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Abstract—Technical debt refers to the phenomena of taking
shortcuts to achieve short term gain at the cost of higher
maintenance efforts in the future. Recently, approaches were
developed to detect technical debt through code comments,
referred to as Self-Admitted Technical Debt (SATD). Due to
its importance, several studies have focused on the detection of
SATD and examined its impact on software quality. However,
preliminary findings showed that in some cases SATD may live
in a project for a long time, i.e., more than 10 years. These
findings clearly show that not all SATD may be regarded as
‘bad’ and some SATD needs to be removed, while other SATD
may be fine to take on.

Therefore, in this paper, we study the removal of SATD. In
an empirical study on five open source projects, we examine
how much SATD is removed and who removes SATD? We also
investigate for how long SATD lives in a project and what
activities lead to the removal of SATD? Our findings indicate
that the majority of SATD is removed and that the majority is
self-removed (i.e., removed by the same person that introduced
it). Moreover, we find that SATD can last between approx. 18-172
days, on median. Finally, through a developer survey, we find that
developers mostly use SATD to track future bugs and areas of
the code that need improvements. Also, developers mostly remove
SATD when they are fixing bugs or adding new features. Our
findings contribute to the body of empirical evidence on SATD,
in particular evidence pertaining to its removal.

Keywords-Self-Admitted Technical Debt, Source Code Quality,
Mining Software Repositories

I. INTRODUCTION

The term technical debt was first coined by Cunningham in
1993 to refer to the phenomena of taking a shortcut to achieve
short term development gain at the cost of increased mainte-
nance effort in the future [8]. The technical debt community
studied many aspects of technical debt, including its detection
[42], impact [41] and the appearance of technical debt in the
form of code smells [12]. Most recently, the notion of self-
admitted technical debt (SATD) has been introduced by Potdar
and Shihab [29]. SATD refers to the situation where developers
know that the current implementation is not optimal and write
comments alerting the inadequacy of the solution.

Eventhough previous work argues that SATD has an neg-
ative impact on software [17], [37], it has also showed that
some SATD remains in a project for long periods of time (up

to 10 years) after its introduction [29]. However, most of these
prior studies did not examine the removal of SATD in depth.
Examining the removal of SATD can shed light on potentially
healthy patterns of debt, that may not need to be paid back.

Hence, in this paper we perform an empirical study of
large open source software projects, and examine phenomena
relating to the removal of SATD. In particular, we examine
the following questions:

RQ 1: How much self-admitted technical debt gets removed?
Non-removal of SATD suggests relative lack of impor-
tance of SATD for the developers.

2: Who removes self-admitted technical debt? Is it most
likely to be self-removed or removed by others? One
would expect the person that introduced SATD is better
aware of the presence of SATD, and, hence, a priori, is
more likely to remove SATD, i.e., to pay it back.

3: How long does self-admitted technical debt survive in
a project? Continuing the distinction between developers
removing their own SATD as opposed to those removing
SATD introduced by others, we would expect the former
to remove SATD faster than the latter.

4: What activities lead to the removal of self-admitted
technical debt? Developers conduct both activities such
as refactoring or code improvement that might explicitly
target removal of technical debt, and activities related to
new functionality or bug fixing that might lead to SATD
removal as a byproduct.
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RQ
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To answer the aforementioned questions, we leverage a nat-
ural language processing (NLP) based technique, previously
proposed by Maldonado et al. in [25], to determine SATD
introduction and removal. In total, we examine 5,733 SATD re-
movals in five large open source projects. Our findings indicate
that 1) the majority of self-admitted technical debt comments
are removed and in the studied projects the removal ranges
between 40.5-90.6%, and on average 74.9% of the identified
self-admitted technical debt is removed; 2) most self-admitted
technical debt (on average 54.4% and median 61.0%) is self-
removed; 3) the median amount of time that self-admitted
technical debt stays in the project ranged between 82-613.2
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Fig. 1: Process to automatically classify self-admitted technical
debt.

days on average and 18.2-172.8 days; and 4) developers add
self-admitted technical debt to track potential future bugs and
code that needs improvements, whereas, developers mostly
remove self-admitted technical debt when they are fixing bugs
or adding new features. Very seldom do developers remove
self-admitted technical debt as part of refactoring efforts or
dedicated code improvement activities.

Our empirical findings provide insights to developers and
software projects on how to best manage self-admitted tech-
nical debt. For example, our findings show that most self-
admitted technical debt is self-removed, providing insight on
who typically removes self-admitted technical debt in large
open source projects. To ease replication, we make all the data
used in our study and the online survey questions available
online !.

The rest of the paper is organized as follows: after detailing
the case study setup in Section II we present the results
in Section III. We position our results with respect to the
related work in Section IV, and evaluate threats to validity
in Section V. Section VI concludes and sketches future work.

II. CASE STUDY SETUP

The main goal of our study is to understand the removal
of self-admitted technical debt. Although some prior work
examined the removal of self-admitted technical debt and who
removes self-admitted technical debt (e.g., [3], [29]), to the
best of our knowledge, this is one of the first studies to ex-
clusively focus on the removal of self-admitted technical debt.
Furthermore, in addition to quantifying removal and examining
who removes self-admitted technical debt, we also examine
how long self-admitted technical debt tends to live in a project
and shed light on the activities that lead to the removal of
self-admitted technical debt. Also, our study uses a more
accurate way to determine self-admitted technical debt and
examines a different set of projects than the aforementioned
work, strengthening the empirical evidence of self-admitted
technical debt removal.

To conduct our study, we checkout all versions of five large,
well-commented, open source projects. Then, we use the NLP
technique recently presented by Maldonado et al. [25] to detect
self-admitted technical debt based on source code comments.
Once self-admitted technical debt has been identified, we can
also conclude when and by whom it was introduced and
removed. Figure 1 shows an overview of our approach, and
the following subsections detail each of its steps.

Thttp://das.encs.concordia.ca/uploads/2017/07/maldonado_icsme2017.zip

A. Project Data Extraction

We start by selecting case study projects. While sometimes
even a single case might be sufficient, e.g., when it is typical,
we study several projects as multiple case design is known
to usually offer greater validity [9]. We select projects to
cover different application domains, sizes and numbers of con-
tributors. Furthermore, since the self-admitted technical debt
identification heavily depends on source code comments, we
selected well-commented projects, and since we are interested
in changes in self-admitted technical debt (introduction and
removal) we focus on highly active projects. All projects are
developed in Java and use Git. We selected five open source
projects namely Camel, Gerrit, Hadoop, Log4j, and Tomcat,
and started analyzing the selected projects on March 15, 2016.

Table I provides details about each of the projects used in
our study. The columns of Table I include the number of
extracted comments (i.e., from all versions), the number of
comments analyzed after applying our filtering heuristics (i.e.,
removing commented-out source code, license comments and
Javadoc comments), the number of comments that were clas-
sified as self-admitted technical debt and finally the number
of unique self-admitted technical debt comments. To calculate
the number of unique self-admitted technical debt comments,
we take in consideration only the first time that the comment
appears on any of the different file versions. This is necessary
because the same comment may appear in different versions
of the file. In total, we obtained 7,749,969 comments, found
in 446,775 different versions of 30,915 Java classes. The size
of the selected projects varies between 30,287 and 800,488
SLOC, and the number of contributors of these projects ranges
from 32 to 289. Since there exist different definitions for the
SLOC metric we clarify that, in our study, a source line of
code contains at least one valid character, which is not a blank
space or a source code comment. In addition, we only use the
Java files to calculate the SLOC, and to do so, we use the
SLOCCount tool [38].

The number of contributors was extracted from OpenHub,
an on-line community and public directory that offers analyt-
ics, search services and tools for open source software [2].
Number of contributors is calculated by counting the different
authors that committed changes to the source code repository.
However, there is the possibility that one developer possesses
more than one user name in the source code repository [20].
To mitigate this risk, OpenHub provides an interface where
the manager of the project on OpenHub can link two or more
different user names belonging to the same user [1].

The number of comments shown in Table I for each project
does not represent the number of commented lines, but rather
the number of Line, Block and Javadoc comments.

B. Checkout All Versions of Files

Since we focus on the introduction and removal of self-
admitted technical debt, historical information about the
project files is sought. As illustrated in Figure 2, we first
identify all Java source code files currently available in the
latest version of the project. Then, we analyze the source



TABLE I: DETAILS OF STUDIED PROJECTS.

Project details

Comments details

Project i
! # Java SLOC # f?le # contributors # comments # commer}ts # TD # unique TD
files versions after filtering comments comments
Camel 15,091 800,488 254,920 289 1,634,361 700,412 20,141 4,331
Gerrit 3,059 222,476 53,298 270 1,018,006 129,023 4,810 271
Hadoop 8,466 996,877 79,232 160 2,512,673 1,172,051 18,927 1,164
Logdj 1,112 30,287 12,609 35 248,276 61,690 1,893 135
Tomcat 3,187 297,828 46,716 32 2,336,653 1,081,492 26,725 1,317
Case 1|t 1 . . .
i i a structured directory that we will use to extract the remainder
1 1
Case 2 (rename/move) 1 —————H, ! of the data for our study.
1 ' T
1 1
Case 3 (deleted files) | : C. Extracting Source Code Comments
Starilng of Time Current version We use an open source library SrcML [7] to parse the source
the project of the project ~ code, and extract the comments and the information related to

Fig. 2: Different cases when checking out all file versions.

code repository to track all changes done to each file. Each
change made to a file produces a different version of that file
(Figure 2, case 1), and by extracting them we can analyze
each file version looking for source comments that indicate
self-admitted technical debt. A version of a file is generated
whenever a change (i.e., commit) is made. Once we identify all
file versions, we consider the first available file version that
contains the self-admitted technical debt as the file version
that introduced the self-admitted technical debt. Similarly, we
consider the date of the commit that removes the self-admitted
technical debt comment or deletes the file where the self-
admitted technical debt exists in as the removal date.

Since file deletions indicate self-admitted technical debt
removals, it is important to correctly handle file moves and
renames (Figure 2, case 2). Git is capable of tracking renamed
or moved files based on a similarity threshold [4], [15]. In our
study, we use the default similarity threshold of 90%, i.e., if
a file is renamed or moved to another folder, and is at least
90% similar to an older version (excluding whitespaces and
blank lines), Git will consider that the file was just moved or
renamed. If a file was not listed as being moved or renamed,
then we consider it to be deleted.

The second step to checkout all versions of files is to
identify the files that are no longer present in the repository
i.e., deleted files (Figure 2, case 3). Using Git we obtain the
list of commit hashes that have deleted at least one file and
the fully qualified names of these files. Using this information,
we repeat the process described above to obtain all the older
versions of the files. To guarantee the correctness of the
process we focus solely on Java source files, and ensure that
every fully qualified path of the file is analyzed only once.

After this step is complete, we have at our disposal the
information regarding the files and their versions stored in the
database. We also store an actual copy of each file version in

them such as the line that each comment starts, finishes and
the type of the comment (i.e., Javadoc, Line or Block).

As the prior work showed, not all comments can contain
self-admitted technical debt [29], [37]. Therefore, in the pre-
processing we exclude the following types of comments:

o License comments that generally do not contain self-
admitted technical debt and are commonly located before
the class declaration. That said, comments that contain
task annotations (i.e., “TODO:”, “FIXME:”, or “XXX:”)
[36] are not removed since they are usually leveraged by
most IDEs, e.g., Eclipse and Netbeans, to automatically
generate task lists.

o Commented-out source code, which is explicitly com-
mented out by developers and not compiled is also
ignored since prior work showed that it generally does
not contain self-admitted technical debt [29], [37].

o Automatically generated comments by the IDE are also
removed since they, by definition, do not indicate self-
admitted technical debt.

« Javadoc comments are also removed since they rarely
mention self-admitted technical debt [29].

The pre-processing steps above significantly reduce the
number of comments in the dataset and allow us to focus on
the most applicable and insightful comments. For example,
as shown in Table I, in the Camel project, applying the
above steps helped to reduce the number of comments from
1,634,361 to 700,412, a reduction of 57.1% in the number
of comments to be classified. Using the filtering heuristics
we were able to eliminate between 53.3% to 87.3% of all
comments. Table I provides the number of comments kept
after the filtering heuristics for each project.

D. Applying the NLP to Identify Self-Admitted Technical Debt

To identify the self-admitted technical debt comments, we
next use the technique presented in by Maldonado et al. [25].
We refer readers to Maldonado et al.’s paper for full details
on how to identify self-admitted technical debt comments,



however, to make our paper self-contained, we highlight the
key points of their approach that we use:

e To train the NLP classifier, we used the manually
classified self-admitted technical debt comments dataset
provided by Maldonado et al. [25]. The dataset con-
tains 62,566 comments extracted from ten open source
projects. These comments were classified as self-admitted
technical debt comments or as regular comments (i.e.,
comments without self-admitted technical debt). The
manually classified dataset was verified by the authors of
Maldonado et al.’s paper and they showed that two inde-
pendent reviewers agreed on the classification, achieving
a Cohen’s Kappa value of +0.81 [25]. Hence, we have
good confidence in the dataset provided by Maldonado
et al. and used in this study.

o We use the Stanford NLP Classifier [27] to classify self-
admitted technical debt comments. The NLP Classifier
takes as input classified data items (comments), and au-
tomatically learns features (i.e., words) from each datum
that are associated with positive or negative numeric
votes for each class. The weights of the features are
learned automatically based on the manually classified
training data items (supervised learning). The Stanford
NLP Classifier builds a maximum entropy model [28],
which is equivalent to a multi-class regression model,
and is trained to maximize the conditional likelihood of
the classes taking into account feature dependences when
calculating the feature weights.

o In addition, the work by Maldonado et al. [25] showed
that the NLP classifier is correct in identifying self-
admitted technical debt with an average precision of 0.72
and recall of 0.56. Although these precision and recall
values may not seem high, they do represent the state of
the art and outperform the comment-patterns technique,
which all prior work was built on top of (i.e., [3], [29],
[37]) by 230%, on average.

Now that we have a trained NLP classifier (maximum
entropy classifier), we follow a general process of machine
learning where we apply the trained NLP classifier to classify
the extracted comments from our five studied projects. We are
confident in the trained NLP classifier, which is trained on the
data provided by Maldonado et al. [25], since Maldonado et
al. showed that the trained NLP classifier is able to produce
good results even when it is evaluated on cross-project data.
We discuss the impact of using the NLP classifier in more
details in Section V. The last two columns of Table I show the
number of identified self-admitted technical debt comments
per project after applying the trained NLP classifier.

III. CASE STUDY RESULTS

The main goal of our study is to better understand what
happens to self-admitted technical debt once it is introduced
into software projects. To do so, our first step is to quantify
how much of the self-admitted technical debt comments get
removed (RQ1). Next, we analyze who removes self-admitted
technical debt, i.e., if the same developer that introduced

TABLE II: REMOVED SELF-ADMITTED TECHNICAL DEBT
PER PROJECT.

Project | # Identified # Removed % Removed % Remaining
Camel 4,331 3,926 90.6 9.4
Gerrit 271 208 76.7 233
Hadoop 1,164 472 40.5 59.5
Logdj 135 118 87.4 12.6
Tomcat 1,317 1,009 76.6 234
Average - - 74.4 25.6
Median - - 76.7 23.3

the debt is also most likely to remove it (RQ2). Then, we
investigate how long the self-admitted technical debt remains
in the project (RQ3). Finally, we conduct a survey with 14
developers to understand why self-admitted technical debt is
introduced and removed (RQ4). For each question, we describe
the motivation behind it, the approach chosen to address it, and
the results obtained.

RQI. How much self-admitted technical debt gets removed?

Motivation: Previous work showed that technical debt is
widespread, unavoidable, and has arguably some negative
impact on software projects [22]. Therefore, a priori we expect
that removing technical debt is a concern for developers. To
understand how developers deal with technical debt we must
first quantify how much debt is removed.

Approach: To answer this question we automatically identify
self-admitted technical debt from the five analyzed projects. As
described in Section II-B, we stored all versions of all source
code files. Then, for each analyzed self-admitted technical debt
comment we take the oldest file version available in which
the debt was found and incrementally search for matches in
future versions of the file. The first time that the analyzed self-
admitted technical debt comment(s) appears in a file, indicates
the exact file version that the self-admitted technical debt
comment was introduced. To analyze if the introduced self-
admitted technical debt comment was later removed, we search
for the same comment in the remaining file versions. When the
comment is no longer found, we mark that version of the file as
the removal version. In certain cases, a self-admitted technical
debt comment is found in one version only (i.e., the version
that it is introduced in). Such cases indicate a scenario where
the self-admitted technical debt was introduced and removed
immediately after.

Results: Table II presents the identified and removed self-
admitted technical debt comments. We find that the majority
(i.e., on average 74.4%, median 76.7%) of the identified self-
admitted technical debt comments were removed. We measure
the average on a per project basis, i.e., the total from each
project is taken and the average/median over the five projects
are provided. For example, we find 271 unique instances
of self-admitted technical debt comments when analyzing
the Gerrit project. 76.7% (i.e., 208) of these self-admitted
technical debt comments were removed during the evolution of



the project. Camel had the highest self-admitted technical debt
comments removal percentage (i.e., 90.6), whereas Hadoop
had the lowest removal percentage reaching 40.5%.

Our findings indicate that developers tend to be aware
and do care about self-admitted technical debt. This finding
corroborates with the survey findings of Ernst ef al. [10]. Also,
these results match those observed in earlier studies reported
by Potdar and Shihab [29] and Bavota and Russo [3].

The majority of self-admitted technical debt comments
are removed over time. In our five case study projects,
between 40.5-90.6% (median 76.7%) of the identified
self-admitted technical debt is removed.

RQ2. Who removes self-admitted technical debt? Is it most
likely to be self-removed or removed by others?

Motivation: As opposed to the technical debt in general, self-
admitted technical debt stands for technical debt confessed by
the developers themselves. This intuition leads us to believe
that it would be natural that the developers who expressed
concern about the code would be also the ones who fix it
in the future. However, it is unknown whether this is the
case. It makes intuitive sense that self-removal of self-admitted
technical debt is easier, since the developers know about the
reason for the self-admitted technical debt introduction and
possibly how to address it. The findings of this question have
implications on the way that developers/manager/projects need
to manage self-admitted technical debt. For example, if it is
found that self-admitted technical debt is mostly addressed by
others, then projects need to pay special attend to how this
technical debt (and the areas of the code that it exists in) is
documented. If on the other hand, it is indeed mostly self-
removed, then the problem is less troubling.

Approach: To answer this question we analyzed the authors
of the changes (i.e., commits from the source code reposi-
tory) that introduced or removed self-admitted technical debt
comments. In order to do that, we first determine the commit
in which a self-admitted technical debt comment was added,
then we check the further file versions to determine if there
is any commit that removed the self-admitted technical debt
comment. Finally, we compare the authors of the commits to
see if they are the same or not.

We take into consideration two attributes of the change
when comparing authors—the author name and email address.
This is a necessary heuristic to mitigate the risk of misclas-
sifying authors that change their names in the source code
repository during the evolution of the project (cf. [20], [39]).
Results: Table III shows that in most cases, the majority of
self-admitted technical debt is removed by the same author
who introduced it, referred to as “self-removed technical
debt”. On average, 54.4% of all removals are self-removed
and in four of the five projects, self-removal accounts for
more than 50%. This finding agrees with Bavota and Russo’s
study, which found that self-admitted technical debt is self-
removed in 63% of the cases in their dataset. Once again,
we measure the average on a per project basis, i.e., the total

TABLE III: SELF-REMOVED TECHNICAL DEBT PER

PROJECT.
Project | # Removed # Self-removed % Self-removed
Camel 3,926 2,652 67.5
Gerrit 208 149 71.6
Hadoop 472 116 24.6
Logdj 118 72 61.0
Tomcat 1,009 578 57.3
Average - - 54.4
Median - - 61.0

from each project is taken and the average over the five
projects in provided. The project with highest percentage of
self-removed technical debt was Gerrit with 71.6%, and the
lowest percentage—Hadoop with 24.6%.

Hadoop tends to be an outlier in terms of self-removed self-
admitted technical debt, however, it is worth mentioning that
Hadoop had the least amount of removals overall (only 40.5%
of the self-admitted technical debt is ever removed). There
are many possible reasons for the low removal rates, e.g.,
high developer churn or lack of process to deal with technical
debt. Although we shed some light on the potential reasons
for the removal of self-admitted technical debt later in RQ4,
we believe that determining the exact reasons for self-admitted
technical debt removal warrant a study on its own.

The majority of self-admitted technical debt is self-
removed. On average 54.4% of self-admitted technical
debt is self-removed and on median 61.0% is self-
removed.

RQ3. How long does self-admitted technical debt survive in a
project?

Motivation: From RQs 1 and 2, we know that the majority
of self-admitted technical debt is removed and most of the
time it is removed by the same developer who introduced
it. Next, we would like to know how long self-admitted
technical debt lives in a project before it is actually removed.
Answering this question helps us to understand for how long
it is normal to have self-admitted technical debt comments in
the projects. In addition, once we quantify the number of self-
removed technical debt and the number of non-self-removed
technical debt comments, we would like to understand if
these two categories of removal have differences between
them. For example, since we know that the majority of self-
admitted technical debt is self-removed, is it the case that it
is removed faster? Indeed, our intuition suggests that self-
admitted technical debt would be easier to be addressed by
the author themselves.

Approach: To determine the amount of time that self-admitted
technical debt lives in a project, we use the time difference
between the commit that introduces and removes the self-
admitted technical debt comment. The steps to identify the
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Fig. 3: The distribution of times of all the removed self-
admitted technical debt comments.

TABLE 1IV: SELF-REMOVAL VS NON-SELF-REMOVAL:
MANN-WHITNEY TEST (p-VALUE) AND CLIFF’S DELTA (d).

Project p-value d

Camel 0.000125 —0.075(small)
Gerrit 3.581e-14 —0.671(large)
Hadoop | < 2.2e-16 —0.531(large)
Logdj 2.345e-06 —0.517(large)
Tomcat < 2.2e-16 —0.820(large)

self-admitted technical debt introducing and removing com-
mits are the same as we outlined in RQs 1 and 2. We measure
the average and median time for self-admitted technical debt
to be removed. It is important to note that the timezone is
irrelevant in this analysis since we normalize the data used in
our survival plots by calculating the delta between insertion
and removal of SATD from each project separately (i.e., on
their own repositories timezone).

Additionally, we generate survival plots for the removal
of self-admitted technical debt to determine how likely the
technical debt will live in a project. Survival plots show
the (general) trend times for a given event to occur. In our
case, the survival plots show the percentage of self-admitted
technical debt that survives in a project overtime. Finally, we
distinguish between self- and non-self-removed technical debt
and compare the removal time of each. We compare the two
distributions (i.e., self- and non-self-removal) using a Mann-
Whitney test [26] to determine if the difference is statistically
significant at the customary level of 0.05.

We estimated the magnitude of the difference between self-
removed technical debt and non-self-removed technical debt
using the Cliff’s Delta (or d) [14], a non-parametric effect
size measure for ordinal data. We consider the effect size
values: small for d < 0.33 (positive as well as negative values),
medium for 0.33 < d < 0.474 and large for d > 0.474.
Results: Figure 3 shows the distribution, the mean and median
times for removal of the self-admitted technical debt. The dis-

tribution of self-admitted technical debt removal is skewed, as
indicated by plots and the difference in the mean and median
removal times. In general, the time that self-admitted technical
debt stays in a project varies from one project to another:
medians range between 18.2-172.8 days and averages—82-—
613.2 days. One clear finding however, is that in Camel and
Gerrit, self-admitted technical debt is removed faster than in
Hadoop, Log4j and Tomcat.

Figure 4 shows the survival plots of self-admitted technical
debt for the five studied projects. Survival plot is a technique
originating from the medical domain indicating the probability
of a patient to survive at least for x days. To estimate this
probability one would ideally like to have complete informa-
tion about the death time of all patients. Such an assumption
is, however, usually not realistic as some patients might still
be alive at the end of the observations, i.e., the data is right-
censored. Kaplan and Meier [18] have proposed a technique
to estimate the survival in presence of right-censored data.
As we have seen in Table II some self-admitted technical
debt comments remained at the end of the observations, i.e.,
our data is also right-censored, in Figure 4 we present the
Kaplan-Meier estimators. The use of Kaplan-Meier estimators
is common in software evolution applications of survival
analysis [13], [23], [31].

Inspecting Figure 4 we observe that for all projects, there is
a steep decline in the first few hundred days, suggesting that
in all projects an important share of self-admitted technical
debt is rapidly removed. Projects do differ in how steep the
drop is and where it flattens out. For example, for Camel there
is a steep drop in self-admitted technical debt after around 48
days and a long tail after that. This means that in Camel,
the likelihood of self-admitted technical debt surviving (i.e.,
existing in the project after introduction) drops sharply after 48
days, and after that time, the chance of surviving is less than
20%, as indicated by the survival function. Another extreme
case is Hadoop, where the chance of self-admitted technical
debt surviving for more than 1,150 days is close to 57.8%;
the percentage of the self-admitted technical debt comments
remaining at the end of the observations reported in Table II.

We also compare the time that self-removed and non-self-
removed self-admitted technical debt exists in the project
before it gets removed. We find that self-removed technical
debt gets removed faster than non-self-removed technical debt.
Figure 5 shows that, on median for all projects, self-removed
technical debt is removed earlier than non-self-removed tech-
nical debt. Our finding confirms our intuition, however, the
exact reasons (e.g., is it because the remover is more familiar
with the debt) as to why self-removals take less time warrant a
study on its own. Table IV shows the result of Mann-Whitney
test and Cliff’s Delta (d), which is a measure of effect size.
We observe that for all the studied projects the difference
between self-removed and non-self-removed technical debt is
statistically different. The effect size, for all the projects is
large except for Camel, where the effect size is small.
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Fig. 4: Survival plots show the probability of the removal of self-admitted technical debt comment for all studied projects.

TABLE V: NUMBER OF INDIVIDUALS INVITED TO ANSWER
THE SURVEY AND RESPONSES PER PROJECT.

Project Camel Gerrit Hadoop Log4j Tomcat Ant Jmeter
#Inv. 50 31 58 10 17 71 13
#Resp. 2 1 3 0 1 5 2

The amount of time self-admitted technical debt
remains in a project before removal varies from one
project to another and ranges between 18.2—172.8 days
on median and 82—-613.2 days on average. Moreover,
self-removed technical debt is removed faster than non-
self-removed technical debt.

RQ4. What activities lead to the removal of self-admitted
technical debt?

Motivation: Thus far, our analysis has been quantitative in
nature. To triangulate our findings and better understand our
findings, we perform complementary qualitative analysis to
understand the experiences and motives of developers who
introduce and remove self-admitted technical debt.

Approach: To understand the activities that lead to the intro-
duction and removal of self-admitted technical debt, we de-
signed an online survey. While participants have been purpose-

fully recruited, we did not store any identifying information
about the individual respondents.

The survey included three main sections: 1) questions
regarding the participant’s role and development tasks and
experience in the project, 2) three Likert-scale questions
about the frequency of developers encountering, adding, and
addressing self-admitted technical debt, and 3) two open ended
questions asking why developers add or remove self-admitted
technical debt. To ensure that the respondents understand the
questions we ‘“eschew technical jargon that is outside the
subjects repertoire” [34], i.e., instead of referring to self-
admitted technical debt explicitly we ask about “comments
indicating delayed or intended work activities such as TODO,
FIXME, hack, workaround, etc.”

To identify the target population, we collected the names
and email addresses of all developers who added or removed
self-admitted technical debt in the five studied projects and
an additional two projects from the training dataset, namely
Apache Ant and Jmeter. We chose these two additional
projects to increase the potential number of respondents and
to avoid including all of the training dataset projects to not
overwhelm developers with requests for surveys.

In total, we found 250 unique developers from the stud-
ied projects and we successfully sent the survey to 188 of
them. We received 14 responses, i.e., the response rate is
7.4%. Although this is lower than the response rate reported
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in software engineering surveys [30], the area of technical
debt is difficult to discuss, especially since some developers
may feel they or their projects will be negatively perceived.
Table V shows the number of developers that we surveyed
and the survey responses per project. We also make the
online survey questions and the anonymized survey responses
available online”. Half of the respondents were from the five
studied projects and the other half were from the Apache
Ant and Jmeter projects. For the open-ended questions, we
manually analyzed the free-text answers and identified six
main reasons why developers add self-admitted technical debt
and five main reasons for removing self-admitted technical
debt. Of the 14 respondents, eight identified themselves as
core developers, and six as contributors to the projects. Five
of the 14 respondents work on fixing bugs, and five work on
implementing new features. Only one respondent has the task
of code reviewer. Another three respondents indicted having
different tasks (e.g., project user). Twelve respondents have
more than five years of experience and only two respondents
have less than three years of experience.

Results: Figure 6 shows the results of the Likert-scale ques-
tions about how often developers encounter, add, address
self-admitted technical debt. Developers mostly agreed that
they encounter source code comments indicating self-admitted
technical debt.

All respondents report that they encounter self-admitted
technical debt comments at least as often as add them or ad-
dress them. Interestingly enough six respondents indicate that
they add self-admitted technical debt comments more often
than address them, while only three indicate the opposite, i.e.,
that they address self-admitted technical debt comments more
often then add them. This observation is concurrent, e.g., with
an earlier observation that in Eclipse introduction of undesired
dependencies occurs more often then their elimination [6].

As for why developers tend to add self-admitted technical
debt, nine respondents (P1, P4, P5, P8, P9, P11, P12, P13,

Zhttp://das.encs.concordia.ca/uploads/2017/07/maldonado_icsme2017.zip
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How often do developers
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Fig. 6: Survey responses on how often developers encounter,
add, and address self-admitted technical debt.

and P14) indicated that they add self-admitted technical debt
as a tracker in the source code for potential bugs or source
code that needs to be improved or document a need for a new
feature. For example, P12 states that “It is usually a marker in
the source of a missing feature or known bug.”. Also, contrary
to Postdar and Shihab [29] we find that developers add self-
admitted technical debt because of time pressure (P1, P2, P7,
P13, and P14) to deliver tasks. For example, P1 said “Because
they want to deliver, and when balancing an early delivery
against technical debt.” Some other reasons for adding self-
admitted technical debt are very rare and are only mentioned
once or twice (e.g,. a remainder or looking for feedback). For
example, P5 said that “They are not sure about the effects of
their code and want feedback...”.

In response to the question on why developers address self-
admitted technical debt, we identified five reasons. The most
cited reason for addressing self-admitted technical debt is fo fix
bugs (P1, P4, PS5, P7, P8, P9, P10, P12, and P13). For example,
P12 states “, usually as part of fixing a user-reported issue...”
The second most frequent reasons is to add a new feature
(P1, P4, P6, P12, and P14) and improve the code overall (P7,
P8, P9, P10, and P11). The other two, less frequent, reasons
are addressing self-admitted technical debt when refactoring
code (P7 and P9) and to provide a generally better solution
(P2 and P7). Our findings indicate that there is a need for



software projects to allocate resources to specifically address
self-admitted technical debt, since most respondents do not
seem to indicate that there is a systematic process in place
to address self-admitted technical debt. And, in most cases it
seems like dealing with self-admitted technical debt is done
in an ad-hoc manner.

Developers add self-admitted technical debt to track
potential future bugs, code that needs improvements
or areas to implement new features. Developers mostly
remove self-admitted technical debt when they are
fixing bugs or adding new features. Very seldom do
developers remove self-admitted technical debt as part
of refactoring efforts or dedicated code improvement
activities.

IV. RELATED WORK

In this section, we describe the related work. We divided the
related work into two sections: work related to the manage-
ment and the detection of technical debt in general, and work
related to the identification of self-admitted technical debt.

A. The detection & management of technical debt in general.

A number of earlier work studied the management and
detection of technical debt in general. Seaman et al. [32],
Kruchten et al. [21] and Brown et al. [5] made several
reflections about the term ‘technical debt’ and mentioned that
it is commonly used to communicate development issues to
managers. Other work by Zazworka et al. [42] focused on the
detection of technical debt, where they conducted experiments
to compare the efficiency of automated tools in comparison
with human elicitation in detecting technical debt. They found
that there is a small overlap between the two approaches.
They also concluded that automated tools are more efficient
in finding defect debt, whereas developers can realize more
abstract categories of technical debt. In a follow up work,
Zazworka et al. [41] conducted a study to measure the impact
of technical debt on software quality. They focused on a
particular kind of debt, namely design debt measured using
God classes. They found that God classes are more likely
to change, and therefore, have a higher impact on software
quality. Other work by Fontana er al. [12] investigated design
technical debt appearing in the form of code smells, namely:
God Classes, Data Classes, and Duplicated Code. They pro-
posed an approach to classify which one of the different code
smells should be addressed first, based on their potential risk.
Ernst ef al. [10] conducted a survey involving more than 1,800
participants and found that architectural decisions are the most
important source of technical debt.

In an earlier study Klinger et al. have conducted four
interviews and observed that “the individuals choosing to incur
technical debt are usually different from those responsible for
servicing the debt” [19]. This observation has been questioned
by Spinola et al., who have found that while the online-
survey respondents tended to agree with the observation, the
paper-survey respondents achieved high consensus in neither

agreeing nor disagreeing with the observation [35]. Therefore,
to complement these studies we analyze the source code.
Indeed, if the observation of Klinger et al. holds for self-
admitted technical debt then we expect to see a clear separation
between the individuals introducing self-admitted technical
debt and individuals removing self-admitted technical debt,
resulting in a low self-admitted technical debt self-removal.

Jiang and Hassan studied removal of comments in Post-
greSQL from 1996 to 2005 [16]. They have observed that at
each 30-day period 0-40% of functions with header comments
have been removed; a similar observation has been made
for functions with non-header comments. Unfortunately, the
different focus of our studies (comments vs. functions, self-
admitted technical debt-comments vs. any comments) render
our results incomparable.

Our work differs from the work that uses code smells to
detect design technical debt, since we use code comments
to detect technical debt. Moreover, our study focuses on
the removal of self-admitted technical debt, rather than its
identification or management.

B. The detection & management of “self-admitted” technical
Debt.

The work that is most related to ours is the work by
Potdar and Shihab [29] and Bavota and Russo [3]. Potdar and
Shihab [29] introduce the self-admitted technical debt. They
extracted the code comments of four projects and analyzed
more than 100K comments to come up with 62 patterns that
indicate self-admitted technical debt. Their findings show that
2.4-31% of the files in a project contain self-admitted techni-
cal debt. More specifically, they found that 1) the majority of
the self-admitted technical debt is removed in the immediate
next release; 2) developers with higher experience are mostly
the ones who introduce the self-admitted technical debt; 3)
release pressure does not play a major role in the introduction
of self-admitted technical debt.

Bavota and Russo [3] replicated the study of self-admitted
technical debt on a large set of Apache and Eclipse projects
and confirmed the findings observed by Potdar and Shihab in
their earlier work [29]. Furthermore, they found that: 1) ap-
proximately 57% of self-admitted technical debt get removed
during the change history of software projects, and 2) around
63% of self-admitted technical debt is removed by the same
developers who introduced them, i.e., are self-removed. Our
work differs from that by Potdar and Shihab [29] and Bavota
and Russo [3] in that we focus exclusively on the removal
of self-admitted technical debt. More specifically, we use a
more accurate technique to identify self-admitted technical
debt [25]. In addition to quantify removal and examine who
removes self-admitted technical debt, we also examine how
long self-admitted technical debt tends to live in a project and
shed light on the activities that lead to the removal of self-
admitted technical debt. In many ways, our study complements
prior work on self-admitted technical debt.

Maldonado et al. [25] used Natural Language Processing
technical to identify self-admitted technical debt from source



code comments. The experiment showed that the proposed
method achieves 90% classification accuracy in identifying
design and requirement self-admitted technical debt. Maldon-
ado and Shihab [24] examined more than 33K comments
to classify the different types of self-admitted technical debt
found in source code comments. Farias ef al. [11] proposed a
contextualized vocabulary model for identifying technical debt
in comments using word classes and code tags in the process.

Other work studied the management and the impact of self-
admitted technical debt. Wehaibi et al. [37] examined the
impact of self-admitted technical debt and found that self-
admitted technical debt leads to more complex changes in
the future. All three of the aforementioned studies used the
comment patterns approach to detect self-admitted technical
debt. Kamei et al. [17] proposed a method to measure technical
debt interest using self-admitted technical debt comments in
the source code. They found around 42% of the technical debt
in the studied projects incurs positive interest.

Similar to previous work, our work also uses code com-
ments to detect self-admitted technical debt. However, we use
an NLP technique to identify self-admitted technical debt in
order to conduct our empirical study on the removal of self-
admitted technical debt.

V. THREATS TO VALIDITY

Following common guidelines for empirical studies [40],
this section discusses the threats to validity of our study.

A. Internal Validity

Internal validity concerns factors that could have influenced
our results. We rely on the NLP classification to determine
self-admitted technical debt. As mentioned earlier, this ap-
proach is not perfect, achieving an average precision of 0.72
and recall of 0.56. Although the precision and recall values
are not very high, the NLP technique is considered the state-
of-the-art in detecting self-admitted technical debt. The NLP
technique outperforms the comment-patterns technique, which
all prior work was built on top of (i.e., [3], [29], [37]) by 230%,
on average. We train the Stanford NLP classifier on manually
tagged self-admitted technical debt comments provided in
prior work [25]. The manually classified comments have been
verified and published in peer-reviewed venues.

To understand the activities leading to the introduction
and removal of self-admitted technical debt, we conducted
an online survey. We contacted 188 developers responsible
for adding and removing self-admitted technical debt, and
received 14 (7.4%) responses. While this response rate may
be considered small, it is acceptable in questionnaire-based
software engineering surveys [33].

B. Construct Validity

Threats to constructed validity concern the relationship
between theory and observation. To identify self-admitted
technical debt in a project, we use source code comments that
describe part of the source code containing technical debt.
One threat of using source code comments is the consistency

of changes between the comments and the code, i.e., in some
cases the comment may change and not the code and vice
versa. However, previous work showed that between 72-91%
of code and comment changes are consistent, i.e., code and
comments co-change together [29].

To identify the removed and added self-admitted technical
debt, we consider the source code comments that do not exist
anymore in a source code file as removed of self-admitted
technical debt. However, in some cases source code can be
moved from one file to another and not completely removed
from source code of the project. We also consider commits as
a single unit of change. However, a single commit may contain
other source code changes. Moreover, we rely on Open-hub’s
data to merge developer identities, hence, our study is only as
accurate as Open-hub’s classification.

C. External Validity

Threats to external validity concern the generalization of
our findings. Our study is conducted on five large open source
projects and contains more than 5,700 comment removals.
That said, our findings may not be generalized to other open
source or commercial systems.

VI. CONCLUSION AND FUTURE WORK

Self-admitted technical debt refers to technical debt that can
be detected through code comments. Prior work examined the
detection, management and impact of self-admitted technical
debt. However, little is known about the removal of such
technical debt. In this paper, we conduct an empirical study to
examine how much self-admitted technical debt is removed,
how long such technical debt lives in a project before removal
and who removes such debt. We find that the majority of self-
admitted technical debt is removed (74.4% on average), that
self-admitted technical debt is mostly self-removed (54.4%
on average), and that it lasts between 82 - 613.2 days on
average in a project before it is removed. Then, we conduct
a survey with 14 developers to understand the reasons for the
introduction and removal of self-admitted technical debt. We
find that there is no formal process to remove self-admitted
technical debt, and most removals occur as part of bug fixing.

Our results provide insights that indicate that self-admitted
technical debt is important, which is why the majority of it
is removed. Also, they suggest that although developers are
aware of the need to remove self-admitted technical debt,
most projects do not employ any formal process to address it.
Hence, techniques are needed to allow projects to effectively
and systematically address self-admitted technical debt.

In the future, we plan to perform qualitative studies that
examine the ‘whys’ of our findings. In particular, we would
like to examine why developers tend to self-remove technical
debt. Additionally, we plan to better understand why some
projects remove less self-admitted technical debt than others.
Finally, we plan to study the introduction and removal of self-
admitted technical debt of the projects at the revision level
since that may provide a deeper understanding of the removal
of self-admitted technical debt.
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