
R
a

b

c

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

An empirical study on self-admitted technical debt in modern code review
Yutaro Kashiwa a,∗, Ryoma Nishikawa a, Yasutaka Kamei a, Masanari Kondo a, Emad Shihab b,

yosuke Sato c, Naoyasu Ubayashi a

Kyushu University, Japan
Concordia University, Canada
The University of Tokyo, Japan

A R T I C L E I N F O

Keywords:
Self-admitted technical debt
Modern code reviews

A B S T R A C T

Technical debt is a sub-optimal state of development in projects. In particular, the type of technical debt
incurred by developers themselves (e.g., comments that mean the implementation is imperfect and should be
replaced with another implementation) is called self-admitted technical debt (SATD). In theory, technical debt
should not be left for a long period because it accumulates more cost over time, making it more difficult
to process. Accordingly, developers have traditionally conducted code reviews to find technical debt. In fact,
we observe that many SATD comments are often introduced during modern code reviews (MCR) that are
light-weight reviews with web applications. However, it is uncertain about the nature of SATD comments
that are introduced in the review process: impact, frequency, characteristics, and triggers. Herein, this study
empirically examines the relationship between SATD and MCR.

Our case study of 156,372 review records from the Qt and OpenStack systems shows that (i) review records
involving SATD are about 6%–7% less likely to be accepted by reviews than those without SATD; (ii) review
records involving SATD tend to require two to three more revisions compared with those without SATD;
(iii) 28–48% of SATD comments are introduced during code reviews; (iv) SATD during reviews works for
communicating between authors and reviewers; and (v) 20% of the SATD comments are introduced due to
reviewers’ requests.
1. Introduction

Developers often choose an alternative approach to implement prod-
ucts strategically, knowing that such approaches may affect quality
and performance. For example, developers occasionally have to control
the severe problems caused by defects and/or implement new features
under release pressure. These imperfect solutions can lead to what is
often referred to as ‘‘technical debt’’. As with financial debt, technical
debt accumulates a higher cost over time [1], making it difficult to
address as time passes.

Over the decades, many studies [2–4] have contributed to the
detection of technical debt. These studies used source code [2], coding
style [3], or comments [4] to perform their detection. In recent years,
an approach using source code comments became popular for technical
debt detection. This approach exploits the fact that developers often
place comments indicating technical debt. This type of technical debt
is called self-admitted technical debt (SATD) [4,5]. Vassalloet al. [6]
conducted a survey on the development projects of financial systems
and found that 88% of the respondents annotated programs to tell other
developers that a part is inappropriately implemented and should be

∗ Corresponding author.
E-mail address: kashiwa@ait.kyushu-u.ac.jp (Y. Kashiwa).

fixed later. Such comments indicating SATD help the author of the
change notify other developers of files/methods where technical debt
resides [7,8] and benefit researchers to study how to deal with technical
debt by referencing the historical fixes of SATD [9].

Several papers investigated the effect of SATD on software prod-
ucts [10] and process [11]. Wehaibi et al. [10] studied the effect of
SATD on software quality and showed that patch-sets involving SATD
(SATD changes) introduce future defects less frequently than others.
However, SATD changes require more effort (e.g., larger churn and
more modified files) than non-SATD changes. Palomba et al. [11] ex-
amined the relationship between refactoring and SATD. They observed
that 46% of refactored classes contained an SATD comment, and one
of the motivations of refactoring is to remove technical debt.

However, most of the studies assumed that the SATD comments are
introduced during the coding process, or they do not distinguish which
process SATD comments are introduced in. In addition to the coding
process, another possible occasion when SATD arises is during code
reviews [6,12]. A code review is an essential activity in software quality
https://doi.org/10.1016/j.infsof.2022.106855
Received 8 July 2021; Received in revised form 12 December 2021; Accepted 17 J
anuary 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:kashiwa@ait.kyushu-u.ac.jp
https://doi.org/10.1016/j.infsof.2022.106855

Y. Kashiwa et al.
assurance. Reviewers check if changes are clean and if they meet their
quality standards to prevent integrating inappropriate changes into
their codebase [13]. Once reviewers find technical debt, they order the
authors of patch-sets to annotate the technical debt in their patch-sets
or may not accept the patch-set.

Since it is uncertain about the nature of SATD comments that are
introduced in the review process, this study tries to reveal the nature of
introductions of SATD during MCR: the impact, diffusion, triggers, and
characteristics. Our work is the first to study the nature of SATD com-
ments in the code review process. We examine the following research
questions with the code review data of two projects, OpenStack and Qt:

𝑅𝑄1 Does the Existence of SATD Impact the Code Review Process?
Several studies [10] have reported that SATD negatively affects
software quality. Thus, review records involving SATD might be
less likely to be accepted or might require more modifications
by reviewers.

We evaluated if review records involving SATD introductions
lower the acceptance rate and increase the number of revisions.
As a result of the case study, we found that review records
involving SATD are 6%–7% less likely to be accepted by reviews
than those not involving SATD.

𝑅𝑄2 How Often do Developers Introduce SATD Comments during
Code Reviews?
While previous work has studied SATD comments that appear
in snapshots, it is uncertain whether or not they are introduced
during code review. While most of the previous studies regard
that the SATD comments are created by the authors of patch-
sets, they may be created by the results of the discussions during
code reviews.

We examined how many SATD comments are introduced in the
revised patch-sets (i.e., patch-sets resubmitted after the review
process started) and found that 47.7% and 27.7% of SATD
comments are introduced in the revised patch-sets for OpenStack
and Qt, respectively.

𝑅𝑄3 What are the Characteristics of SATD that are Introduced
During Code Reviews?
It is reported that code reviews improve the quality of code [14–
16]. Intuitively, code reviews can help find technical debt and
several studies [6,12] support this intuition. However, it is not
unrevealed what types of SATD can be found in the code review
process.

We conducted a manual classification and observed two unique
usages of SATD during reviews: ‘‘Communication’’ SATD com-
ments are exploited to communicate between the author and
the reviewers, which often trigger discussions; the ‘‘Work in
progress’’ SATD is used to declare the undergoing tasks, which
sometimes enable reviewers to give early feedback about a code
that has already been implemented.

𝑅𝑄4 To What Extent are SATD Comments Introduced Because of
Reviewer’s Requests?
RQ2 showed that about 28–48% of SATD comments are intro-
duced during reviewing. They might have resulted from review-
ers’ requests. A previous study [17] observed some cases where
the authors of patches were asked to introduce SATD comments
during discussions of issues. If many introductions of SATD
are due to reviewers’ requests, it suggests that reviews help
find technical debt. Through our manual inspection, we found
that 20% of SATD comments are introduced due to reviewer
requests. Commonly in OpenStack and Qt, the ‘‘Scheduling’’,
‘‘Work dependency’’, and ‘‘Problem report’’ are introduced due
to reviewers’ requests.
Paper Organization: Section 2 introduces a motivating example of our
study; Section 3 indicates our case study design; Section 4 describes the
motivation, approach, and results of our research questions; Section 5
discusses the broader implication of our results; Section 6 introduces
related work about MCR and SATD; and Section 7 concludes our
findings and discusses future work.

2. Motivating example

Developers often choose to implement products in a non-ideal way,
knowing well that such implementation might affect quality, perfor-
mance, or other important factors for software. This is widely known
as technical debt, and typically, should be addressed as soon as possible
since it tends to ‘‘incur interest’’ as time passes [1,18]. Developers
often note the presence of technical debt with ‘‘TODO’’, ‘‘FIXME’’, and
other expressions [19] to the other developers during code implemen-
tation. This is commonly referred to as ‘‘SATD’’ and is an indicator of
low-quality code [10].

Traditionally, developers conduct code reviews to improve the
source code quality [12]. In recent years, MCRs emerged as a more
instant and light-weight approach and have been widely adopted across
modern software development [20]. MCR employs a web applica-
tion that enables developers to remotely and asynchronously review
changes (e.g., Gerrit [21], Review Board [22], Crucible [23], Phabrica-
tor [24]). Once developers make a patch-set (i.e., diff files) in their own
branches and submit them into this system, reviewers can check it in
the system to determine if it should be integrated into their repository.
If the patch-set has problems or does not meet the project standards,
reviewers may ask for revisions until the code reaches the necessary
quality (or in certain cases, abandoned).

Reviewers might not accept it in the repository when they see the
SATD in the patch-sets because SATD comments are often reported as
one of the indicators of bad implementation [10]. We have shown an
example of an SATD comment that was a cause of review rejection in
Fig. 1. In this figure, a method has two SATD comments, one of which
warns about the method’s defective behavior where specific instances
connect to volumes that should not be accessed. Reviewers raise several
concerns in review comments. One of these concerns was related to this
SATD (i.e., need extra work to mount the volume), and the patch-sets
were rejected as a consequence. In addition, a previous study [10] also
reported that technical debt has negative effects on software quality.
Hence, SATD comments might affect the decisions made in a code
review. For the first research question (RQ1), we investigate if the
existence of SATD comments can be a factor in code review decisions.

Shedding more light on the code review process, SATD comments
are not only introduced during the submission of the first patch sets
but also in the revised patch sets. The first case (i.e., where SATD
comments are introduced in the first patch sets) is the case where the
author of the patch-sets is made aware of the existence of technical
debt and explicitly notes it in the source code as an SATD comment
when they submit the source code to their reviewing system. The
latter case is where the author of the patch-sets did not know that the
source code contains technical debt at the time of the submission, and
subsequently the author or reviewers recognized it during code reviews.
For the second and third research questions (RQ2 and RQ3), we would
like to investigate how many SATD comments are introduced during
code reviews (i.e., in the latter case, above) and their characteristics,
respectively.

During code reviews, reviewers might encourage the introduction of
SATD comments. Fig. 2 shows an example of a source code review with
SATD comments introduced. The reviewer asked the author to annotate
an SATD comment, and the author did so as the reviewer suggested.
Consequently, the patch-set was integrated without addressing the
introduced SATD comment. In this example, reviewers would be likely
to make sure that the SATD is explicitly documented so that it is clear

Y. Kashiwa et al.
Fig. 1. Example of SATD comments that is a cause of review rejections.
Fig. 2. Example of a reviewer instruction that introduces SATD.
Fig. 3. Overview of data processing for research questions.
to others, and so more easily dealt with in the future. In fact, it has been
reported that many SATD comments are left in snapshots [4,25]. Fucci
et al. [25] reported that 0%–16% of SATD comments are introduced
by other developers rather than by the owner. For the fourth research
question (RQ4), we investigate what percentage of the introduced
SATD comments are triggered by code reviewers.

3. Study design

This section describes the design of our case study intended to
address the four research questions. Fig. 3 illustrates the overview
of our data processing. In the figure, ‘‘SATD’’ in green characters
represents that an SATD comment is introduced in the patch-set and
that in gray characters shows that the introduced SATD still exists in the
patch-sets. The process consists of collecting review records, detecting
SATD comments, and labeling reviews.

3.1. Collecting review records

We selected two projects – OpenStack and Qt – that are popu-
lar and widely used in previous studies [26,27]. OpenStack and Qt
have numerous sub-projects. We decided to use the same sub-projects
as [26], specifically nova, glance, swift, cinder, and neutron from Open-
Stack, qtwebkit, qtscript, qtdeclarative, qtbase and the other 25 sub-
projects from Qt. These projects are known for high review coverage
(i.e., review most of their patch-sets) [26].

The two projects commonly use the Gerrit code review system [21],
which is one of the popular MCR systems. Once a developer uploads
a new patch-set and its description to the system (we name this de-
veloper as author), the system creates a new web page (i.e., a review
record). On the page, reviewers assess the patch-set, give feedback, and
determine if the patch-set should be integrated. If the patch-set has any
issues, reviewers request a modification from the author. The author
should repetitively modify and upload the revisions until the patch-sets
are accepted/rejected by the reviewers.

In the system, each review record possesses an ID, a status (i.e.,
‘‘OPEN’’, ‘‘MERGED’’, or ‘‘ABANDONED’’), and the history of patch-
sets. The status is used to determine if the patch-sets were accepted;
we regard review records that have a ‘‘MERGED’’ status as accepted
reviews. We collected them for each review record via Gerrit API [28].

3.2. Detecting SATD comments

For every revision in each review record, we extracted all the SATD
comments that are added. Then, we fed all the added comments into

Y. Kashiwa et al.

.

F
6
i

Table 1
Our dataset summary.

Project # of reviews # of SATD # of Non-SATD % SATD
reviews reviews reviews

OpenStack 79,508 8,373 71,135 10.5
Qt 76,864 5,517 71,347 7.2

the SATD detection tool to identify which revision introduced SATD
comments. We employed the state-of-the-art SATD detector created by
Liu et al. [19] to find the SATD comments in each patch-sets (Note
that we apply it to diff files, i.e., to the changed lines). The tool adopts
machine learning classifiers and has been trained with SATD comments
from eight open-source software projects. The tool takes a comment as
input and provides a feedback stating whether the comment is an SATD
comment or not. Finally, we identified which revision that introduces
the SATD comment first and flagged it since it exists across multiple
revisions.

3.3. Classifying review records

We classified the review records based on whether or not their
patch-sets involved SATD to make two datasets: the SATD review
dataset and non-SATD dataset. We label the review record as ‘‘SATD’’
if either of the revisions in the review has one or multiple SATD
comments; else, we label the review as ‘‘non-SATD’’. In Fig. 3, review
record 1 is labeled as ‘‘non-SATD’’ because no SATD comments were
introduced across the revisions in this review. Review record 2 is la-
beled as ‘‘SATD’’ because an SATD comment was introduced in patch-
set 1. Similarly, Review record 3 is also labeled as ‘‘SATD’’ because
of an SATD introduction in patch-set 2. We aggregated the reviews
that contain patch-sets where at least one SATD comment was intro-
duced, in order to create the SATD review dataset for all RQs. We also
made the non-SATD review datasets for RQ1 to compare the acceptance
rate and revisions between SATD and non-SATD reviews.

Dataset Summary: Table 1 shows the total number and percentage
of reviews in which at least one SATD comment was introduced either
in the first patch-set or in the revised ones. We downloaded 79,508
review records from OpenStack and 76,864 from Qt. We applied the
SATD detector to the reviews and found 8,373 and 5,517 review records
that include at least one SATD introduction. In about 7%–10% of the
reviews on average, at least one SATD comment was introduced. Note
that 1,502 review records in OpenStack and 10,241 review records
in Qt are excluded from the table because they are ‘‘self-reviews’’
(i.e., code review performed by the original coder). These have a dif-
ferent purpose from general-purpose code reviews, such as improving
code quality and finding bugs. When only the author commented on
the review record and its files (i.e., inline-comments), the record is
identified as self-review.

4. Research questions

This section describes the motivations, approaches, and results of
the following research question (RQ).

𝑅𝑄1: Does the existence of SATD impact the code review process?

Motivation. Several studies [10] reported that SATD negatively affects
the software quality. Code reviews play a crucial role in ‘‘quality gate’’
such as preventing the integration of defective code or messy code into
their repository [14,16]. Intuitively, review records involving SATD
might be less likely to be accepted or might require more modifications
by reviewers, while our motivating example shows that reviewers
encourage authors to mention about technical debt in their source code.
Table 2
Number of reviews that accepted changes with/without SATD and the acceptance rate

Project Review # of reviews # of accepted Acceptance p-value
reviews rate

OpenStack SATD 8,373 5,690 68.0% p < 0.01Non-SATD 71,135 53,266 74.9%

Qt SATD 5,517 4,407 79.9% p < 0.01Non-SATD 71,347 61,506 86.2%

For the first step of this study, we hope to see the impact of SATD on
the code review process.

Approach. We compare SATD reviews (i.e., the reviews in which at
least one SATD comment was introduced either in the first patch-set
or in the revised ones) with non-SATD reviews in order to evaluate if
review records involving SATD introductions decrease the acceptance
rate and increase the number of revisions. Note that we regard only the
review records with a ‘‘MERGED’’ status as accepted reviews.

Acceptance rate: For each group, we measured the acceptance rate
formulated as follows:
𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒𝑆𝐴𝑇𝐷

=
𝑜𝑓 𝑡ℎ𝑒 𝑆𝐴𝑇𝐷 𝑟𝑒𝑣𝑖𝑒𝑤𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑆𝐴𝑇𝐷 𝑟𝑒𝑣𝑖𝑒𝑤𝑠
𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒𝑛𝑜𝑛-𝑆𝐴𝑇𝐷

=
𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑛-𝑆𝐴𝑇𝐷 𝑟𝑒𝑣𝑖𝑒𝑤𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑛𝑜𝑛-𝑆𝐴𝑇𝐷 𝑟𝑒𝑣𝑖𝑒𝑤𝑠

We applied the independent chi-square test (2 × 2) to evaluate
if the two groups have a statistically significant difference (p
< 0.01). The Chi-square test is a non-parametric test for evalu-
ation with 2 × 2 matrices if two variables are independent or
associated.

Revisions: We measured the number of revisions for each group,
which represents how many patch-sets are uploaded until ac-
ceptance/rejection. More revisions indicate that more effort was
needed from the reviewers and authors to review and modify
the patch-sets. We employed Mann–Whitney’s U-tests (p < 0.01)
to evaluate if a statistically significant difference exists. Mann–
Whitney’s U-tests are non-parametric tests of the null hypothesis
that two distributions come from the same population. We also
measured the effect size using the Z-score generated during the
calculation of the Mann–Whitney’s U-tests. The effect-size 𝑟 is
also non-parametric and calculated as follows:

𝑟 = 𝑍-𝑠𝑐𝑜𝑟𝑒∕
√

𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

The effect size 𝑟 varies from 0 to 1. A higher value indicates
a larger difference; thus, the larger value of 0.1 (≤ 0.3) shows
a small difference; the larger value of 0.3 (≤ 0.5) indicates a
medium difference; and a value larger than 0.5 shows a large
difference [29].

inding 1. Review records involving SATD introductions are about
–7% less likely to be accepted by reviewers than those not involv-
ng SATD introductions in OpenStack and Qt. Table 2 summarizes

the acceptance rates separated by involving SATD or not. In both
OpenStack and Qt, the acceptance rate of review records involving
SATD (68.0% and 79.9% , respectively) was smaller than that involving
non-SATD (74.9% and 86.2%, respectively). This suggests that review
records that contain patch-sets with SATD comments are less likely
to be accepted. We confirmed the statistically significant difference in
both projects.

Finding 2. Review records involving SATD introductions require
two and three more revisions on average than those not involving

Y. Kashiwa et al.

m
i
a
s
r

d
n
t
r
r
t

A
i
s
n
a
s

F
r
t
s
m
p
p
T
d

i

.

i
s
l
t

Table 3
Number of revisions for changes with/without SATD.

Project Review # of Reviews # of median p-Value Effect size
revisions

OpenStack SATD 8,373 5.00 p < 0.01 0.21Non-SATD 71,135 2.00

Qt SATD 5,517 4.00 p < 0.01 0.17Non-SATD 71,347 2.00

SATD introductions in OpenStack and Qt, respectively. Table 3
shows the revisions with/without involving SATD. For both OpenStack
and Qt, the review records involving SATD show higher median re-
visions (5.00 and 4.00, respectively) compared to those of non-SATD
(2.00 and 2.00, respectively). We confirmed a statistically significant
difference and a small effect size (r > 0.1) in both projects.

Answer to RQ1: The presence of SATD comments in patch-sets
impacts on acceptance and revisions of review records; review
records involving SATD are less about 6%–7% likely to be
accepted by reviews and require two and three more revisions
on median average, compared with those not involving SATD.

𝑅𝑄2: How often do developers introduce SATD comments during code
reviews?

Motivation. While previous works [10,11] have studied SATD com-
ents that appear in snapshots, it is uncertain whether or not they are

ntroduced during code review. Although most of the previous studies
ssume that the SATD comments are created by the authors of patch-
ets, they might be created by the results of the discussions during code
eview.

If there are considerable cases where SATD comments are intro-
uced in the revised patch-set, reviews might assist authors to find tech-
ical debt. For example, the author introduces them for the following
wo reasons: first, because of reviewers’ requests; second, because they
ecognize the need to introduce them due to the discussions between
eviewers and authors. We hope to know when SATD comments are in-
roduced during reviewing. Note that 𝑅𝑄2 does not distinguish whether

the comments are introduced due to reviewers’ requests (𝑅𝑄4 does).

pproach. We calculated what percentage of SATD comments are
ntroduced in ‘‘initial patch-sets’’ or ‘‘revised patch-sets’’. Initial patch-
ets refer to the patch-sets that start the review process, which would
ot have been affected by the discussions between the reviewers and
uthors. On the contrary, the revised patch-sets refer to the second or
ubsequent patch-sets, which might be improved by the discussions.

inding 3. Developers often introduce SATD comments in the
evised patch-sets (OpenStack: 47.7% ; Qt: 27.7%). Table 4 shows
he number and percentage of SATD introduced in the initial patch-
ets and in the revised patch-sets. OpenStack developers introduced as
any SATD in the revised patch-sets (47.7%) as those in the initial
atch-sets (52.3%). In Qt, the number of introductions in the revised
atch-sets (27.7%) was less than that in the initial patch-sets (72.3%).
his suggests that code reviews may help developers find technical
ebt.

Answer to RQ2: 47.7% and 27.7% of the SATD introduc-
tions happened in the revised patches in OpenStack and Qt,
respectively.

Additional analysis: RQ2 showed that many SATD comments are
ntroduced in the revised patch-sets (47.7% of SATD comments in
Table 4
Number of SATD introductions during review.

of All SATD # of introductions in # of introductions in
Project introductions the initial patch-sets the revised patch-sets

OpenStack 21,420 11,203 (52.3%) 10,217 (47.7%)
Qt 19,662 14,208 (72.3%) 5,454 (27.7%)

Total 41,082 25,411 (61.9%) 15,671 (38.1%)

Table 5
Acceptance rate of reviews when SATD comments are introduced in the initial patch-sets

Project Patch-sets # of reviews # of accepted Acceptance p-value
reviews rate

OpenStack Initial 4,510 2,898 64.3% p < 0.01Non-Initial 3,863 2,792 72.3%

Qt Initial 3,474 2,772 79.8% p > 0.01Non-Initial 2,043 1,635 80.0%

OpenStack and 27.7% in Qt). This raises another question. As with RQ1
showing that the SATD introductions lower the acceptance rate, the
timing of the SATD introductions may also impact the acceptance rate.
With respect to RQ1, we conducted an additional analysis. We filtered
out non-SATD reviews from the datasets used in RQ1 (i.e., we used
only SATD reviews.) We then split these into two groups based on the
timing of the introductions: the review records where SATD comments
are introduced in the initial patch-sets, and those in the non-initial
patch-sets.1

Table 5 shows the acceptance rate when SATD comments are in-
troduced in the initial patch-sets and in the non-initial patch sets. As
a result of these calculations, we observe a different result between
OpenStack and Qt. Interestingly, in OpenStack, the two groups have
a significant gap in the acceptance rate. The acceptance rate of SATD
comments introduced in the initial patch-sets is lower than that in the
non-initial patch-sets. The fact that code reviews tend to reject SATD
comments in the initial patch-sets, implies that reviewers tend to prefer
introducing SATD comments only when reviewers work together. RQ1
shows that in Qt, regardless of the timing, the patch-sets including
SATD tend to be rejected.

Still, in both OpenStack and Qt, these acceptance rates (i.e., initial
and non-initial) are lower than that in non-SATD datasets in RQ1,
i.e., 74.9% in OpenStack, 86.2% in Qt (See Table 2). Again, we ap-
plied the Chi-square test with a Bonferroni correction to all pairs of
distributions.2 We found a statistically significant difference between
non-SATD and Initial patch-sets groups in both OpenStack and Qt, as
well as that between non-SATD and non-initial patch-sets groups only
in Qt. These findings imply that SATD comments in initial patch-sets
affect review decisions.

𝑅𝑄3: What are the characteristics of SATD that are introduced during code
reviews?

Motivation. It is reported that code reviews improve the quality of
code [14–16]. Intuitively, code reviews may help find technical debt
and also RQ2 shows that about many SATD comments are introduced
during code reviews. However, it is not revealed what SATD are
introduced during code reviews. In this RQ, we would like to know

1 As there are many reviews that have both SATD comments introduced in
nitial patchsets and those in revised patchsets, we could not clearly separate
uch review records into either of them. Thus, review records that have at
east one SATD comment introduced in the initial patch-sets are included in
he dataset for initial patch-sets.

2
 Bonferroni correction is used to control for family-wise error rate.

Y. Kashiwa et al.
Table 6
Types of SATD that are introduced during reviews.

Main Sub cat. Description Open
Stack

Qt Total Sub cat. in [31]

Scheduling Future work This type tells the location where a new
feature should be implemented in the
future (i.e., after this code review).

47
(23.0%)

18
(18.4%)

65
(21.5%)

Functional

Work in progress This type notifies what the author need
to do here during reviews.

28
(13.7%)

10
(10.2%)

38
(12.6%)

–

Work dependency Implementation This type declares that the code with
SATD will be modified after new
features are developed.

21
(10.3%)

2
(2.0%)

23
(7.6%)

Workaround

Release This type tells that the code should be
modified after a future release.

13
(6.4%)

3
(3.1%)

16
(5.3%)

Workaround

Bug-Fix This type indicates that the code should
be modified after bug-fixes.

7
(3.4%)

2
(2.0%)

9
(3.0%)

Workaround

Library This type tells that external libraries and
frameworks issues block their work.

4
(2.0%)

1
(1.0%)

5
(1.7%)

Workaround

Specification This type tells that the concrete behavior
of the method is not determined.

0
(0.0%)

2
(2.0%)

2
(0.7%)

Requirement

Communication Question This type is used to ask reviewers how
the part should be implemented.

18
(8.8%)

12
(12.2%)

30
(9.9%)

–

Suggestion This type suggests better
implementations to solve problems.

1
(0.5%)

3
(3.1%)

4
(1.3%)

–

Review request This type asks reviewers to deeply
review specific parts of the source code.

0
(0.0%)

3
(3.1%)

3
(1.0%)

–

Problem report Potential bug This type points out that bugs are
present in the code around the SATD.

18
(8.8%)

17
(17.3%)

35
(11.6%)

Defect

Future bug This type points out a probability that
the part may cause issues in the future.

6
(2.9%)

4
(4.1%)

10
(3.3%)

Low-quality

Maintainability This type requires maintainability
improvements (e.g., readability).

12
(5.9%)

2
(2.0%)

14
(4.6%)

Code-smell

Performance This type claims the necessity of
performance improvement.

8
(3.9%)

4
(4.1%)

12
(4.0%)

Non-functional

Workaround This type notifies about the reasons why the developer adopted a
messy implementation.

13
(6.4%)

5
(4.1%)

18
(6.0%)

Workaround

Test Necessity This type reports that the method does
not have sufficient tests.

4
(2.0%)

3
(3.1%)

7
(2.3%)

Test

Failure This type notices a test failure at the
line where the SATD is located.

1
(0.5%)

2
(2.0%)

3
(1.0%)

Test

Others — 3 5 8

Total 204 98 302
d
c

the characteristics of SATD comments that are introduced during code
reviews.

Approach. We conduct a manual inspection to classify the introduced
SATD comments. From the SATD comments that are introduced in
the revised patch-sets (i.e., 15,671 SATD comments), we randomly se-
lected 375 SATD comments (OpenStack: 251, Qt: 124), which represent
a statistically significant sample with 95% confidence level and 5%
confidence interval.

Next, we examined the SATD comment, its code change(s), com-
mit message(s), and review comments. The manual inspection was
performed by three authors; each SATD was independently inspected
by two authors and a third one was in charge of solving conflicts.
The two authors classified in the same way 80.0% of the inspected
SATD comments, with a Cohen’s kappa coefficient of 0.78, which
demonstrates a substantial agreement [30].

Finally, we compare our categories with the categories created by a
previous work [31] examining SATD comments in snapshots. Note that
we decided to make our category and then compare it with the previous
study’s category instead of directly classifying the SATD into their
categories. Because we aimed to prevent getting biased and missing the
inherent characteristics of SATD during reviews.

Finding 4. SATD comments play a role in communication between

authors and reviewers. Table 6 outlines the number by category for i
OpenStack and Qt. As a result of manual inspection, we observed that
19% of comments (47 cases in OpenStack and 26 cases in Qt) do not
involve technical debt out of 375 comments. These false positives are
excluded from Table 6. Note that these false positives may harm the
result of RQ1 while the false positive rate is lower than or equal to
that in previous studies [9,16,19].

Through our manual inspection, we found six categories: ‘‘Schedul-
ing’’, ‘‘Work dependency’’, ‘‘Problem report’’, ‘‘Workaround’’, ‘‘Test’’,
and ‘‘Communication’’. The most common category for both OpenStack
and Qt is ‘‘Scheduling’’, which is to notice the task that should be
addressed later. We describe the details for each category in Appendix.

We mapped our categories and the categories proposed by a previ-
ous study [31] to identify the unique types of SATD introduced during
code reviews. The previous study categorized the SATD comments in
snapshots and showed seven categories: ‘‘code debt’’, ‘‘design debt’’,
‘‘documentation debt’’, ‘‘defect debt’’, ‘‘test debt’’, and ‘‘requirement
debt’’. Ours covered most of their categories while they analyzed
different projects from ours.3 For example, the most common cate-
gory in the previous study ‘‘code debt’’ has two sub-categories: ‘‘low

3 The previous study has category ‘‘documentation’’ which indicates out-
ated information (e.g., TODO left in the code but it is already fixed). The
ategory was not observed in this study because we inspected diff files,
.e., new SATD comments developers just added at that time.

Y. Kashiwa et al.
Fig. 4. Reviewer feedback for an unimplemented part with the SATD of the programs.
p
o
i
R
r
t
i
c

F
v
S
m
a
a
a

i
(
u

internal quality’’ and ‘‘workaround’’. The former was applied to our
sub-category ‘‘Future bug’’, while the latter was applied to our cate-
gory ‘‘Workaround’’, and sub-categories in ‘‘Work dependency’’. These
types of SATD comments were usually used to show development
tasks while pointing out a specific part of the source code. Tradition-
ally, SATD comments are supposed to negatively affect the software
development [10].

Interestingly, two unique uses of SATD comments are observed in
code reviews, that is, ‘‘Communication’’ and ‘‘Work in progress’’. These
were not shown in snapshots, which previous studies have investigated,
because these types of SATD are deleted during reviews.

The ‘‘Communication’’ SATD comments are exploited to communi-
cate between the author and reviewers. These comments can trigger
a discussion of alternative options or ask questions about the speci-
fication. This type of SATD aims to facilitate development and is a
unique SATD comment shown only in a code review. When the author
asks for reviews, she/he suspects that the coding is the best way or
the code might have a problem. Therefore, intensive reviewing of the
code around such SATD comments plays an important role in improving
the quality of the product. Otherwise, defects or bad implementation
would be integrated into the product. The sub-categories are described
in Appendix A.3.

The ‘‘Work in progress’’ SATD is used to declare the undergo-
ing tasks. This type is detected because of our finer-grained analysis
(i.e., we mined review systems instead of a code versioning system). If
we can analyze their development activities all the time, we may detect
this type of SATD comments. However, this type of SATD sometimes
facilitates their development because it could enable reviewers to give
early feedback about a code that has already been implemented. Fig. 4
shows an example of reviewer feedback. In this way, the SATD can help
their development during code reviews; thus, reviewers pay attention
not to miss these SATD comments.

Answer to RQ3: We observed six types of introduced SATD
during reviews: ‘‘Scheduling’’, ‘‘Work dependency’’, ‘‘Com-
munication’’, ‘‘Problem report’’, ‘‘Workaround’’, and ‘‘Test’’.
‘‘Communication’’ and ‘‘Work in progress (a sub-category of
Scheduling)’’ are unique in code reviews, which facilitate their
development during code reviews.

𝑅𝑄4: To what extent are SATD comments introduced because of reviewer’s
requests?

Motivation. RQ2 showed that many SATD comments are introduced
during reviewing. If many introductions of SATD comments involve
 ‘
Table 7
Number of SATD comments introduced due to reviewer requests.
Main category OpenStack Qt Total

Workaround 5/13
(38.5%)

0/5
(0.0%)

5/18
(27.8%)

Work dependency 12/45
(26.7%)

2/10
(20.0%)

14/55
(25.5%)

Scheduling 23/75
(30.7%)

2/28
(7.1%)

25/103
(24.3%)

Problem report 9/44
(20.5%)

4/27
(14.8%)

13/71
(18.3%)

Test 1/5
(20.0%)

0/5
(0.0%)

1/10
(10.0%)

Communication 2/19
(10.5%)

0/18
(0%)

2/37
(5.4%)

Others 0/3
(0.0%)

0/5
(0.0%)

0/8
(0.0%)

Total 52/204
(25.5%)

8/98
(8.2%)

60/302
(19.9%)

reviewers’ requests, this suggests that reviews help find technical debt.
Reviewers share their knowledge with the author and also with SATD;
they provide the knowledge to other developers who see the code,
i.e., developers might make use of reviews and SATD for knowledge
sharing. In this RQ, we hope to see the extent to which SATD comments
are triggered by reviewers.

Approach. For the instances that we labeled in 𝑅𝑄3 except false
ositives (i.e., 302 SATD comments), we manually inspected the trigger
f the introduced SATD comments. Two of the authors manually and
ndependently examined the SATD comments that are categorized in
Q3 and the relevant review comments. When both authors found a
eview comment that orders the SATD introduction, it is labeled as a
rigger. When either of the authors found it, a third author inspected
t to solve the conflict. We count the triggers to show how many SATD
omments are introduced by reviewers’ requests.

inding 5. About 20% of the introductions of SATD are due to re-
iewers’ request. Table 7 shows the number of triggers that introduce
ATD comments by category. Out of these 302 introduced SATD com-
ents, 52 (25.5%) of them were triggered by reviewers in OpenStack

nd 8 (8.2%) were from Qt (60 cases in total). Commonly in OpenStack
nd Qt, the ‘‘Scheduling’’, ‘‘Work dependency’’, and ‘‘Problem report’’
re introduced due to reviewers’ requests.

On the one hand, the most common cases across all the categories
n OpenStack were the SATD comments categorized in ‘‘Scheduling’’
23 cases). Thus, OpenStack authors cooperated with reviewers to list-
p tasks via discussion. On the other hand, Qt only has one case in

‘Scheduling’’. The most common cases involved SATD classified in

Y. Kashiwa et al.

r
S
S
d
S
a
r
m
t
c
n
d
p

t
i
f
r
b

5

i
w
m

I
t

c
m

‘‘Problem Report’’, albeit having only four cases. Qt reviewers do not
often request authors to add SATD comments.

Although the number varied across projects, 20% of SATD com-
ments on average were triggered by reviewers, which is not a negligible
number. These SATD comments are the fruits of discussions during code
reviews, implying that discussion of SATD comments during the process
has a real benefit. That is, code reviews can reveal hidden technical
debts (i.e., not SATD), and highlighting these with SATD comments
enables other developers that do not participate in the code review to
be aware of the technical debts in the source code.

Answer to RQ4: Approximately 20% of SATD comments on
average were triggered by reviewers. The ‘‘Scheduling’’, ‘‘Work
dependency’’, and ‘‘Problem report’’ are commonly introduced
due to reviewers’ requests in OpenStack and Qt.

5. Discussion

5.1. Is SATD introduction a real cause of rejections?

In RQ1, we observed that review records in which SATD introduc-
tions happened were about 6%–7% less likely to be accepted in both
OpenStack and Qt. However, it is uncertain whether SATD comments
alone can be the cause of review decisions. As a result, we conducted an
additional qualitative analysis to determine what percentage of SATD
are the causes of rejections or acceptances. We chose 374 reviews at
random from 13,890 review records that had been accepted or rejected.
Then, the samples were then manually and independently examined
by two authors. When conflicts occurred, they were settled by a third
author.4

Throughout the manual inspection, we observed that only 8 review
ecords contained the causes of review judgments due to SATD (Open-
tack: 6, Qt: 2). Out of the review records, seven are rejected due to
ATD comments (OpenStack: 5, Qt: 2). The number of rejected reviews
ue to SATD comments account for 6.5% of the total rejections (Open-
tack: 6.3%, Qt: 6.9%). In terms of acceptance, we observed that only
review record in OpenStack is accepted due to SATD. In the review

ecord, the author made a small change around a SATD comment. The
ajority of SATD cannot be a cause of acceptance. It is worth noting

hat we discovered nine review records in which authors leave SATD
omments at the end of code reviews after discussions about what they
eed to do in the patch-sets. While these SATD comments are not a
irect cause of acceptance, they can be a compromise between the
atch-authors and reviewers in order to complete reviews.

In summary, we find that while SATD is rarely the cause of accep-
ances, it can occasionally directly result in rejections. Several stud-
es [10] also assert that the source code with SATD comments is
requently of poor quality. The lower acceptance rate observed in SATD
eviews could be caused by the poor quality in addition to issues shown
y SATD comments.

.2. Implications

The impact, diffusion, triggers, and characteristics of SATD were
nvestigated in this study. Our findings are presented in Table 8. Next,
e examine the implications for developers and researchers in this part,
apping the findings across the research questions.

mplication 1. Code review tool developers should add a function
o highlight the introduced SATD comments.

4 The two authors classified in the same way 95.2% of the inspected SATD
omments, with a Cohen’s kappa coefficient of 0.48, which demonstrates a
oderate agreement.
Table 8
Summary of our findings.

Findings

Finding 1 Review records involving SATD introductions are about 6–7%
less likely to be accepted by reviewers than those not involving
SATD introductions in OpenStack and Qt.

Finding 2 Review records involving SATD introductions require two and
three more revisions on average than those not involving SATD
introductions in OpenStack and Qt, respectively.

Finding 3 Developers often introduce SATD comments in the revised
patch-sets (OpenStack: 47.7% ; Qt: 27.7%).

Finding 4 SATD comments play a role in communication between authors
and reviewers.

Finding 5 About 20% of the introductions of SATD are due to reviewers’
request

Our quantitative analysis using 156,372 review records revealed
that patch-sets containing SATD comments are significantly less likely
to be accepted by reviewers (Finding 1). Also, even if patch-sets with
SATD comments are accepted, they require more revisions than those
without SATD comments (Finding 2). These findings could be be-
cause the majority of SATD types are used to highlight issues or
workaround. For example, specific categories indicating their problems
(e.g., ‘‘Workaround’’, and ‘‘Future bugs’’) serve as warning signs of
impending doom implementation as revealed by numerous earlier re-
search [1,10,18]. Wehaibi et al. [10] discovered that SATD changes
are more complex than non-SATD changes; in all projects and for
all measurements, the effect size is either moderate or substantial
(i.e., churn, the number of modified files, the number of modified
directories, and change entropy).

As a result, of these effects on quality, SATD comments may have
given reviewers a negative impression of the code’s quality when
they saw the modification. Given the reasonableness of reviewers’
conclusion, developers of code review tools should add a function that
highlights newly introduced SATD comments, ensuring that reviewers
do not overlook issues identified by SATD comments. From the develop-
ers’ perspective, if authors are unable to avoid use of SATD comments,
they must properly explain why each SATD comment is included.

Implication 2. Researchers should explore approaches to suggest
review comments that should be noted as SATD comments.

According to our research, 28%–48% of SATD comments are intro-
duced during code reviews (Finding 3). Additionally, the 20% SATD
comments may have been inserted by reviewers on their own initiative
(Finding 5). As a result of these discoveries, code reviews work for
finding hidden technical debt and notifying other developers.

Similarly, SATD also benefits code reviews. While modern code
review tools can record review comments, developers need to search for
them when they modify the relevant source code. Generally, the effect
of review comments benefits only the patch-set author. In comparison,
once SATD comments are added as a result of reviewers’ comments, the
review comments (i.e., SATD) remain in their source code, where they
are discovered by other developers. In other words, SATD comments
extend the reach of review to the other developers who did not par-
ticipate in the code review because the other developers are aware of
what is required to be accomplished in their source code.

For these reasons, academics should investigate methods for identi-
fying review comments that should be noted as SATD comments, and
code review tool developers should create a mechanism that allows for
the easy introduction of SATD comments from the current code review
tools.

Implication 3. Researchers should take into consideration that
SATD is not always introduced by the patch-authors.

Again, the number of SATD comments introduced during the code
review process is not negligible (Finding 3). However, past research
analyzed snapshots and may have overlooked interactions between

authors and reviewers. Researchers should analyze discussion data

Y. Kashiwa et al.

b
m
a
i
r
s
r

t
i
w
s

C
o
a
m
o
m
i
t
i
a
c

E
a

to reveal what discussions help identify technical debt. Additionally,
researchers must consider the detrimental effect of code reviews on
SATD investigations. For example, various studies [4,25] examine who
makes SATD comments. However, the 20% SATD comments may have
been introduced by reviewers’ instructions (Finding 5). This implies
that the patch-set authors’ knowledge may be exaggerated.

Furthermore, researchers should examine another important factor
throughout the code review process: SATD removals/payment [1,8–
10]. In actuality, we discovered that a significant number of reviewers
recommended ways to address SATD, as illustrated in Fig. 4. Thus, by
showing debt self-admittedly and reviewing it, developers would be
able to pay it more efficiently than the authors could.

Implication 4. The patch-sets authors can use SATD as a commu-
nication tool.

We observed that there are two unique types of SATD categories
(Finding 4). The ‘‘Communication’’ category is used to emphasize the
section of the patch that reviewers should focus on, while the ‘‘Work In
Progress’’ category is used to ask reviewers to check other sections of
the patches in order to obtain early feedback. These categories have
distinct purposes (i.e., asking reviewers to concentrate on or refrain
from focusing on the code surrounding SATD) but they both serve
to facilitate the review process. Thus, the SATD is not necessarily
detrimental in code reviews and does not always work negatively.
However, it can also be used positively. Maldonado et al. [8] also
indicated, as highlighted in their survey of practitioners, that while
SATD can be used to obtain feedback, it is not often employed.

While standard SATD comments stating errors may have a detri-
mental impact on the outcome of code reviews, particular types of
SATD comments asking for reviews, queries, and early feedback can be
beneficial in facilitating the review process. Patch authors should use
SATD comments as a communication tool, and also researchers must in-
vestigate strategies for promoting SATD comments as a communication
tool.

5.3. Threats to validity

This section discusses the threats to the validity of our findings.

Internal Threats. First, the accuracy of the SATD detection tool should
e considered. We employed a state-of-the-art SATDdetector based on
achine learning [19]. We measured the performance and confirmed
high precision (0.8) in RQ3, butit is imperfect. Thus, our results

ncluded several false negative/positive SATD.While the false positive
ate is lower than or equal to that in previous studies [9,16,19], readers
hould be aware of the fact that these false positives may harm the
esult of RQ1.

Next, the labels might be biased because we manually inspected
he reasons for SATD introduction. To mitigate the bias, the inspectors
ndependently examined the reasons and discussed the labels afterward
hen they put different labels. We believe they were not biased, but we

till cannot deny the bias here.

onstruct Threats. To determine when an SATD comment is added,
ur script compared the SATD comments of two revisions (i.e., before
nd after revision). If the words of two SATD comments did not
atch, we determined that these are different SATD comments because

ur program cannot distinguish if SATD comments are the same if
odified. To mitigate this, we manually verified if the revision that

ntroduced SATD comments are correct. However, we did not inspect
he SATD comments in RQ1, which is a quantitative study, because
t used 156,372 review records including 41,082 SATD introductions,
nd inspecting them manually would be tremendous. This applies to
onstruct validity.

xternal Threats. Both projects in this study used Gerrit. While this is

major review system, other systems can also be used, such as GitHub
pull requests. The review functions of the other systems are similar to
Gerrit; thus, we believe that the effect is small.

In addition, this study investigated only two projects, namely Open-
Stack and Qt. Although the number of projects employed in this study is
comparable to that in prior studies [27], it is not enough to generalize
our findings. For future work, we will try to study projects that use
different systems and increase the number of projects to generalize our
findings.

6. Related work

Our study involves aspects of both self-admitted technical debt stud-
ies and modern code review studies. In this section, we will introduce
work in each of these areas in turn.

6.1. Self-admitted technical debt

Many studies have examined introductions, assessments, and re-
movals of SATD. While the previous studies about the introductions of
SATD are close to ours, we focused on a specific and important process:
code reviews. Our work enhances the abovementioned knowledge. We
have summarized them below:

Introduction of SATD comments. Potdar and Shihab [4] introduced
the SATD concept and examined the causes of embedding SATD into
products. Their empirical study showed that most developers introduce
SATD, but they emphasized that more experienced developers intro-
duce more SATD. In addition, they showed that the release pressure
and the complexity of components are not major factors for introducing
SATD.

Vassallo et al. [6] conducted a survey on the development projects
of financial systems and found that 88% of the respondents anno-
tated programs to tell other developers that a part is inappropriately
implemented and should later be fixed.

Nature of SATD comments. Maldonado et al. [5] classified SATD into
five categories and showed that the majority of the SATD is related to
design, accounting for 42% to 84% of the SATD in the studied systems.

Bavota et al. [31] also conducted a ‘‘differentiated replication’’ [32]
of the study by Potdar and Shihab [4] to widen knowledge on SATD
with 7,584 SATD comments from 159 software projects. They found
that SATD comments increase over time. They also found that the
developers who added the comments often remove them, except for
when they have been removed by more experienced developers.

Li et al. [17] also classified 152 SATD items, which were found in
500 issue reports, into 8 types: architecture, build, code, defect, design,
documentation, requirement, and test debt. In the study, they observed
that developers asked the author of patches to introduce comments
indicating SATD during discussions of issues. They claim that technical
debt is identified in code review and have found some examples.

Wehaibi et al. [10] measured the effect of SATD on the software
quality. They highlighted that the presence of SATD makes the code
more difficult to change in the future.

Removal of SATD comments. Maldonado et al. [8] investigated SATD
removal and showed that 54.4% of SATD is self-removed, which is
faster than non-self-removed technical debt. Developers also mostly
delete SATD after they have fixed bugs or implemented new features.

Zampetti et al. [9] examined the SATD removal in five open-source
projects. They revealed that the SATD comments were removed in one
of two cases: (1) when the whole class or method is removed (25%–60%
of SATD); and (2) when the method is modified (33%–63%). In addi-
tion, they classified the SATD removals into 12 categories and found
that the SATD comments were often removed while improving/adding
features.

Maipradit et al. [33,34] also examined the SATD removals and
identified ‘‘on-hold SATD’’ which indicates a condition to remove itself.
In the literature, they claimed that these SATD can be automatically
managed and then developed a prediction tool that can detect on-hold

SATD with an AUC of 0.98.

Y. Kashiwa et al.

v
T
o
m
n

a
w
l
d
p
e
u
t
a
c

l
c
r
p
t
M
o
p
t
r

E
i
s
w
b
p
l
s
a
n
w

d
t
d
a
d
i
p

i
p
a

6.2. Code reviews

While a considerable amount of studies have focused on the MCR
to remove defects, to the best of our knowledge, no study has yet
investigated the MCR to remove technical debt, even though technical
debt will cause defects or other obstacles. Our work also has the same
direction as the studies investigating the effect on reviews, but we
studied a different subject. In the following, we introduce the previous
studies, focusing on different aspects, including the benefits of code
reviews and effects on code reviews.

Benefits of Code Reviews. Bacchelli and Bird [14] performed inter-
iews with Microsoft developers and asked them to complete a survey.
his was conducted to investigate the motivation for the MCR and its
utcome. They revealed that while the first and second most common
otivations are finding defects and improving the code quality, the
ext most common motivation is the creation of alternative approaches.

McIntosh et al. [20] investigated the relationship between defects
nd code review. They revealed a negative correlation between soft-
are quality and review coverage, i.e., the smaller the percentage of

ines the developers reviewed in each change, the more defects the
evelopers missed in the changes. In addition, they showed that fewer
articipants or discussions result in defects. Subsequently, Shimagaki
t al. [35] conducted a study replicating that of McIntosh et al. [20]
sing data from Sony Mobile to measure the effect of code review prac-
ices. They showed that no correlation exists between defect-proneness
nd the measures proposed in the previous study [20] (i.e., review
overage and participation).

Bavota and Russo [16] studied whether code reviews have a re-
ationship with defect inducement or software quality. Un-reviewed
hanges were over two times more likely to introduce defects than
eviewed changes. Thongtanunam et al. [36] also studied the MCR
ractices in defective and clean source code files and found that defec-
ive files tend to be reviewed less rigorously than clean files. Moreover,
orales et al. [15] investigated the effect of the code review practice

n the software design quality. They used seven different types of anti-
atterns as a proxy measure and observed that anti-patterns are likely
o occur in software components with a low review coverage or low
eview participation.

ffects on Reviews. Rigby et al. [37] conducted a case study to
nvestigated peer-reviews in e-mails from the Apache project. They
howed that the developers are more likely to only accept patch-sets
ith all three properties: small, independent, and complete. Weissger-
er et al. [38] analyzed the accepted patch-sets and found that the
atch-set size influences its acceptance. Small patch-sets (less than four
ines) tend to be accepted, accounting for 50% of all the accepted patch-
ets. In addition, only 11% of the large patch-sets (more than 25 lines)
re accepted. As for revisions, Beller et al. [39] showed that a greater
umber of modified files and a higher code churn incur more revisions,
hile metrics about reviewers do not affect it.

Meanwhile, Baysal et al. [40] examined the acceptance rate from a
ifferent view, that is, non-technical factors. They showed that the au-
hor’s experience affects the acceptance of patch-sets: less experienced
evelopers tend to receive rejections. Kononenko et al. [41] conducted
survey of 88 Mozilla core developers to examine the factors of review
ecisions and code assessments. In the survey, developers said that
n addition to code quality, presence, and quality of tests, developer
ersonality also affects review acceptances.

Zampetti et al. [42] investigated how the results of continuous
ntegration (CI) affect pull request acceptance. They revealed that the
ull requests that passed CI builds are 1.5 times more likely to be

ccepted than those that fail.
7. Conclusion

Developers often notify other developers of the presence of tech-
nical debt with ‘‘TODO’’, ‘‘FIXME’’, and other expressions during code
implementation. This is called the SATD, which is also an indicator of
a low-quality code.

Traditionally, developers conduct code reviews to improve the
source code quality. In recent years, MCRs have emerged as a more
instant and light-weight approach widely adopted across modern soft-
ware development. While inspecting source code during reviews, re-
viewers would recognize the presence of TD or SATD in the source
code because many SATD comments exist in snapshots. When reviewers
find technical debt (not admitted by the authors) or SATD in the source
code, they take actions to handle the SATD when they meet it or the
technical debt (e.g., reviewers would ask the author to add them).

However, to the best of our knowledge, none of the previous studies
have yet investigated SATD comments during reviews. Therefore, how
reviewers see SATD comments (e.g., reviewers tend to reject patch-sets
with SATD), why, and how often they are introduced are unclear.

We conducted a study aiming to understand the effect of SATD
comments on accepting and revising patch-sets and the practice of
introducing SATD in code reviews. As a quantitative study, we collected
156,372 review records from OpenStack and Qt. We showed that (i)
review records involving SATD are about 6%–7% less likely to be
accepted by reviews compared to those without SATD; (ii) review
records involving SATD tend to require2 –3 more revisions compared
with those without SATD; and (iii) 28–48% of SATD comments are
introduced during code reviews. As a qualitative study, we also manu-
ally inspected 361 SATD comments and their reviews and showed that:
(iv) SATD during reviews works for communicating between authors
and reviewers; and (v) approximately20% of the SATD comments are
introduced due to reviewer requests.

For future work, we are planning to collect more review records
from different projects and create a prediction model to find the
locations where SATD should be noted instead of reviewers.

CRediT authorship contribution statement

Yutaro Kashiwa: Methodology, Software, Validation, Investigation,
Writing – original draft, Writing – review & editing, Visualization.
Ryoma Nishikawa: Methodology, Software, Validation, Investigation,
Writing – original draft, Visualization. Yasutaka Kamei: Conceptual-
ization, Methodology, Writing – review & editing, Supervision, Project
administration, Funding acquisition. Masanari Kondo: Validation, In-
vestigation, Writing – review & editing. Emad Shihab: Writing – review
& editing, Supervision. Ryosuke Sato: Writing – review & editing, Su-
pervision. Naoyasu Ubayashi: Writing – review & editing, Supervision,
Funding acquisition.

Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have potential
conflict of interest with this work. For full disclosure statements refer
to https://doi.org/10.1016/j.infsof.2022.106855.Japan Society for the
Promotion of Science (International Joint Research Program with SNSF
(Project ‘‘SENSOR’’: No. JPJSJRP20191502), Japan Society for the
Promotion of Science (JP21H04877), Japan Society for the Promotion
of Science (JP21K17725).

Acknowledgments

We gratefully acknowledge the financial support of JSPS and SNSF
for the project ‘‘SENSOR’’ (No. JPJSJRP20191502), and JSPS for the

KAKENHI grants (JP21H04877, JP21K17725).

https://doi.org/10.1016/j.infsof.2022.106855

Y. Kashiwa et al.

F

S
w

S

S

B

Appendix. Examples of introduced SATD comments

A.1. Scheduling

This type of SATD conveys to the other developers that the task is
not completed yet. We found 103 cases belonging to this type: 75 in
OpenStack and 28 for Qt. We then categorized this type into two sub-
categories ‘‘Future work’’ and ‘‘Work in progress’’, based on whether
the task was completed or not during the review.

uture work: This type of SATD is used to notify developers of the
location where a new feature should be implemented.
Snippet 1 shows an example of the SATD categorized into this
type. This SATD comment was added when fixing a bug that failed
during disk resizing operations. The author addressed the problem
only for common disks; hence, a reviewer asked the author to
place the SATD in the source code to indicate that another disk
type should be supported.

nippet 1: Example of the SATD additions categorized into ‘‘Future
ork’’

1 + # Resize the disk (if larger)
2 + old_root_gb = instance.system_metadata[’

old_instance_type_root_gb’]
3 + if instance[’root_gb’] > int(old_root_gb):
4 + ...
5 + # TODO(ericwb): add extend for ephemeral disk

Work in progress: Developers use this type of SATD to notify about
what they implement while they increment the program by mul-
tiple commits during reviews. This allows the authors to receive
early feedback, even though the implementation is not completed.
We labeled this type of SATD comments when we found that
the task written in the SATD comment was completed during the
review.
Snippet 2 shows a ‘‘Work in progress’’ example of the added SATD
comment in the source code. At the beginning of the code review,
an author implemented a new method and inserted the SATD by
the same commit. This review lasts 29 revisions; therefore, the
exception was implemented at the final revision (Snippet 3).

nippet 2: Example of the SATD additions categorized into ‘‘Work in
Progress’’

1 + def spawn(self, context, instance, image_meta, injected_files,
2 + admin_password, network_info=None, block_device_info=None):
3 + ...
4 + except Exception:
5 + # FIXME: catch the right exception, log it, and raise
6 + raise

Snippet 3: The Snippet of later patch for Snippet 2

1 def spawn(self, context, instance, image_meta, injected_files,
2 admin_password, network_info=None, block_device_info=None):
3 ...
4 - except Exception:
5 - # FIXME: catch the right exception, log it, and raise
6 - raise
7 + except (ironic_exception.HTTPBadRequest,

MaximumRetriesReached):
8 + msg = _("Unable to set instance UUID for node + LOG.error

(msg)
9 + raise exception.NovaException(msg)
A.2. Work dependency

This type of SATD is created when developers cannot resolve it be-
cause other issues block the progress. Therefore, they need to wait until
the relevant issues are resolved.This type of SATD comments is also
called ‘‘On-hold SATD’’ [33,34]. We found55 cases classified into four
sub-categories based on what developers wait for: ‘‘Implementation’’,
‘‘Release’’, ‘‘Bug-Fix’’, and ‘‘Library’’.

Implementation: Developers use this type of SATD to state that the
author plans to use an implementation under development.
We found 23 cases for this: 21 from OpenStack and 2 from Qt. The
SATD in Snippet 4 asks developers to uncomment the next lines to
enable them after the developers completed an implementation to
obtain the Port object.

Snippet 4: Example of the SATD additions categorized into
‘‘Implementation’’

1 + class Network(base.NeutronDbObject):
2 + ...
3 + fields = {
4 + ...
5 + # synthetic fields:
6 + ’subnets’: obj_fields.ListOfObjectsField(’Subnet’,

nullable=True),
7 + # TODO(korzen): get Port object when implementation is

ready
8 + # ’ports’: obj_fields.ListOfObjectsField(’Port’)),
9 + ’dhcp_agents’: obj_fields.ObjectField(’

NetworkDhcpAgentBinding’,
10 + nullable=True)
11 + ...

Release: The SATD in the ‘‘Release’’ category indicates that the relevant
code should be modified after a future release. We found 13 cases
in OpenStack and 3 cases in Qt. We show an example in Snippet 5,
illustrating that the function needs to be removed after the project
released a version.Like this example, some SATD comments seem
to be just tasks and would not be real debts that accumulate
interest. Still, they may lower the readability of the source code.
Such unused code (i.e., ‘‘dead code’’) can be categorized into one
of code smells [43].

nippet 5: Example of the SATD additions categorized into ‘‘Release’’

1 + // ### Qt6: FIXME: Remove this function. It is only there since
for binary

2 + // compatibility for applications built with Qt 5.1 using
qtmain.lib which calls it.

3 + // In Qt 5.2, qtmain.lib was changed to use CommandLineToArgvW
() without calling into Qt5Core.

4 Q_CORE_EXPORT
5 void qWinMain(HINSTANCE instance, HINSTANCE prevInstance,

LPSTR cmdParam,
6 int cmdShow, int &argc, QVector<char *> &argv)
7 ...

ug-Fix: This type of SATD indicates that the relevant code should be
modified after bug-fixes. We found seven cases in OpenStack and
two cases in Qt. Snippet 6 shows that an author asks developers
to remove an exception in the code after Bug #1413142 is fixed.

Y. Kashiwa et al.

S

S

S

R)

S
r

P

Snippet 6: Example of the SATD additions categorized into ‘‘Bug-fix’’

1 + # FIXME(sahid): At this step we probably want to break the
2 + # process if something wrong happens however our CI
3 + # provides a bad configuration for libguestfs reported in
4 + # the bug lp#1413142. When resolved we should remove this
5 + # except to let the error to Pbe propagated.
6 - LOG.debug(’Unable to mount image + %(image)s with ’
7 + LOG.warn(_LW(’Unable to mount image %(image)s with ’
8 ’error %(error)s. Cannot resize.’),
9 {’image’: image, ’error’: e})

10 ...

Library: This type of SATD is made when libraries and frameworks
block their work or require a superfluous processing. We obtained
four cases in OpenStack and one case in Qt. The SATD example
in Snippet 7 shows that some statements are required for MySQL
5.5 supports but they are going to be removed after the project
decided to drop the support of MySQL 5.5.

nippet 7: Example of the SATD additions categorized into ‘‘Library’’

1 + def _worker_set_updated_at_field(values):
2 + # TODO(geguileo): Once we drop support for MySQL 5.5 we can

simplify this
3 + # method.
4 + updated_at = values.get(’updated_at’, timeutils.utcnow())
5 + if isinstance(updated_at, six.string_types):
6 + return
7 + if not DB_SUPPORTS_SUBSECOND_RESOLUTION:
8 + updated_at = updated_at.replace(microsecond=0)
9 + values[’updated_at’] = updated_at

Specification: This type of SATD is created when the concrete behavior
of the method is not determined at the time of implementation. We
found two cases only in Qt. In Snippet 8, an author added an IF-
statement to block the subsequent statements from executing and
introduced an SATD comment that asks other developers to enable
the subsequent statements to run by removing the IF-statement
after the behavior of the method was decided.

Snippet 8: Example of the SATD additions categorized into
‘‘Specification’’

1 void QCocoaWindow::handleGeometryChange()
2 {
3 - // Don’t send geometry change event to Qt unless it’s ready

to handle events
4 + // Prevent geometry change during initialization, as that

will result
5 + // in a resize event, and Qt expects those to come after the

show event.
6 + // FIXME: Remove once we’ve clarified the Qt behavior for

this.
7 - if (m_inConstructor)
8 + if (!m_initialized)
9 return;

A.3. Communication

This type of SATD comments is introduced to make an opportunity
to discuss problems or concerns with other developers. We observed 37
cases in total. These are classified into four sub-categories below.

Question: Developers use this type of SATD to ask about a specific part
of programs. We obtained 30 cases: 18 cases from OpenStack and
12 from Qt.
Snippet 9 illustrates an example of SATD. The author asked about
an uncommon implementation written by another developer via
an SATD comment but eliminated the comment with no later
discussions.

nippet 9: Example of the SATD additions categorized into ‘‘Question’’

1 def __init__(...):
2 ...
3 # Note: you probably want to call MimePutter.connect()

instead of
4 # instantiating one of these directly.
5 + # XXX And the reason you’re not passing chunked to __init__()

is...?
6 self.chunked = True # MIME requests always send chunked body
7 ...

uggestion: Developers suggest better approaches to improve efficiency,
maintainability, or other aspects of quality. We found three cases
in Qt.
In the example of SATD shown in Snippet 10, a developer added
some statements in a loop but he/she claims that the loop is not
efficient and that it should be replaced with another loop that
she/he proposes.

Snippet 10: Example of the SATD additions categorized into
‘‘Suggestion’’

1 + // ### could probably get better limit by looping over sorted
list and counting down on ending edges

2 + if ((v->flags & (LineBeforeStarts|LineAfterStarts))
3 + && !(v->flags & (LineAfterEnds|LineBeforeEnds)))
4 + *maxActiveEdges += 2;

eview request: Developers sometimes request reviewers (or themselves
to deeply review specific parts of the source code. The requests are
usually made on a Gerrit, page but developers perhaps wanted
reviewers to review them during the implementation. Snippet 11
shows an example of an SATD comment that asks reviewers to
check the logic. A reviewer inspected it later and discussed the
logic.

nippet 11: Example of the SATD additions categorized into ‘‘Review
equest’’

1 int yday = dayOfYear();
2 int wday = dayOfWeek();
3 + // TODO: Check this logic.
4 int week = (yday - wday + 10) / 7;

A.4. Problem report

This type of introduced SATD points out various types of problems.
We obtained 71 cases, of which 44 are from OpenStack and 27 are from
Qt. They were then further classified into four sub-categories.

otential bug: This type of SATD points out that bugs are present in the
code around SATD. We found 35 cases: 18 in OpenStack and 17
in Qt. Snippet 12 shows an example of this category. The SATD
indicates the presence of a bug, but the developers do not figure
out the cause. This SATD was added after the ‘‘if statement’’ was
modified because a reviewer asked the author to write the reason

why the ‘‘if statement’’ was modified.

Y. Kashiwa et al.

F

M

N

F

Snippet 12: Example of the SATD additions categorized into ‘‘Potential
bug’’

1 - #if 1
2 + #if 0 // TODO: This code appears to crash seldomly in presence

of tilt. Requires further investigation
3 std::vector<std::vector<c2t::Point>> clipperPoints;
4 ...

uture bug: This type of SATD suggests a probability that the imple-
mentation might become the cause of bugs by modifying the
code. This category is close to the category ‘‘Future bug’’, but the
implementation does not have bugs (or the symptoms have not
appeared) at the moment. OpenStack shows six cases, while Qt has
four. Snippet 13 illustrates an example that prompts developers to
learn about the method specification because modifying without
understanding results in bugs.

Snippet 13: Example of the SATD additions categorized into ‘‘Future
bug’’

1 - // Does not work for POST/PUT!
2 + // NOTE: MiniHttpServer has a very limited support of PUT/POST

requests! Make
3 + // sure you understand the server’s code before PUTting/POSTing

data (and
4 + // probably you’ll have to update the logic).
5 class MiniHttpServer: public QTcpServer
6 {
7 ...

aintainability: This type of SATD requires maintainability improve-
ments. For example, the program must be capsulated, generic,
and simplified. We found 12 and 2 cases in OpenStack and Qt,
respectively. Snippet 14 shows an example that the argument of
the list should be a generic class instead of a concrete class.

Snippet 14: Example of the SATD additions categorized into
‘‘Maintainability’’

1 + # FIXME(comstud): Make more generic later. Finish ’volume’
and

2 + # ’network’ service code
3 + args = list(method_info[’method_args’])

Performance: This type of SATD claims that there are rooms for perfor-
mance improvement or indicates performance problems. We found
eight cases in OpenStack and four in Qt. Snippet 15 contains an
SATD comment that requests using a cache in their method.

Snippet 15: Example of the SATD additions categorized into
‘‘Performance’’

1 + def update_provider_enabled(self, context, rp_uuid, enabled):
2 + ...
3 + # Get the current traits (and generation) for the provider.
4 + # TODO(mriedem): Leverage the ProviderTree cache in

get_provider_traits
5 + trait_info = self.reportclient.get_provider_traits(context,

rp_uuid)
A.5. Workaround

This type of SATD is introduced to notify of reasons why the
developer has adopted a messy implementation. Developers often avoid
several problems caused by such implementations.

18 cases were classified into this class: 13 in OpenStack and 5
in Qt. Snippet 16 is located in a test code, and the author justified
that an error code is appropriate. The error code is too general to
understand the cause. However, a more specific code may miss the
cause of the problem because this problem happens by one of several
causes. Therefore, the author notified other developers of the reason
why she/he employs the error code. After that, one of the reviewers
agreed with using the code. The patch-sets are finally merged into their
repository.

Snippet 16: Example of the SATD additions categorized into
‘‘Workaround’’

1 + # I know that HTTP 500 is harsh code but I think this conflict
case

2 + # signals either a serious db inconsistency or a bug in nova’s
3 + # claim code.
4 + self.assertEqual(500, exception.response.status_code)

A.6. Test

This type of SATD identifies tasks or problems with testing. We
foundten cases, which were further classified into two sub-categories
of ‘‘Necessity’’ and ‘‘Failure’’.

ecessity: This type reports that the method does not have sufficient
tests. We foundfour cases in OpenStack and three in Qt.
In Snippet 17, the SATD stated that the developers need to test
the methods. Finally, the test was added, and the SATD comment
was deleted.

Snippet 17: Example of the SATD additions categorized into
‘‘Necessity’’

1 def get_rule_types(self, context, filters=None, fields=None,
2 sorts=None, limit=None,
3 marker=None, page_reverse=False):
4 - pass
5 + #TODO(QoS): API test needed
6 + return self.core_plugin.supported_qos_rule_types

ailure: This type notifies developers that a test fails at the line where
the SATD is located. We obtained a case in OpenStack and two
cases in Qt. Snippet 18 depicts one of the examples. The SATD
comment indicates that a test incurs UnicodeEncodeError, but
the author cannot specify the cause. The SATD comment and its
relevant code end up being integrated without changes.

Snippet 18: Example of the SATD additions categorized into ‘‘Failure’’

1 + except UnicodeEncodeError:
2 + self.logger.warn("xml field %s value %s \
3 + can’t be utf-8 decoded." % (field, orig))
4 + # TODO - find out why this happens in functests
5 + #return None

Y. Kashiwa et al.
References

[1] Y. Kamei, E. da S. Maldonado, E. Shihab, N. Ubayashi, Using analytics to quantify
interest of self-admitted technical debt, in: Proceedings of the Joint of the 4th
International Workshop on Quantitative Approaches to Software Quality and 1st
International Workshop on Technical Debt Analytics, TDA, 2016, pp. 68–71.

[2] B. Curtis, J. Sappidi, A. Szynkarski, Estimating the size, cost, and types of
technical debt, in: Proceedings of the Third International Workshop on Managing
Technical Debt, MTD, 2012, pp. 49–53.

[3] F.A. Fontana, V. Ferme, S. Spinelli, Investigating the impact of code smells debt
on quality code evaluation, in: Proceedings of the Third International Workshop
on Managing Technical Debt, MTD, 2012, pp. 15–22.

[4] A. Potdar, E. Shihab, An exploratory study on self-admitted technical debt, in:
Proceedings of the 30th IEEE International Conference on Software Maintenance
and Evolution, ICSME, 2014, pp. 91–100.

[5] E. da S. Maldonado, E. Shihab, Detecting and quantifying different types of self-
admitted technical debt, in: Proceedings of the 7th IEEE International Workshop
on Managing Technical Debt, MTD, 2015, pp. 9–15.

[6] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M.D. Penta, A.
Zaidman, Continuous delivery practices in a large financial organization, in:
Proceedings of the 32nd IEEE International Conference on Software Maintenance
and Evolution, ICSME, 2016, pp. 519–528.

[7] Y. Miyake, S. Amasaki, H. Aman, T. Yokogawa, A replicated study on relationship
between code quality and method comments, in: Proceedings of the 4th Applied
Computing and Information Technology, ACIT, 2017, pp. 17–30.

[8] E. da S. Maldonado, R. Abdalkareem, E. Shihab, A. Serebrenik, An empirical
study on the removal of self-admitted technical debt, in: Proceedings of the 33rd
IEEE International Conference on Software Maintenance and Evolution, ICSME,
2017, pp. 238–248.

[9] F. Zampetti, A. Serebrenik, M.D. Penta, Was self-admitted technical debt removal
a real removal?: an in-depth perspective, in: Proceedings of the 15th International
Conference on Mining Software Repositories, MSR, 2018, pp. 526–536.

[10] S. Wehaibi, E. Shihab, L. Guerrouj, Examining the impact of self-admitted
technical debt on software quality, in: Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, SANER, 2016,
pp. 179–188.

[11] F. Palomba, A. Zaidman, R. Oliveto, A.D. Lucia, An exploratory study on
the relationship between changes and refactoring, in: Proceedings of the 25th
International Conference on Program Comprehension, ICPC, 2017, pp. 176–185.

[12] J. Yli-Huumo, A. Maglyas, K. Smolander, How do software development teams
manage technical debt? - An empirical study, J. Syst. Softw. 120 (2016) 195–218.

[13] S. McIntosh, Y. Kamei, B. Adams, A.E. Hassan, An empirical study of the impact
of modern code review practices on software quality, Empir. Softw. Eng. 21 (5)
(2016) 2146–2189.

[14] A. Bacchelli, C. Bird, Expectations, outcomes, and challenges of modern code
review, in: Proceedings of the 35th International Conference on Software
Engineering, ICSE, 2013, pp. 712–721.

[15] R. Morales, S. McIntosh, F. Khomh, Do code review practices impact design
quality? A case study of the qt, VTK, and ITK projects, in: Proceedings of
the 22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER, 2015, pp. 171–180.

[16] G. Bavota, B. Russo, Four eyes are better than two: On the impact of code reviews
on software quality, in: Proceedings of the 31st IEEE International Conference
on Software Maintenance and Evolution, ICSME, 2015, pp. 81–90.

[17] Y. Li, M. Soliman, P. Avgeriou, Identification and remediation of self-admitted
technical debt in issue trackers, in: Proceedings of the 46th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA, 2020, pp. 495–503.
[18] Z. Li, Q. Yu, P. Liang, R. Mo, C. Yang, Interest of defect technical debt:
An exploratory study on apache projects, in: Proceedings of the 36th IEEE
International Conference on Software Maintenance and Evolution, ICSME, 2020,
pp. 629–639.

[19] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, S. Li, SATD detector: a text-
mining-based self-admitted technical debt detection tool, in: Proceedings of
the 40th International Conference on Software Engineering (ICSE): Companion
Proceedings, 2018, pp. 9–12.

[20] S. McIntosh, Y. Kamei, B. Adams, A.E. Hassan, The impact of code review
coverage and code review participation on software quality: a case study of
the qt, VTK, and ITK projects, in: Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR, 2014, pp. 192–201.

[21] Gerrit, [online] https://www.gerritcodereview.com/.
[22] Reviewboard, [online] https://www.reviewboard.org/.
[23] Crucible, [online] https://www.atlassian.com/software/crucible.
[24] Phabricator, [online] https://www.phacility.com/phabricator/.
[25] G. Fucci, F. Zampetti, A. Serebrenik, M.D. Penta, Who (self) admits technical

debt? in: Proceedings of the 36th IEEE International Conference on Software
Maintenance and Evolution, ICSME, 2020, pp. 672–676.

[26] S. McIntosh, Y. Kamei, Are fix-inducing changes a moving target? A longitudinal
case study of just-in-time defect prediction, IEEE Trans. Softw. Eng. 44 (5) (2018)
412–428.

[27] P. Thongtanunam, S. McIntosh, A.E. Hassan, H. Iida, Review participation in
modern code review - An empirical study of the Android, Qt, and OpenStack
projects, Empir. Softw. Eng. 22 (2) (2017) 768–817.

[28] Gerrit API, [online] https://gerrit-review.googlesource.com/Documentation/rest-
api.html.

[29] C. Hugh, Research methods and statistics in psychology, 2009.
[30] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical

data, Biometrics 33 (1977) 159–174.
[31] G. Bavota, B. Russo, A large-scale empirical study on self-admitted technical

debt, in: Proceedings of the 13th International Conference on Mining Software
Repositories, MSR, 2016, pp. 315–326.

[32] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, Experimentation in
software engineering - an introduction, J. Kluwer Int. Ser. Softw. Eng. 6 (2000).

[33] R. Maipradit, C. Treude, H. Hata, K. Matsumoto, Wait for it: identifying
‘‘On-Hold" self-admitted technical debt, Empir. Softw. Eng. 25 (5) (2020)
3770–3798.

[34] R. Maipradit, B. Lin, C. Nagy, G. Bavota, M. Lanza, H. Hata, K. Matsumoto,
Automated identification of on-hold self-admitted technical debt, in: Proceedings
of the 20th IEEE International Working Conference On Source Code Analysis and
Manipulation, SCAM, 2020, pp. 54–64.

[35] J. Shimagaki, Y. Kamei, S. McIntosh, A.E. Hassan, N. Ubayashi, A study of
the quality-impacting practices of modern code review at sony mobile, in:
Proceedings of the 38th International Conference on Software Engineering, ICSE,
2016, pp. 212–221.

[36] P. Thongtanunam, S. McIntosh, A.E. Hassan, H. Iida, Investigating code review
practices in defective files: An empirical study of the qt system, in: Proceedings
of the 12th IEEE/ACM Working Conference on Mining Software Repositories,
MSR, 2015, pp. 168–179.

[37] P.C. Rigby, D.M. Germán, M.D. Storey, Open source software peer review
practices: a case study of the apache server, in: Proceedings of the 30th
International Conference on Software Engineering, ICSE, 2008, pp. 541–550.

[38] P. Weißgerber, D. Neu, S. Diehl, Small patches get in!, in: Proceedings of the 5th
International Working Conference on Mining Software Repositories, MSR, 2008,
pp. 67–76.

[39] M. Beller, A. Bacchelli, A. Zaidman, E. Jürgens, Modern code reviews in open-
source projects: which problems do they fix? in: Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR, 2014, pp. 202–211.

[40] O. Baysal, O. Kononenko, R. Holmes, M.W. Godfrey, Investigating technical and
non-technical factors influencing modern code review, Empir. Softw. Eng. 21 (3)
(2016) 932–959.

[41] O. Kononenko, O. Baysal, M.W. Godfrey, Code review quality: how develop-
ers see it, in: Proceedings of the 38th International Conference on Software
Engineering, ICSE, 2016, pp. 1028–1038.

[42] F. Zampetti, G. Bavota, G. Canfora, M.D. Penta, A study on the interplay
between pull request review and continuous integration builds, in: Proceedings
of the 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER, 2019, pp. 38–48.

[43] X. Han, A. Tahir, P. Liang, S. Counsell, Y. Luo, Understanding code smell
detection via code review: A study of the OpenStack community, in: Proceedings
of the 29th IEEE/ACM International Conference On Program Comprehension,
ICPC, 2021, pp. 323–334.

https://www.gerritcodereview.com/
https://www.reviewboard.org/
https://www.atlassian.com/software/crucible
https://www.phacility.com/phabricator/
https://gerrit-review.googlesource.com/Documentation/rest-api.html
https://gerrit-review.googlesource.com/Documentation/rest-api.html
https://gerrit-review.googlesource.com/Documentation/rest-api.html

	An empirical study on self-admitted technical debt in modern code review
	Introduction
	Motivating example
	Study design
	Collecting review records
	Detecting SATD comments
	Classifying review records

	Research questions
	RQ1: Does the Existence of SATD Impact the Code Review Process?
	RQ2: How Often do Developers Introduce SATD Comments during Code Reviews?
	RQ3: What are the Characteristics of SATD that are Introduced During Code Reviews?
	RQ4: To What Extent are SATD Comments Introduced Because of Reviewer's Requests?

	Discussion
	Is SATD introduction a real cause of rejections?
	Implications
	Threats to validity

	Related work
	Self-admitted technical debt
	Code reviews

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Examples of Introduced SATD Comments
	Scheduling
	Work dependency
	Communication
	Problem report
	Workaround
	Test

	References

