
The Journal of Systems and Software 152 (2019) 70–82

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

A survey of self-admitted technical debt

Giancarlo Sierra

a , ∗, Emad Shihab

a , Yasutaka Kamei b

a Data-Driven Analysis of Software (DAS) Lab, Department of Computer Science and Software Engineering, Concordia University, Canada
b Principles of Software Languages Group (POSL), Kyushu University, Japan

a r t i c l e i n f o

Article history:

Received 1 August 2018

Revised 14 November 2018

Accepted 28 February 2019

Available online 28 February 2019

Keywords:

Self admitted technical debt

Software maintenance

Literature survey

Source code comments

a b s t r a c t

Technical Debt is a metaphor used to express sub-optimal source code implementations that are intro-

duced for short-term benefits that often need to be paid back later, at an increased cost. In recent years,

various empirical studies have focused on investigating source code comments that indicate Technical

Debt often referred to as Self-Admitted Technical Debt (SATD). Since the introduction of SATD as a con-

cept, an increasing number of studies have examined various aspects pertaining to SATD. Therefore, in

this paper we survey research work on SATD, analyzing the characteristics of current approaches and

techniques for SATD detection, comprehension, and repayment. To motivate the submission of novel and

improved work, we compile tools, resources, and data sets made available to replicate or extend current

SATD research. To set the stage for future work, we identify open challenges in the study of SATD, areas

that are missing investigation, and discuss potential future research avenues.

© 2019 Elsevier Inc. All rights reserved.

d

t

a

w

t

a

e

p

t

2

m

l

t

(

o

i

a

c

b

t

s

l
1. Introduction

As software undergoes its development and maintenance, de-

velopers are not always able to contribute code as required by

specification. In 1992, Ward Cunningham first introduced the

metaphor of considering the “not-quite-right code” as a form of

debt (Cunningham, 1992). This came to be know as the Techni-

cal Debt (TD) metaphor, which explains the concept of delivering

a solution that is not complete, temporary or sub-optimal; thus

incurring in debt to obtain short-term benefits that have to be

paid over the long-term with an increased cost. Developers ex-

perience different factors that can lead them to introduce tech-

nical debt, such as deadline pressure, existing low quality code,

bad software process, or business reality (Lim et al., 2012). Tech-

nical Debt can be introduced both consciously or unconsciously,

and as found recently, developers tend to underestimate the con-

sequences of repaying the debt, possibly leading to ever-growing

problems (Bellomo et al., 2016). Because of its clear importance to

the software process and quality, an abundant amount of research

has investigated TD (Li et al., 2015; Alves et al., 2016). While in the

past most studies focused on detecting and managing debt found

in source code, the research scope has gradually grown to include

additional software artifacts, e.g., documentation or requirements

(Ernst et al., 2015; Alves et al., 2014).
∗ Corresponding author.

E-mail addresses: g_sierr@encs.concordia.ca (G. Sierra),

eshihab@encs.concordia.ca (E. Shihab), kamei@ait.kyushu-u.ac.jp (Y. Kamei).

r

t

c

https://doi.org/10.1016/j.jss.2019.02.056

0164-1212/© 2019 Elsevier Inc. All rights reserved.
Potdar and Shihab (2014) took a new research direction by con-

ucting an exploratory study on source code comments that point

o debt instances. The authors first referred to this phenomenon

s Self-Admitted Technical Debt (SATD) . Their rational being that

hen developers consciously introduce debt (i.e., code that is ei-

her incomplete, defective, temporary, or simply sub-optimal) and

cknowledge so in the form of comments they self-admit it. Brief

xamples of these comments are: “TODO: - This method is too com-

lex, lets break it up” from ArgoUml, and “Hack to allow entire URL

o be provided in host field” from JMeter (Maldonado and Shihab,

015; Maldonado et al., 2017d).

Potdar and Shihab extracted a large set of source code com-

ents from 4 large open source systems and manually ana-

yzed them to point at debt instances. As found by their inves-

igation, this phenomenon occurs commonly in software systems

 Potdar and Shihab, 2014). Since then, a number of studies focusing

n various aspects of SATD have emerged, exploring and improv-

ng on approaches and techniques to better identify, understand

nd manage SATD. This recent and increasing turn out of empiri-

al work in this branch of TD denotes the importance given to it

y the Software Engineering community. Taking into consideration

hat this research track is fairly recent, the early effort s of current

tudies on SATD remain scattered in focus and face various chal-

enges to overcome. We believe it is the right time to reflect on

ecent accomplishments in the area and examine open problems

o pave the path for future work.

Therefore, this paper presents a survey of SATD studies from re-

ent years, i.e., since the original ICSME paper that proposed SATD.

https://doi.org/10.1016/j.jss.2019.02.056
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.02.056&domain=pdf
mailto:g_sierr@encs.concordia.ca
mailto:eshihab@encs.concordia.ca
mailto:kamei@ait.kyushu-u.ac.jp
https://doi.org/10.1016/j.jss.2019.02.056

G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82 71

T

t

t

t

c

t

a

h

m

t

T

a

n

a

S

t

a

p

L

s

2

s

o

S

2

s

t

a

(

c

S

u

b

c

S

(

l

t

P

u

l

o

o

b

r

h

p

t

a

d

n

k

2

t

a

l

w

s

u

2

c

N

i

d

o

t

S

m

t

f

p

w

fi

R

l

s

3

p

p

w

t

r

w

3

d

s

h

c

a

2
hrough our examination of the published papers, we find that

he vast majority of SATD research work can be categorized into

hree categories: work focusing on the detection of SATD, work

hat aims to improve the comprehension of SATD, and work fo-

using on the repayment of SATD. Hence, we structure our survey

o reflect these 3 main categories. Specifically, our paper provides

n overview of past and current works in the detection, compre-

ension and repayment of SATD. Moreover, to support and pro-

ote further research in the domain, we identify potential fu-

ure avenues for SATD research and discuss its current challenges.

hroughout this survey we also point at available resources such

s tools and datasets that can serve as foundations or baselines for

ew SATD studies. A compiled table with the published artifacts

nd online references from the surveyed work is available online. 1

The remainder of this paper is organized as follows:

ection 2 describes the objectives, scope and literature selec-

ion for the survey; Section 3 analyses and compares the findings

nd contributions of current SATD studies; Section 4 goes over the

ossible future research avenues in this area and its challenges.

astly, Section 5 presents the conclusions and limitations of the

urvey.

. Preliminaries

This section details the scope and selection of studies for our

urvey. We also provide definitions for the terms we use through-

ut the paper. Finally, we present a high-level overview of the

ATD literature published to date.

.1. Scope and paper selection

The focus of this paper is Self-Admitted Technical Debt as a

ub-domain of Technical Debt. We clarify that work focusing en-

irely on Technical Debt (and not SATD specifically) is not in scope

nd refer our readers to recent literature that focused on that area

e.g., Li et al., 2015; Alves et al., 2016). To select the papers in-

luded in this survey we used both the references from known

ATD research and academic work available online through pop-

lar search engines, namely: Google Scholar, ACM, and IEEE. To

egin, we chose the Potdar and Shihab’s exploratory study as the

ornerstone for this survey since it is the first to investigate the

ATD phenomenon and remains as the most cited work in the area

 Potdar and Shihab, 2014). Hence our survey encloses work pub-

ished since its release year (2014) until the compilation date of

his survey (July 2018). We searched for all the papers that cited

otdar and Shihab’s in the aforementioned online search engines

sing the keywords “SATD” and ”Self-admitted Technical Debt”,

imiting the results to papers released since 2014. A complete list

f the initial studies that we selected and did not select is available

nline. 2

Once we identified a paper related to SATD, we applied a snow-

all approach to find other relevant cited work (Wohlin, 2014). We

epeated this procedure for each work that cited Potdar and Shi-

ab’s, however, we did not find any other (new) SATD related pa-

ers that were not already included in the initial list or found by

he search engines. Given that SATD is fairly new and due to the

mount of mainstream work in the area we were able to select, we

o not perform a systematic literature study; we leave that for the

ear future when the amount of SATD-related work justifies such

ind of survey.
1 http://das.encs.concordia.ca/uploads/SATD-Survey- Published- artifacts.pdf .
2 http://das.encs.concordia.ca/uploads/SATD-Survey- Initial- Paper- Selection.pdf .

t

d
.2. Definitions

We classified the surveyed papers into 3 main categories tied

o the life cycle stages of SATD, i.e., the sequence of phases that

n instance of SATD goes through, from its introduction, to its evo-

ution, and lastly its removal from a software system. Hence, the

ork is aligned along three categories: the Detection, Comprehen-

ion, and Repayment of SATD. We elaborate on what studies fall

nder each category below:

• Detection studies - those that focus on proposing, studying or

improving: approaches, techniques, and tools to identify or de-

tect instances of SATD.
• Comprehension studies - those that investigate the phe-

nomenon of SATD itself and are dedicated to understand the

life cycle of SATD. These studies encompass topics such as: in-

troduction, diffusion, evolution, removal of SATD, or its relation

with different aspects of the software process.
• Repayment studies - those that propose, validate, or replicate:

approaches, techniques, and tools that seek to remove (i.e., fully

repay) or mitigate (i.e., partially repay) SATD instances.

.3. Overview of selected papers

Given the scope and definitions above, Table 1 presents a

hronologically ordered overview of the primary SATD studies.

ote that those marked with a star (∗) are studies whose focus

n not dedicated to SATD, however, a relevant portion of them ad-

resses SATD and presents findings related to its comprehension

r detection, so we consider them within the primary group. Al-

hough related work without a direct contribution or finding on

ATD is not considered within the selected group of papers, we

ention and reference such work throughout this survey since

hey support the papers we selected or serve as links to potential

uture avenues in this area. In Table 1 we observe that 50% of the

rimary SATD papers focus on comprehension, 55% on detection,

hile only 10% focus on repayment. Note that 3 studies are classi-

ed as having 2 topics of focus, hence these percentages overlap.

egarding the paper’s publication avenues, 60% of them are pub-

ished in conferences, 20% in journals, and another 20% were pre-

ented in workshops.

. Analysis and comparison of current work

In this section we first go over the techniques, tools, and ap-

roaches presented by current research work in SATD. We first

resent work that focused on identifying instances of debt, then

e present empirical studies that have studied the phenomenon

o understand it, and finally contributions that aim to manage and

epay it. A list of the software projects studied by the surveyed

ork is available online 3 , along with how each study validates TD.

.1. Detection of SATD

In the life cycle of SATD, debt instances are first introduced by

evelopers into the source code; thus naturally, the first step to

tudy this phenomenon is to identify it. In the past, several studies

ave focused on source code comments, their management, and

o-evolution with code; while others focused on the identification

nd management of Technical Debt (Tan et al., 2007; Storey et al.,

0 08; Fluri et al., 20 07; Li et al., 2015; Alves et al., 2016). However,

hese studies did not investigate or relate the presence of technical

ebt within the content of comments. Inspired by such previous
3 http://das.encs.concordia.ca/uploads/SATD-Survey- Studied- Projects.pdf .

http://das.encs.concordia.ca/uploads/SATD-Survey-Published-artifacts.pdf
http://das.encs.concordia.ca/uploads/SATD-Survey-Initial-Paper-Selection.pdf
http://das.encs.concordia.ca/uploads/SATD-Survey-Studied-Projects.pdf

72 G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82

Table 1

Overview of primary SATD studies.

Author(s) (Year) Title Venue Venue type Focus

Potdar and Shihab (2014) An Exploratory Study on Self-Admitted Technical Debt. ICSME Conference Comprehension, detection

Maldonado and Shihab (2015) Detecting and Quantifying Different Types of Self-Admitted

Technical Debt.

MTD Workshop Comprehension, detection

de Freitas Farias et al. (2015a) A Contextualized Vocabulary Model for Identifying Technical Debt

on Code Comments.

MTD Workshop Detection

Wehaibi et al. (2016) Examining the Impact of Self-admitted Technical Debt on Software

Quality.

SANER Conference Comprehension

de Freitas Farias et al. (2016c) Investigating the Identification of Technical Debt Through Code

Comment Analysis.

ICEIS Conference Detection

Bavota and Russo (2016) A Large-Scale Empirical Study on Self-Admitted Technical Debt. MSR Conference Comprehension

Vassallo et al. (2016) Continuous Delivery Practices in a Large Financial Organization. ICSME Conference Comprehension ∗

Kamei et al. (2016) Using Analytics to Quantify the Interest of Self-Admitted Technical

Debt.

TDA Workshop Comprehension

Mensah et al. (2016) Rework Effort Estimation of Self-Admitted Technical Debt. TDA Workshop Repayment, detection

Ichinose et al. (2016) ROCAT on KATARIBE: Code Visualization for Communities. ACIT Conference Detection ∗

Maldonado et al. (2017d) Using Natural Language Processing to Automatically Detect

Self-Admitted Technical Debt.

TSE Journal Detection

Palomba et al. (2017) An Exploratory Study on the Relationship between Changes and

Refactoring.

ICPC Conference Comprehension ∗

Miyake et al. (2017) A Replicated Study on Relationship Between Code Quality and

Method Comments.

ACIT Conference Comprehension ∗

Maldonado et al. (2017a) An Empirical Study on the Removal of Self-Admitted Technical

Debt.

ICSME Conference Comprehension

Zampetti et al. (2017) Recommending when Design Technical Debt Should be

Self-Admitted.

ICSME Conference Detection

Mensah et al. (2018) On the Value of a Prioritization Scheme for Resolving

Self-Admitted Technical Debt.

JSS Journal Repayment

Huang et al. (2018) Identifying Self-Admitted Technical Debt in Open Source Projects

using Text Mining.

EMSE Journal Detection

Liu et al. (2018) SATD Detector: A Text-Mining-Based Self-Admitted Technical Debt

Detection Tool.

ICSE Conference Detection

Zampetti et al. (2018) Was Self-Admitted Technical Debt Removal a real Removal? An

In-Depth Perspective.

MSR Conference Comprehension

Yan et al. (2018) Automating Change-level Self-admitted Technical Debt

Determination.

TSE Journal Detection

a

u

e

i

S

a

t

c

t

h

p

f

h

m

s

m

t

i

m

J

S

“

h

m

w

o

c

b

v

p
work, Potdar and Shihab were the first to look at source code com-

ments to identify technical debt, and introduced the term of Self-

Admitted Technical Debt , referring to code that is either incomplete,

defective or temporary, and that is knowingly introduced by devel-

opers (Potdar and Shihab, 2014). 7 different approaches to detect

SATD have appeared in literature since; 6 of them identify SATD at

the file level looking at the revision history of a repository, while 1

approach aims to detect SATD at the change level. In this subsec-

tion we present the 6 approaches that work at the file level divided

in two groups: (i) those approaches that are based on the identifi-

cation of textual patterns in comments, which we name “pattern-

based approaches”; and (ii) those that apply more advanced and

automated techniques, such as machine learning classifiers or nat-

ural language processing, which we name “machine learning ap-

proaches”. Lastly, we present the only approach that focuses on

detecting SATD at the change level, and a comparison between the

surveyed approaches.

3.1.1. Pattern-based approaches

As a first step in SATD identification at the file level, Potdar

and Shihab extracted 101,762 source code comments from 4 large

open source systems using the srcML toolkit (Collard et al., 2011),

and manually read through them to expose patterns that indi-

cate SATD. In total, the authors identified 62 patterns and made

them publicly available to enable further research (Potdar and Shi-

hab, 2015b). Some examples of the identified patterns are: hack,

fixme, is problematic, this isnt very solid, probably a bug, hope every-

thing will work, fix this crap . Using these patterns, their study found

that SATD can exist in up to 31% of files; a finding that triggered

further research in this domain.

For the remaining of this survey, we will refer to the usage of

these 62 patterns as the pattern-based detection approach. This
pproach allows for an easier SATD identification than simple man-

al inspection of comments, which is time-consuming and requires

xpertise. However, because these patterns resulted from analyz-

ng 4 projects only, they may not generalize well if used to detect

ATD in other software systems, compromising the accuracy of the

pproach. Additionally, in case the set of patterns has to be ex-

ended, additional effort must be spent manually inspecting source

ode comments from different projects and surfacing new patterns

hat can be used for detecting TD in comments.

Following up to the previous findings, Maldonado and Shi-

ab manually inspected the comments of another 5 open source

rojects, this time however, with a motivation to explore the dif-

erent types of SATD contained in them (Maldonado and Shi-

ab, 2015). They found 5 main types of SATD: design, defect, docu-

entation, requirement and test debt (See Section 3.2). Instead of

rcML , the tool JDeodorant was used to parse the extracted com-

ents (Tsantalis et al., 2008). Four filtering heuristics were in-

roduced to remove irrelevant comments, which are: (a) remov-

ng license comments; (b) aggregating consecutive single-line com-

ents; (c) removing commented source code; and (d) removing

avadoc comments. To ensure these heuristics do not filter out

ATD instances, comments containing task-reserved words (“todo”,

fixme”, or “xxx”) were not removed. The implementation of these

euristics proved to reduce the amount of comments to analyze

anually by 77% on average, easing detection effort s. To contribute

ith the identification of specific types of SATD, the output dataset

f classified comments by types was made publicly available to the

ommunity (Potdar and Shihab, 2015a).

Motivated to facilitate the detection of SATD using the pattern-

ased approach, Ichinose et al. extended their proposed code

isualization tool ROCAT , which renders the source code of a

roject as city-like virtual reality environments to support SATD

G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82 73

(

c

s

o

h

s

r

o

(

r

b

a

w

I

m

a

t

i

m

m

f

o

A

d

a

(

t

w

S

c

a

l

h

i

d

a

m

t

m

t

d

p

i

t

p

l

i

(

t

m

c

e

i

t

n

t

t

e

o

e

o

o

M

T

fi

a

m

a

s

d

p

d

i

3

t

i

c

p

u

o

d

b

a

v

t

c

c

m

a

t

t

t

o

a

0

l

i

w

u

a

s

m

e

o

a

(

2

m

fi

I

n

f

d

8

S

i

t

a

l

t

(

t

fi

n

f
 Ichinose et al., 2016). With this visualization model, buildings are

onstructed for each source file, their dimensions are based on

oftware product metrics, and SATD instances are rendered based

n comments that contain the patterns surfaced by Potdar and Shi-

ab (2014) . This provides developers with a high-level view of a

ystem’s source code that includes visual cues of SATD instances,

emoving the need of reading comments to visualize where SATD

ccurs in their source code. Rocat was integrated with Kataribe

 Fujiwara et al., 2014), a Git hosting service; with this, any project

egistered on Kataribe can benefit from Rocat’s visualization capa-

ilities.

An alternative and extension to the pattern-based detection

pproach was later proposed by de Freitas Farias et al. (2015a) ,

ho introduced CVM-TD , a Contextualized Vocabulary Model for

dentifying TD of different types in source code comments. This

odel relies on identifying word classes, namely: nouns, verbs,

dverbs, and adjectives that are related to Software Engineering

erms and code tags used by developers such as “TODO” (de Fre-

tas Farias et al., 2015d). The goal of applying the CVM-TD

odel, which can be automated, is to obtain a subset of com-

ents that will likely contain SATD. The proposed vocabulary

ocuses on words that can be systematically related to each

ther and then mapped to different types of TD as defined by

lves et al. (2014) and de Freitas Farias et al. (2015b) . To vali-

ate CVM-TD, an empirical study was conducted on Apache Lucene

nd JEdit, from which comments were extracted using eXcomment

 de Freitas Farias et al., 2015c), a tool that uses an Abstract Syn-

ax Tree to store useful comment-related information and filtered

ith heuristics similar to the ones proposed by Maldonado and

hihab (2015) . The empirical evaluation of the model showed a

onsiderable difference in the comments returned by the model

nd the ones validated to contain SATD. This finding suggested a

ow detection performance and pointed at the need to enhance

ow the word classes are mapped to different types of SATD to

mprove the model.

Later in 2016, de Freitas Farias et al. (2016c) conducted an ad-

itional experiment on CVM-TD to characterize its overall accuracy

nd the factors that influence its detection. This time, the CVM-TD

odel was applied to ArgoUML; the output comments were given

o 3 researchers with expertise in TD to create an oracle of com-

ents that actually indicate TD. The same output was also given

o 32 Software Engineers with varied experience in the field and

ifferent English reading levels to flag those suggesting TD. The ex-

eriment found that the English reading skills of the participants

nfluenced their identification of TD, but this was not affected by

heir experience. Based on the TD oracle, the CVM-TD model’s out-

ut served experienced and non-experienced developers alike, al-

owing them to have an accuracy on average of 0.673 when detect-

ng TD comments; a better performance than previously reported

 de Freitas Farias et al., 2015a). The experiment also requested par-

icipants to highlight the patterns that induced marking a com-

ent as TD, which surfaced common patterns and TD indicating

omments to extend the vocabulary of CVM-TD (de Freitas Farias

t al., 2016b; 2016a). Note that in both empirical studies by de Fre-

tas Farias et al. (2015a, 2016c) , the authors do not explicitly refer

o source code comments that aid in the detection of TD as SATD,

evertheless, we consider both studies within scope as they study

his same precise phenomenon.

Mensah et al. proposed the use of text mining in SATD detec-

ion (Mensah et al., 2016). Their approach aims to estimate the

ffort needed to resolve SATD (See Section 3.3) and is composed

f 5 phases. The first 3 phases of the approach are aimed at the

xtraction, detection and classification of SATD; it is built ontop

f a pattern-based approach and a dictionary from the dataset

f comments classified into different SATD types published by

aldonado and Shihab (2015) . We will refer to this approach as
ext mining . Improving from the pattern-based approach, this one

rst preprocesses comments to remove special punctuation char-

cters and stop words; however, this introduces a drawback. Re-

oving punctuation characters such as ! or ? can potentially take

way semantic meaning from comments; i.e., the removal of a

imple question mark could alter the meaning or intention of a

eveloper’s comment. Moreover, no filters such as the heuristics

roposed and used previously (e.g., Maldonado and Shihab, 2015;

e Freitas Farias et al., 2016c) were applied to reduce preprocess-

ng.

.1.2. Machine learning approaches

Moving towards more advanced SATD detection approaches at

he file level, Maldonado et al. used NLP techniques to automat-

cally identify design and requirement SATD from source code

omments (Maldonado et al., 2017d). We will refer to this ap-

roach as NLP detection . The authors extracted, filtered, and man-

ally classified a dataset of 62,566 source code comments from 10

pen source projects into 5 different types of SATD: design, test,

efect, documentation and requirement debt. This dataset com-

ined 29,473 comments extracted from 5 open source projects,

nd 33,093 others extracted from additional 5 projects in pre-

ious work (Maldonado and Shihab, 2015). With it, the authors

rained an NLP maximum entropy classifier (Stanford Classifier) fo-

using on requirement and design SATD, as they are the most re-

urrent debt types, making up more than 90% of the SATD com-

ents (Maldonado and Shihab, 2015). The NLP classifier generates

 set of feature words that contribute positively or negatively to

he classification of a comment. A 10 fold cross-project validation

raining on 9 projects and testing on the remaining showed that

he NLP detection achieved an accuracy that surpassed the previ-

us pattern-based detection. For design debt, the classifier scored

n average F1-measure of 0.620, 0.403 for requirement debt, and

.636 disregarding debt types. The study also presented a top-10

ists of textual features that can be directly used to identify SATD

n approaches that do not rely on NLP techniques. These features

ere found to differ among each other, indicating that developers

se distinct vocabularies to admit different kinds of SATD.

Training an NLP classifier can be expensive since it relies on

 manual classification of comments, however, Maldonado et al.

howed that to achieve 90% of the classifiers performance, approxi-

ately 23% of the SATD comments were needed for training, which

ases the replication of this approach. To enable further research

n SATD, the full resulting dataset of manually classified comments

nd their resulting NLP classification was made publicly available

 Maldonado et al., 2017c).

The most recent SATD detection technique was presented in

017 by Huang et al. (2018) , who proposed an approach to auto-

atically detect SATD using text mining and a composite classi-

er. We will refer to this as the Ensemble text mining approach.

ts root concept is to determine if a comment indicates SATD or

ot (without focusing on SATD types) based on training comments

rom different software projects. For this, the authors leveraged a

ataset of 212,413 comments classified by Maldonado et al. from

 open source projects (Maldonado et al., 2017d; Maldonado and

hihab, 2015). This approach preprocesses comments by tokeniz-

ng, removing stop-words and stemming their descriptions to ob-

ain textual features. Feature selection (Information Gain) is then

pplied to detect the top 10% most useful features to predict the

abel of a comment, indicating if it contains SATD or not. Mul-

iple sub-classifiers are trained with a Naive Bayes Multinomial

NBM) technique to determine the label of a comment based on

he number of contributing features they have. A composite classi-

er takes the vote per comment of each sub-classifier to reach a fi-

al classification. Several aspects of the ensemble text mining per-

ormance were evaluated in terms of F1-score. The approach was

74 G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82

Table 2

Average accuracy benchmark of SATD detection

approaches, as reported by Huang et al. (2018) .

Detection approach Reported F1-score

Pattern-based 0.123

NLP 0.576

Ensemble text mining 0.737

(

e

i

o

N

e

s

p

w

i

s

t

p

m

c

p

t

m

t

a

3

t

t

d

B

a

a

r

p

a

a

l

c

o

b

s

w

d

d

p

b

l

a

t

D

t

i

c

d

a

t

i

F

r
benchmarked against the pattern-based and NLP detection of SATD,

finding that it performed better than both, had a superior runtime

performance, and also required a small portion of comments for

training.

The ensemble text mining approach was implemented very re-

cently by Liu et al. as an Eclipse plugin named SATD Detector

(Liu et al., 2018) to facilitate the detection and management of debt

instances directly from an IDE environment. SATD Detector parses

the source code of a project when it is loaded or edited and ap-

plies the ensemble text mining approach to detect and report SATD

instances along with their respective locations. This completely au-

tomates the detection of SATD with a built-in classifier that can be

used out of the box to leverage the best-performing SATD detec-

tion technique.

From a different SATD detection perspective, Zampetti et al.

proposed TEDIOuS (Technical Debt Identification System), a ma-

chine learning approach that recommends to developers when

they should self-admit design TD (Zampetti et al., 2017). Instead of

analyzing comments, the idea is to leverage source code level fea-

tures. When a developer adds new code, the approach can analyze

it and recommend if it should be flagged (i.e., to be self-admitted

as debt) or not. TEDIOuS’ identification capabilities relies on read-

ability and structural metrics extracted with a srcML-based tool,

and the warnings raised by PMD and CheckStyle, 2 static analysis

tools.

TEDIOuS was evaluated using the classified comments of 9

projects from the dataset made available by Maldonado et al.

(2017d) . Since these comments were detected at the file level, a

matching of comments to the method level was required for TE-

DIOuS features’ scope. Different classifiers were tested with bal-

anced and unbalanced training data using cross validation within

a project and across all studied projects. TEDIOuS achieved it best

performance using a Random Forest classifier, with a cross-project

prediction precision of 67%, 55% recall, and an accuracy of 92%. The

features related to readability and structural metrics used by TE-

DIOuS were found to have a major contribution in recommending

design SATD. When compared against DECOR (Moha et al., 2010),

a smell detector tool which leverages different code features, the

SATD recommending performance of TEDIOuS proved to be supe-

rior.

3.1.3. Change-level detection

All previous SATD detection studies aimed to identify debt in-

stances at the file level. Yan et al. (2018) proposed a novel ap-

proach to automate the detection of SATD at the change level.

The idea is to catch the introduction of SATD when a software

change occurs, instead of inspecting if a file that was changed pre-

viously contains SATD. The authors built a determination model

using a Random Forest classification with data labeled from com-

ment analysis, and features extracted from source control reposito-

ries. The data labeling leverages an enhanced version of the dataset

made available by Maldonado et al. (2017a) ; it contains 100,011

manually classified software changes of 7 open source projects,

where each change is labeled as TD-introducing or not; where

change is considered TD-introducing when the resulting file ver-

sion is the first to contain SATD. A total of 25 change features were

extracted from the source control repository of the studied systems

to characterize each change. These features were divided into 3 di-

mensions in the study: 16 for the diffusion of a change (i.e., amount

of changed LOC, files, subsystems, programming languages), 3 for

its history (i.e., information of the changed files and the develop-

ers who made the change), and 6 for its message (i.e., information

extracted from the change logs).

The proposed model was evaluated performing a stratified 10-

fold cross validation repeated 10 times for each of the 7 studied

projects. This evaluation considered 2 performance measures: AUC
area under the receiver operating characteristic curve), and Cost-

ffectiveness, analyzed by controlling the amount of changed LOC

nspected by the model. To contrast the model’s performance, 4

ther baseline models were studied: Random Guess, Naive Bayes,

aive Bayes Multinomial, and Random Forest (the last 3 mod-

ls used a classification based on change messages only). The

tudy results showed that the proposed model achieves a better

erformance in terms of AUC (0.82) and cost-effectiveness (0.80)

hen compared to baseline models, being able to detect more TD-

ntroducing changes across a wide range of changed LOC to in-

pect. When investigating the importance of the extracted features,

he results indicate that all 3 dimensions significantly improve the

erformance of the compared models, and that the diffusion di-

ension is of most influence when determining TD-introducing

hanges. The performance achieved by this SATD detection ap-

roach is not contrasted with others in Table 2 as the SATD de-

ection of these approaches occur in to different stages of develop-

ent and thus they differ in nature. The reported performance of

he change-level SATD detection is also reported in terms of AUC

nd not as an F1-score.

.1.4. Comparison and limitations of current approaches

The original pattern-based approach for SATD detection has

he benefit of being simple to replicate with a fixed set of pat-

erns to match against textual comments. However, it has the

rawback of leading to up 25% of false positives, as found by

avota and Russo (2016) . Although the text mining and CVM-TD

pproaches later built on top of the pattern-based approach with

dded heuristics, both are still affected by an underlying accu-

acy problem and are more complex to replicate. These early ap-

roaches lead to SATD datasets that supported the creation of more

ccurate and automated techniques, such as the NLP, TEDIOUS,

nd ensemble text mining approaches, which implement machine

earning. While TEDIOUS recommends when to self-admit techni-

al debt, it scopes to design debt only and is not comparable with

ther approaches as it looks at source code instead of comments to

ase its recommendations. In contrast, the NLP detection and en-

emble text mining approaches focus of finding SATD in comments

ith good accuracy. While the NLP approach is limited to detect

esign and requirement only, the ensemble text mining approach

isregards SATD types, and thus, is a more effective all-around ap-

roach when looking for SATD in a software repository. Another

enefit when compared to other detection approaches, is that this

ast one does not require manual inspection of comments, which

side from being time consuming is prone to human error. Fur-

hermore, since it was recently implemented as an IDE tool (SATD

etector plugin), it can now be used as a practical solution to de-

ect SATD during or after development.

A performance comparison between SATD detection approaches

s presented in Table 2 as benchmarked by Huang et al. This

omparison uses the average accuracy values for detecting SATD

isregarding debt types (Huang et al., 2018). The Text mining

nd CVM-TD approaches are not included in the benchmark as

heir TD detection performance were not reported in de Fre-

tas Farias et al. (2016c) and Mensah et al. (2016) . Note than the

1-score for the NLP approach in Table 2 is lower than the value

eported by Maldonado et al. (0.636) (Maldonado et al., 2017d); in

G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82 75

Table 3

Overview of main contributions per SATD detection study.

Author(s) (Year) Main contribution(s) / Finding(s) Studied systems Comment Extraction

Potdar and Shihab (2014) Pattern-based detection approach. SATD exists in 2.4% to 31% of files. 4 scrML-based

Maldonado and Shihab (2015) Dataset of classified SATD comments per type. Filtering heuristics. 5 Jdeodorant

de Freitas Farias et al. (2015a) CVM-TD detection approach. 2 eXcomment

Ichinose et al. (2016) City-like code and SATD visualization in a virtual reality environment. N/A N/A

de Freitas Farias et al. (2016c) Set of Patterns and comments for TD identification in comments. 1 eXcomment

Mensah et al. (2016) Text mining detection/classification approach. 4 Not reported

Maldonado et al. (2017d) NLP Detection approach. Data set of classified SATD. 10 JDeodorant

Huang et al. (2018) Ensemble text-mining detection approach. 8 NLP Dataset

Zampetti et al. (2017) TEDIOuS approach for recommending when to self-admit TD. 9 NLP Dataset

Liu et al. (2018) Eclipse plugin to automatically detect SATD. 9 NLP Dataset

Yan et al. (2018) Change-level SATD detection approach. 7 Relies on Maldonado et al. (2017a)

e

i

S

m

a

u

s

m

c

i

a

t

p

t

L

p

s

(

a

a

S

i

3

p

r

i

p

t

t

S

o

u

f

fi

t

o

t

e

c

m

m

3

M

s

p

d

B

3

S

q

b

S

n

m

d

s

s

c

q

w

4

c

b

3

R

w

E

t

b

s

s

(

fi

r

S

i

F

m

B

u

o

i
ither case, the performance of the ensemble text mining approach

s higher.

As a recap, the studies that focused on the detection of

ATD have contributed with approaches that evolved from simple

anual inspection of comments to more complex automated

pproaches that identify SATD instances accurately, removing man-

al steps. Similarly, the text mining approach, evolved the clas-

ification of SATD types from manual inspection to an auto-

ated possibility. In Table 3 we overview the main findings and

ontributions per SATD detection study, the number of stud-

ed projects, and the technique for comment extraction, where

pplicable. Note that the visualization technique presented in

he study by Ichinose et al. (2016) can be applied to multiple

rojects, thus no specific one is studied and no comment extrac-

ion is performed. A similar case happens with the contribution by

iu et al. (2018) , which is a tool implementing the approach pro-

osed by Huang et al. (2018) . From the observations made in this

ection, we consider the ensemble text mining detection approach

implemented in the SATD Detector tool) to be the most promising

pproach to enable future SATD research. Due to its performance

nd practicality, we believe this tool will promote the detection of

ATD, and the compilation of richer datasets to improve the valid-

ty of SATD studies.

.2. Comprehension of SATD

Different studies have been conducted to understand the SATD

henomenon throughout its life cycle, while others investigated its

epercussion on the software process itself. A better understand-

ng of SATD enables researchers and practitioners to develop ap-

roaches that can be used to manage it. One of the first effort s

owards understanding SATD were given by Potdar and Shihab; in

heir exploratory study they tried to understand the occurrence of

ATD, why it is introduced into software projects, and how much

f it is removed after its introduction (Potdar and Shihab, 2014). By

sing a pattern-based detection in 4 software projects, SATD was

ound to be common, happening in 2.4% to 31% of studied system’s

les. Regarding the introduction of SATD, Potdar and Shihab inves-

igated how the experience of developers, time to release pressure,

r the complexity of changes induced the addition of debt. Con-

rary to what was expected, they found that experienced develop-

rs introduced most of the SATD, while tight deadlines and change

omplexity did not affect its introduction. In relation to SATD re-

oval, they found that the majority of SATD is removed in the im-

ediate next release.

.2.1. Types of SATD

Once SATD was found to be a common phenomena,

aldonado and Shihab (2015) decided to quantify and clas-

ify the different types of SATD that exist in software projects. In a

revious study, Alves et al. (2014) classified Technical Debt into 13
ifferent types and proposed indicators to identify each of them.

ased on these types, Maldonado and Shihab manually analyzed

3,093 comments and classified them, observing that 5 types of

ATD existed in source code (design, defect, documentation, re-

uirement, and test debt) (Potdar and Shihab, 2015a). We include

rief examples of debt comments as classified by Maldonado and

hihab (2015) to help understand the detected SATD types:

• Design debt: “/ ∗TODO: really should be a separate class ∗/” from

ArgoUml.
• Defect debt: “Bug in the above method” from Apache JMeter.
• Requirement debt: “//TODO no methods yet for getClassname”

from Apache Ant.
• Documentation debt: “∗∗FIXME ∗∗ This function needs documen-

tation” from Columba.
• Test debt: “//TODO enable some proper tests!!” from Apache JMe-

ter.

The remaining 8 types of TD defined by Alves et al. (2014) were

ot found since they are not likely to appear in source code com-

ents but in other artifacts. As explained by the authors, build

ebt for example, would appear in build files and not in the in-

pected comments extracted from Java files. The quantification re-

ults of the study revealed that from over 33 thousand analyzed

omments, 7.42% of them (2,457) contained SATD. Regarding the

uantification per type, the majority (42% to 84%) of SATD found

as design debt, followed by requirement debt, making up 5% to

5% of the debt instances. Defect, documentation, and test debt ac-

ounted for less than 10% of the classified SATD cases when com-

ined.

.2.2. Large-scale studies

To broaden the understanding of the phenomenon, Bavota and

usso (2016) conducted a large-scale empirical study in 159 soft-

are systems (120 from the Apache ecosystem and 39 from the

clipse ecosystem) aiming to make a differentiated replication of

he initial findings by Potdar and Shihab (2014) . Using the pattern-

ased detection they investigated the diffusion of SATD in open

ource systems and its evolution across the change history of the

tudied subjects to see if: (i) it increases or decreases over time,

ii) how long it remains in the system, (iii) how frequently it is

xed, and (iv) who introduces or fixes SATD.

A closer look at a statistically significant sample of SATD cases

evealed that in contrast with previous findings by Maldonado and

hihab (2015) , code debt was the most occurring debt type mak-

ng up 30% of the cases, against a lower 13% for design debt.

urthermore, this inspection surfaced that over 25% of the com-

ents flagged by the pattern-based detection were false positives.

avota and Russo (2016) looked at the introduced, removed and

naddressed SATD comments in the projects’ change history and

bserved that it increases over time because of debt instances be-

ng added but not addressed. Although 57% of SATD was found to

76 G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82

1

a

r

s

t

o

l

d

f

Z

i

o

i

o

m

r

f

t

3

i

w

v

d

m

e

m

t

t

a

l

c

f

d

3

e

i

f

i

s

r

i

fi

T

o

s

u

t

c

i

m

b

a

s

p

s

3

w

W

t

V

t
be removed from source code, it has a long survivability, lasting for

more than 10 0 0 commits on average before being fixed. Inspect-

ing the removed SATD showed that 63% of the time, the developer

who removes a debt instance is the same as the developer who

introduced it; while in the remaining 37% of cases the developers

who fix SATD have higher experience than those who introduce

it. The study also measured the partial correlation between quality

code metrics (Coupling, Complexity and Readability) and SATD, but

found it is not significant between any of them, an in-line obser-

vation with Potdar and Shihab (2014) .

3.2.3. Impact of SATD

Instead of looking at code quality metrics which were validated

to have no clear correlation with SATD, Wehaibi et al. (2016) in-

vestigated the relation between SATD and the quality of software

by looking at defects. Their study used a pattern-based detection

to find files that contain SATD in the repositories of 5 open source

systems; in total 10.17% to 20.14% of files were labeled as SATD

files. To find defects, the change history of every subject was mined

to find patterns that indicate defects, such as: “defect”, “bug ID”,

“fixed issue #ID”. With both datasets the study investigated: (i)

the amount of defects in files with and without SATD; (ii) the

percentage of SATD related changes that are defect-inducing; and

(iii) if changes that involve SATD files are more difficult than the

ones that do not. The authors compared the percentage of de-

fects in SATD vs non-SATD files, and the amount of defects in

SATD files before and after the debt introduction, however, they

found no clear relation between defects and SATD. To observe if

SATD-related changes introduced future defects they made use of

a bug-introducing change identification algorithm proposed by Sli-

weski, Zimmerman, and Zeller (SZZ) as implemented in Commit

Guru (Rosen et al., 2015), and found that they are less prone to

introduce future defects. Lastly, using 4 change difficulty measures

from previous work, the authors found that SATD-related changes

were more difficult than non-SATD ones.

To clarify the relation between non-SATD source code com-

ments and software quality, Miyake et al. (2017) partially replicated

the study by Wehaibi et al. (2016) on 4 open source projects. Their

results agreed with the previous study, finding that SATD files are

more prone to undergo a defect fix. However, they also found that

the mere existence of comments at the method or file level is re-

lated to more future code fixes, even if they do not contain SATD.

Nevertheless, SATD comments were found to be more effective to

identify fix-prone files and methods than comments without SATD.

3.2.4. Removal of SATD

Most of the previous comprehension studies targeted the in-

troduction, diffusion, and evolution of SATD. Early studies also

looked into the final stage of SATD, its removal (Potdar and

Shihab, 2014; Bavota and Russo, 2016), however, their effort s

were not dedicated specifically to the removal of debt. Recently,

Maldonado et al. (2017a) studied precisely this, investing (i) how

much SATD is removed from source code; (ii) who removes it;

(iii) how long does it remain in a system; and (iv) what leads

to removal activities. The authors studied 5 well-commented sys-

tems written in Java as subjects, which vary in size, domain and

number of contributors. Their study showed that 40.5% to 90.6%

of SATD was removed from the study subjects. Comparing the

name and e-mail address of the developers who introduced and

removed SATD from the repository commits showed that on av-

erage 54.5% of SATD is self-removed, i.e., by the same developer

who introduced the debt; confirming the finding first presented by

Bavota and Russo (2016) . A comparison between SATD that is self-

removed and the one removed by others indicated that the second

survives for longer in a system. Concerning the median survival

of SATD, the study found that it can remain in a system between
8 to 172 days before being removed. A survey to developers was

lso conducted in order to understand what activities lead to the

emoval and introduction of SATD (Maldonado et al., 2017b). The

urvey revealed that developers mostly add SATD to track poten-

ial bugs or code that needs improvement; similar to the finding

f Vassallo et al. Vassallo et al. (2016) . On the other hand and in-

ine with the observation by Palomba et al. (2017) , participants in-

icated that they mostly remove SATD when fixing bugs or adding

eatures, but not as a dedicated activity.

After the above observations on the removal of SATD,

ampetti et al. (2018) conducted an in-depth quantitative and qual-

tative empirical study on the removal of SATD. The authors built

n top of the previous work of Maldonado et al. (2017a) by analyz-

ng their same dataset, focusing on the underlying circumstances

f SATD removal from source code. The study investigated how

uch debt was removed by accident, i.e., without the intention of

esolving debt, but as a collateral of software evolution. The study

ound this was the case for 25% to 60% of SATD comments, as

hey were removed due to full class or method removals. However,

3% to 63% of SATD comments were removed as part of a change

n their corresponding method. In the remaining cases, comments

ere removed without any actual code change, possibly due to de-

elopers removing an outdated SATD comment or accepting the

ebt’s risk. By computing the cosine similarity between SATD com-

ents and commit messages, the authors looked for documented

vidence of SATD removals, finding that only about 8% of the cases

entioned addressing the debt or justifying why it is not required

o do so anymore. The study also looked at the types of changes

hat happen along SATD removals, finding that developers often

pply complex changes across the code but also specific ones re-

ated to method (API) calls and control logic. On removals asso-

iated with API changes, 55% belong to the addition or editing of

eatures; while removals linked to conditional changes are more

iverse but often involve the removal of code.

.2.5. SATD Interest

Several works shed light over the SATD life cycle stages, nev-

rtheless, none had yet proposed a concrete way to measure the

nterest of SATD, i.e., the increased cost of repaying debt in the

uture. A recent study by Kamei et al. (2016) focused on determin-

ng a way to measure this precisely. It investigated if the debt in-

tances incur a positive interest (i.e., they become more difficult to

epay), negative interest (i.e., become less difficult to repay), or no

nterest over time. Sixteen different code complexity metrics were

rst evaluated and then filtered down to 2, namely LOC and Fan-In.

he LOC measure was used since it is highly correlated with most

f the metrics evaluated initially, excluding Fan-In, thus both were

elected. This work performed a case study on Apache JMeter and

sed JDeodorant to extract raw comments, which were then fil-

ered and manually validated to contain SATD. To measure the in-

urred interest, the study scoped to the method-level for the SATD

nstances and computed the LOC and Fan-In metrics at the mo-

ent of their introduction and removal. Results showed that for

oth measures, 42% to 44% of SATD incurs a positive interest; while

round 8% to 13% and 42% to 49% has negative and no interest, re-

pectively. The interest quantification of SATD could be used as a

roxy to estimate the effort needed to repay it. In the following

ubsection we go over additional studies with this focus.

.2.6. Other empirical findings related to SATD

Two recent studies presented observations related to SATD

hile looking at different aspects of software development.

hile studying the continuous integration practices of 152 prac-

itioners from a large financial organization (ING Netherlands),

assallo et al. (2016) showed that 88% of the practitioners men-

ioned self-admitting their bad implementations of code through

G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82 77

Table 4

Overview of main findings per SATD comprehension study.

Author(s) (Year) Contribution(s) / Finding(s) Studied systems Detection approach Comment Extraction

Potdar and Shihab (2014) - More experienced developers tend to introduce more SATD. 4 Manual srcML based

- Time to release pressure and change complexity do not play a

major role in SATD introduction.

- Most of SATD is removed in the next immediate next release.

Maldonado and Shihab (2015) - Identified 5 different types of SATD. 5 Manual JDeodorant

- The most common type of SATD is design or requirement debt.

Bavota and Russo (2016) - There is no clear relation between code quality metrics and SATD. 159 Pattern based srcML

- The amount of SATD increases over time in a system.

- Code debt occurs more than design and requirement debt.

- SATD lasts for a long time in source code before being removed.

- About 57% of SATD is removed from source code; 63% of the

time by who introduced it, 37% by other experienced developers.

Wehaibi et al. (2016) - There is no clear relation between defects and SATD. 5 Pattern based Ad-hoc. Python

- TD files defectiveness increases after the introduction of TD.

- SATD changes lead to less future defects than non-SATD changes.

- SATD changes are more difficult to perform.

- Empirical evidence that TD affects the development process by

making it more complex.

- The impact of SATD is not related to defects, rather in making

future changes more difficult to perform.

Vassallo et al. (2016) - Most practitioners self-admitting their bad implementations of

code through comments. N/A N/A N/A

Kamei et al. (2016) - 42% to 44% of SATD incurs in positive interest. 8% to 13% and

42% to 49% has negative and no interest, respectively. 1 Manual JDeodorant

Miyake et al. (2017) - SATD comments are more effective than non-SATD comments

when identifying fix-prone files and methods. 4 Pattern based Ad-hoc, Java

Palomba et al. (2017) - Developers mostly apply refactorings to repay SATD before

introducing new features. 3 Pattern based srcML

Maldonado et al. (2017a) - SATD can remain in a system between 18 to 172 days. 5 NLP detection srcML based

- Developers mostly remove SATD when fixing bugs or adding features,

and use SATD to track future bugs and bad implementation areas.

- Most of SATD is removed, and most of it is also self-removed.

Zampetti et al. (2018) - A large percentage of SATD removals are accidental. 5 NLP detection srcML based

- Only around 8% of SATD removals are documented in commits.

- While removing SATD, developers mostly apply complex changes

but also, specific ones to method calls and conditionals.

c

a

n

c

t

h

p

T

b

c

m

n

p

n

r

w

m

t

a

e

s

i

p

3

c

e

w

o

w

i

S

s

r

p

p

s

a

c

b

w

b

t

a

m

a

b

b

r

m

f

o

s

d

t
omments (i.e., SATD). This reflects the practical importance of

ddressing SATD during the development process. In an alter-

ate scenario, while investigating the relation between 3 types of

ode changes and refactoring activities, Palomba et al. (2017) no-

iced that in feature-introducing changes, often the refactored files

ad SATD on its previous version. Because of this, they applied a

attern-based detection to spot SATD in each refactoring activity.

heir results showed that 46% of the classes had a SATD instance

efore being refactored, and 67% of the commits that refactored

ode also removed a debt instance. This indicates that developers

ostly apply refactorings to repay existing debt before introducing

ew features into their source code.

To summarize the findings and contributions of the above com-

rehension studies, we present them in Table 4 , along with the

umber of studied software systems. Since comprehension studies

ely on a SATD detection approach, we also include them along

ith the comment extraction tools used in Table 4 . Note that

ost comprehension studies used a manual inspection or a pat-

ern based detection, while only one study implemented a NLP

pproach. Certainly this relates to the ease of replicating differ-

nt detection approaches, but it compromises their effectiveness of

tudying the phenomenon. We expect and encourage future stud-

es to implement the more recent and accurate SATD detection ap-

roaches.

.3. Repayment of SATD

Previously, we surveyed work that contributed towards the

omprehension of SATD on its removal (Section 3.2.4), and inter-

st growth (Section 3.2.5). Although those studies explain how and
ho removes SATD, and propose a way to measure the growth

r decline of SATD over time, they do not propose approaches to-

ards managing or repaying debt. In this section we go over stud-

es that tackle this problem.

As a subset of Technical Debt, the ultimate goal of studying

ATD is to propose approaches that focus on removing it from a

ystem, i.e., repaying the admitted debt. In this regard, a couple of

ecent studies have presented techniques to estimate the effort and

rioritize the resolution of SATD. In 2016, Mensah et al. (2016) pro-

osed an approach to estimate the rework effort needed to re-

olve SATD, measured in LOC. The authors used the text mining

pproach to identify debt instances in 4 open source projects and

lassify them by type with a dictionary derived from the work

y Maldonado and Shihab (2015) . The measure of estimated re-

ork effort is calculated giving term weights to debt instances

ased on their frequency of SATD indicators, i.e., one of the pat-

erns found by Potdar and Shihab (2014) , and expressed the aver-

ge commented LOC per SATD-prone file (files that contain com-

ents with debt indicators) in a system. The study found that on

verage, an effort of between 13 and 32 commented LOC need to

e addressed per SATD-prone file. This estimated effort fluctuates

ased on the type of debt to be addressed, with documentation

equiring the least amount of effort, and design debt needing the

ost.

More recently, Mensah et al. (2018) extended their rework ef-

ort estimation study and combined it with a 6-step SATD pri-

ritization scheme. This new approach aims to inspect SATD in-

tances and classify them by how urgently they need to be ad-

ressed and estimate the rework effort they require. Similarly to

heir previous work, this estimation is computed in a multi-phased

78 G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82

4

t

t

a

t

t

i

h

u

t

t

p

c

t
approach, where initial steps handle the extraction of comments,

identification and classification of debt instances into their types

using the text mining approach. Before computing the rework ef-

fort estimation, the extracted comments were manually catego-

rized based on their textual indicators as: (i) major if they are ur-

gent, or minor if they can wait; (ii) complex based on their diffi-

culty, and significant based on their importance; (iii) expected if the

task is pending, and expedited if it denotes a rushed or poor imple-

mentation. SATD instances that should be prioritized were marked

as vital few tasks or as trending-many tasks, and assigned a possi-

ble cause of introduction. Along with the proposal of a repayment

approach, this work also presented interesting empirical findings,

showing that 31% to 39% of SATD comments are major tasks, and

58% to 69% are minor; while most of the major tasks are complex

to resolve for developers. Among the possible causes for SATD in-

troduction, the study found 4 which are the most prominent, be-

ing: code smells (23%), complicated and complex tasks (22%), inad-

equate code testing (21%), and unexpected code performance (17%).

Regarding the effort required for the resolution of vital few tasks,

i.e., those that should be prioritized, developers would need to ad-

dress 10 to 25 commented LOC per SATD file.

The concept of classifying the SATD comments into different

classes that indicate how difficult, important, and urgent they are

can serve as a great contribution to deciding which debt to re-

solve first. However, is important to note that for both of the above

works on repayment output a result in commented LOC, which

might not be intuitive for developers or managers, nor the best

or only measure to estimate effort or prioritize debt resolution. In

either way, both approaches compel the most recent in SATD re-

payment.

4. Future of SATD research

In this section, we present promising research avenues based on

gaps and opportunities we observe in current studies and discuss

the challenges to overcome in order to advance the state of the art.

The ideas and calls to actions presented throughout this section are

new proposals deduced from our observations, which we support

with related literature.

4.1. Future challenges in SATD detection

4.1.1. Improving validity

SATD detection can benefit from improved validity, future work

should enrich existing datasets and expose new ones using state of

the art detection and classification approaches. Since TD can also

be self-admitted in other software artifacts, such as commit mes-

sages or isuue comments, richer datasets should not be limited to

SATD found in source code comments only. We expand on these

ideas below:

• Richer datasets. As we see in the work surveyed in Section 3 ,

most of recent work relies on data from design and require-

ment SATD (Maldonado et al., 2017d; Zampetti et al., 2017;

Huang et al., 2018; Zampetti et al., 2018; Yan et al., 2018).

This originates in the dataset made available by Maldonado and

Shihab (2015) , where design and requirement debt was de-

tected far more frequently than other debt types. This lim-

its approaches such as the NLP and ensemble text mining ap-

proaches to be restricted on classifying debt instances in all ex-

isting types. Using a tool such as SATD Detector can support

the creation of larger datasets with more instances of the rarer

SATD types. Such datasets can then be complemented by ar-

tificial balancing techniques to enable better classification ap-

proaches. Another challenge with current datasets is that they

are scarce, and limited in size and diversity of projects they
contain. Huang et al. (2018) found that cross-project training in-

creased the performance of identification classifiers. Thus, SATD

detection approaches will benefit of having richer datasets to

train on.
• Detection in other software artifacts. The majority of work

surveyed in Section 3.1 detected SATD through source code

comments. There are other software artifacts that contain ex-

tracts of human interaction and communication, such as issue

messages, commit messages, or even discussions in git repos-

itories. These artifacts can also hold text where technical debt

is self-admitted by developers. Dai and Kruchten (2017) stud-

ied the possibility of detecting TD with issue comments, finding

that although developers do not explicitly mention TD inside is-

sues, they do so indirectly. Their study surfaced over 114 useful

key words that can be used to detect different types of TD from

the description and summaries of issues. This is a similar find-

ing to the patterns surfaced by Potdar and Shihab (2014) for

SATD. Bellomo et al. (2016) also investigated the existence of

TD indicators within issues messages and found that develop-

ers are aware of the concept of TD, and they refer to it when

filing issues. This might indicate that technical debt is also self-

admitted in issue messages.

Nowadays there is a plethora of repositories that can be mined

to investigate the occurrence and diffusion of SATD in alter-

nate software artifacts. One example is JIRA , a repository pre-

sented by Ortu et al. (2015) which contains data from the Jira

Issue Tracking System. It consists of over one thousand open

source projects with 700 thousand issue reports, and 2 mil-

lion issue comments. As its authors suggest, it can be mined

to retrieve information about TD, and thus potentially, SATD.

The investigation of how much debt found within issues is

also self-admitted by developers and the usefulness of this ap-

proach remains as future work. Considering the above soft-

ware artifacts for an approach such as the SATD change-level

determination proposed by Yan et al. (2018) could also yield

a promising future. Including features extracted from different

software artifacts can complement the 3 dimensions studied

by Yan et al. to extend the set of features taken from source

code and change history, potentially resulting in improved TD

determination models. As detecting SATD at the change level

presents different benefits to software developers in contrast to

detection at the file level, there is broad potential and room for

further investigation on the topic.

Call to action:

• Mine larger sets of software repositories from different domains to

produce richer SATD datasets.
• Study the presence of SATD in other software artifacts, such as the

messages and descriptions of issues and commits.

.1.2. Improving traceability and adoption

In Section 3.1 , we surveyed several approaches for SATD detec-

ion with different characteristics and techniques that allow them

o achieve performances that surpass their predecessors. Each has

n application, as well as points in favor and against that facilitate

heir replication. For instance, one could argue that manual detec-

ion and pattern-based approaches (see Section 3.1.1) are the eas-

est to replicate, however, doing is time-consuming and relies on

uman expertise. On the other hand, automated approaches that

se machine learning are scalable but rely on a training dataset

o achieve a comprehensive performance (see Section 3.1.2). Fu-

ure work should aim to facilitate the replication of detection ap-

roaches to promote their adoption, and to develop tools to in-

rease the admittance, quality, and traceability of SATD. One ma-

erialized example for this is SATD Detector, where the ensemble

G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82 79

t

m

f

a

t

b

4

i

a

s

s

2

c

a

s

p

s

t

a

o

p

R

o

e

s

t

m

S

c

m

t

a

i

fi

I

a

r

e

p

p

ext mining was implemented as a tool ready for use in develop-

ent time. Certainly, any approach or technique that can be of-

ered as a tool is the best proxy to improve the traceability and

doption of SATD. We describe actionable ideas that can support

his based on opportunities we observe from previous related work

elow:

• Visualization tools. Alongside improved detection techniques,

both researchers and practitioners can always benefit from

tools that implement them. An interesting avenue comes from

the visualization approach presented by Ichinose et al. (2016) ;

city-like views in a virtual reality environment combined with

an automated detection and classification approach could pro-

vide a highly intuitive interface for SATD identification and

management. Visualization tools can also be extended to esti-

mate the repayment effort of detected SATD with an approach

such as the one proposed by Mensah et al. (2018) . In this sce-

nario visual cues could point at debt that can be repaid in the

source code. The development of a tool that can display where

SATD is located and offer an estimation of the effort required

to address it would strongly enable developers to manage and

repay SATD in their repositories.
• Annotation of comments. While classifing grammar smells,

Stijlaart and Zaytsev (2017) pointed at the “Shortage Smells” as

missing pieces of grammar. As a subset of this, “Debt” smells

were defined to happen when comments clearly denote debt

but are missing an annotation that will facilitate its traceabil-

ity, such as “TODO” or “FIXME”. In this case, an approach or

tool that adds these annotations would solve grammar smells

by self-admitting the technical debt. For this to be feasible, re-

searches can use one of the more recent SATD detection ap-

proaches and add special annotations to comments that are

missing them. In this way, SATD will be easier to trace by de-

velopers using IDEs that support the tracking of these annota-

tions.
• Reduction of false positives. Another important challenge is to

reduce false positives in SATD detection. One of the issues with

the approaches analyzed in Section 3 is that most of them look

at comments directly, disregarding the source code in scope.

For example, the pattern-based approach was found to produce

over 25% of false positives (Bavota and Russo, 2016). Although

more advanced detection approaches have been presented, they

still focus on source code comments only. Such approaches

might find cases indicating debt that was already repaid but

its corresponding self-admitted annotation was never removed.

On this regard, Sridhara proposed a technique to validate the

up-to-date status of comments that include ToDo annotations

(Sridhara, 2016). This is a hybrid approach that considers both,

source code and comments. Future work can improve on such

technique and extend it to work on any comment that indi-

cates SATD, and not only those with ToDo annotations. More-

over, as seen in Section 3.1.2 , TEDIOUS is the only detection ap-

proach that inspects source code instead of comments to rec-

ommend when design technical debt should be self-admitted.

Certainly, a way to mitigate false positives in future SATD de-

tection effort s can emerge from using a hybrid approach that

inspects the source code in scope and comments of a debt

instance.

Call to action:

• Develop tools that enable a categorized visualization of SATD to

support its management.
• Develop a detection approach that adds annotations to debt com-

ments that are missing them.
• Develop detection approaches that inspect and analyze both, com-
ments and source code for improved accuracy.
.2. Future and challenges in SATD comprehension

To deepen the understanding of SATD, research work should

dentify observations on this phenomena that apply across projects

nd can be generalized. In Section 3.2 , we surveyed work that

tudied large sets of systems or specifically tried to diversify their

ubjects in domain and programming language (Bavota and Russo,

016; Wehaibi et al., 2016). Nevertheless, a clear challenge to over-

ome is that most findings and contributions on SATD (see Table 4)

nd its effects in software development came from studying open

ource systems that were mostly written in Java (see the software

rojects studied by the surveyed work in Section 3). Future re-

earch should extend to investigate proprietary software or sys-

ems that are written in various programming languages. This will

id towards the generalization of current findings or contrast new

bservations in different scenarios and environments. Similar to

revious effort s such as the emprical SATD study by Bavota and

uso on 159 projects (Bavota and Russo, 2016), important findings

n SATD should be investigated in large scale to confirm they gen-

ralization.

We remark that the studies covered by this survey consider a

cenario where identifying the introduction of TD is valuable for

he development process, and where the management and repay-

ent of TD are desired practices. More importantly, in the case of

ATD, the assumed scenario is one where the use of source code

omments is intrinsic to the development process. However, this

ay not generalize to all software development, as it depends on

he used methodologies and policies in place. An example may be

 case of proprietary software were the introduction of comments

s not allowed or exceptional. Note that in our survey, we did not

nd any SATD study that worked on proprietary software systems.

nvestigating the relation between the introduction, management,

nd repayment of SATD in different development methodologies

emains as future work. This will help to achieve a more gen-

ral and thorough comprehension oh the phenomena. Below, we

resent actionable ideas for future research to broaden the com-

rehension of SATD:

• Examine other kinds of impact. Previous work has investi-

gated the impact of SATD on software quality, but only in the

scope of software defects (Wehaibi et al., 2016). As Wehaibi

et al. showed, defects do not seem to have a direct relation-

ship with SATD. However, this is the only finding on the impact

of SATD among the papers that focus on the comprehension of

the phenomenon (see Section 3.2). Therefore, we believe that

future work should seek a deeper understanding of different as-

pects in which SATD can impact the development process. We

observe the opportunity to investigate on the impact of SATD

in aspects such as: effort in future maintenance and evolution

(e.g., code decay), the ability of a system to adapt to new tech-

nologies or changes in process, and even the socio-technical im-

pact of SATD.
• Qualitative classifications. So far, source code comments that

point to TD have been classified following the categories de-

fined by Alves et al. (2014) , such as in the classification work

on SATD by Maldonado and Shihab (2015) . This is a high-

level classification of the comments as they indicate what

the debt is about. Another perspective is to investigate their

implication in the development process. As an example, the

comment: “//Re-initialising a global in a place where no-one

will see it just // feels wrong. Oh well, here goes.” from Ar-

goUML was classified by Maldonado and Shihab as design debt

(Maldonado and Shihab, 2015). This classification does not in-

form the developers about its implication; perhaps it implies

a feature addition, a bug fix or another software maintenance

tasks. A study using such level of taxonomy was presented by

80 G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82

4

w

t

r

n

a

p

g

2

t

i

a

m

i

a

s

s

o

a

S

S

a

i

H

m

p

5

S

l

a

P

f

i

w

i

s

a

o

i

u

S

e

m

h

i

s

d

a

o

c
Panichella et al. (2015) , who classified mobile app user reviews

into useful categories related to maintenance tasks. Replicat-

ing such taxonomy in the area of SATD can provide developers

with better insight on the implications of SATD. Improving the

overall understanding of the debt instances on their systems to

support their management.

Call to action:

• Investigate SATD in propietary software systems and in various

programming languages (other than Java).
• Investigate the impact of SATD on various software engineering as-

pects, such as mainteinability and evolution.
• Produce a qualitative taxonomy that reflects the implications of

SATD in software maintenance tasks.

4.3. Future challenges in SATD repayment

4.3.1. Quantitatively prioritizing repayment

Proposing approaches and techniques to mitigate and repay

debt is of utmost importance in SATD research. Studies in the

past few years have shed light on the importance of this phenom-

ena, but they have mostly focused on detecting and understand-

ing SATD, rather than directly pursuing its resolution. Merely 11%

of the studies that we surveyed focus on repayment effort s, thus,

there is much work to be done in this area. We present the main

challenges to overcome in SATD repayment below:

• Effort estimation. SATD repayment contributions have scoped

to prioritize its resolution based on the estimated effort for ad-

dressing a debt instance (Mensah et al., 2016; 2018). However,

this approach outputs an estimation value in commented LOC,

which might not be the best, and certainly not the only mea-

sure to estimate effort (Shihab et al., 2013). Undoubtedly, how

to measure effort remains a challenge to overcome and a mile-

stone to reach when deciding which debt to repay first.
• Prioritization of SATD. Certainly prioritizing SATD repayment

has to be part of future research work. Given a set of instances

of SATD in a project, developers need a approach to recommend

which debt to resolve first. Thus, approaches that measure the

growth of debt instances and their resolution cost must be

combined. Akbarinasaji and Bener (2016) presented the idea of

adding TD as a financial obligation that can be recorded as type

of liability in a balance sheet. To achieve this, TD needs to be

identified, quantified, and monetized. Although an approach to

monetize SATD has not been presented, some effort s have al-

ready taken a step forward, such as the quantification SATD in-

terest by Kamei et al. (2016) . We argue that SATD prioritization

is one of the most important challenges that require attention

in this domain, hence we plan to focus on extending existing

research work and proposing novel ideas towards this goal in

the immediate future.
• Acceptance of SATD. Not all SATD has to be repaid, fixing a

shortcut or hack in the source code can be more expensive than

beneficial. A proper measurement of TD repayment effort can

aid developers to decide whether to live with the debt and its

risks or not. Such repayment estimation has to consider the po-

tential evolution of the debt as it can incur in positive interest

over time (Kamei et al., 2016). Future work should study the ex-

tent of SATD acceptance in software systems and under which

conditions.

Call to action:

• Investigate new measures to estimate the effort r equir ed t o r epay

SATD.
• Develop approaches to prioritize the repayment of SATD.
• Investigate to which extent SATD is or can be accepted in software
systems. m
.3.2. Integrating the repayment of SATD

The activity of repaying TD has to be integrated into the soft-

are process. To this matter, the development of new tools and

echniques that motivate and facilitate the repayment of SATD is

equired. We present two ideas that can facilitate this below:

Gamification of SATD repayment. SATD research not only

eeds to give answers on which debt instance to address first, but

lso to ease and promote the culture of resolving debt instances as

art of the normal activities in the development process. In this re-

ard, the use of mechanisms such as Gamification (Deterding et al.,

011), i.e., the application of game-like features in non-game con-

ext could be of benefit. Gamification has increasingly been proving

ts usefulness to motivate, accelerate and ease human productivity

nd it has already been studied in the context of software develop-

ent (i.e., Dubois and Tamburrelli, 2013; Biegel et al., 2014), thus,

t has the potential to support and motivate the repayment of SATD

mong developers.

Identify who introduced the debt. Knowing which developer

elf-admitted debt in the first place and the rationale for doing

o is important. Siegmund (2016) suggested supporting the task

f identifying developers who are responsible for a component,

nd helping them communicate with others who have introduced

ATD. Such scenario would require an approach that identifies

ATD and determines the developer who introduced it. Enabling

 channel of communication between developers can shed light

nto the rationale behind a debt instance to support is repayment.

owever, it can be problematic as a debt-introducing developers

ay no longer be available. Thus, its applicability is limited by the

hase at which SATD is managed.

Call to action:

• Study the usage of gamification techniques to motivate the repay-

ment of SATD.
• Complement SATD detection approaches by identifying who intro-

duced the debt to enable comunication between developers, facili-

tating repayment.

. Conclusions and limitations

We surveyed empirical research work in the arising topic of

ATD, which has developed rather quickly in recent years. This

iterature survey has been performed on studies related to self-

dmitted technical debt, as defined by the exploratory study of

otdar and Shihab (2014) . We used this study as the cornerstone

or our survey and applied snowballing to find related work from

t. Although we complemented the lookup for SATD-related work

ith results from academic search engines, we found no stud-

es that focus on SATD that were not originally found during the

nowballing process. Thus, the papers encompassed in this survey

re limited to those released after 2014 and until the compilation

f this survey in July of 2018. The selected papers are also lim-

ted to those returned by the search engines and keywords we

sed, and only to those that mainly focus on studying SATD (see

ection 2.1).

From our survey subjects, we observe how researchers have

volved current approaches from manual observations to auto-

ated techniques for detecting and classifying debt instances, and

ave advanced the overall understanding of the SATD phenomenon

n the software development process. Naturally, the focus of SATD

tudies was clustered in detecting the presence of debt, and un-

erstanding its life-cycle. Once detection approaches were accurate

nd replicable, the focus switched to studying how SATD grows

ver time and how it is removed from software repositories. We

ertainly observe a lack of studies focusing on the repayment and

anagement of SATD, which is of critical importance. However, we

G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82 81

a

p

l

a

s

d

t

a

t

i

A

N

R

A

A

A

B

B

B

C

C

D

D

D

E

F

d

d

d

d

d

d

d

F

H

I

K

L

L

L

M

M

M

M

M

M

M

M

M

O

P

P

P

P

P

R

S

S

S

S

S

lso notice researchers stepping towards effort s to manage and re-

ay SATD. To this extent, our work highlights several of the chal-

enges to overcome in the area, and presents various promising

venues for future studies based on the gaps and opportunities

een in current research work. Our survey compiles the tools and

atasets that can be used as a foundation to motivate and facilitate

he submission of novel and improved approaches for managing

nd ultimately, repaying SATD.

We believe SATD will continue receiving attention in the field

he upcoming years. As an immediate future, we plan on central-

zing our effort s on how to prioritize the resolution of SATD.

cknowledgments

This research was partially supported by JSPS KAKENHI Grant

umbers JP18H03222 .

eferences

kbarinasaji, S. , Bener, A. , 2016. Adjusting the balance sheet by appending technical

debt. In: Proceedings of the 8th International Workshop on Managing Technical
Debt. IEEE, pp. 36–39 .

lves, N.S. , Mendes, T.S. , de Mendonça, M.G. , Spínola, R.O. , Shull, F. , Seaman, C. ,

2016. Identification and management of technical debt: a systematic mapping
study. Inf. Softw. Technol. 70, 100–121 .

lves, N.S.R. , Ribeiro, L.F. , Caires, V. , Mendes, T.S. , SpÃnola, R.O. , 2014. Towards an
ontology of terms on technical debt. In: Proceedings of the 6th International

Workshop on Managing Technical Debt. IEEE, pp. 1–7 .
avota, G. , Russo, B. , 2016. A large-scale empirical study on self-admitted technical

debt. In: Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, pp. 315–326 .

ellomo, S. , Nord, R.L. , Ozkaya, I. , Popeck, M. , 2016. Got technical debt? Surfacing

elusive technical debt in issue trackers. In: Proceedings of the 13th International
Conference on Mining Software Repositories. IEEE, pp. 327–338 .

iegel, B. , Beck, F. , Lesch, B. , Diehl, S. , 2014. Code tagging as a social game. In: Pro-
ceedings of the 30th International Conference on Software Maintenance and

Evolution. IEEE, pp. 411–415 .
ollard, M.L. , Decker, M.J. , Maletic, J.I. , 2011. Lightweight transformation and fact

extraction with the SRCML toolkit. In: Proceedings of the 11th IEEE Interna-

tional Working Conference on Source Code Analysis and Manipulation. IEEE, pp.
173–184 .

unningham, W. , 1992. The wycash portfolio management system. Proc. Obj. Ori-
ented Programm. Syst. Lang. Appl. 4 (2), 29–30 .

ai, K. , Kruchten, P. , 2017. Detecting technical debt through issue trackers. In: 5th
International Workshop on Quantitative Approaches to Software Quality (QuA-

SoQ). IEEE, pp. 59–65 .

eterding, S. , Dixon, D. , Khaled, R. , Nacke, L. , 2011. From game design elements to
gamefulness: defining gamification. In: Proceedings of the 15th international

academic MindTrek conference: Envisioning future media environments. ACM,
pp. 9–15 .

ubois, D.J. , Tamburrelli, G. , 2013. Understanding gamification mechanisms for soft-
ware development. In: Proceedings of the 2013 9th Joint Meeting on Founda-

tions of Software Engineering. ACM, pp. 659–662 .

rnst, N.A. , Bellomo, S. , Ozkaya, I. , Nord, R.L. , Gorton, I. , 2015. Measure it? Manage
it? Ignore it? Software practitioners and technical debt. In: Proceedings of the

10th Joint Meeting on Foundations of Software Engineering. ACM, pp. 50–60 .
luri, B. , Wursch, M. , Gall, H.C. , 2007. Do code and comments co-evolve? On the re-

lation between source code and comment changes. In: Proceedings of the 14th
Working Conference on Reverse Engineering. IEEE, pp. 70–79 .

e Freitas Farias, M.A. , de Mendonça Neto, M.G. , da Silva, A.B. , Spínola, R.O. , 2015.

A contextualized vocabulary model for identifying technical debt on code com-
ments. In: Proceedings of the 7th International Workshop on Managing Techni-

cal Debt. IEEE, pp. 25–32 .
e Freitas Farias, M.A., de Mendonça Neto, M.G., da Silva, A.B., Spínola, R.O.,

2015. Cvm-td Vocabulary . http://homes.dcc.ufba.br/ ∼marioandre/page/cvm-td/
vocabulary _ comments.pdf . (Accessed on 01/15/2018).

e Freitas Farias, M.A., de Mendonça Neto, M.G., da Silva, A.B., Spínola, R.O., 2015.

Excomment Tool . http://goo.gl/9Mgl9m . (Accessed on 01/15/2018).
e Freitas Farias, M.A., de Mendonça Neto, M.G., da Silva, A.B., Spínola, R.O., 2015.

Type of Technical Debt x Software Engineering Nouns . http://homes.dcc.ufba.br/
∼marioandre/page/cvm-td/TD _ SENouns.pdf . (Accessed on 01/15/2018).

e Freitas Farias, M.A ., Santos, J.A ., Kalinowski, M., Mendonça, M., Spínola, R.O.,
2016. Cvm-td - Comments by Ratio . https://drive.google.com/file/d/

0BwwEbWFwapG1Y2hRaEt1bGFGa2s/view . (Accessed on 01/23/2018).
e Freitas Farias, M.A ., Santos, J.A ., Kalinowski, M., Mendonça, M., Spínola, R.O.,

2016. Cvm-td - Most Selected Patterns by Participants . https://drive.google.com/

file/d/0BwwEbWFwapG1UlNZbG5lekN1UUk/view . (Accessed on 01/23/2018).
e Freitas Farias, M.A . , Santos, J.A . , Kalinowski, M. , Mendonça, M. , Spínola, R.O. ,

2016. Investigating the Identification of Technical Debt Through Code comment
analysis. In: Proceedings of the 18th International Conference on Enterprise In-

formation Systems. Springer, pp. 284–309 .
ujiwara, K. , Hata, H. , Makihara, E. , Fujihara, Y. , Nakayama, N. , Iida, H. , Mat-
sumoto, K. , 2014. Kataribe: a hosting service of historage repositories. In: Pro-

ceedings of the 11th Working Conference on Mining Software Repositories.
ACM, pp. 380–383 .

uang, Q. , Shihab, E. , Xia, X. , Lo, D. , Li, S. , 2018. Identifying self-admitted techni-
cal debt in open source projects using text mining. Empir. Softw. Eng. 23 (1),

418–451 .
chinose, T. , Uemura, K. , Tanaka, D. , Hata, H. , Iida, H. , Matsumoto, K. , 2016. Ro-

cat on kataribe: code visualization for communities. In: Proceedings of the 4th

Intl. Cong. on Applied Computing and Information Technology/3rd Intl. Conf.
on Computational Science/Intelligence and Applied Informatics/1st Intl. Conf. on

Big Data, Cloud Computing, Data Science & Engineering. IEEE, pp. 158–163 .
amei, Y. , Maldonado, E.d.S. , Shihab, E. , Ubayashi, N. , 2016. Using analytics to quan-

tify interest of self-admitted technical debt. In: Proceedings of the 1st Interna-
tional Workshop on Technical Debt Analytics. CEUR-WS, pp. 68–71 .

i, Z. , Avgeriou, P. , Liang, P. , 2015. A systematic mapping study on technical debt and

its management. J. Syst. Softw. 101, 193–220 .
im, E. , Taksande, N. , Seaman, C. , 2012. A balancing act: what software practitioners

have to say about technical debt. IEEE Softw. 29 (6), 22–27 .
iu, Z. , Huang, Q. , Xia, X. , Shihab, E. , Lo, D. , Li, S. , 2018. Satd detector: a text-min-

ing-based self-admitted technical debt detection tool. In: Proceedings of the
40th International Conference on Software Engineering: Companion Proceed-

ings. ACM, pp. 9–12 .

aldonado, E. , Abdalkareem, R. , Shihab, E. , Serebrenik, A. , 2017. An empirical study
on the removal of self-admitted technical debt. In: Proceedings of the 33rd

International Conference on Software Maintenance and Evolution. IEEE, pp.
238–248 .

aldonado, E., Abdalkareem, R., Shihab, E., Serebrenik, A., 2017. Icsme
Study and Survey Data . http://das.encs.concordia.ca/uploads/2017/07/

maldonado _ icsme2017.zip . (Accessed on 01/30/2018).

aldonado, E. , Shihab, E. , 2015. Detecting and quantifying different types of self-
-admitted technical debt. In: Proceedings of the 7th International Workshop on

Managing Technical Debt. IEEE, pp. 9–15 .
aldonado, E. , Shihab, E. , Tsantalis, N. , 2017. Replication Package for Using Natu-

ral Language Processing to Automatically Detect Self-admitted Technical Debt .
https://github.com/maldonado/tse.satd.data . (Accessed on 01/16/2018).

aldonado, E. , Shihab, E. , Tsantalis, N. , 2017. Using natural language processing to

automatically detect self-admitted technical debt. IEEE Trans. Softw. Eng. 43
(11), 1044–1062 .

ensah, S. , Keung, J. , Bosu, M.F. , Bennin, K.E. , 2016. Rework effort estimation of self-
-admitted technical debt. In: Proceedings of the 1st International Workshop on

Technical Debt Analytics. CEUR-WS, pp. 72–75 .
ensah, S. , Keung, J. , Svajlenko, J. , Bennin, K.E. , Mi, Q. , 2018. On the value of a pri-

oritization scheme for resolving self-admitted technical debt. J. Syst. Softw. 135,

37–54 .
iyake, Y. , Amasaki, S. , Aman, H. , Yokogawa, T. , 2017. A replicated study on relation-

ship between code quality and method comments. In: Applied Computing and
Information Technology. Springer, pp. 17–30 .

oha, N. , Gueheneuc, Y. , Duchien, L. , Meur, A.L. , 2010. Decor: a method for the spec-
ification and detection of code and design smells. IEEE Trans. Softw. Eng. 36 (1),

20–36 .
rtu, M. , Destefanis, G. , Adams, B. , Murgia, A. , Marchesi, M. , Tonelli, R. , 2015. The

jira repository dataset: understanding social aspects of software development.

In: Proceedings of the 11th International Conference on Predictive Models and
Data Analytics in Software Engineering. ACM, New York, NY, USA, pp. 1:1–1:4 .

alomba, F. , Zaidman, A. , Oliveto, R. , De Lucia, A. , 2017. An exploratory study on
the relationship between changes and refactoring. In: Proceedings of the 25th

International Conference on Program Comprehension. IEEE, pp. 176–185 .
anichella, S. , Di Sorbo, A. , Guzman, E. , Visaggio, C.A. , Canfora, G. , Gall, H.C. , 2015.

How can I improve my app? Classifying user reviews for software maintenance

and evolution. In: Proceedings of the 31st International Conference on Software
Maintenance and Evolution. IEEE, pp. 281–290 .

otdar, A. , Shihab, E. , 2014. An exploratory study on self-admitted technical debt.
In: Proceedings of the 30th International Conference on Software Maintenance

and Evolution. IEEE, pp. 91–100 .
otdar, A., Shihab, E., 2015. Satd Mtd Data . http://users.encs.concordia.ca/ ∼eshihab/

data/MTD2015/MTD _ 15 _ data.zip . (Accessed on 01/12/2018).

otdar, A., Shihab, E., 2015. Satd Patterns . http://users.encs.concordia.ca/ ∼eshihab/
data/ICSME2014/satd.html . (Accessed on 01/12/2018).

osen, C. , Grawi, B. , Shihab, E. , 2015. Commit guru: analytics and risk prediction of
software commits. In: Proceedings of the 10th Joint Meeting on Foundations of

Software Engineering. ACM, New York, NY, USA, pp. 966–969 .
hihab, E. , Kamei, Y. , Adams, B. , Hassan, A.E. , 2013. Is lines of code a good measure

of effort in effort-aware models? Inf. Softw. Technol. 55 (11), 1981–1993 .

iegmund, J. , 2016. Program comprehension: past, present, and future. In: Proceed-
ings of the 23rd International Conference on Software Analysis, Evolution, and

Reengineering. In: SANER ’16, vol. 5. IEEE, pp. 13–20 .
ridhara, G. , 2016. Automatically detecting the up-to-date status of todo comments

in java programs. In: Proceedings of the 9th India Software Engineering Confer-
ence. ACM, pp. 16–25 .

tijlaart, M. , Zaytsev, V. , 2017. Towards a taxonomy of grammar smells. In: Proceed-

ings of the 10th ACM SIGPLAN International Conference on Software Language
Engineering. ACM, pp. 43–54 .

torey, M.A. , Ryall, J. , Bull, R.I. , Myers, D. , Singer, J. , 2008. Todo or to bug. In:
Proceedings of the 30th International Conference on Software Engineering.

ACM/IEEE, pp. 251–260 .

https://doi.org/10.13039/501100001691
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0014
http://homes.dcc.ufba.br/~marioandre/page/cvm-td/vocabulary_comments.pdf
http://goo.gl/9Mgl9m
http://homes.dcc.ufba.br/~marioandre/page/cvm-td/TD_SENouns.pdf
https://drive.google.com/file/d/0BwwEbWFwapG1Y2hRaEt1bGFGa2s/view
https://drive.google.com/file/d/0BwwEbWFwapG1UlNZbG5lekN1UUk/view
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0028
http://das.encs.concordia.ca/uploads/2017/07/maldonado_icsme2017.zip
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0031
https://github.com/maldonado/tse.satd.data
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0032
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0033
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0034
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0035
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0036
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0037
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0040
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0040
http://users.encs.concordia.ca/~eshihab/data/MTD2015/MTD_15_data.zip
http://users.encs.concordia.ca/~eshihab/data/ICSME2014/satd.html
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0043
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0044
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0045
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0046
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0047
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0048
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0048

82 G. Sierra, E. Shihab and Y. Kamei / The Journal of Systems and Software 152 (2019) 70–82

Tan, L. , Yuan, D. , Krishna, G. , Zhou, Y. , 2007. / ∗ icomment: bugs or bad comments? ∗ .
In: Proceedings of the 21st Symposium on Operating Systems Principles. In:

SOSP ’07, 41. ACM SIGOPS, pp. 145–158 .
Tsantalis, N. , Chaikalis, T. , Chatzigeorgiou, A. , 2008. Jdeodorant: identification and

removal of type-checking bad smells. In: Proceedings of the 12th European Con-
ference on Software Maintenance and Reengineering. IEEE, pp. 329–331 .

Vassallo, C. , Zampetti, F. , Romano, D. , Beller, M. , Panichella, A. , Penta, M.D. , Zaid-
man, A. , 2016. Continuous delivery practices in a large financial organization.

In: Proceedings of the 32nd International Conference on Software Maintenance

and Evolution. IEEE, pp. 519–528 .
Wehaibi, S. , Shihab, E. , Guerrouj, L. , 2016. Examining the impact of self-admitted

technical debt on software quality. In: Proceedings of the 23rd International
Conference on Software Analysis, Evolution, and Reengineering. In: SANER ’16,

vol. 1. IEEE, pp. 179–188 .
Wohlin, C. , 2014. Guidelines for snowballing in systematic literature studies and

a replication in software engineering. In: Proceedings of the 18th interna-

tional conference on evaluation and assessment in software engineering. ACM,
pp. 38:1–38:10 .

Yan, M. , Xia, X. , Shihab, E. , Lo, D. , Yin, J. , Yang, X. , 2018. Automating change-level
self-admitted technical debt determination. IEEE Trans. Softw. Eng. 1 .

Zampetti, F. , Noiseux, C. , Antoniol, G. , Khomh, F. , Di Penta, M. , 2017. Recommending
when design technical debt should be self-admitted. In: Proceedings of the 33rd

International Conference on Software Maintenance and Evolution. IEEE, pp.

216–226 .
Zampetti, F. , Serebrenik, A. , Penta, M.D. , 2018. Was self-admitted technical debt re-

moval a real removal? An in-depth perspective. In: Proceedings of the 15th In-
ternational Conference on Mining Software Repositories. ACM, p. 11 .

Giancarlo Sierra is a MASc. student in the Department
of Computer Science and Software Engineering at Concor-

dia University. He received his bachelors degree in com-
puter science in 2013 from SEK International University

in Ecuador. With an industry background, his research in-
terests include Technical Debt, Mining Software Reposito-

ries, and Mobile Software Engineering, among others. His
work currently focuses on the detection and prioritization

of Self-Admitted Technical Debt.
Emad Shihab is an associate professor in the Depart-

ment of Computer Science and Software Engineering at
Concordia University. He received his PhD from Queens

University. Dr. Shihabs research interests are in Software
Quality Assurance, Mining Software Repositories, Techni-

cal Debt, Mobile Applications and Software Architecture.

He worked as a software research intern at Research in
Motion in Waterloo, Ontario and Microsoft Research in

Redmond, Washington. Dr. Shihab is a senior member of
the IEEE.

Yasutaka Kamei is an associate professor at Kuyshu Uni-
versity in Japan. He has been a research fellow of the JSPS

(PD) from July 2009 to March 2010. From April 2010 to

March 2011, he was a postdoctoral fellow at Queens Uni-
versity in Canada. He received his B.E. degree in Infor-

matics from Kansai University, and M.E. degree and Ph.D.
degree in Information Science from Nara Institute of Sci-

ence and Technology. His research interests include em-
pirical software engineering and Mining Software Reposi-

tories (MSR).

http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0049
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0050
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0051
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0052
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0053
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0054
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0055
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0056
http://refhub.elsevier.com/S0164-1212(19)30045-7/sbref0056

	A survey of self-admitted technical debt
	1 Introduction
	2 Preliminaries
	2.1 Scope and paper selection
	2.2 Definitions
	2.3 Overview of selected papers

	3 Analysis and comparison of current work
	3.1 Detection of SATD
	3.1.1 Pattern-based approaches
	3.1.2 Machine learning approaches
	3.1.3 Change-level detection
	3.1.4 Comparison and limitations of current approaches

	3.2 Comprehension of SATD
	3.2.1 Types of SATD
	3.2.2 Large-scale studies
	3.2.3 Impact of SATD
	3.2.4 Removal of SATD
	3.2.5 SATD Interest
	3.2.6 Other empirical findings related to SATD

	3.3 Repayment of SATD

	4 Future of SATD research
	4.1 Future challenges in SATD detection
	4.1.1 Improving validity
	4.1.2 Improving traceability and adoption

	4.2 Future and challenges in SATD comprehension
	4.3 Future challenges in SATD repayment
	4.3.1 Quantitatively prioritizing repayment
	4.3.2 Integrating the repayment of SATD

	5 Conclusions and limitations
	Acknowledgments
	References

