
Code Mapper: Mapping the Global Contributions of OSS
Thomas Le Tourneau

CY Tech
Cergy, France

letourneau@cy-tech.fr

Jasmine Latendresse
Data-driven Analysis of Software (DAS) Lab

Concordia University
Montreal, Canada

jasmine.latendresse@concordia.ca

Ahmad Abdellatif
University of Calgary

Calgary, Canada
ahmad.abdellatif@ucalgary.ca

Emad Shihab
Data-driven Analysis of Software (DAS) Lab

Concordia University
Montreal, Canada

emad.shihab@concordia.ca

ABSTRACT
Free and Open Source Software (FOSS) has reshaped the software
landscape. Software developers from around the world contribute to
the development andmaintenance of these projects. The geographic
diversity within FOSS offers insights into community dynamics,
collaboration patterns, and inclusivity. Despite the rich insights
that can be gained from this geographic diversity, there remains a
scarcity of research in this area. One possible reason for this gap
in studies is the lack of tools that can identify and visualize the
geographic distribution of contributions in OSS projects.

We present Code Mapper, a tool that identifies the location of
contributors in GitHub projects. To enable users to explore the
global influence of their projects, Code Mapper visually presents
the geographic distribution of project contributors. To accelerate
future research in this area, we have deployed Code Mapper at
https://codemapper.alwaysdata.net and have made our source code
publicly available online. A demonstration of Code Mapper can be
viewed at https://www.youtube.com/watch?v=AtARvrBJbVM.

KEYWORDS
Open source, Machine Learning, Software Development
ACM Reference Format:
Thomas Le Tourneau, Jasmine Latendresse, Ahmad Abdellatif, and Emad
Shihab. 2024. Code Mapper: Mapping the Global Contributions of OSS.
In 2024 IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion ’24), April 14–20, 2024, Lisbon,
Portugal.ACM, NewYork, NY, USA, 5 pages. https://doi.org/10.1145/3639478.
3640030

1 INTRODUCTION
Free and Open Source Software (FOSS) has become a cornerstone in
the evolving world of software development. The global OSSmarket
was estimated to be valued at USD 27.73 billion, with expectations
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04. . . $15.00
https://doi.org/10.1145/3639478.3640030

Figure 1: Visual Representation of Repository Contributions.

to reach USD 75,209.66 million by 2028.1 Collaborative platforms
like GitHub2 have played a crucial role in bolstering the FOSS
movement over the last decade. GitHub is a cloud-based service
for software development, enabling over 100 million developers
to host, share, and collaborate on open-source software projects
through repositories. The collaborative nature of FOSS facilitates
geographically dispersed volunteers in contributing to software
development and improvement [6]. While the geographic diversity
in FOSS is a crucial aspect, it has not been extensively explored with
practical tools. Our tool introduces a novel approach to address
this gap, making the study of geographic diversity in FOSS more
accessible and applicable.

In a recent study focused on understanding the geographic di-
versity of contributors to public code and its evolution over 50
years [6], the authors analyzed 2.2 billion commits from 160 mil-
lion GitHub projects. They employed heuristics (e.g., name, email
addresses and UTC offsets of commit timestamps) to determine the
contributors’ locations. The results of this study reveal a consistent
trend of increasing geographic diversity in contributions to pub-
lic code. Nevertheless, such heuristics may not be available on all
contributor profiles, which limits the applicability of this approach.
Furthermore, to the best of our knowledge, there is currently no

1https://www.benzinga.com/pressreleases/23/09/34518020/open-source-software-
market-overview-2023-and-forecast-till-2030-report-pages-113
2https://github.com

https://codemapper.alwaysdata.net
https://www.youtube.com/watch?v=AtARvrBJbVM
https://doi.org/10.1145/3639478.3640030
https://doi.org/10.1145/3639478.3640030
https://doi.org/10.1145/3639478.3640030
https://github.com

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Thomas Le Tourneau, Jasmine Latendresse, Ahmad Abdellatif, and Emad Shihab

tool capable of identifying and visualizing the geographic locations
of project contributors.

Thus, we present Code Mapper, a novel tool that visually de-
picts the geographic distribution of contributions in an open-source
repository hosted on GitHub. Through its interface, users can ex-
plore the global footprint of any given project, as depicted in Fig-
ure 1. Code Mapper leverages machine learning to infer contribu-
tors’ probable geographic locations and can be utilized by develop-
ers, project managers, and organizations looking to integrate open-
source code into their systems. By understanding the geographical
distribution of contributions, one can make more informed deci-
sions, ensuring the stability and security of one’s software projects.
We have made both our source code and dataset accessible to the
public to facilitate further research in this area.3

2 A WALKTHROUGH OF CODE MAPPER
Code Mapper offers developers a geographical view of GitHub
contributions for open-source repositories, highlighting the pri-
mary regions or countries of development. Figure 2 showcases an
overview of Code Mapper, which has two main components: 1) a
front-end for visualizing the region or country of the contribution,
and 2) a backend for retrieving and analyzing contributions and
metadata.

2.1 Front-end of Code Mapper
Upon visiting https://codemapper.alwaysdata.net, users are shown
the Code Mapper homepage depicted in Figure 3. This page al-
lows users to explore contributions by region or country for any
open-source repository. For this, users input the repository name
(e.g., apache/spark) and click the "Find data" button. Then, the
front-end component forwards the repository name to the backend
component to be analyzed. Once the repository is analyzed, contri-
butions are visualized on a map with circle sizes proportional to
the contribution volume from each country or region, as shown in
Figure 1. Hovering over a circle reveals the percentage contribu-
tion for that specific region or country. In addition to the map that
presents the contributions, the front-end features a table displaying
the exact contribution percentages for each respective location.

2.2 Backend of Code Mapper
To provide a visual representation of the contributions by the front-
end component, Code Mapper’s backend performs two sequential
steps: 1) obtaining contributor information, and 2) location infer-
ence. Code Mapper’s backend component receives a user’s request
for a specific repository from the frontend component. The backend
then interacts with the GitHub API to obtain the list of contributors
and their meta-data (e.g., name and commits) for the designated
repository. Next, the backend processes the collected contributor
information to determine the geographical location of the reposi-
tory’s contributions. Then, the results are forwarded back to the
front-end where they are rendered and presented to the end-user.
Finally, we store the results of each request in an internal database
for future requests.

3https://github.com/jaslatendresse/codemapper

Step 1: Obtaining Collaborator Information. The first step
in the backend is to collect user data. To achieve this, we lever-
age GitHub GraphQL4 to retrieve a list of the top 100 contribu-
tors (based on commit count) who have contributed more than 10
commits to a repository. This threshold is to mitigate GraphQL’s
resource limitations.5 The rationale behind capping at 100 con-
tributors is based on our observation that, beyond this threshold,
contributors typically have a significant drop in commit frequency,
minimizing their impact on the repository’s contributions [7, 8].
After obtaining the list of contributors, we extract information
that is publicly available from their GitHub profiles, such as their
GitHub username, name, location, and commit timestamps. Next,
we process the extracted information to determine likely country
or regional affiliations, as detailed below.

• Contributor Profile Location. Every user on GitHub has
an account profile that contains personal information such as
name. GitHub users can enter their location in their profile.

• Contributor Name. Names can be a significant cultural
marker and can provide insights into a person’s likely ge-
ographical origin. This is because certain names or name
combinations are more prevalent in specific regions or coun-
tries [6].

• Contribution Commit Timestamps. A contributor’s ac-
tivity on GitHub, particularly the times at which they make
code contributions (commits), can hint at their geograph-
ical location. This is based on the assumption that people
generally work during specific hours that align with their
local time zones. By analyzing the UTC offsets of commits,
one can estimate the contributor’s likely time zone. Thus,
we extract the UTC offsets from the last 100 commits of a
contributor for a given repository. We use the median of
these offsets to get a stable estimate. This inferred time zone
can then be used in conjunction with the other data points
to improve the accuracy of the location inference.

The above-described data features are then used in the subse-
quent location inference step.
Step 2: Location Inference The location inference mechanism
of Code Mapper is done through two distinct methods, ensuring
that Code Mapper not only captures user-centered locations but
also possesses the capability to predict the location with consider-
able accuracy in the absence of direct information. We detail each
method below.
Direct inference from GitHub Profiles. When a contributor
provides their location on their GitHub profile, we prioritize this
information as our primary source of truth. However, the entered
locations can be broad or specific, ranging from country names
to city identifiers. To decipher this, the backend component cross-
references user input against an extensive database containing over
140,000 global cities (sourced from OpenDataSoft6). Similar to prior
work [6], we prioritize cities with the most probable country based
on their population (i.e., cities with higher populations), in instances
of ambiguous matches that have several potential matches. For
example, ‘London’, which can be found in both Canada and England

4https://graphql.org/
5https://docs.github.com/en/graphql/overview/resource-limitations
6https://www.opendatasoft.com/en/

https://codemapper.alwaysdata.net
https://github.com/jaslatendresse/codemapper
https://graphql.org/
https://docs.github.com/en/graphql/overview/resource-limitations
https://www.opendatasoft.com/en/

Code Mapper: Mapping the Global Contributions of OSS ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

Figure 2: Overview of Code Mapper.
– we select the country with the highest population to derive the
country, in this scenario, England. This approach is adopted based
on methodologies established in prior work [6]. Then, to further
ensure the accuracy of the derived location, we cross-verify the user-
provided location by examining the median UTC offsets from the
contributor’s commits. For example, if someone claims to be from
Paris, France, and their median commit times align with typical
working hours in Central European Time (CET), this reinforces our
confidence in the stated location. In the case of an inconsistency
between the user-provided location and the commit time analysis,
we resort to the next described approach.
Machine Learning-based Prediction. In cases where we cannot
infer the location from the user’s profile or when the contribu-
tor’s profile does not specify the location, we leverage a machine
learning model to predict the contributor’s location. We train the
model on the contributor’s UTC offsets and name-based country
probabilities from the data obtained in the previous step. To com-
pute the name-based country probability, we first dissect names
into subnames (e.g., "Jean Luc" becomes "Jean" & "Luc"). Next, we
determine the subname’s prevalence per country using a World
of Code database, which leverages Forebears7 data (a repository
of over four billion unique names) [6]. If multiple subnames are
associated with a single country, we first sum the probabilities of
all these subnames. Then, we adjust this combined probability by
factoring in the country’s population. This provides a more precise
representation of the likelihood that a set of subnames originates
from a particular country.

3 EVALUATION
As mentioned in Section 2.2, when the contributor’s location isn’t
explicitly mentioned on their GitHub profile, a machine learning
model is used to determine the location. The prediction is based
on the contributors’ UTC offsets and name-based country proba-
bilities. Below we describe the process of curating the dataset of
contributors, selecting the best model for our use case, evaluating
the selected model, and the deployment of the selected model.

7https://forebears.io/

Figure 3: Code Mapper’s Home Page.

3.1 Dataset Curation
We experiment with various ML classifiers to identify which ones
most accurately predict a contributor’s location using a representa-
tive dataset composed of 73,144 distinct GitHub repositories. These
repositories are sourced from SEART GitHub Search Engine [5], a
platform that allows to sample GitHub repositories statistics and
metadata using various selection criteria, and have been filtered
based on a minimum of 100 commits and 20 contributors. These
selection criteria help ensure the relevance and robustness of our
data in several ways. First, repositories with at least 100 commits
are more likely to be real projects rather than experimental or test
repositories. Second, a minimum requirement of 20 contributors
increases the likeliness of diversity of contributions, which can
offer a broader picture of geographic distribution.

From this pool of repositories, we collect data (name, profile
location, commits timestamps) from the top 100 contributors of
each, yielding information on 45,247 unique contributors. Then, we
exclude the contributors who had not specified the location of their
profiles, leaving us with 26,010 contributors.

Finally, to obtain our final training dataset, we validate the stated
locations in profiles by comparing them to the median UTC offsets
derived from the contributors’ commit timestamps. This step is
crucial for ensuring that the stated location is not stale, incorrect,
or far-flung (such as a location mentioned in jest). We treat this
location as the ground truth in our oracle, which is composed of
18,579 contributors on GitHub.

3.2 Model Selection
To identify the best machine learning model for Code Mapper’s
location inference component, we use a k-fold cross-validation
technique and compare four machine learning classifiers: Logis-
tic Regression (LR), K Nearest Neighbors (KNN), Decision Tree
(DT) and Random Forest (RF). These classifiers possess various
assumptions regarding the analyzed data and can deal with overfit-
ting [4]. Furthermore, they have been commonly used in software
engineering work [1–3].

Specifically, we employ a stratified 5 folds-cross-validation on
the dataset curated in Section 3.1, meaning that we randomly par-
titioned the oracle into 5 equal folds that maintain a consistent
distribution of regions. Next, we train the classifier on four folds
and use the remaining fold to evaluate the classifier’s performance.

https://forebears.io/

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Thomas Le Tourneau, Jasmine Latendresse, Ahmad Abdellatif, and Emad Shihab

This process is repeated five times for each classifier, and the aver-
age performance of these runs presents the overall for that classifier.
The models are evaluated on four key metrics:

• Precision. Measure of the number of correctly predicted
positive observations out of all predicted positives.

• Recall. Measure of the number of correctly predicted posi-
tive observations out of all the actual positives.

• F1 Score. The harmonic mean of precision and recall, pro-
viding a balance between the two metrics.

• AUC-ROC. Represents the Area Under the Receiver Oper-
ating Characteristic Curse. A higher AUC-ROC indicates a
superior model performance.

The results of our evaluation are presented in Table 1 shows the
performance metrics of the four selected models. The RF model
consistently outperforms the other three models across all metrics.
Specifically, the RF model achieved an AUC-ROC of 0.83, which
is notably higher than the AUC values of the rest of the models.
This indicates that the RF model has a better ability to distinguish
between positive and negative classes, making its predictions more
reliable. The F1 score of RF (0.64) was also the highest, which
suggests that it provides the best performance in terms of precision
and recall of predictions compared to the other models. This could
be explained by the fact that RF combines multiple decision trees
to generate its final output, allowing it to capture more complex
patterns and relationships in the data that might be missed by
simpler models like LR or DT. Furthermore, RF’s inherent ability to
protect against overfitting by averaging out the results of multiple
decision trees make the predictions more stable and generalized,
ensuring that the model doesn’t get too specialized on the training
data and does well on unseen data.

Table 1 presents the performance metrics of the four selected
models. From the table, we find that the RF model consistenly out-
performs all other models across all metrics. Specifically, the RF
model achieved an AUC-ROC of 0.83, which is notably higher than
the AUC values of the rest of the models. This indicates that the
RF model has a better ability to distinguish between positive and
negative classes, making its predictions more reliable. We manu-
ally inspect the results to gain insights into the reasons that led
our approach to misclassify the regions. First, we find that our ap-
proach tends to misclassify countries sharing the same timezone. A
case in point is the misclassification of a contributor’s location as
China when they were actually from Singapore. Given that China
and Singapore are in the same timezone, and China’s instances
(10.13%) in our dataset outnumber Singapore’s (0.58%), our model
is biased towards China in this particular case. Second, we find
instances where the absence of name-based probability data led to
misclassifying the contributor’s location.

3.3 Model Deployment
To put our approach into the hands of practitioners and researchers,
we deploy Code Mapper on https://codemapper.alwaysdata.net/
index.html. Code Mapper uses a Random Forest model to classify
GitHub contributors by location. We trained this Random Forest
on all GitHub contributors in our oracle (18,579 instances).

To avoid excessive API requests, we preemptively infer the lo-
cation of the contributors of 2,046 repositories sourced from our

Table 1: Performance of the classifiers on identifying the
contributor locations.

Precision Recall F1 Score AUC-ROC

LR 0.40 0.45 0.39 0.67
RF 0.62 0.67 0.64 0.83
KNN 0.45 0.48 0.46 0.66
DT 0.59 0.59 0.59 0.66

dataset, sorted by the number of stars. Thus, when Code Mapper
receives a user request, it first checks its database to see if the geo-
graphical contributions for the specified repository have already
been recorded. If a contributor isn’t in the database or if the stored
data is over a month old, the results of the new request are saved.
This method guarantees that the data provided to users is both
current and precise.

4 CONCLUSION AND FUTUREWORK
In this paper, we present our tool, Code Mapper, that allows to vi-
sualize geographically the contributions of any open source project
hosted on GitHub. We also propose a machine learning-based ap-
proach that uses the commit UTC offsets and the name-based coun-
try probabilities proposed in prior work [6] to infer probable loca-
tions of contributions.

Using Code Mapper can help practitioners in several ways. First,
researchers can use Code Mapper’s output to analyze geographic
trends in open-source contributions, aiding in academic studies
(e.g., studying the correlation between the geographic diversity of
contributors and the innovativeness of projects), or informing deci-
sions related to hiring strategies in the information technology (IT)
market [6]. Moreover, our tool supports practitioners in the task of
tracking and promoting diversity in open-source projects by shed-
ding light on areas with underrepresented contributors. The ability
to identify the location of contributions enhances software per-
formance and security. By monitoring contributions on a regional
basis, it becomes possible to promptly identify potential security
threats or irregular activities and optimize infrastructure, includ-
ing server locations, to enhance user experiences in those regions.
Finally, identifying the geographical distribution of contributors
equips software development companies with essential insights for
making well-informed decisions regarding market expansion and
product localization.

In the future, we plan to enhance Code Mapper by incorporating
new features into our machine learning model, such as the top-
level domain from email addresses and personal websites, to refine
our location inferences. Another key focus will be to expand our
training dataset, aiming to increase themodel’s accuracy and reduce
biases, particularly in underrepresented regions. Furthermore, we
plan to develop an API for Code Mapper, making it more accessible
to researchers and practitioners for automated, large-scale analyses.
In the same vein, we aim to introduce the capability to export results
in various formats, like CSV files, to facilitate easier integration
with other analysis tools and workflows.

https://codemapper.alwaysdata.net/index.html
https://codemapper.alwaysdata.net/index.html

Code Mapper: Mapping the Global Contributions of OSS ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2020. A Machine Learning

Approach to Improve the Detection of CI Skip Commits. IEEE Transactions on
Software Engineering (TSE) (2020), To Appear.

[2] Ahmad Abdellatif, Mairieli Wessel, Igor Steinmacher, Marco A Gerosa, and Emad
Shihab. 2022. BotHunter: an approach to detect software bots in GitHub. In
Proceedings of the 19th International Conference on Mining Software Repositories.
6–17.

[3] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li. 2017. Who
will leave the company?: a large-scale industry study of developer turnover by
mining monthly work report. In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR). IEEE, 170–181.

[4] Rich Caruana and Alexandru Niculescu-Mizil. 2006. An empirical comparison of
supervised learning algorithms. In Proceedings of the 23rd international conference

on Machine learning. 161–168.
[5] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in

GitHub for MSR Studies. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 560–564.

[6] Davide Rossi and Stefano Zacchiroli. 2022. Geographic diversity in public code
contributions: an exploratory large-scale study over 50 years. In Proceedings of the
19th International Conference on Mining Software Repositories. 80–85.

[7] Kazuhiro Yamashita, Yasutaka Kamei, Shane McIntosh, Ahmed E Hassan, and
Naoyasu Ubayashi. 2016. Magnet or sticky? Measuring project characteristics
from the perspective of developer attraction and retention. Journal of Information
Processing 24, 2 (2016), 339–348.

[8] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, and Naoyasu Ubayashi.
2014. Magnet or sticky? an oss project-by-project typology. In Proceedings of the
11th working conference on mining software repositories. 344–347.

	Abstract
	1 Introduction
	2 A Walkthrough of Code Mapper
	2.1 Front-end of Code Mapper
	2.2 Backend of Code Mapper

	3 Evaluation
	3.1 Dataset Curation
	3.2 Model Selection
	3.3 Model Deployment

	4 Conclusion and Future Work
	References

