F1 (%)

Random Forest (RF) [n_estimators=12] 97 83 89

Support Vector Machine (SVM) [kernel= linear] 99 80 87

Decision Tree (DT) [max_depth=15] 89 89 89

Multilayer Perceptron (MLP) [activation= logistic, solver= adam] 97 90 93

Naive Bayes-Bernoulli (NB) 54 81 52

Stacking (RF+SVM+MLP+DT+NB) 98 91 94

Table 5: Performance of our approach on the training and
test dataset.
Dataset Package type Total FP FN Precision Recall F1-score

(%) (%) (%)

Training popular 5,193 3 - 98 91 94

malicious 138 - 23

Test typical 397 0 - 96 87 90

malicious 143 - 38
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Figure 2: The permutation feature importance.

applied to all features discussed in Section 4.2. We use permuta-

tion_importance function in the Scikit-learn library [42] to compute

the feature importance values of the stacking classifier.

Results: We find that the most important features are related to

the following features: has suspicious url, has a licence, has a valid

author email, has minimum configuration, has long string, and has

a set of suspicious API (getattr, connect, open, and read), as

shown in Figure 2. Upon a deeper examination of the percentage

of the most important feature in malicious and benign packages in

our dataset, we find that while 28% of malicious packages contain a

suspicious url, only 9% of the benign packages include it. Another

important feature is the "Has a License." Based on our analysis, the

result shows that 77% of the malicious packages have a mismatch

license between the three known locations (i.e., file, classifier, and

field), and only 1% of the benign packages have this property. This

confirms that these features have a significant impact on the target

variable, at least in the givenmodel’s context. Moreover, it is evident

that features such as "Has long string" and "Has suspicious URL"

possess attributes indicative of malicious packages. Moreover, our

dataset suggests that malicious packages tend to have more invalid

homepage (80% compared to 27% for benign packages). The same

observation for the "Has minimum configuration" (79% compared

to 45% for benign packages). Note that only the suspicious APIs

are not enough to capture most malicious packages (low recall) as

shown in Table 4, but when combined with metadata features, the

model reaches excellent performances.

Code-related, file-related, and metadata-related fea-
tures are all contribute to identify themalicious pack-
ages. Moreover, suspicious APIs such as getattr, con-
nect, open, and read, contribute to distinguishing
malicious from benign packages.

5.3 RQ3: Is our approach useful?
Motivation: In RQ1, we assessed the performance of our approach

and found that the stacking classifier achieves the best results in

identifying malicious packages with F1 score of 94.2%. Moreover,

a recent study [57] has brought attention to the fact that popular

packages are different from a typical Python package. The study

emphasizes that these popular packages demonstrate enhanced

engineering and a stronger alignment with standard Python pro-

gramming conventions. Consequently, using only popular packages

as the benign dataset might lead to unrealistic benchmark results

since these packages might be relatively easy for detection tools to

classify as benign.

Approach: To put our results into perspective, we conducted two

experiments. We compared our approach with (1) two benchmark-

ing tools: Bandit and Packj, as in prior works [48, 56, 58], (2) the

method of Ohm et al. [37]. For the first experiment, we utilized

the above mentioned tools for the reasons specified in Section 2.

We selected these tools, despite their differing threat models, to ex-

plore their effectiveness in detecting malicious dependencies and to

measure the manual effort needed to filter through all signals they

generate. We run both tools and manually examine the returned

alerts to identify malicious packages, simulating how practitioners

use these tools to identify suspicious functions and conclude the

presence of malicious packages in their applications. We avoid the

computational overhead associated with Packj tool by focusing

solely on the static code analysis capability for identifying API us-

age, which is then processed further to isolate the relevant phantom
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Table 6: Number of generated alerts for a random sample of
external dataset for packj and bandit tools.
Malicious Package # Packj Alerts # Bandit Alerts

whole pkg setup whole pkg setup

2022-requests-3.0.0 69 16 555 21

typing-unions-3.10.0.1 38 0 61 1

rumihelling-0.0.1 15 0 4 0

dlcsord-1.0.3 0 0 0 0

lines of code that constitute the text-related feature. In this experi-

ment, we determine the number of alerts generated by applying the

bandit and packj tools on a random subset containing 50 benign

packages and another 50 samples of malicious packages sourced

from the test dataset (Table 5). This evaluation is conducted in two

situations: the whole package and exclusively the setup.py file.

In the second experiment, we exploited the method proposed by

Ohm et al. [37], due to its close similarity to ours. Their dataset,

drawn from the same source as ours, comprised nearly equiva-

lent sizes, with 150 malicious npm packages compared to our 138

Python packages. We leveraged their method, which relied on the

intersection of outcomes from three classifiers (SVM, RF, and MLP).

It is important to highlight, however, that the approach of Ohm et

al [37] was tailored to the JavaScript ecosystem, while our approach

accounted for the specificities of Python packages. Thus, in this

experiment, we are also evaluating how ecosystem-tailored features

contribute to classifying malicious Python packages.

Result: Figure 3 presents the average number of alerts generated

by bandit and packj tools in two scenarios, whole package and only

setup.py file. The presented findings include both true positives

and false positives. The result of Figure 3 (a) reveals that both the

bandit and packj tools generated a considerable number of false

alerts when assessing the entire benign package. Nonetheless, by

considering only the setup.py file, Figure 3 (b), the average alert

count peaked at a maximum of two alerts. Clearly, the number of

alerts, for both tools has risen when considering the whole package

both of benign and malicious packages, Figure 3 (a) and (c). More-

over, it can be noted from the same figure that when focusing solely

on the setup.py file, we see that malicious packages tend to produce

a higher number of alerts, averaging around six alerts, Figure 3 (d) ,

in contrast to benign packages (two alerts as in Figure 3 (b)). This

reconfirms the earlier conclusions presented in references such

as [38, 58], which identified that the setup.py file was the most

targeted file by attackers.

To provide further details, Table 6 shows the number of alerts

produced by the packj and bandit tools for a subset of a selected

sample of malicious packages . We observed a significant volume

of alerts being generated by both tools, especially when examining

the complete package scenario. This necessitated significant man-

ual effort from developers to verify the status of these packages.

The bandit tool, in particular, generated 555 alerts, and a manual

investigation revealed that a number of these alerts were wrongly

triggered. Our approach misclassified 16 samples out of 50 (32%)

where the total misclassificaton was 38 out of 143 samples (about

27%) as shown in Table 5. This highlights the capability of our

approach to reduce the manual workload for registry maintainers.

In evaluating the two tools for package security, it is evident that

both tools have limitations in identifying suspicious packages, as

shown in instances like typing-unions-3.10.0.1, rumihelling-0.0.1,

and dlcsord-1.0.3 (Table 6), particularly when focusing solely on the

setup.py file. Notably, our approach successfully classified all benign

packages, in contrast to packj and bandit tools, which generated

excessive false alerts for benign packages. Nonetheless, it’s worth

emphasizing that our method results in a relatively small number

of false negatives. In the second experiment, we compared our ap-

proach, with features tailored to the Python ecosystem, against the

approach of Ohm et al. [37]. We observed that the method proposed

by Ohm et al. [37] failed to identify certain malicious packages. In

contrast, our approach proved to be more effective, successfully

detecting a wider range of these packages, as depicted in Figure 4.

When employing a stacking classifier, we managed to detect 115

out of 138 in the training dataset and 105 out of 143 in the testing

dataset. However, relying on the intersection method of the three

classifiers only enabled us to detect 73 out of 138 and 81 out of 143

for the training and testing datasets, respectively. This indicates

that our approach, which is tailored to the Python ecosystem, is

more effective in detecting malicious Python packages compared

to the approach proposed by Ohm et al. [37].

Our approach is reasonably precise and does not pro-
duce an overwhelming number of false negatives
and false positives, making manual investigation ex-
tremely feasible, when apply to the entire ecosystem.

6 Model Misclassifications
This section analyzes the misclassification of packages by our model

in both training and external datasets to understand the underlying

reasons. In the training dataset, 23 out of 138 malicious and 3 out of

5,193 benign packages were misclassified. For the external dataset,

38 out of 143 malicious packages were misclassified, with no benign

misclassifications among 397.

Misclassification in popular packages. Our investigation found

that less than 0.06% of popular packages were misclassified by our

model, primarily due to poorly structured code and deviation from

standard Python conventions. Misclassification occurred because

of a lack of essential metadata, such as homepage, author email,

or license, as seen in packages like ordereddict-1.1, cookies-2.2.1,

and blob-0.16. For instance, cookies-2.2.1 had an unknown license

and used suspicious APIs like ’getattr’, ’setattr’, ’open’, and ’call’,

which can indicate malicious behavior. We merged vocabulary

from the setup.py file with lines from suspicious files, highlighting

how missing metadata and the presence of suspicious APIs lead

to misclassification. Ultimately, misclassifying benign packages as

malicious is considered less risky than the reverse scenario.

Misclassification in malicious packages. Our model falsely clas-

sified some packages due to many reasons. (1) The package incor-

porates a reference to an external harmful function. For examaple,

libpesh-0.1 package has been identified as malicious because it

includes a reference to a harmful function called "rn" which can

be found in the file named entry_point.txt as "eggsecutable =

libari.pr:rn." Due to the absence of the text code, which are critical

feature that our model relies on, this incident has the potential to

deceive the model. (2) Using a group of suspicious APIs that are
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Figure 3: The average number of alerts generated by bandit and packj tools from the whole package and setup.py file.

Figure 4: The result of the intersection approach [37] of three
classifiers on our train and test dataset.

commonly employed by benign packages. For example, the pack-

age bzip-0.98 has been designed to appear as the legitimate bz2file

package, and its installation script, setup.py has been altered to

contain a malicious code that is not particularly harmful.

7 Threats to validity
Internal Validity. The internal validity threats in this study in-

clude the potential for false positives and false negatives, although

these are manageable. Manual review helps mitigate false positives.

The dataset may also be biased due to clustering of similar mali-

cious samples and assuming popular PyPI packages as benign. The

selection criteria for popular packages could introduce variability,

impacting the results. Despite these threats, we believe the dataset

is sufficient for the experiments.

Construct Validity. One threat to construct validity is the reliance
on the Packj tool [41] for static analysis, as we used it primarily

to extract features for training our text classifier rather than draw-

ing final conclusions. Another threat arises from the feature set

construction, as we inherited some features from prior studies that

effectively identify malicious packages [21, 23, 41, 48]. However,

this reliance may limit our outcomes, highlighting the need for

future research to investigate additional features and their impact.

External Validity. External validity concerns the generalization of

our findings. In our study, we assessed the performance of our ap-

proach using 5,193 bening packages and 138 malicious ones. Hence,

our results may not generalize to other datasets, as malicious dataset

may not accurately represent all malicious packages in the wild,

and may there are malware with different characteristics than those

in our dataset. However, we still believe that our dataset is com-

prehensive and serve the goal of this study. Moreover, to alleviate

this threat, we evaluate the model on an external (unseen) dataset,

and we found that our approach performs very well, suggesting its

generalizability.

8 Conclusion
We presented a machine learning-based method for detecting mal-

ware in PyPI packages using features from text, file, code, and

metadata. Among the six classifiers evaluated, the stacking classi-

fier performed best, while Naive Bayesian failed to detect known

malicious packages. Our approach demonstrated practical effective-

ness with low false negatives on external datasets. This method

holds promise for automatic malware detection in PyPI. Future

work includes expanding features and applying the technique to

other ecosystems like NPM and RubyGems.
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