
The Software Librarian: Python Package Insights
for Copilot

Jasmine Latendresse∗, Naoures Day∗∗, SayedHassan Khatoonabadi∗, and Emad Shihab∗
∗Concordia University, Montreal, Canada

∗∗ISSAT Sousse, Sousse, Tunisia
jasmine.latendresse@mail.concordia.ca, nawresday121@gmail.com, {sayedhassan.khatoonabadi,emad.shihab}@concordia.ca

Abstract—Software packages form the backbone of software
systems, significantly influencing their functionality, efficiency,
and long-term maintainability. As developers increasingly turn
to Large Language Models (LLMs) to streamline software
development tasks, the ability of these models to accurately
recommend suitable packages becomes critical. However, LLMs
lack the ability to provide real-time information about package
details such as license, dependencies, or even their existence. This
can lead to the integration of outdated, incompatible, or legally
restrictive packages, which could compromise the software’s
quality and legal standing. In this paper, we introduce the Soft-
ware Librarian, a tool that provides real-time information about
Python packages recommended as part of the generated code by
GitHub Copilot, including license details, deprecation status, and
package health. Our tool ensures that the recommended packages
are not only valid but are also suitable for integration. To support
future research, we have made the Software Librarian available
on the Visual Studio Marketplace1 and released the code online.2
A demonstration can be viewed at https://youtu.be/hnPr0rvL8lk.

Index Terms—Open Source, Software Engineering, Large Lan-
guage Models

I. INTRODUCTION

Open source software packages are the cornerstone of
modern software development as they significantly reduce de-
velopment time and effort (1; 2). However, software packages
introduce the concept of dependencies, which are interconnec-
tions between code components, increasing complexity and
dependency management challenges (3; 4; 5).

Large Language Models (LLMs) emerging as powerful
programming assistants (6) that offer potential to simplify
and streamline these processes, but they lack real-time critical
insights into the packages they import in their code comple-
tions, such as license information, deprecation status, or even
whether the package still exists (7). This poses significant
risks to software projects, as developers may unknowingly
integrate outdated, legally restrictive, or unsupported packages
into their codebase. To address these challenges, we introduce
the Software Librarian, a Visual Studio Code (VS Code)3

extension that provides developers with real-time analysis of
Python packages recommended by GitHub Copilot.4 Our tool

1https://marketplace.visualstudio.com/items?itemName=jaslatendresse.
software-librarian

2https://github.com/jaslatendresse/software-librarian-prod
3https://code.visualstudio.com/
4https://github.com/features/copilot

provides insights into the key aspects of packages including
license details, dependency data, and deprecation status based
on the package’s type (i.e., third-party or standard).

To evaluate the Software Librarian, we curated a dataset of
third-party and standard packages, as well as packages that
do not exist. We focused on the tool’s ability to accurately
classify these packages into their respective categories- stan-
dard, third-party, or invalid. The tool achieved 99% accuracy,
which shows its potential to enhance AI-based programming
assistants like Copilot. This paper details the tool’s design,
evaluation, and future improvements to streamline dependency
management in the context of LLMs.

II. BACKGROUND

In this section, we introduce key concepts that are necessary
to understanding the rest of the paper. To make these concepts
more intuitive, we will use the ”file directory” analogy, which
closely mirrors how packages, modules, and subpackages are
organized in Python. We will also define concepts like package
aliases, placeholders, and package types.
Package, Module, and Subpackage: In Python, packages and
modules are organized like folders and files in a directory:

• Package: A folder that contains a collection of modules
and/or subpackages. It is defined by the presence of an
__init__.py file in the directory.

• Module: A single Python file within a package, contain-
ing functions, classes, and other Python code.

• Subpackage: A package contained within another pack-
age, similar to a subfolder within a directory.

For the rest of this paper, a subpackage, module, function,
or class, will be referred to as an importable resource.
Package Alias: In Python, the name used to import a package
in code sometimes differs from the package’s distribution
name (the name under which the package is published and
distributed). This difference is known as an alias. For example,
the package opencv-python is imported in Python as
cv2. This can lead to confusion, as developers might not
know immediately that cv2 refers to the distribution name
opencv-python.
Placeholder: A placeholder in the context of code refers to
a generic or illustrative name used as an example. They are
often used to demonstrate concepts without referring to actual
packages, acting as temporary stand-ins meant to be replaced.
However, it can be confusing if developers mistakenly interpret



a placeholder as an actual library or vice versa, especially in
the case where a placeholder also happens to be a published
package (e.g., my_module).
Package Types: Python packages fall into two broad cate-
gories: standard and third-party packages.

• Standard Packages: These are packages that come pre-
installed with Python and are developed and maintained
by the Python core team.

• Third-Party Packages: These packages are developed
and maintained by the broader open-source community
and must be installed separately, typically from PyPi.

III. A WALKTHROUGH OF THE SOFTWARE LIBRARIAN

The Software Librarian is a VS Code extension designed to
analyze the software packages generated by GitHub Copilot.
Specifically, it assists developers in managing package recom-
mendations made by GitHub Copilot during code completions
by verifying their correctness and by providing key metadata
such as licensing and maintainability metrics. Figure 1 shows
an overview of the Software Librarian, which has two main
components: 1) a frontend integrated into the VS Code editor
to view the results of the package analysis and 2) a backend
for analyzing the package from Copilot code completions.

A. Frontend of the Software Librarian

The Software Librarian has a dedicated tab located on the
side of the VS Code editor to display the results of a package
analysis. Below, we discuss the four main features in the
Software Librarian UI.
1. Package Information Display. As shown in Figure 2, each
analyzed package appears as a folder-like entry in the Software
Librarian tab. These entries feature a dropdown menu that
allows the user to expand or collapse the detailed information
for each package. When expanded, the dropdown shows the
collected metadata for the package.
2. Exporting and Managing Package Information. Users
can manage package information with several options. For
indivudal packages, they can download the analysis results as
a JSON file by clicking the ”Download” button located within
each package’s dropdown, or remove the results by clicking
the ”Clear” button. For bulk actions, users can download
results for all analyzed packages at once by pressing the
”Download All” button at the top of the extension tab, or
clear all results by selecting the ”Clear All” button.
3. Status Bar Indicators and Notifications. When the ex-
tension is actively analyzing a package, a progress indicator
appears in the status bar of the VS Code editor. Once the
analysis is complete, a completion message pops up to inform
the user that the results are ready to be viewed in the extension
tab.
4. Manual Trigger for Analysis. In addition to the automatic
analysis triggered by Copilot code completions, the user can
also manually initiate an analysis using the ”Analyze” button
located in the status bar by highlighting any portion of code
and press ”Analyze”. This triggers an analysis of the packages
imported within the highlighted section.

B. Backend of the Software Librarian

To provide information on the software packages from
GitHub Copilot code completions, the Software Librarian
performs three sequential steps as illustrated in Figure 1: 1)
obtaining packages from Copilot code completions, 2) package
identification and classification, and 3) package analysis. The
Software Librarian’s backend component receives an import
statement from a Copilot code completion and extracts the
imported package name. The backend then interacts with the
stdliblist5 package and the PyPi API6 to determine
the type of the package (standard Python or third-party) and
consequently, the existence of the package. In case the package
is a standard or third-party package, the backend interacts with
the Python documentation API for metadata on the standard
package and the libraries.io API7 for the third-party package
metadata. In case the package is neither standard nor third-
party (classified as other), the software librarian performs
additional analysis to determine the source of the Copilot
suggestion and potential explanation for such a case. The
results of the analysis are then forwarded to the UI where
they are organized for each individual package. We describe
each step below.
Step 1: Obtaining packages from Copilot Code Comple-
tions. The first step in the backend is to detect and collect
packages that are generated in Copilot Code Completions.
To achieve this, the Software Librarian monitors the user’s
interactions with the code editor and detects lines of code that
are 1) auto-completed, and 2) contain an import statement.
When the developer accepts the code completion that includes
an import statement (triggered by pressing the ”Tab” key
followed by the ”Enter” key to go to the next line), the ex-
tension retrieves the import statement, extracts the package,
and analyzes it.
Step 2: Identifying and Classifying packages. Once an
import statement is detected, the extension identifies the
package and classifies it into one of the types described
in Section II: standard or third-party. To identify standard
packages, we use the stdliblist Python module, which
provides a list of all standard packages included in each Python
version since 2.6. For packages that are not classified as
standard, we use the PyPi API to verify whether the package is
published in the PyPi repository, in which case it is classified
as third-party. When a package cannot be classified as either
standard or third-party, it falls under the other category, which
indicates that the package could potentially lead to installation
errors.
Step 3. Package Analysis. The Software Librarian provides
different types of information based on the classification of
each package into one of the three aforementioned categories
(standard, third-party, or other). Below, we discuss how the
tool responds for each category.

5https://pypi.org/project/stdlib-list/
6https://pypi.org/
7https://libraries.io/api



(a) Frontend and Backend Interaction (b) Backend Workflow

Figure 1: An Overview of the Software Librarian

Figure 2: An Example of Output of the Software Librarian for
Three Packages.

1) Third-Party Package Analysis: For third-party pack-
ages, the Software Librarian provides different metadata
related to the package’s maintenance, legal status, and
health.
• Metadata Retrieval: The tool retrieves metadata from

external sources namely libraries.io API and PyPi. The
following metadata is returned for each third-party
package:

– Number of dependencies: The number of pack-
ages a given package depends on.

– Number of dependents: The number of packages
that depend on a given package.

– License information: The type of license associ-
ated with a given package.

– Version frequency: How often new versions of a
given package are released in a month.

– Package age: How long the package has been
available since its first release (in months).

– Source rank: The SourceRank metric of a given
package as provided by libraries.io which is an
indicator of its general health status.

• Deprecation Status: The deprecation status indicates
whether a package is outdated or no longer supported
in the current version of Python. For this, the Software
Librarian creates a temporary virtual environment, in-
stalls, and imports the package. Then, it scans logs

during the installation and import processes for any
deprecation warnings.

• Documentation: The tool provides the link to the
official PyPi documentation of the package.

2) Standard Package Analysis: For standard Python pack-
ages, the focus is primarily on checking the deprecation
status, as detailed metadata like number of dependencies
does not apply in this context.
• Deprecation Status: The Software Librarian deter-

mines the deprecation status on standard packages
by querying the official Python documentation. If a
package has been renamed in Python 3 (e.g., urllib2
to urllib.request), it is flagged as deprecated.
Additionally, if a package is only found in the Python
2 documentation and not in Python 3, it is also marked
as deprecated.

• Documentation: The tool provides the link to the
official Python documentation of the package.

3) Other Package Analysis: The other classification is
assigned when the package cannot be identified as ei-
ther standard or third-party. These packages fall under
one of the following subcategories: aliases, importable
resources, and placeholders, which are described in Sec-
tion II.
• Alias Detection: To detect if a package was imported

using an alias, the Software Librarian leverages an
internal database to map aliases to their corresponding
distribution names. The data for this was collected
using the johnnydep Python package. Upon iden-
tifying an alias, the Software Librarian retrieves its
associated distribution package and performs a regular
third-party analysis. For example, for the alias
cv2, the Software Librarian would retrieve its distri-
bution opencv-python8 and return its metadata.

• Importable Resource Mapping: The Software Li-
brarian checks whether the package is an importable
resource (as described in Section II). To do this, the
tool uses an internal database that maps modules,
subpackages, and any other item to its parent package.

8https://pypi.org/project/opencv-python/



This database is constructed by listing all items defined
in the __init__.py files of Python packages using
the built-in Python dir() function. Upon retriev-
ing the parent package, the tool performs a regular
third-party package analysis. For example, if the tool
receives the subpackage webapp2_extras, it will
retrieve the parent package webapp29 and return its
metadata to the user.

• Placeholder Detection: As discussed in Section II, a
placeholder is a generic name that is not meant to
represent a real package. To identify placeholders, the
Software Librarian uses a predefined list of common
placeholder patterns, curated from Stack Overflow,
and augmented with data from prompting large lan-
guage models such as ChatGPT and Gemini (e.g.,
my package, module1). If a suspected placeholder
corresponds to a real package (e.g., my module,10 the
extension checks the package’s number of downloads.
If this number is below 1,000, the extension alerts the
developer that, while the package exists, it may have
been intended as a placeholder in this context, while
still providing the package’s metadata.

IV. EVALUATION

In this section, we present the evaluation of the Software
Librarian’s ability to correctly identify and classify Python
packages extracted from Copilot code completions. The goal
of this evaluation is to assess the tool’s accuracy in distinguish-
ing between types of packages, such as standard, third-party,
and packages that we define as other (i.e., aliases, importable
resources, and placeholders) when they do not fall into either
of the first two categories. We did not evaluate the correctness
of the metadata retrieved by the Software Librarian since that
information is dynamically fetched from external sources in
real-time.

To perform our evaluation, we manually curated a dataset
consisting of representative mix of 100 packages commonly
encountered in Python development, including edge cases
that could lead to installation issues. Specifically, the dataset
contains 35 third-party packages, 38 standard packages, 16
placeholders, 9 aliases, and 2 importable resources. Then, we
ran the Software Librarian on these input packages and mea-
sured its performance in accurately identifying each package
type. This also includes flagging incorrectly named packages
as placeholders, aliases, or importable resources.

The tool achieved a high level of accuracy, with a total
of 99 correct package classifications and only one incorrect
classification. The single misclassification occurred with the
input webapp2_extras, which was incorrectly classified
as an alias, while in reality, it is a subpackage of the
webapp2 package. This edge case can be linked to the
johnnydep package, which we used to map package aliases
to their distribution names. In certain cases, johnnydep lists

9https://pypi.org/project/webapp2/
10https://pypi.org/project/my module/

importable subpackages or components, which may lead to
misclassifications like the one observed.

Overall, the Software Librarian achieved an accuracy rate
of 99%, which demonstrates that it can reliably identify and
classify Python packages correctly.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced the Software Librarian, a Visual
Studio Code extension designed to identify and classify Python
packages in Copilot code completions. The tools provides
developers with information about these packages, including
licensing details, number of dependencies, and deprecation
status. Our tool bridges the gap between the capabilities of
LLMs and the practical needs of developers when integrating
LLM-generated code into their codebases. Our evaluation
demonstrated that the Software Librarian is highly effective
in classifying packages, achieving a 99% accuracy rate in
distinguishing between standard and third-party packages,
aliases, importable resources, and placeholders. In future work,
we plan to further refine the logic for distinguishing between
aliases and importable resources. One potential enhancement
involves accessing the user’s workspace to inspect the contents
of installed packages and their internal structure directly.

REFERENCES

[1] A. Decan, T. Mens, and P. Grosjean, “An empirical
comparison of dependency network evolution in seven
software packaging ecosystems,” Empirical Software En-
gineering, vol. 24, no. 1, pp. 381–416, 2019.

[2] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd,
M. Phillips, C. Winter, A. Knight, E. Smith, and M. Jorde,
“What predicts software developers’ productivity?” IEEE
Transactions on Software Engineering, vol. 47, no. 3, pp.
582–594, 2019.

[3] J. Latendresse, S. Mujahid, D. E. Costa, and E. Shihab,
“Not All Dependencies are Equal: An Empirical Study on
Production Dependencies in NPM,” in Proceedings of the
37th IEEE/ACM International Conference on Automated
Software Engineering (ASE’22), 2022.

[4] S. Mujahid, “Effective dependency management for the
javascript software ecosystem,” Ph.D. dissertation, Con-
cordia University, 2021.

[5] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng,
Y. Wu, and Y. Liu, “An empirical study of usages, updates
and risks of third-party libraries in java projects,” in 2020
IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2020, pp. 35–45.

[6] J. T. Liang, C. Yang, and B. A. Myers, “A large-scale
survey on the usability of ai programming assistants:
Successes and challenges,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engi-
neering, 2024, pp. 1–13.

[7] J. Latendresse, S. Khatoonabadi, A. Abdellatif, and E. Shi-
hab, “Is chatgpt a good software librarian? an exploratory
study on the use of chatgpt for software library recom-
mendations,” arXiv preprint arXiv:2408.05128, 2024.


