
Is Self-Admitted Technical Debt a Good Indicator
of Architectural Divergences?

Giancarlo Sierra∗, Ahmad Tahmid, Emad Shihab∗, Nikolaos Tsantalis
Department of Computer Science and Software Engineering

∗Data-driven Analysis of Software (DAS) Lab
Concordia University, Montreal, Canada

{g sierr, a tahmid, eshihab, tsantalis}@encs.concordia.ca

Abstract—Large software systems tend to be highly complex
and often contain unaddressed issues that evolve from bad
design practices or architectural implementations that drift from
definition. These design flaws can originate from quick fixes,
hacks or shortcuts to a solution, hence they can be seen as
Technical Debt. Recently, new work has focused on studying
source code comments that indicate Technical Debt, i.e., Self-
Admitted Technical Debt (SATD). However, it is not known if
addressing information left by developers in the form source code
comments can give insight about the design flaws in a system
and have the potential to provide fixes for bad architectural
implementations. This paper investigates the possibility of using
SATD comments to resolve architectural divergences. We leverage
a data set of previously classified SATD comments to trace them
to the architectural divergences of a large open source system,
namely ArgoUML. We extract its conceptual and concrete
architectures based on available design documentation and source
code, and contrast both to expose divergences, trace them to
SATD comments, and investigate their resolution. We found 7
high-level divergences in ArgoUML and 22 others among its
subsystems, observing that merely 4 out of 29 (14%) divergences
can be directly traced to SATD. Although using SATD as an
indicator of architectural divergences is viable, the effort of doing
so is time-intensive, and in general, will not lend to a significant
reduction of architectural flaws in a software system.

Index Terms—Self-Admitted Technical Debt, Software Re-
Engineering, Software Architecture, Architecture Recovery

I. INTRODUCTION

As part of the evolution of large software systems, they
tend to become increasingly complex and often contain un-
addressed issues that are rooted in bad design practices or
architecture implementations that drift from definition. This
trailing problem can be seen as Technical Debt [4], a com-
monly used metaphor in software engineering nowadays. TD
refers to the debt caused by quick fixes, shortcuts or non-
optimal implementations introduced into a system to benefit
in the short-term, but that has to be paid off in the long-term
with an increased cost. More in the context of this paper, we
observe TD as those implementations that are not aligned with
its design or that violate coding practices. This debt grows
over time and has to be paid eventually by ever-increasing
maintenance tasks.

Recently, research on technical debt has taken a new di-
rection by studying debt found in source code comments.
Potdar and Shihab [18] studied this phenomenon and referred
to it as Self-Admitted Technical Debt (SATD) since debt

comments are consciously-introduced by developers. As found
by Maldonado et al. [12], SATD can be of different types
(test, defect, design, documentation or test debt). Different
approaches have emerged for the detection and classification
of SATD [18], [12], [13], [8]. A common finding indicates
that one of the most occurring types of SATD in software
systems is design debt [18], [12], [13]. However, the usefulness
and practicality of addressing design SATD has not been
investigated yet. Continuing the research on SATD, we are
motivated to study the connection between design debt found
in source code comments, and the design flaws of a system in
the form of architectural divergences. In this paper, we study if
SATD comments can be traced to architectural divergences in a
software system, and investigate if using these debt comments
can lead to the removal of system divergences. Throughout
this paper, we refer to architectural divergences as any
dependency between subsystem components that is not part
of a system’s conceptual architecture.

Following a recent study on SATD by Maldonado et al.
[13], we have chosen to work with the open source project
ArgoUML, since it was found to be rich in technical debt
comments [12], and have the most occurrences of design
SATD among 10 large open source systems. We use the
data set made publicly available by Maldonado et al., which
contains classified SATD comments to trace debt instances to
architectural divergences in ArgoUML. To aid in the tracing
process, we built a SATD identification tool that statically
analyzes source code comments with a pattern-based approach
derived from previous work by Potdar and Shihab [18] and
Maldonado et al. [13]. We investigate the files that create each
divergence and check: a) if the comments inside them match
with SATD comments we identified; and b) if the divergences
can be resolved by addressing SATD comments.

As preliminary work for our investigation, we identify
the architectural divergences that have occurred over time in
ArgoUML. We achieve this by obtaining and contrasting the
concrete and conceptual architectures of the system based on
available documentation and the source code of the project.
We replicate techniques from previous work [3], [15], [7];
where alongside the goals and findings of each study, their
authors were able to expose many unexpected and missing
dependencies between subsystems in an architecture (archi-
tectural divergences). Bowman and Brewster [3] pointed out



that many of the unexpected dependencies they found in Linux
could not be explained by rationale and their occurrence is due
to developers bad practices or expediency. Since identifying
SATD exposes problems acknowledged by developers, we
investigate if SATD can be a good indicator of said unwanted
links between subsystems.

We examine the following research questions for our study:
• RQ1 - How many architectural divergences can be

traced to SATD comments? With an available data
set of design SATD and a set of identified architectural
divergences in ArgoUML, we investigate if it is possible
to relate introduced debt (in the form of SATD comments)
to architectural divergences. We want to investigate the
amount of divergences that are introduced along with
SATD. If architectural divergences with a few file de-
pendencies are found, looking at SATD comments could
provide insight to determine if the divergence was intro-
duced as design debt by developers expediency or error
during development.

• RQ2 - How many architectural divergences can be
fixed by addressing SATD? Not all the architectural
divergences are the same in nature, some might have
been introduced by error and occur because of a few
dependency files, while others can happen due to a large
number of dependencies between components with deep
roots in the system. For divergences that can be traced
to SATD, we aim to investigate if addressing their debt
comments can help to resolve the divergence or not. In
either case, we want to investigate how many divergences
can be fixed in ArgoUML’s architecture by applying
changes directly suggested in SATD comments.

By contrasting the conceptual and concrete architectures of
ArgoUML, we exposed 7 high-level divergences between dif-
ferent layers of subsystems, and 22 additional divergences that
occur within them. We investigated each divergence and found
that only 4 out of 29 divergences (14%) can be directly traced
to SATD comments. When inspecting these 4 divergences, we
found that addressing their debt comments directly results in
fixing the divergences. However, the amount of divergences
that can be traced to SATD and fixed is not representative
enough. Moreover, this task is time-intensive and in general,
will not lead to a significant architectural improvement.

This paper is organized as follows: Section II introduces
the recovery of the concrete and conceptual architectures of
ArgoUML, and the approach to identify SATD. Section III
shows the approach to identify the architectural divergences in
ArgoUML by contrasting its architectures. Section IV presents
the results of tracing the divergences to SATD. Section V
introduces the related work for our study, while we discuss
the threats to the validity of our work in Section VI. Finally,
Section VII concludes the paper and mentions future work.

II. CASE-STUDY SETUP

For our study, we require the conceptual and concrete archi-
tectures of ArgoUML and the SATD found in its source code
comments. To obtain a conceptual architecture of the system,

we attempted to derive from its domain reference architecture,
however, were not able to find one. Therefore, we studied and
followed the system’s online design documentation instead. In
the case of ArgoUML’s concrete architecture, we extracted it
directly from source code. The approach for obtaining both ar-
chitectures is described below in this section. We also explain
the procedure to obtain the SATD instances in ArgoUML and
the mappings to their corresponding source files, aiming to
facilitate the tracing of architectural divergences to SATD. To
be consistent with the data set we are using, we target version
0.34 of ArgoUML, which is the same working version used
by Maldonado et al. [13]. In this release, ArgoUML has 2,609
Classes, 176,839 SLOC, and 67,716 comments.

A. Conceptual Architecture

To extract the conceptual architecture, we followed the
approach of the study by Hassan and Holt [6], where the
authors used available documentation of a system to derive
its conceptual architecture. We used the public online docu-
mentation of ArgoUML, which describes its general design
and subsystems. In particular, we followed the contents of
the project’s design wiki [1], and a conceptual architecture
defined by Castro et al. [5]. The first two authors of the
paper followed the systems’ design documentation to identify
the main components of ArgoUML independently, adding the
interactions between subsystems and layers of subsystems
as described in the documentation. When the two separate
conceptual architectures were ready, both authors iteratively
discussed the resulting diagrams and interactions until an
agreement was reached. By the end of this process, the authors
had a consensus on the acquired architecture, determining
it was true and in concordance to the conceptual design as
documented on the wiki by ArgoUML developers.

Once we derived the architecture that we decided to proceed
with, we found that it was missing several subsystems and that
the official wiki of the project is not consistent in describing
each component. In some cases, there was missing documen-
tation for the components, or its contents were contradictory.
Nevertheless, both guides were enough to confirm that each
subsystem resides in a single file directory. With this in mind,
we were able to obtain a final list of the 22 subsystems that
compose ArgoUML.

These subsystems can be grouped into 4 architectural layers,
where each subsystem belongs to a single layer. Table I
presents ArgoUML subsystems organized per conceptual ar-
chitectural layer. Each of these layers defines the design
concept for its contained subsystems as follows:
Top Level: Initializes other subsystems on which it depends,
but no other subsystem depends on it.
View and Control: These subsystems are initiated from the
top level and depend on the GUI and Model subsystems.
Loadable Subsystems: These subsystems can only be con-
nected through interfaces from other subsystems and can be
enabled or disabled by the Module Loader subsystem.
Low Level: Any subsystem can depend on them, and they do
not depend on any other subsystem. We use these conceptual



TABLE I
CONCEPTUAL ARGOUML SUBSYSTEMS GROUPED BY ARCHITECTURAL

LAYER.

Arch. Layer Subsystems

Top Level - Application

Loadable
- Critics and Other

Cognitive Tools
- Other Source

Languages
- Java Code Generation &

Reverse Engineering - OCL

View and Control

- Code Generation - Property Panels
- Explorer - GUI
- Module loader - Diagrams
- Notation - Reverse Engineering
- Persistence - Profile

Low Level

- Task Management - Model
- Help System - Configuration
- Internationalization - Swing Extensions
- Logging

Fig. 1. Conceptual Layered Architecture of ArgoUML.

layer definitions to define the expected dependencies in Ar-
goUML, hence any dependency violating this design can be
considered unexpected.

Due to space limitations, we present two visualizations
that summarize the conceptual architecture of ArgoUML.
Figure 1 shows a top view that we name Conceptual Layered
Architecture, which abstracts all the subsystems in layers
and their interactions. Given the fact that the subsystems
in the Application, Low Level, and Loadable layers do not
conceptually interact between each other, we do not present
their detailed conceptual architecture. Figure 2 presents the
conceptual architecture of the View and Control layer subsys-
tems and their interactions.

B. Concrete Architecture

To extract the concrete architecture of ArgoUML, we fol-
lowed the approach of Bowman et al. [3] to obtain the system’s
architecture from its source code. We downloaded and built
the version 0.34 of ArgoUML and used the tool Sci-Tools
Understand, an IDE for source code comprehension and static
code analysis [19]. We used the IDE to create a UDB file for
the project’s source code; this file contains all the entities,
and more importantly, the file dependencies of the project. To
collect all the file dependencies, we created a Python script and
queried the UDB file using Understand’s API. This allowed
us to get a landscape output with 3 elements: i) the files
in the system; ii) the folder structure for the files; iii) the

Fig. 2. Conceptual Architecture of the View and Control layer of ArgoUML.

dependencies between the files. We input the landscape file
into lsedit, a landscape visualization tool previously used in
[3], that allows us to view and organize the extracted files and
dependencies from ArgoUML.

We began to organize the project following its available
documentation, which for several cases mentioned the folder
structure of a subsystem. For example, the documentation of
the Application (top level) subsystem, indicated that its files
were located at org.argouml.application, which gave us a good
insight into the structure of the project after looking at all
the subsystem’s documentation and repeating this organization
process. Several subsystems did not have such documentation,
in which case we relied on a mix between inspecting each
file in detail to get a grasp of their utility and following the
naming conventions used in the project, which we find to be
very intuitive. We observe that for most files in the system,
naming conventions and folder structure applied well to divide
them into their respective subsystems, with some exceptions.
We acknowledge that using simple naming conventions and
folder structures do not necessarily reflect on a systems
real architecture, however, we noticed few cases where these
conventions were violated in ArgoUML.

In total, the organization of the landscape file with the
concrete architecture of the system took 40 hours of work
between the first two authors of the paper. Since the concrete
architecture is too complex to visualize as a whole, we present
the architecture of each layer separately below:

1) Top Level Layer: This layer is composed of only the
Application subsystem, however, using the landscape file we
were able to observe that all of the subsystems in the View
and Control, and Loadable layers have dependencies to the
Application subsystem. We inspected the connections in more
detail and found that the Application subsystem has 6 internal
modules to which all the other subsystems mentioned above
depend on; namely, API, Kernel, UML, Events, Language,
Pattern. We observe that all the files in the Application
subsystem depend on these 6 modules, and there are many
connections between the modules, but they do not depend
on any other file in the Application subsystem. Because
of this, we were able to group these modules into a new



Fig. 3. Concrete Architecture of the View and Control Layer of ArgoUML.

subsystem that we named Core. When the Core subsystem
is seen independently, the concrete architecture reveals that
only the Application subsystem depends on it, and that most
dependencies mentioned before from the View and Control,
and Loadable layers are connected to the Core, and not the
Application subsystem.

2) View and Control Layer: The View and Control layer is
composed of 10 subsystems, we focus on this layer since the
connections between its components are the most interesting
for this system. Figure 3 shows the concrete architecture of
this layer, from where we can observe far more dependencies
between the subsystems than expected from the conceptual
architecture. However, we notice that the directions of the
dependencies do follow the conceptual design in most cases.
All the unexpected dependencies found in this layer are dis-
cussed ahead in the paper. When seen as a whole, this section
of the concrete architecture shows at least one dependency
per subsystem to the Application layer; this behavior was not
expected. Additionally, the subsystems in this layer depend
freely on the Loadable and Low Level layer subsystems (as
there is no conceptual or design restriction for them to do so).

3) Loadable Layer: Once we extracted the concrete ar-
chitecture of the system, there were 2 subsystems missing
completely; they are the Java Code Generation & Reverse
Engineering, and Other Source Languages subsystems. When
inspecting the source code closely, we could not find any trace
of them. We believe that they may have been removed from
the version of ArgoUML we are working on; in which case,
the documentation of these 2 subsystems should be updated
accordingly. Additionally, it is important to mention that when
organizing the landscape files into subsystems, we did observe
several files and two sub-folders which we could not map to
any of the conceptual subsystems. Luckily, they had intuitive
names such as “utilEvent”, and were being used by several
subsystems across the whole architecture. Based on this, we
decided to merge all those unmapped files and sub-folders

into a new subsystem that we simply named Utility, which
we identify as being part of the Loadable layer for how they
interact in the system. By design, all the subsystems in this
layer can be used by any other subsystem in ArgoUML, except
the ones from the Low Level layer. The concrete architecture
of this layer revealed that there are several dependencies
between subsystems, that are acceptable in design. Because
of this and for space restrictions, we do not present this
architecture as a figure.

4) Low Level Layer: This layer’s subsystems are designed
to i) be depended on by the Top Level, and View and Control
layers; and ii) not depend on any other subsystem (in any
layer). By looking at the concrete architecture we find that
in reality, there are 2 unexpected dependencies between the
subsystems of this layer, which we have coded as follows:

• L1 - Helper System −→ Internationalization.
• L2 - Helper System −→ Module.

C. SATD Identification

Maldonado’s et al. [13] dataset contains the SATD com-
ments of 10 open source systems classified by type; where
ArgoUML is the richest of them in technical debt comments
with 1,413 occurrences. Moreover, 56.68% of these comments
were tagged as design SATD. This is over twice the amount of
debt instances found in the remaining systems of the data set.
Reading through the classified comments surfaced some good
indicators that further motivated the study, e.g.: “TODO: This
can’t depend on projectbrowser. it needs to get the current
drawing area from the diagram subsystem or gef”; “TODO:
move to diagram subsystem?”; “TODO: Lets move this behind
the model interface”.

To identify SATD in ArgoUML, we created a set of 3 Java
command-line applications and compiled them as runnable
JAR files, with the names: “CX”, “CF”, and “SATDF” to
extract, filter and identify SATD in source code comments,
respectively. The following describes the extraction process,
while Fig. 4 depicts it. We query the UDB file we created
previously with the Python API of Understand to mine all the
Java file names in the project. We format the file names and
output them as a list in a text file. The set of file names is then
given as an input to the CX JAR file, which is in charge of
two tasks: a) invoking a process of the tool srcML [20], which
decorates the source code of the Java files; and b) parse the
decorated code with the Java SAX Parser [17] to extract all
line and block comments. This generates another text file with
the raw comments only.

Next, we filtered the comments following the approach of
Maldonado et al. [13] which uses 5 heuristics to a) remove
all License comments (written above a class declarations); b)
remove Javadoc comments, c) group consequent single line
comments to consider them as 1 comment; d) remove auto-
generated comments, which can be “Auto-generated method
stub”, “Auto-generated constructor stub” or “Auto-generated
catch block”; and e) remove commented Java source code, as
it most likely is unused code and does not contain SATD. It’s
important to note that to avoid removing Javadoc or License



Fig. 4. SATD collection process.

comments that could contain SATD, we avoid the removal
if they contain the “TODO:”, “FIXME:” or “XXX:” task
annotations. Lastly, the SATDF JAR file is used to identify
the SATD instances in the set of filtered comments. This JAR
file leverages the set of 62 patterns belong to the set made
available by Potdar and Shihab [18] for SATD detection. In
total, we found 3,863 cases of SATD with static analysis
in 1,132 files, from a total of 3,503 files in ArgoUML and
successfully mapped all 1,413 classified SATD comments to
their source files.

III. IDENTIFYING ARCHITECTURAL DIVERGENCES

Before being able to answer our research questions, we
need to identify the architectural divergences of ArgoUML.
Once we obtained both conceptual and concrete architectures
of ArgoUML, we followed the approach of Murphy et al. to
find divergences, convergences and absences in the system and
create contrasting models [16]. We define the elements of a
contrasting model for our work as follows:

• Divergences: dependencies between subsystem compo-
nents that do not exist in the conceptual architecture, but
appear in the concrete architecture of the system.

• Convergences: Dependencies between subsystem com-
ponents that exist in both, the conceptual and concrete
architectures of the system.

• Absences: Dependencies between subsystems compo-
nents that exist in the conceptual architecture, but not
in the concrete architecture of the system.

We contrasted both architectures of ArgoUML and observed
that there are divergences occurring from one layer of subsys-
tems to another, which we call high-level divergences, and
several divergences that occur within a layer, namely inside
the View and Control, and Low Level layer. In this section,
we present a high-level contrasting model of the layered
architecture of ArgoUML. Since we found a high number of
divergences due to multiple unexpected interactions between
subsystems of the View and Control layer, we introduce and
focus on a contrasting model of this layer with further detail.
Lastly, we describe two divergences found in the Low Level
layer of the system.

A. High-Level Contrasting Model

Figure 5 shows the high-level contrasting model of the
architecture layers in ArgoUML. In this model, we introduce
the Core as a divergent layer with dependencies to other layers.
As we described previously, from the concrete architecture
of the system, we found that inside the Application Subsys-
tem there were several modules to which other subsystems

Fig. 5. Contrasting model of ArgoUML Layered Architecture. High-level
divergences labeled A to G with their corresponding number of dependencies.

depended on, from different layers. After quantifying these
dependencies, we found that their numbers are too high to be
considered a design flaw. We included an identifier to the high-
level divergences (A-G) in Figure 5, as well as the respective
number of dependencies between modules. Moreover, while
obtaining the concrete architecture from the system’s source
code, we noticed that the subsystem interactions of those
modules allow the Core layer to be seen as independent. The
introduction of the Core layer also makes the Top Level layer
and its modules to compile with the conceptual design of
the system. Hence, we have added the Core as a complete
divergent layer.

To get a better understanding of these connections, we also
included the amount of dependencies per divergence. From
this table, we can observe that the amount of dependencies
varies greatly among the high-level divergences. In this case,
the higher the number of dependencies, the less likely that a
divergence was introduced by fault or violating ArgoUML’s
design. For example, we can see that in divergence B from
the Core layer, there are 707 file dependencies to the View
and Control layer, suggesting that this is not the result of
simple developers’ expediency. Similarly, we found several
dependencies of the Loadable layer to the Core, and View
and Control layers; namely divergences E and F, which are
originated by the OCL, and Critics and other Cognitive Tools
subsystems. We inspected these dependencies at the source
code level and found that these subsystems seem to be highly
coupled to each other, in particular, the F divergence that
has 94 dependencies. While divergence E has only 8 file
dependencies, nothing indicates an error in them, rather the
involved subsystems appear coupled.

B. View and Control Layer Contrasting Model

Figure 6 shows the contrasting model for the View and
Control layer in ArgoUML; here we observe 20 divergences,
surpassing the amount of convergences in the model. We
numbered these divergences (1-20) to identify them throughout
our work (see Table II). The model shows 2 absences that



Fig. 6. Contrasting Model of the View and Control layer.

TABLE II
DEPENDENCIES PER VIEW AND CONTROL LAYER DIVERGENCE

View & Control Divergence No. of Dependencies

1 Explorer −→ Diagram 19
2 Explorer −→ Profile 11
3 Code Generation −→ Module Loader 1
4 Code Generation −→ Diagrams 1
5 Persistence −→ Diagrams 12
6 Persistence −→ Profile 4
7 Persistence −→ Notation 1
8 Property Panels −→ Profile 2
9 Property Panels −→ Module Loader 1
10 Reverse Engineering −→ Diagrams 7
11 Reverse Engineering −→ Explorer 1
12 Diagrams −→ Module Loader 4
13 Profile −→ Module Loader 1
14 GUI −→ Notation 71
15 GUI −→ Diagrams 66
16 GUI −→ Profile 16
17 GUI −→ Reverse Engineering 8
18 GUI −→ Property Panels 14
19 GUI −→ Module Loader 1
20 Notation −→ Module Loader 1

were expected from the conceptual architecture but were not
found in the file dependencies from the source code; they are
Reverse Engineering to Code Generation and Notation to GUI.
To better explain the divergences found, similar to our previous
reflexion model, we present the quantified dependencies per
divergence in Table II. Based on the number per divergence,
we can see there are several cases with a low number of
dependencies. For example, 8 of the 20 cases only occur
because of 1 file dependency, which could be traced to a SATD
comment. Lastly, we observe that the GUI subsystem has the
highest number of dependencies, 176 in total, to 6 different
modules.

C. Low Level Layer Divergences

Only two interactions are seen between the subsystems of
the Low Level layer in the concrete architecture. Following the
layer’s conceptual design, only subsystems from other layers
should depend on low level subsystems, and no dependencies
should occur among them. Therefore, both interactions are
architectural divergences; we identify them as L1 and L2. L1
is caused by 1 file dependency from the Help System to the
Internationalization subsystem; while L2 is caused by 5 file
dependencies from the Help System to the Model subsystem.

D. Architectural Divergences

Contrasting the concrete and conceptual architectures of
ArgoUML and inspecting its source code surfaced several
architectural divergences and 2 absences. There are 7 high-
level divergences that occur between layers of subsystems
and 1 divergent layer, the Core. 20 other divergences were
found inside the View and Control layer, where divergences
are more prevalent than convergences. Lastly, there are 2
divergences inside the Low level layer, labeled L1 and L2.
Note that high-level divergences tend to be composed of more
file dependencies than those inside the View and Control,
and Low level layers. Often in the later, only 1 or 2 file
dependencies are responsible for the architectural divergences.
This observation leads us to investigate each divergence of
ArgoUML at the source code level.

IV. CASE-STUDY RESULTS

Our goal is to investigate if the architectural divergences
of ArgoUML can be traced to SATD, and if so, to explore
if addressing the debt can resolve these implementation drifts
that occur over time. After the preliminary work to identify
the architectural divergences of ArgoUML, we proceed to:
inspect how many divergences can be traced to SATD (RQ1);
investigate the cases where addressing SATD comments can
fix architectural divergences (RQ2).

A. RQ1 - How many architectural divergences can be traced
to SATD comments?

Once we have contrasted ArgoUML’s architectures and
found its divergences from concept to implementation, we
trace them to SATD by inspecting the source code of the di-
vergences and our available set of classified SATD comments.
We are motivated to see if divergences can be explained by a
SATD instance, and possibly fixed by addressing it directly. To
do this, we inspected each of the architectural divergences in
the system; counted the number of files per divergence and the
number of SATD instances found per file. More importantly,
we looked at the files in detail to see if: a) the source code
comments are able to explain a divergence; and b) there is a
way to resolve the divergence by addressing those comments
in the source code.

We began by inspecting the high-level divergences, however,
we found several factors that limit tracing them to SATD.
First, the divergences A-G are caused by up to 707 file
dependencies; while inspecting these divergences we noted



that most of them are dependencies well rooted in the system
and originated in highly coupled subsystems. As we explained
previously while contrasting the high-level models of the
system, divergence E has the lowest number of dependencies;
nevertheless, they are highly coupled and do not indicate that
they were introduced by error or a design flaw. Furthermore,
we could not find SATD that explains this divergence, or
to the best of our knowledge, a realistic way to refactor or
re-engineer the divergence. This scenario was repeated for
the 7 high-level divergences in ArgoUML. We stopped the
inspection of a divergence after several of the file dependencies
lacked a feasible resolution. Moreover, there is a lack of
SATD comments that could explain or help to resolve these
divergences. Because of this, we do not consider tracing SATD
to these high-level divergences to be feasible.

On the other hand, when we inspected the 20 divergences
found inside the View and Control, and 2 inside the Low Level
layers, we found several encouraging cases where SATD could
help to resolve divergences. This is because several of them
are caused by a low number of file dependencies (see Table II)
that contain SATD comments. For example, we observed that
10 divergences of the View and Control layer originated in
only 34 files that contain 139 SATD comments; a similar
scenario was repeated for the remaining divergences. Since
the 20 architectural divergences found inside the View and
Control, and 2 inside the Low Level layers are good candidates
for SATD tracing, we focus on them and provide a more
detailed analysis of what we found by looking at their source
code. We grouped the analyzed divergences in 3 categories
below: i) divergences that can be directly traced to SATD;
ii) divergences that can be resolved but where SATD comments
are not helpful; iii) divergences that cannot be resolved.

1) Divergences that can be traced to SATD: We were able
to trace 4 architectural divergences to SATD successfully, they
are 4, 7, 8, and 11. The SATD comments within them explain
the divergences and provide good insight to a potential fix for
the architectural divergence. We provide an in-depth analysis
of each below:

Code Generation to Diagrams (4): The method set-
Ports(Layer, FigEdge) inside the Code Generation subsystem
was directly copied from a class inside the Diagram subsystem
as expressed in its following SATD comment:

“// TODO: Copied from UmlDiagramRenderer”
This method requires FigEdge as a parameter which creates

a dependency to the DiagramSetting class of the Diagrams
subsystem. Re-writing this method according to the strict
needs of this class fixes the divergence.

Persistence to Notation (7): There is a dependency from the
ArgoParser class to the NotationSettings class in the Persis-
tence and Notation subsystems, respectively. This dependency
is caused by multiple function calls which are absolutely
necessary to implement the functionalities of ArgoParser.
Because of this, there is no way to remove these connec-
tions. NotationSettings is tightly coupled with the Notation
subsystems. Therefore, there is only one way to remove this

dependency, which is in fact suggested by a SATD comment
inside the problematic file:

“// Maybe this can be implemented in the
PersistenceManager?”
Thus, if we relocate ArgoParser inside Persistence subsys-

tem, this divergence is resolved.
Property Panels to Profile (8): The GetterSetterManager-

Impl class inside the Property Panels module uses deprecated
methods from the Profile class and throws ProfileException
which is inappropriate for the type of exception it produces.
This issue is revealed by the following multi-line SATD
comment.

“// TODO: We need the property panels to have some
// reference to the project they belong to instead of using
// deprecated functionality
// Get all classifiers in all top level packages of all profiles
// TODO: We need to rethrow this as some other exception
// type but that is too much change for the moment.”
The method getChoices of the GetterSetterManagerImpl

class should be moved because it was a hack solution and the
super classes it extends belong to the Kernel subsystem. A
proper new type of exception should be introduced instead of
using ProfileException; such fix will eliminate the divergence.

Reverse Engineering to Explorer (11): This divergence can
be identified and fixed by following the following particular
SATD comment:

“// TODO: Send an event instead of calling Explorer
// directly”
In the ImportCommon class of the Reverse Engineer-

ing subsystem, the developer called ’ExplorerEventAdap-
tor.getInstance().structureChanged()’ directly instead of using
an event which violated core design principles of ArgoUML.
The developer admitted this fault in a SATD comment and
suggested a solution in the same line. Nevertheless, the prob-
lem has not been addressed and the divergence remains.

2) Divergences that can be resolved without SATD: We
were able to find a fix for 7 of the divergences we inspected;
however, SATD comments did not provide an explanation or
resolution for them. These divergences are 3, 6, 9, 12, 13, 20,
L1. We found that they had between 1 and 4 dependencies
only, and the class files that caused them were not tightly
coupled and could be relocated. Most of the time applying a
simple re-engineering or refactoring task would provide a fix
for the divergence. We also found that only divergences 6, 12
and L1 had SATD comments; having 1, 5 and 2 comments,
respectively. The remaining divergences 3, 9, 13 and 20 had
no SATD comments.

As a practical example, divergence 12 (Diagrams to Module
Loader) had 4 dependencies caused by 4 class files; inspecting
them revealed that all of them contained the following SATD:

“// TODO: Remove the casting to DiagramFactoryInter-
face2

Although this comment was repeated in each class file
that caused the divergence, it did not provide an explanation
or was useful to fix the divergence. In fact, we noticed



that these classes inside the Diagrams subsystem could be
simply relocated inside the Module Loader subsystem as no
other classes in Diagrams depended on them. The remaining
divergences in this category faced a similar scenario; we were
able to find fixes for them, but SATD comments were not
useful or provide any insight for doing so.

3) Divergences without resolution: In total, we inspected
other 11 divergences that did not have a resolution, or could
be explained by SATD comments; they are 1, 2, 5, 10, 14-
19, and L2. By looking at the source code of the divergences
we found several reasons that prevented their resolution. First,
all of the dependencies created by these divergences were
often spread across several files and subsystems. Second, their
files had tight coupling between subsystems, avoiding the
relocation of files to solve divergences. A good example of this
is divergences 14-19 that occur from the GUI subsystem to 6
subsystems (Notation, Diagrams, Profile, Reverse Engineering,
Property Panels and Module Loader). These 6 divergences are
caused by 172 file dependencies and originated in 234 source
files. While inspecting each case, we noticed that because of
their high number of dependencies and coupling nature, they
fall into the same case as the high-level divergences that we
inspected previously, showing no straightforward solution to
fix the divergences. A specific example is divergence 19, which
has only 1 dependency. Inspecting this dependency revealed
that it can not be removed as the AboutBox class of the GUI
uses information from the ModuleLoader2 class to describe
the available modules in the system. Similar observations were
repeated for the remaining divergences in this category. The
detailed analysis and inspection of these divergences did not
surface any SATD comments that could explain or help to
resolve these architectural divergences.

Results: We found that 4 of the architectural divergences
inside the View and Control layer (4, 7, 8, and 11) can be
successfully traced to SATD comments. Reading through these
comments can provide insight on each of the divergences,
and directly addressing them can lead to their resolution.
Inspecting the architectural divergences of ArgoUML revealed
that not all them can be traced to SATD. Looking at the 7
high-level divergences of the system we found that due to the
amount of dependency files that cause them, and their roots in
the system, attempting to resolve them is not feasible. Besides
the high-level divergences, we inspected 22 others that exist
between the subsystems of ArgoUML, 20 in the View and
Control layer, and 2 in the Low Level layer. We found that
11 of these divergences fall in the same case of the high-
level ones. Moreover, we did not find SATD comments that
could explain or help to fix these divergences, nor a simple re-
engineering or refactoring task that could be applied to resolve
them. In contrast to the previous, we also found 7 divergences
that could be fixed by simple tasks such as relocating class
files; however, their resolution was not related to their SATD
comments. Overall, 80% of the divergences that we inspected
contained SATD comments, however not all of them were
helpful to provide a fix or explain a divergence.

B. RQ2 - How many architectural divergences can be fixed
by addressing SATD?

After analyzing all the divergences, we focused on the 4
divergences that were traced to SATD. We explored if address-
ing the debt comments withing these divergences can actually
provide an architectural fix. We manually implemented the
changes as suggested by SATD comments (as indicated below)
for each traced divergence. To validate a fix, we simply
checked that it does not introduce an error to the project and
that the system builds successfully.

Code Generation to Diagrams (4): We changed the set-
Ports(Layer, FigEdge) method to setPorts(Layer, Transition).
The new method does not require FigEdge as a parameter;
instead it calls the original setPorts(Layer, FigEdge) method
in UmlDiagramRenderer for setting ports.

Persistence to Notation (7): Instead of calling methods in
NotationSettings directly, we used PersistenceManager to get
the fall-back notation value.

Property Panels to Profile (8): Instead of throwing a Profile-
Exception from GetterSetterManagerImpl.java, we introduced
new kind of exception called PropertyPanelException.

Reverse Engineering to Explorer (11): We triggered a
UmlChangeEvent in the ImportCommon class of the Reverse
Engineering subsystem instead of calling ExplorerEventAdap-
tor.getInstance().structureChanged(), which is a deprecated
method that created a divergence.

Only 4 out of 29 (14%) architectural divergences found
in ArgoUML can be traced to SATD and fixed by directly
addressing the debt comments.

V. RELATED WORK

Our work traces architectural divergences to SATD com-
ments found in source code. As preliminary work, we surface
ArgoUML divergences by contrasting its concrete and concep-
tual architectures. Consequently, we divide our related work
into two subsections: work that addresses the study of SATD;
and work related to the recovery and contrast of concrete and
conceptual architectures.

A. Work Related to SATD

In 2014, Potdar and Shihab [18] first used source-code
comments to identify technical debt and introduced the term
of SATD. Potdar read through over 100 thousand comments
to manually identified technical debt. The authors extracted 62
patterns for SATD identification from the studied comments
and found that SATD existed in up to 31% of the files in a
system. Maldonado and Shihab. [12] used these patterns to
detect and analyze over 33 thousand comments from 5 open
source systems, and classified them into 5 types of SATD:
design, defect, documentation, requirement, and test debt.
They found that design is the most common types of SATD,
conforming 42% to 84% of all SATD comments. Bavota and
Russo [2] also used the pattern-based approach introduced
by Potdar and Shihab [18] to identify and analyze SATD
in the complete change history of 159 open source systems.



This large-scale study confirmed that SATD is prevalent and
constantly increasing in software systems; that it remains in
the code base for long periods of time; and that it is mostly
removed by experienced developers.

Later Maldonado et al. [13] investigated the use of Natural
Language Processing techniques to automatically detect design
and requirement debt. They extracted and manually classified
source comments from 10 software systems and trained a
maximum entropy classifier that automatically extracts key
features (i.e., words) from a classified training dataset. The
classifier then uses these keywords to identify design and
requirement SATD based on features that contribute posi-
tively or negatively a comment’s classification. This NLP
approach outperforms the pattern-based approach for SATD
identification. We leverage the classified data set of SATD
comments that resulted from this study. A recent work by
Zampetti et al. [22] also used the same data set to train
and evaluate a machine learning approach that recommends
when developers should self-admit design technical debt by
leveraging method-level source code features. More recently,
Huang et al. [8] presented an approach for automated SATD
identification using text mining techniques. The authors used
feature selection to extract key features from a different set
of projects and train a classifier for each. They merged the
classifiers to construct a composite cross-project classifier that
outperforms previous NLP and pattern-based techniques.

We did not use NLP techniques or text mining for SATD
identification; instead, we used a pattern-based approach
leveraging the 62 patterns presented by Potdar and Shihab
[18], combining them with the top 10 features for SATD
identification surfaced by the NLP classifier from the work
of Maldonado et al. [13]. Recent work has also used the
pattern-based approach to detect SATD, for example, Mensah
et al. [14] used the 62 patterns found by Potdar and Shihab
[18] to identify and estimate the effort needed in LOC to
resolve a SATD instance based on term weights. Finding that
on average, 13 to 32 LOC are needed to resolve a SATD
instance. Kamei et al. [9] also used a similar data set to study
the evolution of product metrics related to SATD introduction
and removal, finding that 42% to 44% of SATD incurs in
positive interest over time.

Other works studied additional aspects of SATD; Wehaibi et
al. [21] investigated the relation between SATD and software
quality by looking at the defect proneness of files. They
observed no relation between SATD and defects but found
that the introduction of SATD results in more complex changes
in the future. Maldonado et al. [11] further investigated how
SATD is removed from source code, finding that the majority
of it is removed and that most of the time, it is done by the
same developer who introduced the SATD. This highlights that
removing SATD is of importance for developers and that its
removal is common practice.

B. Work Related to Architecture Recovery

Many large software systems do not have their system
architecture properly documented. As a result, it becomes

difficult for developers and maintainers to understand and
improve these systems. To address this problem, Bowman et
al. [3] decided to examine the architecture of a large software
system (Linux Kernel) by extracting it from source code. At
first, they formed a conceptual architecture of Linux Kernel
based on how developers see the system and how different
subsystems work and depend on each other. After that, they
extracted the actual architecture of the source code, known
as, concrete architecture. This concrete architecture reflects
exactly how the system is implemented, what are the main
components of that system and how these components depend
on each other. After contrasting these two architectures, they
found that, in reality, a software contains many more undocu-
mented dependencies which do not exist in the original design.
This deterioration from original design makes it difficult for
developers to understand their systems. This study shows how
the architecture of an undocumented system can be extracted
and how much its concrete architecture can deteriorate from
the architecture that developers designed initially.

Murphy et al. [16] introduced the concept of Reflexion
Model that computes and shows the differences between the
high-level conceptual model and source level concrete model
of software. Their reflexion model enables engineers to get a
global overview of their system’s structures in a few hours.
To generate a reflexion model, the developer has to provide a
mapping which associates one or more components of the con-
crete model, such as, file or directory to one component of the
conceptual model. Using this mapping, a graph representation
of the system is presented where convergences, divergences,
and absences are shown using different types of edges. By
performing a case study on NetBSD and Microsoft Excel
Spreadsheet products Murphy et al. [16] found that Reflexion
Model can be very helpful for understanding a new system or
planning re-engineering tasks for an existing system.

Many techniques have been proposed in the literature to
automatically or semi-automatically recover software architec-
tures from software code bases. Lutellier et al. [10] compared
nine variants of six existing architecture recovery techniques
to understand and evaluate their effectiveness. In our work,
we do not use automated or semi-automated approaches for
software recovery since we strive for a manual and detailed
inspection of the subsystems in a single project. Instead, we
leverage the manual approaches utilized by Bowman et al.,
and Murphy et al. with the intention of acquiring a deeper
understanding of our study subject and its components.

VI. THREATS TO VALIDITY

The conceptual architecture we present is an abstraction
based on the available design documentation of ArgoUML,
to which several contributions have been done over time by
the open source community. Hence it may vary from the
one created originally by the architects. We followed the
design wiki of ArgoUML thoroughly, and believe that the
conceptual architecture we present consistently reflects the
design documentation maintained by ArgoUML developers.
We are aware that developers often have to move away from



their original design to match changing requirements, and in
many cases, they do not update the documentation to match
the new changes. This results in a threat, as ArgoUML’s
documented architecture may not reflect what developers
actually followed to develop the software. To mitigate this,
we relied on the primary conceptual documentation of the
system, which refers to the architectural layers we defined in
section II-A, and their interactions. Therefore, the architectural
divergences we detected are only those that that violate the
main conceptual design of the system. Even when considering
the worst case scenario, where the documentation we used
was indeed outdated, at least the core design of the extracted
conceptual architecture should remain consistent.

We acknowledge that the pattern-based approach we used to
identify SATD might not find all debt instances in the source
code. To dampen this threat, we used two recent sources of
SATD patterns and extended the set of patterns to 100 based
on reading the classified source code comments in the data
set at our disposal. Although the patterns will most likely
miss some SATD instances in the project releases, this is still
one of the best replicable approaches for SATD identification.
Moreover, the whole purpose of the ad-hoc process for SATD
identification was only to find the source files to which the
classified SATD comments in our data set belonged to. We
rely on the data set of classified comments, which used a
more advanced approach with NLP techniques for SATD
identification. Lastly, we also relied on Sci-Tools Understand
for creating the UDB files that we used to find the file
dependencies from source code. While inspecting the source
code of ArgoUML, we discovered that sometimes Understand
reported dependencies that did not exist in the source code.
We manually checked all the cases that fell into this scenario
and removed them from the UDB file.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the possibility of using SATD
comments to resolve architectural divergences. We leveraged a
data set of classified SATD comments and traced them to bad
architectural implementations that we surfaced by contrasting
the conceptual and concrete architectures of ArgoUML, using
its available design documentation and source code. Our study
revealed 29 architectural divergences, 7 in high-level layers,
and 22 among subsystems. Our preliminary results show that
merely 4 out of 29 divergences (14%) can be directly traced
to SATD, and that looking at SATD comments can provide
enough information to fix them. To validate this, we manually
implemented the changes as suggested by debt comments in
each of the 4 traced divergences and confirmed that address-
ing the comments directly leads to resolve the divergences.
Although SATD can be used as an indicator for architectural
divergences, it requires considerable time and effort, and will
not result in a significant architectural improvement.

To generalize our findings, we plan on replicating this
study on a broader scale. Looking at SATD comments that
can be traced to architectural divergences resulted effective
in resolving them, thus, we plan to further investigate this

with better architectural recovery and more advanced SATD
detection approaches, potentially in an automated manner.

REFERENCES

[1] Argouml wiki: Design. http://argouml.tigris.org/wiki/Design, 2009.
(Accessed on 10/22/2018).

[2] G. Bavota and B. Russo. A large-scale empirical study on self-admitted
technical debt. In Proceedings of the 13th International Conference on
Mining Software Repositories, MSR ’16, pages 315–326. ACM, 2016.

[3] I. T. Bowman, R. C. Holt, and N. V. Brewster. Linux as a case study: Its
extracted software architecture. In Proceedings of the 21st International
Conference on Software Engineering, ICSE ’99, pages 555–563. ACM,
1999.

[4] W. Cunningham. The wycash portfolio management system. ACM
SIGPLAN OOPS Messenger, 4(2):29–30, 1993.

[5] T. R. de Castro, S. N. A. de Souza, and L. S. de Souza. Case tool for
object-relational database designs. In Proceedings of the 7th Iberian
Conference on Information Systems and Technologies, CISTI ’99, pages
1–6. IEEE, 2012.

[6] A. E. Hassan and R. C. Holt. A reference architecture for web servers.
In Proceedings of the 7th Working Conference on Reverse Engineering,
WCRE ’00, pages 150–159. IEEE, 2000.

[7] A. E. Hassan and R. C. Holt. Using development history sticky
notes to understand software architecture. In Proceedings of the 12th
International Workshop on Program Comprehension, ICPC ’04, pages
183–192. IEEE, 2004.

[8] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li. Identifying self-admitted
technical debt in open source projects using text mining. Empirical
Software Engineering, 23(1):418–451, 2018.

[9] Y. Kamei, E. d. S. Maldonado, E. Shihab, and N. Ubayashi. Using ana-
lytics to quantify interest of self-admitted technical debt. In Proceedings
of the 1st International Workshop on Technical Debt Analytics, TDA ’16,
pages 68–71. CEUR-WS, 2016.

[10] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic,
and R. Kroeger. Comparing software architecture recovery techniques
using accurate dependencies. In Proceedings of the 37th International
Conference on Software Engineering, ICSE ’15.

[11] E. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik. An
empirical study on the removal of self-admitted technical debt. pages
238–248, 2017.

[12] E. Maldonado and E. Shihab. Detecting and quantifying different types
of self-admitted technical debt. In Proceedings of the 7th International
Workshop on Managing Technical Debt, MTD ’15, pages 9–15. IEEE,
Oct 2015.

[13] E. Maldonado, E. Shihab, and N. Tsantalis. Using natural language
processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering, 43(11):1044–1062, Nov 2017.

[14] S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin. Rework effort
estimation of self-admitted technical debt. pages 72–75, 2016.

[15] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. Software
Engineering Notes, 20(4):18–28, 1995.

[16] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion models:
Bridging the gap between design and implementation. Transactions on
Software Engineering, 27(4):364–380, 2001.

[17] Oracle. Parsing an xml file using sax (the java tutorials - java api for
xml processing (jaxp) - simple api for xml). https://docs.oracle.com/
javase/tutorial/jaxp/sax/parsing.html, 2017. (Accessed on 10/16/2018).

[18] A. Potdar and E. Shihab. An exploratory study on self-admitted technical
debt. In Proceedings of the 30th IEEE International Conference on
Software Maintenance and Evolution, ICSME, pages 91–100. IEEE,
2014.

[19] Sci Tools. Quickly comprehend legacy code — scitools.com. https:
//scitools.com/legacy-code-tool/, 2018. (Accessed on 10/17/2018).

[20] srcML Tools. srcml. http://www.srcml.org/, 2018. (Accessed on
10/16/2018).

[21] S. Wehaibi, E. Shihab, and L. Guerrouj. Examining the impact of
self-admitted technical debt on software quality. In Proceedings of
the 23rd International Conference on Software Analysis, Evolution, and
Reengineering, volume 1 of SANER ’16, pages 179–188. IEEE, 2016.

[22] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta.
Recommending when design technical debt should be self-admitted.
pages 216–226, 2017.

http://argouml.tigris.org/wiki/Design
https://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html
https://docs.oracle.com/javase/tutorial/jaxp/sax/parsing.html
https://scitools.com/legacy-code-tool/
https://scitools.com/legacy-code-tool/
http://www.srcml.org/

	Introduction
	Case-Study Setup
	Conceptual Architecture
	Concrete Architecture
	Top Level Layer
	View and Control Layer
	Loadable Layer
	Low Level Layer

	SATD Identification

	Identifying Architectural Divergences
	High-Level Contrasting Model
	View and Control Layer Contrasting Model
	Low Level Layer Divergences
	Architectural Divergences

	Case-Study Results
	RQ1 - How many architectural divergences can be traced to SATD comments?
	Divergences that can be traced to SATD
	Divergences that can be resolved without SATD
	Divergences without resolution

	RQ2 - How many architectural divergences can be fixed by addressing SATD?

	Related Work
	Work Related to SATD
	Work related to Architecture Recovery

	Threats to Validity
	Conclusion and Future Work
	References

