
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SATD Detector: A Text-Mining-Based Self-Admitted Technical
Debt Detection Tool

Zhongxin Liu∗, Qiao Huang∗, Xin Xia†, Emad Shihab§, David Lo‡, and Shanping Li∗
∗College of Computer Science and Technology, Zhejiang University, China

†Faculty of Information Technology, Monash University, Australia
§Department of Computer Science and Software Engineering, Concordia University, Canada

‡School of Information Systems, Singapore Management University, Singapore

ABSTRACT
In software projects, technical debt metaphor is used to describe
the situation where developers and managers have to accept com-
promises in long-term software quality to achieve short-term goals.
There are many types of technical debt, and self-admitted technical
debt (SATD) was proposed recently to consider debt that is intro-
duced intentionally (e.g., through temporary fix) and admitted by
developers themselves. Previous work on SATD has shown that
SATD can be successfully detected using source code comments.
However, most current state-of-the-art approaches identify SATD
comments through pattern matching, which achieve high preci-
sion but very low recall. That means they may miss many SATD
comments and are not practical enough. In this paper, we propose
SATD Detector, a tool that is able to (i) automatically detect SATD
comments using text mining and (ii) list and manage detected SATD
comments in an integrated development environment (IDE). Specif-
ically, this tool first leverages a pre-trained composite classifier to
detect SATD comments, and then highlights and marks these SATD
comments in the source code editor of an IDE. In addition, SATD
Detector provides a view in IDE which collects all detected SATD
comments for management.
Demo URL: https://youtu.be/sn4gU2qhGm0
Demo download: https://goo.gl/ZzjBzp

1 INTRODUCTION
In real-world software projects, developers and managers some-
times have to make tradeoffs between long-term code quality and
short-term revenue due to various reasons (e.g., cost reduction,
market pressure, and tight project schedule). Technical debt, which
is introduced by Cunningham [2], is a metaphor used to describe
this kind of situation. It has been shown by prior work that tech-
nical debt is common, unavoidable and may degrade code quality
and increase software complexity in the future [4, 10]. Moreover,
technical debt is not always visible, i.e., it may only be known to
some specific people but not those who eventually pay for it. There-
fore, many studies have been conducted to enable the detection
and management of technical debt.

The concept of self-admitted technical debt (SATD) is proposed
by Potdar and Shihab [7], which considers the technical debt that is
intentionally introduced (e.g., in the form of temporaryworkaround)
and admitted by developers themselves. In particular, SATD is used

Conference’17, July 2017, Washington, DC, USA
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to describe the situation where developers know that current im-
plementation is not optimal and record this in source code com-
ments. For example, one comment in the open source project “JEdit”
mentions that “Need some format checking here”. This comment
indicates that developers admitted that the corresponding code
is defective and requires format checking. A previous study [10]
shows that although the percentage of SATD in a project is not
high, it can negatively impact the maintenance of a project. De-
tecting and managing SATD can remind developers and managers
about the existence of SATD, help them plan to discharge SATD
and hence result in software quality improvement.

Prior work on SATD also shows that SATD can be successfully
detected using source code comments [7]. However, most of the pre-
vious studies detected SATD by manually classifying comments [7]
or using the 62 SATD comment patterns [1, 10] which are manually
derived by Potdar and Shihab [7]. Approaches that involve manual
classification of comments require much human effort, and thus
are not practical for real-world projects. Although pattern-based
approaches can achieve high precision, their recall is often very
low since they fail to detect SATD comments which do not match
any known patterns. This is the case since it is difficult to extract all
potential SATD comment patterns. Most recently, Maldonado et al.
proposed an approach based on natural language processing (NLP)
to automatically identify different types of SATD comments [5].
However, their work only focuses on certain types of SATD (i.e.,
SATD on design, SATD on requirement or non-SATD), while we
care more about whether a comment contains SATD or not, which
also includes other types of SATD (i.e., defect debt, documentation
debt and test debt). Moreover, no prior work provides practical
tools to help developers detect and manage SATD in an IDE.

In this paper, we present SATD Detector, a tool based on our
previous work [3]. SATD Detector is able to (i) automatically de-
tect SATD comments in source code through a text-mining-based
approach and (ii) list and manage detected SATD comments inside
an IDE. SATD Detector is an Eclipse plug-in, which leverages a
pre-trained composite classifier to detect SATD comments after a
project is imported into Eclipse. Specifically, whenever a developer
opens Eclipse, our tool will automatically parse all source code files
in the Eclipse workspace, detect and mark the comments which
contains SATD. Once some source code files are modified, it will
re-parse these files, re-detect SATD comments and update markers
in these files immediately. A toolbar button is provided by this plug-
in to trigger complete detection (i.e., detection of SATD comments
in the whole workspace). Moreover, this plug-in also provides an
Eclipse view in which all detected SATD comments are listed for

1

https://youtu.be/sn4gU2qhGm0
https://goo.gl/ZzjBzp
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Liu et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Source
Projects Source

Project 1

Source
Project 2

Source
Project n

Feature
Subset 1

Feature
Subset 2

Feature
Subset n

Source Projects Feature Selection

C1

C2

Cn

Training
Sub-classifiers

Classifiers
Voting

Target Project

Text
Preprocessing

Predicted Labels
(With SATD or Not)

Prediction PhaseModel Building Phase

Text
Preprocessing

1
2 3 4

56

7

Figure 1: Overall Framework of Our Model

management. With the help of SATD Detector, it would be easy for
developers and managers to manage SATD and pay back SATD in
time. Also, the tool is easy to deploy and use.

To build and evaluate our tool, we use a manually classified
dataset of source code comments from 8 open source projects with
212,413 comments, provided by Maldonado and Shihab [6]. The
experimental results show that, on every target project, our tool
outperforms Maldonado and Shihab’s approach [6] by a substantial
margin in terms of F1-score.

The remainder of the paper is organized as follows. In Section
2, we present the text-mining-based model used to detect SATD
comments by our tool. The details of SATD Detector, including
its workflow, life cycle and user interface, are described in Section
3. Section 4 shows the experimental results of our evaluation. We
conclude our work and mention future work in Section 5.

2 APPROACH
2.1 Overall Framework
SATD Detector leverages a pre-trained text mining model to auto-
matically predict whether a comment contains SATD or not. The
pre-trained model is the composite classifier proposed in our previ-
ous work [3]. Figure 1 presents the overall framework of our model.
It contains two phases: a model building phase and a prediction
phase. We refer to the projects which are used to build the model
as source projects, and the projects we want to detect as target
projects. In the model building phase, our approach builds a sub-
classifier for each individual source project, using data from the
other source projects. In the prediction phase, all sub-classifiers are
combined to jointly predict SATD comments in the target project.

Our framework takes as input training comments with known
labels from different source projects. It first preprocesses the text
descriptions of comments and extracts features (i.e. words) to repre-
sent each comment (Step 1). Then, for each source project, feature
selection is applied to select features that are useful for classifica-
tion and remove useless features (Step 2). Next, we use the selected
features to train a sub-classifier for each source project (Step 3).

Suppose there are n source projects, we end up with n classifiers
which are combined to form a composite classifier for prediction
(Step 4). For each new comment in the target project, we first pre-
process the comment to extract features (Step 5) and input them
to the composite classifier (Step 6). Finally, each sub-classifier will
predict the label of the comment according to its features, and the
label with the largest number of “votes” will be chosen as the final
prediction result of the composite classifier (Step 7).

2.2 Model Details
Our model mainly contains four steps: text preprocessing, feature
selection, sub-classifiers training and classifiers voting. The follow-
ing paragraphs elaborate the details of the four steps:
Text Preprocessing: We preprocess the text description of com-
ments to extract features (i.e., words) in 3 steps: tokenization, stop-
word removal, and stemming. While tokenizing, we only keep
English letters in a token and convert all words to lowercase. As
for stop-word removal, since some stop words are useful for clas-
sification (e.g., “should”), we manually build a list of stop-words
to filter stop-words. Words whose lengths are no more than 2 or
no less than 20 are also treated as stop-words. Finally, each token
is stemmed (i.e., reduced to its root form) using the well-known
Porter stemmer 1.
Feature Selection: After preprocessing and tokenizing the com-
ments, we use the Vector Space Model (VSM) [9] to represent each
comment with a word vector. In total, we have a large number of
features for each source project (e.g., there are 3,661 features in
ArgoUML project). Feature selection is applied to identify a subset
of features that are most useful in differentiating different classes
(i.e., comments with or without SATD). In this model, we employ
Information Gain (IG) [8] to select useful features. Only the features
whose feature selection scores are in the top 10% of the ranked list
are retained, and the other features are removed.

1http://tartarus.org/martin/PorterStemmer

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SATD Detector: A Text-Mining-Based Self-Admitted Technical Debt Detection Tool Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Extract

Source Code Comments Normal
Comments

Filter

Pre-trained Model SATD Post-process

Figure 2: Workflow of SATD Detector

Sub-classifiers Training: In our tool, we train each sub-classifier
using Naive Bayes Multinomial (NBM), which is widely used to
analyze text data. Note that our tool can also work with other
classifiers.
Classifiers Voting: In our model, the composite classifier is built
from all the sub-classifiers and it is responsible for predicting the
label of a new comment in the target project. The prediction process
is just like an election, and the prediction result of each sub-classifier
is regarded as a “vote”. The comment label which gets the largest
number of “votes” will be the final prediction result of the composite
classifier.

3 SATD DETECTOR
3.1 Workflow
SATD Detector is an Eclipse plug-in which can automatically detect
and manage SATD comments in Eclipse. Figure 2 shows its work-
flow. First of all, SATD Detector parses the source code files in the
workspace, and extracts comments from them. Then, it leverages
regular expressions to remove irrelevant comments which mainly
include the following two types:

(1) Automatically generated comments with fixed format (i.e.,
Auto-generated constructor stubs, auto-generated method
stubs and auto-generated catch blocks), which are inserted
as part of code snippets by Eclipse to generate constructors,
methods, and try catch blocks.

(2) Javadoc and license comments which do not contain any
task annotation (i.e., “TODO”, “FIXME”, or “XXX”) [8].

Next, the rest of comments are inputted to the pre-trained text
mining model described in Section 2, and each comment will be
classified by the model. Finally, for comments which are predicted
to contain SATD, SATD Detector will post-process them in the
source code editor of Eclipse, e.g., highlight them and add markers
for them.

3.2 Life Cycle
After installation, SATD Detector will start with Eclipse and then
parse source code files in the whole workspace in background. Since
in most cases, users only care about SATD in their own projects,
our tool ignores the files in the third party libraries. In our current
tool implementation, SATD Detector only supports Java projects,
and it will not parse non-Java source code files. Once source code
files are modified, they will be re-parsed and our tool will detect
SATD in these files immediately. The markers created by our tool
for SATD comments will not be persisted; hence while users are

exiting Eclipse, these markers will be deleted and SATD Detector
will then stop.

3.3 User Interface
Figure 3 presents the user interface (UI) of SATD Detector. SATD
Detector follows the workflow shown in Figure 2 to detect SATD
comments. Once it identifies one comment with SATD, it will high-
light this comment (1○ in Figure 3) and add a marker for this com-
ment (2○ in Figure 3) in the editor. At the same time, we can check
currently detected SATD comments in an Eclipse view (3○ in Fig-
ure 3). This Eclipse view displays details of each SATD comment,
which includes Description (i.e., the text description of a comment),
Resource (i.e., in which file a comment is located), Path (i.e., the path
of a comment’s corresponding file), Location (i.e., at which line(s) a
comment is located) and Type (i.e., the type of a comment’s marker).
The marker type of SATD comments is set to “Technical Debt” by
default. If a user double clicks some SATD comment in the view,
Eclipse will open the file in which this comment is located and
focus on this comment in the editor (4○ in Figure 3). This Eclipse
view also provides some basic features for SATD management, e.g.,
filtering and sorting.

In addition, SATD Detector provides a toolbar button (5○ in
Figure 3), which is used to trigger complete SATD detection. This
tool will re-analyze the comments in the whole workspace if a
user clicks this button. The time spent by this detection process
depends on the size of the target project. In order to improve user
experience, detection process always runs in background and the
real-time detection progress will be displayed in the Progress view
(1○ 2○ in Figure 4).

4 EVALUATION
To evaluate the performance of SATD Detector, we used the dataset
provided by Maldonado and Shihab [6], which involves source code
comments from 8 open source projects with 212,413 comments. We
compare our tool with 4 kinds of baseline approaches:

(1) Pattern: In this approach, a comment is regarded as SATD
comment if and only it matches one of the 62 patterns pub-
lished by Potdar and Shihab [7].

(2) NBM, SVM and kNN: We build simple classifiers using differ-
ent text mining techniques (i.e., NBM, SVM and kNN), and
classify comments with these classifiers respectively.

(3) BestSub: For each target project, we choose the sub-classifier
with best performance as our baseline.

(4) NLP: We follow Maldonado et al.’s work [5] and build a
maximum entropy classifier to predict whether a comment
contains SATD or not.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Liu et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

①

②

③

④

⑤

Figure 3: User Interface of SATD Detector

①

②

Figure 4: Re-detecting SATD in Background

The experimental results show that on every target project our
approach achieves the best performance in terms of F1-score. The
F1-score achieved by our approach ranges between 0.518 - 0.841,
with an average of 0.737, which is a substantial improvement over
the baseline approaches. On average, our approach improves the
F1-scores over Pattern-based approach, Naive Bayes Multinomial
(NBM) baseline, Support Vector Machine (SVM) baseline, k-Nearest
Neighbor (kNN) baseline, BestSub approach and Maldonado et al.’s
NLP-based approach by 499.19%, 58.49%, 882.67% 205.81%, 24.70%
and 27.95% respectively.

5 CONCLUSION & FUTUREWORK
In this paper, we present SATD Detector, a tool that is able to auto-
matically detect and help developers manage SATD comments in
an IDE. This tool is implemented as an Eclipse plug-in with the aim
of reminding developers and managers of existing SATD comments
and helping them pay for SATD in time. In future, we plan to im-
prove our tool to predict the priority of each SATD comment. We
are also interested in providing visualization tools to help develop-
ers further analyze SATD comments in different kinds of software
projects.

REFERENCES
[1] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on

self-admitted technical debt. In MSR. ACM, 315–326.
[2] Ward Cunningham. 1993. The WyCash portfolio management system. ACM

SIGPLAN OOPS Messenger 4, 2 (1993), 29–30.
[3] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2017. Identifying

self-admitted technical debt in open source projects using text mining. Empirical
Software Engineering (2017), 1–34.

[4] Erin Lim, Nitin Taksande, and Carolyn Seaman. 2012. A balancing act: what
software practitioners have to say about technical debt. IEEE software 29, 6 (2012),
22–27.

[5] Everton Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using natural
language processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering (2017).

[6] Everton da S Maldonado and Emad Shihab. 2015. Detecting and quantifying
different types of self-admitted technical debt. InManaging Technical Debt (MTD),
2015 IEEE 7th International Workshop on. IEEE, 9–15.

[7] Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted
technical debt. In ICSME. IEEE, 91–100.

[8] J. Ross Quinlan. 1986. Induction of decision trees. Machine learning 1, 1 (1986),
81–106.

[9] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[10] SultanWehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the impact of
self-admitted technical debt on software quality. In SANER, Vol. 1. IEEE, 179–188.

4

	Abstract
	1 Introduction
	2 Approach
	2.1 Overall Framework
	2.2 Model Details

	3 SATD Detector
	3.1 Workflow
	3.2 Life Cycle
	3.3 User Interface

	4 Evaluation
	5 Conclusion & Future Work
	References

