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Examiner
Dr. Tse-Hsun Chen

Supervisor
Dr. Emad Shihab

Approved by
Lata Narayanan, Chair
Department of Computer Science and Software Engineering

2019
Amir Asif, Dean
Faculty of Engineering and Computer Science



Abstract

Towards the Repayment of Self-Admitted Technical Debt

Giancarlo Sierra

Technical Debt is a metaphor used to express sub-optimal source code implementations that are

introduced for short-term benefits that often must be paid back later, at an increased cost. In recent

years, various empirical studies have focused on investigating source code comments that indicate

Technical Debt, often referred to as Self-Admitted Technical Debt (SATD).

In this thesis, we survey research work on SATD, analyzing characteristics of current approaches

and techniques for SATD, dividing literature in three categories: detection, comprehension, and

repayment. To set the stage for novel and improved work on SATD, we compile tools, resources,

and data sets made publicly available. We also identify areas that are missing investigation, open

challenges, and discuss potential future research avenues. From the literature survey, we conclude

that most findings and contributions have focused on techniques to identify, classify, and comprehend

SATD. Few studies focused on the repayment or management of SATD, which is an essential goal

of studying technical debt for software maintenance.

Therefore, we perform an empirical study towards SATD repayment. We conducted a preliminary

online survey with developers to understand the elements they consider to prioritize SATD. With

the acquired knowledge from the survey responses and previous literature work, we select metrics

to estimate SATD repayment effort. We examine SATD instances found in software systems to see

how it has been repaid and investigate the possibility of using historical data at the time of SATD

introduction as indicators for SATD that should be addressed. We find two SATD repayment effort

metrics that can be consistently modeled in our studied projects and surface the best early indicators

for important SATD.
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Chapter 1

Introduction

1.1 Introduction

In Software Engineering, Technical Debt (TD) is a metaphor used to express sub-optimal source

code implementations introduced for short-term benefits which often must be paid back later, at an

increased cost. Cunningham (1992) first used this metaphor to explain that developers do not always

contribute optimal code. Whether the introduction of such code is conscious or subconscious, it is

a form of debt that has to be paid back later. A plethora of studies have studied TD in recent

years (N. S. Alves et al., 2016; Li, Avgeriou, & Liang, 2015). Empirical studies focused on

investigating source code comments that indicate Technical Debt often referred to as Self-Admitted

Technical Debt (SATD). This term was first coined by Potdar and Shihab (2014) who explored the

phenomenon for the first time. Recent work improved approaches that began by manual identification

and classification of comments that denote SATD to more automated approaches that use machine

learning to achieve increased performance (Huang, Shihab, Xia, Lo, & Li, 2018; Maldonado,

Shihab, & Tsantalis, 2017b). SATD literature studied the circumstances under which SATD is

introduced and removed from source code (Bavota & Russo, 2016; Maldonado, Abdalkareem,

Shihab, & Serebrenik, 2017a; Zampetti, Serebrenik, & Di Penta, 2018), and even implications for

software maintenance (Wehaibi, Shihab, & Guerrouj, 2016). Certainly, these studies shed light on

the importance of SATD, bringing awareness to developers and allowing them to locate debt in their

source code with relative ease.

1



One of the goals for studying the SATD phenomenon is to have awareness of the presence of

debt instances, and to manage them appropriately or to fully remove them before the debt becomes

too costly to repay. Not all SATD has to be repaid right away; it might be the case that SATD

instances are trivial, non-critical or that they can simply be present in a system without causing

further complications over time. Nevertheless, the contrary holds true as well; some SATD instances

could passively increase maintenance efforts when the debt is not caught and handled in time.

Studies proposed ways to quantify the increased difficulty to repay SATD (Kamei, Maldonado,

Shihab, & Ubayashi, 2016), or estimate the effort it needs to be repaid (Mensah, Keung, Bosu, &

Bennin, 2016; Mensah, Keung, Svajlenko, Bennin, & Mi, 2018). However, current research is yet

to provide answers to what SATD should be repaid or not. Moreover, in cases where repayment of

debt is needed, the question of which instance should be resolved first in a system and how remains

unresolved.

We conducted an in-depth literature survey of recent work on SATD. We compiled and categorized

SATD studies in 3 areas: detection, comprehension and repayment. Our findings from this survey

point at gaps in SATD research and challenges to overcome to advance the state of the art. Surveying

past work, we propose potential research tracks for work in SATD and compile the tools, approaches

and datasets that are available to the research community to extend work in the area. The majority of

SATD work has specialized on detecting, classifying or comprehending the SATD phenomenon. To

this date, very few studies have focused on approaches or techniques to manage or resolve SATD,

which is of critical importance.

Therefore, motivated by our findings from the literature survey, with the knowledge acquired

from it, and a set of compiled tools and techniques at our disposition, we centralize our efforts and

work towards the repayment of SATD. We begin by conducting an online survey with developers

to understand the factors that they consider when deciding which SATD instance to resolve first,

i.e., prioritizing SATD repayment. We combined the responses and insight from developers with

previous work and our conjectures to determine a set of metrics that serve for SATD repayment

effort. We performed an empirical study on more than 18,000 unique SATD instances (and their

change history) detected in 8 open-source software systems. Our work investigates the possibility

of using historical data taken at the time of SATD introduction to find indicators of SATD that
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should be repaid. Our findings show that two metrics for SATD repayment effort can be modeled

consistently in the studied projects, and that the best indicators of important SATD measure features

intrinsic to the SATD file, and not extrinsic historical features such as the churn or entropy of a

change that introduced SATD.

Below, we brief of the organization of this thesis by chapters and highlight the main contributions

presented throughout this work.

1.2 Thesis Overview

The main content of this thesis is condensed in the following two chapters:

1.2.1 Chapter 2: Background and Literature Survey of Self-Admitted Technical

Debt.

This chapter presents our literature survey on SATD. We begin by establishing our scope,

definitions and approach to select papers related to SATD. Then, we proceed to list and compare

the main findings and contributions of the surveyed work, organized in the categories of: detection,

comprehension or repayment of SATD. To motivate further research in the area, we include a section

detailing the opportunities to be tackled by the research community in future work, with explicit

calls to action. We conclude Chapter 2 by mentioning the limitations of our literature review and

recapping our findings from it.

1.2.2 Chapter 3: Towards Self-Admitted Technical Debt Repayment.

With the knowledge gained from the literature review in Chapter 2 and motivated to advance

SATD research, we centralize our efforts towards the repayment of SATD. In Chapter 3, we review

the online survey sent to developers to understand how they prioritize SATD in their projects.

Then, we overview the approach for our empirical study and detail the step by step collection of

data required for our study. We proceed to present the results of our study with linear regression

models built for SATD repayment effort metrics. Lastly, we find indicators from historical data for

important SATD that should be repaid.
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1.3 Thesis Contributions

The main contributions of this thesis are the following:

• An in-depth literature survey on Self-Admitted Technical Debt research work. This thesis

presents a compilation of the most recent publications in the area of SATD, highlighting gaps

and opportunities as potential research avenues for future work. We overview challenges in

the area and include a set of explicit calls to action that can be implemented by researchers to

overcome them.

• A compilation of publicly available tools, approaches, techniques and online datasets that

from surveyed work that can be used to extend SATD research.

• An empirical study of the change history of 18,242 unique SATD instances detected with

state of the art approaches in 8 software systems investigating the possibility of using change

history and defect prediction metrics as early indicators of SATD that should be addressed.

• We propose the use of a compound interest rate to measure the evolution of a SATD that

allows developers to estimate the frequency and speed at which a debt instance gains interest.

• Our resulting dataset from the empirical study, as well as the questions and responses of

the online survey to developers are made publicly available to facilitate and promote further

research in the area o SATD. The dataset contains a wide set of product and process metrics

of detected SATD instances (in all their versions) from eight open-source projects.
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Chapter 2

Background and Literature Survey of

Self-Admitted Technical Debt

2.1 Introduction

As software undergoes its development and maintenance, developers cannot not always contribute

code as required by specification. In 1992, Cunningham first introduced the metaphor of considering

the “not-quite-right code” as a form of debt (Cunningham, 1992), which came to be know as the

Technical Debt (TD) metaphor. It explains the concept of delivering a solution that is not complete,

temporary or sub-optimal; thus incurring in debt to obtain short-term benefits that have to be paid

over the long-term with an increased cost. Developers have different reasons that can lead them

to introduce technical debt, such as deadline pressure, existing low quality code, bad software

process, or business reality (Lim, Taksande, & Seaman, 2012). Technical Debt can be introduced

both consciously or unconsciously. Developers tend to underestimate the consequences of repaying

the debt, possibly leading to ever-growing problems (Bellomo, Nord, Ozkaya, & Popeck, 2016).

Because of its clear importance to the software process and quality, an abundant amount of research

has investigated TD (N. S. Alves et al., 2016; Li et al., 2015). While in the past most studies focused

on detecting and managing debt found in source code, the research scope has gradually grown to

include additional software artifacts, e.g., documentation or requirements (N. S. R. Alves, Ribeiro,

Caires, Mendes, & Spı́nola, 2014; Ernst, Bellomo, Ozkaya, Nord, & Gorton, 2015).
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In 2014, Potdar and Shihab (2014) took a new research direction by conducting an exploratory

study on source code comments that point to debt instances. The authors first referred to this

phenomenon as Self-Admitted Technical Debt (SATD). Their rationale being that when developers

consciously introduce debt (i.e., code that is either incomplete, defective, temporary, or simply

sub-optimal) and acknowledge so in the form of comments they self-admit it. Brief examples of

these comments are: “TODO: - This method is too complex, lets break it up” from ArgoUml, and

“Hack to allow entire URL to be provided in host field” from JMeter (Maldonado & Shihab, 2015;

Maldonado, Shihab, & Tsantalis, 2017b).

Potdar and Shihab (2014) extracted a large set of source code comments from 4 large open-source

systems and manually analyzed them to point at SATD instances. As found by their investigation,

this phenomenon occurs commonly in software systems. Since then, a number of studies focusing

on various aspects of SATD have emerged, exploring and improving approaches and techniques to

better identify, understand and manage SATD. The recent and increasing turn out of empirical work

in this branch of TD denotes the importance given to it by the Software Engineering community.

Taking into consideration that this research track is fairly recent, the early efforts of current studies

on SATD remain scattered in focus and face various challenges to overcome. We believe that it is

the right time to reflect on recent accomplishments in the area and examine open problems to pave

the path for future work.

Therefore, this chapter presents a survey of SATD studies from recent years, i.e., since the

original ICSME paper that proposed SATD in 2014. Through our examination of the published

papers, we find that the vast majority of SATD research work can be divided into three categories:

work focusing on the detection of SATD, work that aims to improve the comprehension of SATD,

and work focusing on the repayment of SATD. Hence, we structure our survey to reflect these

3 main categories. Specifically, our study provides an overview of past and current works on

the detection, comprehension and repayment of SATD. Moreover, to support and promote further

research in the domain, we identify potential future avenues for SATD research and discuss current

challenges. Throughout this survey we also point at available resources such as tools and datasets

that can serve as foundations or baselines for new SATD studies. A table with the published artifacts

and online references from the surveyed work can be found in Table A.1 of Appendix A.
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The remainder of this chapter is organized as follows: Section 2.2 describes the objectives,

scope and literature selection for the survey; Section 2.3 analyses and compares the findings and

contributions of current SATD studies; Section 2.4 goes over the possible future research avenues

in this area and its challenges. Lastly, Section 2.5 presents the conclusions and limitations of the

survey.

2.2 Preliminaries

This section details the scope and selection of studies for our survey. We also provide definitions

for the terms we use throughout this chapter. Finally, we present a high-level overview of the SATD

literature published to date.

2.2.1 Scope and Paper Selection

The focus of this survey is Self-Admitted Technical Debt as a sub-domain of Technical Debt.

We clarify that work focusing entirely on Technical Debt (and not SATD specifically) is not in

scope and refer our readers to recent literature that focused on that area, e.g., N. S. Alves et al.

(2016); Li et al. (2015). To select the papers included in this survey we used both, the references

from known SATD research, and academic work available online through popular search engines,

namely: Google Scholar, ACM, and IEEE. We chose the exploratory study by Potdar and Shihab

(2014) as the basis for this survey because it is the first to investigate the SATD phenomenon and

remains as the most cited work in the area. Hence our survey encloses work published since its

release year (2014) until the compilation date of this survey (July 2018). We searched for all the

papers that cited (Potdar & Shihab, 2014) in the aforementioned online search engines using the

keywords ”SATD” and ”Self-admitted Technical Debt”, limiting the results to papers released since

2014. A complete list of the initial studies that we selected and did not select can be found in

Table A.2 of Appendix A.

Once we identified a paper related to SATD, we applied a snowball approach to find other

relevant cited work (Wohlin, 2014). We repeated this procedure for each work that cited Potdar and

Shihab (2014), however, we did not find any other (new) SATD related papers that were not already

7



included in the initial list or found by the search engines. Given that SATD is fairly new and due

to the amount of mainstream work in the area, we do not perform a systematic literature study; we

leave that for the near future when the amount of SATD-related work justifies such kind of survey.

2.2.2 Definitions

We classified the surveyed papers into 3 main categories tied to the life cycle stages of SATD,

i.e., the sequence of phases that an instance of SATD goes through, from its introduction, to

its evolution, and lastly its removal from a software system. Hence, the work is aligned along:

detection, comprehension, and repayment of SATD. We elaborate on what studies fall under each

category below:

• Detection studies: those that focus on proposing, studying or improving: approaches, techniques,

and tools to identify or detect instances of SATD.

• Comprehension studies: those that investigate the phenomenon of SATD itself and are

dedicated to understand the life cycle of SATD. These studies encompass topics such as:

introduction, diffusion, evolution, removal of SATD, or its relation with different aspects of

the software process.

• Repayment studies: those that propose, validate, or replicate: approaches, techniques, and

tools that seek to remove (i.e., fully repay) or mitigate (i.e., partially repay) SATD instances.

2.2.3 Overview of Selected Papers

Given the scope and definitions above, Table 2.1 presents a chronologically-ordered overview

of the primary SATD studies. Those marked with a star (*) are studies which focus in not dedicated

to SATD, however, a relevant portion of them addresses to SATD and presents findings related to

its comprehension or detection, so we consider them within the primary group. Although related

work without a direct contribution or finding on SATD is not considered within the selected group of

papers, we mention and reference such work throughout this survey because they support the papers

we selected or serve as links to potential future avenues in this area. In Table 2.1 we observe that
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50% of the primary SATD papers focus on comprehension, 55% on detection, while only 10% focus

on repayment. Note that 3 studies are classified as having 2 topics of focus, hence these percentages

overlap. Regarding the paper’s publication avenues, 60% of them are published in conferences,

20% in journals, and another 20% were presented in workshops.
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Table 2.1: Overview of primary SATD studies.

Reference Title Venue Venue Type Focus

Potdar and Shihab (2014) An Exploratory Study on Self-Admitted Technical Debt. ICSME Conference Comprehension, detection

Maldonado and Shihab (2015) Detecting and Quantifying Different Types of Self-Admitted Technical Debt. MTD Workshop Comprehension, detection

Freitas Farias, de Mendonça Neto, da Silva, and

Spı́nola (2015a)

A Contextualized Vocabulary Model for Identifying Technical Debt on Code

Comments.

MTD Workshop Detection

Wehaibi et al. (2016) Examining the Impact of Self-admitted Technical Debt on Software Quality. SANER Conference Comprehension

Freitas Farias, Santos, Kalinowski, Mendonça,

and Spı́nola (2016c)

Investigating the Identification of Technical Debt Through Code Comment

Analysis.

ICEIS Conference Detection

Bavota and Russo (2016) A Large-Scale Empirical Study on Self-Admitted Technical Debt. MSR Conference Comprehension

Vassallo et al. (2016) Continuous Delivery Practices in a Large Financial Organization. ICSME Conference Comprehension*

Kamei et al. (2016) Using Analytics to Quantify the Interest of Self-Admitted Technical Debt. TDA Workshop Comprehension

Mensah et al. (2016) Rework Effort Estimation of Self-Admitted Technical Debt. TDA Workshop Repayment, detection

Ichinose et al. (2016) ROCAT on KATARIBE: Code Visualization for Communities. ACIT Conference Detection*

Maldonado, Shihab, and Tsantalis (2017b) Using Natural Language Processing to Automatically Detect Self-Admitted

Technical Debt.

TSE Journal Detection

Palomba, Zaidman, Oliveto, and De Lucia

(2017)

An Exploratory Study on the Relationship between Changes and Refactoring. ICPC Conference Comprehension*

Miyake, Amasaki, Aman, and Yokogawa (2017) A Replicated Study on Relationship Between Code Quality and Method

Comments.

ACIT Conference Comprehension*

Maldonado, Abdalkareem, et al. (2017a) An Empirical Study on the Removal of Self-Admitted Technical Debt. ICSME Conference Comprehension

Zampetti, Noiseux, Antoniol, Khomh, and

Di Penta (2017)

Recommending when Design Technical Debt Should be Self-Admitted. ICSME Conference Detection
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Mensah et al. (2018) On the Value of a Prioritization Scheme for Resolving Self-Admitted

Technical Debt.

JSS Journal Repayment

Huang et al. (2018) Identifying Self-Admitted Technical Debt in Open Source Projects using

Text-Mining.

EMSE Journal Detection

Liu et al. (2018) SATD Detector: A Text-Mining-Based Self-Admitted Technical Debt

Detection Tool.

ICSE Conference Detection

Zampetti et al. (2018) Was Self-Admitted Technical Debt Removal a real Removal? An In-Depth

Perspective.

MSR Conference Comprehension

Yan et al. (2018) Automating Change-level Self-admitted Technical Debt Determination. TSE Journal Detection
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2.3 Analysis and Comparison of Current SATD Work

In this section we first go over the techniques, tools, and approaches presented by current

research work in SATD. We first present work that focused on identifying instances of debt, then we

present empirical studies that have studied the phenomenon to understand it, and finally contributions

that aim to manage and repay it. A list of the software systems studied by the surveyed work along

with how each study validates TD is available in Table A.3 of Appendix A.

2.3.1 Detection of SATD

In the life cycle of SATD, debt instances are first introduced by developers into the source

code; thus naturally, the first step to study this phenomenon is to identify it. In the past, several

studies focused on source code comments, their management, and co-evolution with code; while

others focused on the identification and management of Technical Debt (N. S. Alves et al., 2016;

Fluri, Wursch, & Gall, 2007a; Li et al., 2015; Storey, Ryall, Bull, Myers, & Singer, 2008; Tan,

Yuan, Krishna, & Zhou, 2007). However, these studies did not investigate or relate the presence of

technical debt within the content of comments. Inspired by such previous work, Potdar and Shihab

(2014) were the first to look at source code comments to identify technical debt, and introduced

the term of Self-Admitted Technical Debt, referring to code that is either incomplete, defective or

temporary, and that is knowingly introduced by developers. Seven different approaches to detect

SATD have appeared in literature since; 6 of them identify SATD at the file level looking at the

revision history of a repository, while 1 approach aims to detect SATD at the change level. In this

subsection, we present the 6 approaches that work at the file level divided in two groups: i) those

approaches that are based on the identification of textual patterns in comments, which we name

“pattern-based approaches”; and ii) those based on more advanced and automated techniques, such

as machine learning classifiers or natural language processing, which we name “machine learning

approaches”. Lastly, we present the only approach that focuses on detecting SATD at the change

level, and a comparison between the surveyed approaches.
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Pattern-based Approaches

As a first step in SATD identification at the file level, Potdar and Shihab (2014) extracted

101,762 source code comments from 4 large open-source systems using the srcML toolkit (Collard,

Decker, & Maletic, 2011), and manually read through them to expose patterns that indicate SATD.

In total, the authors identified 62 patterns and made them publicly available to enable further

research (Potdar & Shihab, 2015b). Some examples of the identified patterns are: hack, fixme,

is problematic, this isn’t very solid, probably a bug, hope everything will work, fix this crap. Using

these patterns, their study found that SATD can exist in up to 31% of files of a system; a finding that

triggered further research in this domain.

For the remaining of this work, we will refer to the usage of these 62 patterns as the pattern-based

detection approach. This approach allows for an easier SATD identification than simple manual

inspection of comments, which is time-consuming and requires expertise. However, because these

patterns resulted from analyzing 4 projects only, they may not generalize to detect SATD in other

software systems, compromising the accuracy of the approach. Additionally, in case the set of

patterns has to be extended, additional effort must be spent manually inspecting source code comments

from different projects and surfacing new patterns that can be used for detecting TD in comments.

Following up to the previous findings, Maldonado and Shihab (2015) manually inspected the

comments of another 5 open-source systems, this time however, with a motivation to explore the

different types of SATD contained in them. They found 5 main types of SATD: design, defect,

documentation, requirement and test debt (See 2.3.2). Instead of srcML, the tool JDeodorant

was used to parse the extracted comments (Tsantalis, Chaikalis, & Chatzigeorgiou, 2008). Four

filtering heuristics were introduced to remove irrelevant comments, which are: a) removing license

comments; b) aggregating consecutive single-line comments; c) removing commented source code;

and d) removing Javadoc comments. To ensure these heuristics do not filter out SATD instances,

comments containing task-reserved words (“todo”, “fixme”, or “xxx”) were not removed. The

implementation of these heuristics proved to reduce the amount of comments to analyze manually

by 77% on average, easing detection efforts. To contribute with the identification of specific types

of SATD, the output dataset of classified comments by types was made publicly available to the
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community (Potdar & Shihab, 2015a).

Motivated to facilitate the detection of SATD using the pattern-based approach, Ichinose et al.

(2016) extended their code visualization tool ROCAT, which renders the source code of a system as

city-like virtual reality environments, to support SATD. With this visualization model, buildings are

constructed for each source file, their dimensions are based on software product metrics, and SATD

instances are rendered as buildings of different sizes and colors based on comments that contain

the patterns surfaced by Potdar and Shihab (2014). This visualization provides developers with a

high-level view of a system’s source code that includes visual cues of SATD instances, removing

the need of reading comments to visualize where SATD occurs in their source code. ROCAT was

integrated with Kataribe (Fujiwara et al., 2014), a Git hosting service; thus, any project registered

on Kataribe can benefit from ROCAT’s visualization capabilities.

An alternative and extension to the pattern-based detection approach was later proposed by

Freitas Farias et al. (2015a), who introduced CVM-TD, a Contextualized Vocabulary Model for

Identifying TD of different types in source code comments. This model relies on identifying word

classes, namely: nouns, verbs, adverbs, and adjectives that are related to Software Engineering

terms and code tags used by developers such as “TODO” (Freitas Farias, de Mendonça Neto, da

Silva, & Spı́nola, 2015d). The goal of applying the CVM-TD model, which can be automated, is to

obtain a subset of comments that will likely contain SATD. The proposed vocabulary (Freitas Farias,

de Mendonça Neto, da Silva, & Spı́nola, 2015b) focuses on words that can be systematically related

to each other and then mapped to different types of TD as defined by N. S. R. Alves et al. (2014).

To validate CVM-TD, an empirical study was conducted on Apache Lucene and JEdit, from which

comments were extracted using eXcomment (Freitas Farias, de Mendonça Neto, da Silva, & Spı́nola,

2015c), a tool that uses an Abstract Syntax Tree to store useful comment-related information and

to filter them with heuristics similar to the ones proposed by Maldonado and Shihab (2015). The

empirical evaluation of the model showed a considerable difference in the comments returned by the

model and the ones validated to contain SATD. This finding suggested a low detection performance

and pointed at the need to enhance how the word classes are mapped to different types of SATD to

improve the model.

Later in 2016, Freitas Farias et al. (2016c) conducted an additional experiment on CVM-TD to
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characterize its overall accuracy and the factors that influence its detection. This time, the CVM-TD

model was applied to ArgoUML; the output comments were given to 3 researchers with expertise in

TD to create an oracle of comments indicating TD. The same output was also given to 32 Software

Engineers with varied experience and different English reading levels to flag those suggesting TD.

The experiment found that English reading skills of participants influenced their identification of

TD, but their classifying capability was not affected by their experience. Based on the TD oracle,

the CVM-TD model’s output served experienced and non-experienced developers alike, allowing

them to have an accuracy on average of 0.673 when detecting TD comments; a better performance

than previously reported (Freitas Farias et al., 2015a). The experiment also requested participants to

highlight the patterns that induced marking a comment as TD, which surfaced common patterns and

TD indicating comments to extend the vocabulary of CVM-TD (Freitas Farias, Santos, Kalinowski,

Mendonça, & Spı́nola, 2016a, 2016b). Note that in both empirical studies, i.e., (Freitas Farias et al.,

2015a, 2016c), the authors did not explicitly refer to source code comments that aid in the detection

of TD as SATD, nevertheless, we consider both studies within scope as they study this same precise

phenomenon.

Mensah et al. (2016) proposed the use of text-mining in SATD detection. Their approach aimed

to estimate the effort needed to resolve SATD (See 2.3.3) and was composed of 5 phases. The first

3 phases of the approach are aimed at the extraction, detection and classification of SATD; which is

built on top of a pattern-based approach and a dictionary from the dataset of comments classified into

different SATD types published by Maldonado and Shihab (2015). We will refer to this approach

as Text-mining. Improving from the pattern-based approach, this one first preprocesses comments

to remove special punctuation characters and stop words. However, this introduces a drawback.

Removing punctuation characters such as ! or ? can potentially take away semantic meaning from

comments, i.e., the removal of a simple question mark could alter the meaning or intention of a

developer’s comment. Moreover, no filters such as the heuristics proposed and used previously, e.g.,

(Freitas Farias et al., 2016c; Maldonado & Shihab, 2015) were applied to reduce preprocessing.
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Machine Learning Approaches

Moving towards more advanced SATD detection approaches at the file level, Maldonado, Shihab,

and Tsantalis (2017b) used NLP techniques to automatically identify design and requirement SATD

from source code comments. We will refer to this approach as NLP detection. The authors

extracted, filtered, and manually classified a dataset of 62,566 comments from 10 open-source

projects into 5 different types of SATD: design, test, defect, documentation, and requirement debt.

This dataset combined 29,473 comments extracted from 5 open-source projects, and 33,093 others

extracted from 5 additional projects in previous work (Maldonado & Shihab, 2015). With it, the

authors trained an NLP maximum entropy classifier (Stanford Classifier) focusing on requirement

and design SATD, as they are the most recurrent debt types, making up more than 90% of the

SATD comments (Maldonado & Shihab, 2015). The NLP classifier generates a set of feature words

that contribute positively or negatively to the classification of a comment. A 10 fold cross-project

validation training on 9 projects and testing on the remaining showed that the NLP detection achieved

an accuracy that surpassed the previous pattern-based detection. For design debt, the classifier

scored an average F1-measure of 0.620, 0.403 for requirement debt, and 0.636 disregarding debt

types. The study also presented top-10 lists of textual features that can be directly used to identify

SATD in approaches that do not rely on NLP techniques. These features were found to differ among

one another, indicating that developers use distinct vocabularies to admit different kinds of SATD.

Training an NLP classifier can be expensive because it relies on a manual classification of

comments. However, Maldonado, Shihab, and Tsantalis (2017b) showed that, to achieve 90% of

the classifiers performance, approximately 23% of the SATD comments were needed for training,

which eases the replication of this approach. To enable further research on SATD, the full resulting

dataset of manually classified comments and their resulting NLP classification was made publicly

available (Maldonado, Shihab, & Tsantalis, 2017a).

The most recent SATD detection technique was presented in 2017 by Huang et al. (2018), who

proposed an approach to automatically detect SATD using text-mining and a composite classifier.

We will refer to this as the Ensemble text-mining approach. Its root concept is to determine if a

comment indicates SATD or not (without focusing on SATD types) based on training comments
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from different software projects. For this, the authors leveraged a dataset of 212,413 comments

classified by Maldonado, Shihab, and Tsantalis (2017b) from 8 open-source projects. This approach

preprocesses comments by tokenizing, removing stop-words and stemming their descriptions to

obtain textual features. Feature selection (Information Gain) is then applied to detect the top 10%

most useful features to predict the label of a comment, indicating if it contains SATD or not.

Multiple sub-classifiers are trained with a Naive Bayes Multinomial (NBM) technique to determine

the label of a comment based on their number of contributing features. A composite classifier

takes the vote per comment of each sub-classifier to reach a final classification. Several aspects

of the ensemble text-mining performance were evaluated in terms of F1-score. The approach was

benchmarked against the pattern-based and NLP detection of SATD, finding that it performed better

than both, had a superior runtime performance, and also required a small portion of comments for

training.

The ensemble text-mining approach was implemented very recently by Liu et al. (2018) as an

Eclipse plugin named SATD Detector to facilitate the detection and management of debt instances

directly from an IDE environment. SATD Detector parses the source code of a system when it is

loaded or edited and applies the ensemble text-mining approach to detect and report SATD instances

along with their respective locations. This plugin completely automates the detection of SATD with

a built-in classifier that can be used out of the box to leverage the best-performing SATD detection

technique to this date.

From a different SATD detection perspective, Zampetti, Noiseux, et al. (2017) proposed TEDIOuS

(Technical Debt Identification System), a machine learning approach that recommends to developers

when they should self-admit design TD. Instead of analyzing comments, the idea is to leverage

source code level features. When a developer adds new code, the approach can analyze it and

recommend if it should be flagged (i.e., to be self-admitted as debt) or not. TEDIOuS’ identification

capabilities relies on readability and structural metrics extracted with a srcML-based tool, and the

warnings raised by PMD and CheckStyle, two static analysis tools.

TEDIOuS was evaluated using the classified comments of 9 projects from the dataset made

available by Maldonado, Shihab, and Tsantalis (2017b). Since these comments were detected at

the file level, a matching of comments to the method level was required for TEDIOuS features’
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scope. Different classifiers were tested with balanced and unbalanced training data using cross

validation within a project and across all studied projects. TEDIOuS achieved it best performance

using a Random Forest classifier, with a cross-project prediction precision of 67%, 55% recall, and

an accuracy of 92%. The features related to readability and structural metrics used by TEDIOuS

had a major contribution in recommending design SATD. When compared against DECOR (Moha,

Guéhéneuc, Duchien, & Meur, 2010), a smell detector tool that leverages different code features,

the SATD recommending performance of TEDIOuS proved to be superior.

Change-level Detection

All previous SATD detection studies aimed to identify debt instances at the file level. Yan et al.

(2018) proposed a novel approach to automate the detection of SATD at the change level. The idea is

to catch the introduction of SATD when a software change occurs, instead of inspecting if a file that

was changed previously contains SATD. The authors built a determination model using a Random

Forest classification with data labeled from comment analysis, and features extracted from source

code repositories. The data labeling leverages an enhanced version of the dataset made available by

Maldonado, Abdalkareem, et al. (2017a); it contains 100,011 manually classified software changes

of 7 open-source projects, where each change is labeled as TD-introducing or not. Each change

is considered TD-introducing when the resulting file version is the first to contain SATD. A total

of 25 change features were extracted from the source control repository of the studied systems to

characterize each change. These features were divided into 3 dimensions in the study: 16 for the

diffusion of a change (i.e., amount of changed LOC, files, subsystems, programming languages), 3

for its history (i.e., information of the changed files and the developers who made the change), and

6 for its message (i.e., information extracted from the change logs).

The proposed model was evaluated performing a stratified 10-fold cross validation repeated

10 times for each of the 7 studied projects. This evaluation considered 2 performance measures:

AUC (area under the receiver operating characteristic curve), and Cost-effectiveness, analyzed

by controlling the amount of changed LOC inspected by the model. To contrast the model’s

performance, 4 other baseline models were studied: Random Guess, Naive Bayes, Naive Bayes

Multinomial, and Random Forest (the last 3 models used a classification based on change messages
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only). The study results showed that the proposed model achieves a better performance in terms

of AUC (0.82) and cost-effectiveness (0.80) when compared to baseline models, being able to

detect more TD-introducing changes across a wide range of changed LOC to inspect. When

investigating the importance of the extracted features, the results indicated that all 3 dimensions

improve significantly improve the performance of the compared models, and that the diffusion

dimension has the most influence when determining TD-introducing changes. The performance

achieved by this SATD detection approach is not contrasted with others in Table 2.2 as the SATD

detection of these approaches occur in to different stages of development and thus they differ in

nature. The reported performance of the change-level SATD detection is also reported in terms of

AUC and not as an F1-score.

Comparison and Limitations of Current Approaches

The original pattern-based approach for SATD detection has the benefit of being simple to

replicate with a fixed set of patterns to match against textual comments. However, it has the

drawback of leading to up 25% of false positives, as found by Bavota and Russo (2016). Although

the text-mining and CVM-TD approaches later built on top of the pattern-based approach with

added heuristics, both are still affected by an underlying accuracy problem and are more complex to

replicate. These early approaches lead to SATD datasets that supported the creation of more accurate

and automated techniques, such as the NLP, TEDIOUS, and ensemble text-mining approaches,

which implement machine learning. While TEDIOUS recommends when to self-admit technical

debt, it scopes to design debt only and is not comparable with other approaches as it looks at

source code instead of comments to base its recommendations. In contrast, the NLP detection

and ensemble text-mining approaches focus of finding SATD in comments with good accuracy.

While the NLP approach is limited to detect design and requirement debt only, the ensemble

text-mining approach disregards SATD types, and thus, is a more effective all-around approach

when looking for SATD in a software repository. Another benefit when compared to other detection

approaches, is that TEDIOUS does not require manual inspection of comments, which aside from

being time-consuming is prone to human error. Furthermore, since it was recently implemented as

an IDE tool (SATD Detector plugin), it can now be used to detect SATD during or after development.
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Table 2.2: Average accuracy benchmark of SATD detection approaches.

Detection Approach Reported F1-score

Pattern-based 0.123
NLP 0.576
Ensemble text-mining 0.737

A performance comparison between SATD detection approaches is presented in Table 2.2 as

benchmarked by Huang et al. (2018). This comparison uses the average accuracy values for detecting

SATD disregarding debt types. The Text-mining and CVM-TD approaches are not included in the

benchmark as their TD detection performance were not reported by (Freitas Farias et al., 2016c)

and (Mensah et al., 2016). The F1-score for the NLP approach in Table 2.2 is lower than the value

reported by Maldonado, Shihab, and Tsantalis (2017b) (0.636); in either case, the performance of

the ensemble text-mining approach is higher.

As a recap, the studies that focused on the detection of SATD contributed with approaches

that evolved from simple manual inspection of comments to complex automated approaches that

identify SATD instances accurately, removing manual steps. Similarly, the text-mining approach,

evolved the classification of SATD types from manual inspection to an automated tool. In Table 2.3

we overview the main findings and contributions per SATD detection study, the number of studied

projects, and the technique for comment extraction, where applicable. The visualization technique

presented by Ichinose et al. (2016) can be applied to multiple systems, thus no specific one is studied

and no comment extraction is performed. A similar case happens with the contribution by Liu et

al. (2018), which is a tool implementing the approach proposed by Huang et al. (2018). From

the observations made in this section, we consider the ensemble text-mining detection approach

(implemented in the SATD Detector tool) to be the most promising approach to enable future SATD

research. Due to its performance and practicality, we believe this tool will promote the detection of

SATD, and the compilation of richer datasets to improve the validity of SATD studies.
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Table 2.3: Overview of main contributions per SATD detection study.

Reference Main Contribution(s) / Finding(s) Studied Systems Comment Extraction

Potdar and Shihab (2014) Pattern-based detection approach. SATD exists in 2.4% to

31% of files.

4 scrML-based

Maldonado and Shihab (2015) Dataset of classified SATD comments per type. Filtering

heuristics.

5 Jdeodorant

Freitas Farias et al. (2015a) CVM-TD detection approach. 2 eXcomment

Ichinose et al. (2016) City-like code and SATD visualization in a virtual reality

environment.

N/A N/A

Freitas Farias et al. (2016c) Set of Patterns and comments for TD identification in

comments.

1 eXcomment

Mensah et al. (2016) Text-mining detection/classification approach. 4 Not reported

Maldonado, Shihab, and Tsantalis (2017b) NLP Detection approach. Data set of classified SATD. 10 JDeodorant

Huang et al. (2018) Ensemble text-mining detection approach. 8 NLP Dataset

Zampetti, Noiseux, et al. (2017) TEDIOuS approach for recommending when to self-admit

TD.

9 NLP Dataset

Liu et al. (2018) Eclipse plugin to automatically detect SATD. 9 NLP Dataset

Yan et al. (2018) Change-level SATD detection approach. 7 Relies on Maldonado,

Abdalkareem, et al. (2017a)
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2.3.2 Comprehension of SATD

Different studies were conducted to understand the SATD phenomenon throughout its life cycle,

while others investigated its repercussion on the software process itself. A better understanding of

SATD enables researchers and practitioners to develop approaches that can be used to manage it.

One of the first efforts towards understanding SATD were given by Potdar and Shihab (2014); in

their exploratory study they tried to understand the occurrence of SATD, why it is introduced into

software systems, and how much of it is removed after its introduction. By using a pattern-based

detection in 4 software projects, SATD was found to be common, happening in 2.4% to 31% of

studied system’s files. Regarding the introduction of SATD, Potdar and Shihab (2014) investigated

how the experience of developers, time to release pressure, or the complexity of changes induced the

addition of debt. Contrary to what was expected, they found that experienced developers introduced

most of the SATD, while tight deadlines and change complexity did not affect its introduction. In

relation to SATD removal, they found that the majority of SATD is removed in the immediate next

release.

Types of SATD

Once SATD was found to be a common phenomena, Maldonado and Shihab (2015) quantified

and classified the different types of SATD that exist in software projects. In a previous study,

N. S. R. Alves et al. (2014) classified Technical Debt into 13 different types and proposed indicators

to identify each of them. Based on these types, Maldonado and Shihab (2015) manually analyzed

33,093 comments and classified them, observing that 5 types of SATD existed in source code

(design, defect, documentation, requirement, and test debt) (Potdar & Shihab, 2015a). We include

brief examples of debt comments as classified by Maldonado and Shihab (2015) to help understand

the detected SATD types:

• Design debt:“/*TODO: really should be a separate class */” from ArgoUml.

• Defect debt:“Bug in the above method” from Apache JMeter.

• Requirement debt:“//TODO no methods yet for getClassname” from Apache Ant.

• Documentation debt:“**FIXME** This function needs documentation” from Columba.

• Test debt:“//TODO enable some proper tests!!” from Apache JMeter.
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The remaining 8 types of TD defined by N. S. R. Alves et al. (2014) were not found because

they are not likely to appear in source code comments but in other artifacts. Build debt for example,

would appear in build files and not in the inspected comments extracted from Java files. The

quantification results of the study revealed that from over 33 thousand analyzed comments, 7.42%

of them (2,457) contained SATD. Regarding the quantification per type, the majority (42% to 84%)

of SATD found was design debt, followed by requirement debt, making up 5% to 45% of the debt

instances. Defect, documentation, and test debt accounted for less than 10% of the classified SATD

cases when combined.

Large-scale Studies

To broaden the understanding of the phenomenon, Bavota and Russo (2016) conducted a large-scale

empirical study in 159 software systems (120 from the Apache ecosystem and 39 from the Eclipse

ecosystem) aiming to make a differentiated replication of the initial findings by Potdar and Shihab

(2014). Using the pattern-based detection, they investigated the diffusion of SATD in open-source

systems and its evolution across the change history of the studied systems to see if: i) it increases

or decreases over time, ii) how long it remains in the system, iii) how frequently it is fixed, and iv)

who introduces or fixes SATD.

A closer look at a statistically significant sample of SATD instances revealed that, in contrast

with previous findings by Maldonado and Shihab (2015), code debt was the most occurring debt

type making up 30% of the cases, against a lower 13% for design debt. Furthermore, this inspection

showed that over 25% of the comments flagged by the pattern-based detection were false positives.

Bavota and Russo (2016) looked at the introduced, removed and unaddressed SATD comments in

the projects’ change history and observed that it increases over time because of debt instances being

added but not addressed. Although 57% of SATD was found to be removed from source code, it has

a long survivability, lasting for more than 1,000 commits on average before being fixed. Inspecting

the removed SATD showed that 63% of the time, the developer who removes a debt instance is the

same one who introduced it; while in the remaining 37% of cases the developers who fix SATD

have higher experience than those who introduce it. The study also measured the partial correlation

between quality code metrics (Coupling, Complexity and Readability) and SATD, but found that it
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is not significant between any of them, an in-line observation with Potdar and Shihab (2014).

Impact of SATD

Instead of looking at code quality metrics which were validated to have no clear correlation with

SATD, Wehaibi et al. (2016) investigated the relation between SATD and the quality of software by

looking at defects. Their study used a pattern-based detection to find files that contain SATD in the

repositories of 5 open-source systems; in total 10.17% to 20.14% of files were labeled as SATD

files. To find defects, the change history of every system was mined to find patterns that indicate

defects, such as: “defect”, “bug ID”, “fixed issue #ID”. With both datasets, the study investigated:

i) the amount of defects in files with and without SATD; ii) the percentage of SATD related changes

that are defect-inducing; and iii) if changes that involve SATD files are more difficult than the ones

that do not. The authors compared the percentage of defects in SATD vs. non-SATD files, and the

amount of defects in SATD files before and after the debt introduction. They found no clear relation

between defects and SATD. To observe if SATD-related changes introduced future defects, they

used a bug-introducing change identification algorithm proposed by Śliwerski, Zimmermann, and

Zeller (2005) (SSZ) as implemented in Commit Guru (Rosen, Grawi, & Shihab, 2015), and found

that they are less prone to introduce future defects. Lastly, using 4 change difficulty measures from

previous work, the authors found that SATD-related changes were more difficult than non-SATD

ones.

To clarify the relation between non-SATD source code comments and software quality, Miyake

et al. (2017) partially replicated the study by Wehaibi et al. (2016) on 4 open-source projects. Their

results agreed with the previous study, finding that SATD files are more prone to undergo a defect

fix. However, they also found that the mere existence of comments at the method or file level is

related to more future code fixes, even if they do not contain SATD. Nevertheless, SATD comments

were found to be more effective to identify fix-prone files and methods than comments without

SATD.
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Removal of SATD

Most of the previous comprehension studies targeted the introduction, diffusion, and evolution

of SATD. Early studies also looked into the final stage of SATD, its removal (Bavota & Russo,

2016; Potdar & Shihab, 2014). Their efforts were not dedicated specifically to the removal of debt.

Recently, Maldonado, Abdalkareem, et al. (2017a) studied precisely this, investigated: i) how much

SATD is removed from source code; ii) who removes it; iii) how long does it remain in a system;

and iv) what leads to removal activities. The authors studied 5 well-commented systems written in

Java, which vary in size, domain and number of contributors. Their study showed that 40.5% to

90.6% of SATD was removed from the study systems. Comparing the names and e-mail addresses

of the developers who introduced and removed SATD from the repository commits showed that on

average 54.5% of SATD is self-removed, i.e., by the one who introduced the debt; confirming the

finding first presented by Bavota and Russo (2016). A comparison between self-removed SATD and

the one removed by others indicated that the second survives for longer in a system. Concerning

the median survival of SATD, the study found that it can remain in a system between 18 to 172

days before being removed. A survey of developers was also conducted in order to understand

what activities lead to the removal and introduction of SATD (Maldonado, Abdalkareem, Shihab, &

Serebrenik, 2017b). The survey revealed that developers mostly add SATD to track potential bugs

or code that needs improvement; similar to the finding of Vassallo et al. (2016). On the other hand

and in-line with the observation by Palomba et al. (2017), participants indicated that they mostly

remove SATD when fixing bugs or adding features, but not as a dedicated activity.

After the above observations on the removal of SATD, Zampetti et al. (2018) conducted an

in-depth quantitative and qualitative empirical study on the removal of SATD. The authors built

on top of the previous work of Maldonado, Abdalkareem, et al. (2017a) by analyzing their same

dataset, focusing on the underlying circumstances of SATD removal from source code. The study

investigated how much debt was removed by accident, i.e., without the intention of resolving debt,

but as a collateral of software evolution. The study found that 25% to 60% of SATD comments, as

they were removed due to full class or method removals. However, 33% to 63% of SATD comments

were removed as part of a change in their corresponding method. In the remaining instances,
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comments were removed without any actual code change, possibly due to developers removing an

outdated SATD comment or accepting the debt’s risk. By computing the cosine similarity between

SATD comments and commit messages, the authors looked for documented evidence of SATD

removals, finding that only about 8% of the cases mentioned addressing the debt or justifying why

it is not required to do so anymore. The study also looked at the types of changes that happen

along SATD removals, finding that developers often apply complex changes across the code but

also specific ones related to method (API) calls and control logic. On removals associated with API

changes, 55% belong to the addition or editing of features; while removals linked to conditional

changes are more diverse but often involve the removal of code.

SATD Interest

Several works shed light on the SATD life cycle stages. Nevertheless, none had yet proposed a

concrete way to measure the interest of SATD, i.e., the increased cost of repaying debt in the future.

A recent study by Kamei et al. (2016) focused on determining a way to measure this cost precisely. It

investigated if the debt instances incur a positive interest (i.e., they become more difficult to repay),

negative interest (i.e., become less difficult to repay), or no interest over time. Sixteen different

code complexity metrics were first evaluated and then filtered down to two, namely LOC and

Fan-In. LOC was used because it is highly correlated with most of the metrics evaluated initially,

excluding Fan-In, thus both were selected. This work performed a case study on Apache JMeter

and used JDeodorant to extract raw comments, which were then filtered and manually validated

to contain SATD. To measure the incurred interest, the study scoped to the method-level for the

SATD instances and computed the LOC and Fan-In metrics at the moment of their introduction

and removal. Results showed that for both measures, 42% to 44% of SATD incurs a positive

interest; while around 8% to 13% and 42% to 49% has negative and no interest, respectively. The

interest quantification of SATD is a proxy to estimate the effort needed to repay it. In the following

subsection we go over additional studies with this focus.
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Other Empirical Findings Related to SATD

Two recent studies presented observations related to SATD while looking at different aspects

of software development. While studying the continuous integration practices of 152 practitioners

from a large financial organization (ING Netherlands), Vassallo et al. (2016) showed that 88% of

the practitioners mentioned self-admitting their bad implementations of code through comments

(i.e., SATD). This observation reflects the practical importance of addressing SATD during the

development process. In an alternate scenario, while investigating the relation between 3 types of

code changes and refactoring activities, Palomba et al. (2017) noticed that in feature-introducing

changes, the refactored files often had SATD in its previous version. Because of this, they applied

a pattern-based detection to spot SATD in each refactoring activity. Their results showed that 46%

of the classes had a SATD instance before being refactored, and 67% of the commits that refactored

code also removed a debt instance. This indicates that developers mostly apply refactorings to repay

existing debt before introducing new features into their source code.

To summarize the findings and contributions of the above comprehension studies, we present

them in Table 2.4, along with the number of studied software systems. Since comprehension studies

rely on a SATD detection approach, we also include them along with the comment extraction tools

used in Table 2.4. Note that most comprehension studies used a manual inspection or a pattern-based

detection, while only one study implemented a NLP approach. Certainly, this trend is caused by the

difficulty to replicate different detection approaches. However, it compromises their effectiveness

of studying the phenomenon. We expect and encourage future studies to implement the more recent

and accurate SATD detection approaches.
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Table 2.4: Overview of main findings per SATD comprehension study.

Reference Contribution(s) / Finding(s)
Studied

Systems

Detection

Approach

Comment

Extraction

Potdar and Shihab (2014) - More experienced developers tend to introduce more SATD. 4 Manual srcML based

- Time to release pressure and change complexity do not play a

major role in SATD introduction.

- Most of SATD is removed in the next immediate next release.

Maldonado and Shihab (2015) - Identified 5 different types of SATD. 5 Manual JDeodorant

- The most common type of SATD is design or requirement debt.

Bavota and Russo (2016) - There is no clear relation between code quality metrics and SATD. 159 Pattern based srcML

- The amount of SATD increases over time in a system.

- Code debt occurs more than design and requirement debt.

- SATD lasts for a long time in source code before being removed.

- About 57% of SATD is removed from source code; 63% of the

time by who introduced it, 37% by other experienced developers.

Wehaibi et al. (2016) - There is no clear relation between defects and SATD. 5 Pattern based Ad-hoc. Python

- TD files defectiveness increases after the introduction of TD.

- SATD changes lead to less future defects than non-SATD changes.

- SATD changes are more difficult to perform.

- Empirical evidence that TD affects the development process by

making it more complex.

- The impact of SATD is not related to defects, rather in making
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future changes more difficult to perform.

Vassallo et al. (2016) - Most practitioners self-admit their bad implementations of

code through comments. N/A N/A N/A

Kamei et al. (2016) - 42% to 44% of SATD incurs in positive interest. 8% to 13% and

42% to 49% has negative and no interest, respectively. 1 Manual JDeodorant

Miyake et al. (2017) - SATD comments are more effective than non-SATD comments

when identifying fix-prone files and methods. 4 Pattern based Ad-hoc, Java

Palomba et al. (2017) - Developers mostly apply refactorings to repay SATD before

introducing new features. 3 Pattern based srcML

Maldonado, Abdalkareem, et al. (2017a) - SATD can remain in a system between 18 to 172 days. 5 NLP detection srcML based

- Developers mostly remove SATD when fixing bugs or adding features,

and use SATD to track future bugs and bad implementation areas.

- Most of SATD is removed, and most of it is also self-removed.

Zampetti et al. (2018) - A large percentage of SATD removals are accidental. 5 NLP detection srcML based

- Only around 8% of SATD removals are documented in commits.

- While removing SATD, developers mostly apply complex changes

but also, specific ones to method calls and conditionals.
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2.3.3 Repayment of SATD

We surveyed work that contributed towards the comprehension of SATD on its removal (section 2.3.2),

and interest growth (section 2.3.2). Although those studies explain how and who removes SATD,

and propose a way to measure the growth or decline of SATD over time, they do not propose

approaches towards managing or repaying debt. In this section, we describe studies that tackle this

problem.

As a subset of Technical Debt, the ultimate goal of studying SATD is to propose approaches

that focus on removing it from a system, i.e., repaying the admitted debt. In this regard, a couple of

recent studies have presented techniques to estimate the effort and prioritize the resolution of SATD.

In 2016, Mensah et al. (2016) proposed an approach to estimate the rework effort needed to resolve

SATD, measured in LOC. The authors used the text-mining approach to identify debt instances

in 4 open-source projects and classify them by type with a dictionary derived from the work by

Maldonado and Shihab (2015). The measure of estimated rework effort was calculated giving term

weights to debt instances based on their frequency of SATD indicators, i.e., one of the patterns

found by Potdar and Shihab (2014), and expressed the average commented LOC per SATD-prone

file (files that contain comments with debt indicators) in a system. The study found that, on average,

an effort of between 13 and 32 commented LOC need to be addressed per SATD-prone file. This

estimated effort fluctuates based on the type of debt to be addressed, with documentation requiring

the least amount of effort, and design debt needing the most.

More recently, Mensah et al. (2018) extended their rework effort estimation study and combined

it with a 6-step SATD prioritization scheme. This new approach aims to inspect SATD instances and

classify them by how urgently they need to be addressed and estimate the rework effort they require.

Similarly to their previous work, this estimation is computed in a multi-phased approach, where

initial steps handle the extraction of comments, identification and classification of debt instances

into their types using the text-mining approach. Before computing the rework effort estimation, the

extracted comments were manually categorized based on their textual indicators as: i) major if they

are urgent, or minor if they can wait; ii) complex based on their difficulty, and significant based on

their importance; iii) expected if the task is pending, and expedited if it denotes a rushed or poor
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implementation. SATD instances that should be prioritized were marked as vital few tasks or as

trending-many tasks, and assigned a possible cause of introduction. Along with the proposal of a

repayment approach, this work also presented interesting empirical findings, showing that 31% to

39% of SATD comments are major tasks, and 58% to 69% are minor; while most of the major tasks

are complex to resolve for developers. Among the possible causes for SATD introduction, the study

found 4 that are the most prominent, being: code smells (23%), complicated and complex tasks

(22%), inadequate code testing (21%), and unexpected code performance (17%). Regarding the

effort required for the resolution of vital few tasks, i.e., those that should be prioritized, developers

would need to address 10 to 25 commented LOC per SATD file.

The concept of classifying the SATD comments into different classes that indicate how difficult,

important, and urgent they are can serve as a great contribution to deciding which debt to resolve

first. However, is important to note that for both of the above works on repayment output results

in commented LOC, which might not be intuitive for developers or managers, nor the best or only

measure to estimate effort or prioritize debt resolution. In either way, both approaches compel the

most recent in SATD repayment.

2.4 Future of SATD Research

In this section, we present promising research avenues based on gaps and opportunities that we

observe in current studies and discuss the challenges to overcome in order to advance the state of

the art. The ideas and calls to actions presented throughout this section are new proposals deduced

from our observations, which we support with related literature.

2.4.1 Future Challenges in SATD Setection

Improving Validity

SATD detection can benefit from improved validity, future work should enrich existing datasets

and expose new ones using state of the art detection and classification approaches. Since TD can also

be self-admitted in other software artifacts, such as commit messages or issue comments, datasets

should not be limited to SATD found in source code comments. We expand on these ideas below:
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• Richer datasets. As we saw in the work surveyed in Section 2.3, most of recent work relies

on data from design and requirement SATD (Huang et al., 2018; Maldonado, Shihab, &

Tsantalis, 2017b; Yan et al., 2018; Zampetti, Noiseux, et al., 2017; Zampetti et al., 2018).

This data originates in the dataset made available by Maldonado and Shihab (2015), in which

design and requirement debt was detected far more frequently than other debt types. This

limits approaches such as the NLP and ensemble text-mining approaches to be restricted

on classifying debt instances in all existing types. Using a tool such as SATD Detector

can support the creation of larger datasets with more instances of the rarer SATD types.

Such datasets can then be complemented by artificial balancing techniques to enable better

classification approaches. Another challenge with current datasets is that they are scarce,

and limited in size and diversity of projects they contain. Huang et al. (2018) found that

cross-project training increased the performance of identification classifiers. Thus, SATD

detection approaches will benefit of having richer datasets to train on.

• Detection in other software artifacts. The majority of work surveyed in Section 2.3.1

detected SATD through source code comments. There are other software artifacts that contain

extracts of human interaction and communication, such as issue messages, commit messages,

or even discussions in git repositories. These artifacts can also hold text where technical debt

is self-admitted by developers. Dai and Kruchten (2017) studied the possibility of detecting

TD with issue comments, finding that although developers do not explicitly mention TD

inside issues, they do so indirectly. Their study identified over 114 useful key words that

can be used to detect different types of TD from the description and summaries of issues.

This is a similar finding to the patterns surfaced by Potdar and Shihab (2014) for SATD.

Bellomo et al. (2016) also investigated the existence of TD indicators within issues messages

and found that developers are aware of the concept of TD, and they refer to it when filing

issues. This might indicate that technical debt is also self-admitted in issue messages.

Nowadays there is a plethora of repositories that can be mined to investigate the occurrence

and diffusion of SATD in alternate software artifacts. One example is JIRA, a repository

presented by Ortu et al. (2015) which contains data from the Jira Issue Tracking System. The
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JIRA consists of over one thousand open-source projects with 700 thousand issue reports, and

2 million issue comments. As its authors suggest, it can be mined to retrieve information about

TD, and thus potentially, SATD. The investigation of how much debt found within issues is

also self-admitted by developers and the usefulness of this approach remains as future work.

Considering the above software artifacts for an approach such as the SATD change-level

determination proposed by Yan et al. (2018) could also yield a promising future. Including

features extracted from different software artifacts can complement the 3 dimensions studied

by Yan et al. (2018) to extend the set of features taken from source code and change history,

potentially resulting in improved TD determination models. As detecting SATD at the change

level presents different benefits to software developers in contrast to detection at the file level,

there is broad potential and room for further investigation on the topic.

Calls to action:

• Mine larger sets of software repositories from different domains to produce richer SATD

datasets.

• Study the presence of SATD in other software artifacts, such as the messages and descriptions

of issues and commits.

Improving Traceability and Adoption

In Section 2.3.1, we surveyed several approaches for SATD detection with different characteristics

and techniques that allow them to achieve performances that surpass their predecessors. Each has

an application, as well as points in favor and against that facilitate their replication. For example,

one could argue that manual detection and pattern-based approaches (see Section 2.3.1) are the

easiest to replicate, but doing so is time-consuming and relies on human expertise. On the other

hand, automated approaches that use machine learning are scalable but rely on a training dataset to

achieve a comprehensive performance (see Section 2.3.1). Future work should aim to facilitate the

replication of detection approaches to promote their adoption, and to develop tools to increase the

admittance, quality, and traceability of SATD. One materialized example for this is SATD Detector,

where the ensemble text-mining was implemented as a tool ready for use in development time.
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Certainly, any approach or technique that can be offered as a tool is the best proxy to improve the

traceability and adoption of SATD. We describe actionable ideas that can support this based on

opportunities we observe from previous related work below:

• Visualization tools. Alongside improved detection techniques, both researchers and practitioners

can always benefit from tools that implement them. An interesting avenue comes from the

visualization approach presented by Ichinose et al. (2016); city-like views in a virtual reality

environment combined with an automated detection and classification approach could provide

a highly intuitive interface for SATD identification and management. Visualization tools can

also be extended to estimate the repayment effort of detected SATD with an approach such as

the one proposed by Mensah et al. (2018). In this scenario visual cues could point at debt that

can be repaid in the source code. The development of a tool that can display where SATD

is located and offer an estimation of the effort required to address it would strongly enable

developers to manage and repay SATD in their repositories.

• Annotation of comments. While classifying grammar smells, Stijlaart and Zaytsev (2017)

pointed at the “Shortage Smells” as missing pieces of grammar. As a subset of this, “Debt”

smells were defined to happen when comments clearly denote debt but are missing an annotation

that will facilitate its traceability, such as “TODO” or “FIXME”. In this case, an approach or

tool that adds these annotations would solve grammar smells by self-admitting the technical

debt. For this to be feasible, researches can use one of the more recent SATD detection

approaches and add special annotations to comments that are missing them. In this way,

SATD would be easier to trace by developers using IDEs that support the tracking of these

annotations.

• Reduction of false positives. Another important challenge is to reduce false positives in

SATD detection. One of the issues with the approaches analyzed in Section 2.3 is that most

approaches look at comments directly, disregarding the source code context. For example, the

pattern-based approach was found to produce over 25% of false positives (Bavota & Russo,

2016). Although more advanced detection approaches have been presented, they still focus

on source code comments only. Such approaches might find cases indicating debt that was
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already repaid but its corresponding self-admitted annotation was never removed. On this

regard, Sridhara (2016) proposed a technique to validate the up-to-date status of comments

that include ToDo annotations. This is a hybrid approach that considers both, source code

and comments. Future work can improve on such technique and extend it to work on any

comment that indicates SATD, and not only those with ToDo annotations. Moreover, as seen

in section 2.3.1, TEDIOUS is the only detection approach that inspects source code instead

of comments to recommend when design technical debt should be self-admitted. Certainly,

a way to mitigate false positives in future SATD detection efforts can emerge from using a

hybrid approach that inspects the source code in scope and comments of a debt instance.

Calls to action:

• Develop tools that enable a categorized visualization of SATD to support its management.

• Develop a detection approach that adds annotations to debt comments that are missing them.

• Develop detection approaches that inspect and analyze both, comments and source code for

improved accuracy.

2.4.2 Future and Challenges in SATD Comprehension

To deepen the understanding of SATD, research work should identify observations on this

phenomena that apply across projects and can be generalized. In Section 2.3.2, we surveyed

work that studied large sets of systems or specifically tried to diversify their subjects in domain

and programming language (Bavota & Russo, 2016; Wehaibi et al., 2016). Nevertheless, a clear

challenge to overcome is that most findings and contributions on SATD (see Table 2.4) and its

effects in software development came from studying open source systems that were mostly written

in Java (see the software systems studied by the surveyed work in Section 2.3). Future research

should extend to investigate proprietary software or systems that are written in various programming

languages. This will aid towards the generalization of current findings or contrast new observations

in different scenarios and environments. Similar to previous efforts such as the empirical SATD

study by Bavota and Russo (2016) on 159 projects, important findings on SATD should be investigated

on large scale to confirm they generalization.
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We remark that the studies covered by this literature survey consider a scenario where identifying

the introduction of TD is valuable for the development process, and where the management and

repayment of TD are desired practices. More importantly, in the case of SATD, the assumed scenario

is one where the use of source code comments is intrinsic to the development process. However,

this may not generalize to all software development, as it depends on the used methodologies and

policies in place. In our survey, we did not find any SATD study that worked on proprietary software

systems. Investigating the relation between the introduction, management, and repayment of SATD

in different development methodologies remains as future work. This will help to achieve a more

general and thorough comprehension oh the phenomena. Below, we present actionable ideas for

future research to broaden the comprehension of SATD:

• Examine other kinds of impact. Previous work has investigated the impact of SATD on

software quality, but only in the scope of software defects, which do not seem to have a

direct relationship with SATD (Wehaibi et al., 2016). However, this is the only finding on the

impact of SATD among the papers that focus on the comprehension of the phenomenon (see

Section 2.3.2). Therefore, we believe that future work should seek a deeper understanding

of different aspects in which SATD can impact the development process. We observe the

opportunity to investigate on the impact of SATD in aspects such as: effort in future maintenance

and evolution (e.g., code decay), the ability of a system to adapt to new technologies or

changes in process, and even the socio-technical impact of SATD.

• Qualitative classifications. So far, source code comments that point to TD have been classified

following the categories defined by N. S. R. Alves et al. (2014), such as in the classification

work on SATD by Maldonado and Shihab (2015). This is a high-level classification of the

comments as they indicate what the debt is about. Another perspective is to investigate their

implication in the development process. As an example, the comment: “//Re-initialising

a global in a place where no-one will see it just // feels wrong. Oh well, here goes.” from

ArgoUML was classified by Maldonado and Shihab (2015) as design debt. This classification

does not inform the developers about its implication; perhaps it implies a feature addition, a

bug fix or another software maintenance tasks. A study using such level of taxonomy was
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presented by Panichella et al. (2015), who classified mobile app user reviews into useful

categories related to maintenance tasks. Replicating such taxonomy in the area of SATD can

provide developers with better insight on the implications of SATD. Improving the overall

understanding of the debt instances on their systems to support their management.

Calls to action:

• Investigate SATD in proprietary software systems and in various programming languages

(other than Java).

• Investigate the impact of SATD on various software engineering aspects, such as maintainability

and evolution.

• Produce a qualitative taxonomy that reflects the implications of SATD in software maintenance

tasks.

2.4.3 Future Challenges in SATD Repayment

Quantitatively Prioritizing Repayment

Proposing approaches and techniques to mitigate and repay debt is of utmost importance in

SATD research. Studies in the past few years have shed light on the importance of this phenomena,

but they have mostly focused on detecting and understanding SATD, rather than directly pursuing

its resolution. Merely 11% of the studies that we surveyed focus on repayment efforts, thus, there is

much work to be done in this area. We present the main challenges to overcome in SATD repayment

below:

• Effort Estimation. SATD repayment contributions have scoped to prioritize its resolution

based on the estimated effort for addressing a debt instance (Mensah et al., 2016, 2018).

However, this approach outputs an estimation value in commented LOC, which might not

be the best, and certainly not the only measure to estimate effort (Shihab, Kamei, Adams, &

Hassan, 2013). Undoubtedly, how to measure effort remains a challenge to overcome and a

milestone to reach when deciding which debt to repay first.
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• Prioritization of SATD. Certainly, prioritizing SATD repayment must be part of future research

work. Given a set of instances of SATD in a system, developers need an approach to recommend

which debt instances to resolve first. Thus, approaches that measure the growth of debt

instances and their resolution cost must be combined. Akbarinasaji and Bener (2016) presented

the idea of adding TD as a financial obligation that can be recorded as a type of liability

in a balance sheet. To achieve this, TD needs to be identified, quantified, and monetized.

Although an approach to monetize SATD has not been presented, some efforts already took

a step forward, such as the quantification SATD interest by Kamei et al. (2016). We argue

that SATD prioritization is one of the most important challenges that require attention in this

domain.

• Acceptance of SATD. Not all SATD has to be repaid, fixing a shortcut or hack in the source

code can be more expensive than beneficial. A proper measurement of TD repayment effort

could aid developers to decide whether to live with the debt and its risks or not. Such

repayment estimation has to consider the potential evolution of the debt as it can incur in

positive interest over time (Kamei et al., 2016). Future work should study the extent of SATD

acceptance in software systems and under which conditions.

Calls to action:

• Investigate new measures to estimate the effort required to repay SATD.

• Develop approaches to prioritize the repayment of SATD.

• Investigate to which extent SATD is or can be accepted in software systems.

Integrating the repayment of SATD

The activity of repaying TD must be integrated into the software process. To this matter, the

development of new tools and techniques that motivate and facilitate the repayment of SATD is

required. We present two ideas that can facilitate this below:

Gamification of SATD repayment. SATD research not only needs to give answers on which

debt instance to address first, and to ease and promote a culture of resolving debt instances as part
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of the normal activities in the development process. In this regard, the use of mechanisms such as

Gamification (Deterding, Dixon, Khaled, & Nacke, 2011), i.e., the application of game-like features

in non-game context could be of benefit. Gamification has increasingly been proving its usefulness

to motivate, accelerate and ease human productivity and it has already been studied in the context

of software development, i.e.,(Biegel, Beck, Lesch, & Diehl, 2014; Dubois & Tamburrelli, 2013).

Thus, it has the potential to support and motivate the repayment of SATD among developers.

Identify who introduced the debt. Knowing which developer self-admitted debt in the first place

and the rationale for doing so is important. Siegmund (2016) suggested supporting the task of

identifying developers who are responsible for a component, and helping them communicate with

others who have introduced SATD. Such scenario would require an approach that identifies SATD

and determines the developer who introduced it. Enabling a channel of communication between

developers can shed light into the rationale behind a debt instance to support is repayment. However,

it can be problematic as a debt-introducing developers may no longer be available. Thus, its

applicability is limited by the phase at which SATD is managed.

Call to action:

• Study the usage of gamification techniques to motivate the repayment of SATD.

• Complement SATD detection approaches by identifying who introduced the debt to enable

communication between developers, facilitating repayment.

2.5 Conclusions and Limitations

We surveyed empirical research work in the arising topic of SATD, which has developed rather

quickly in recent years. This literature survey has been performed on studies related to self-admitted

technical debt, as defined by the exploratory study of Potdar and Shihab (2014). We used this study

as the basis for our survey and applied snowballing to find related work from it. Although we

complemented the lookup for SATD-related work with results from academic search engines, we

found no studies that focus on SATD that were not originally found during the snowballing process.

Thus, the papers encompassed in this survey are limited to those released after 2014 and until the

compilation of this survey in July of 2018. The selected papers are also limited to those returned by
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the search engines and keywords we used, and only to those that mainly focus on studying SATD

(see Section 2.2.1).

From our survey subjects, we observe how researchers have evolved current approaches from

manual observations to automated techniques for detecting and classifying debt instances, and

have advanced the overall understanding of the SATD phenomenon in the software development

process. Naturally, the focus of SATD studies was centered in detecting the presence of debt, and

understanding its life-cycle. Once detection approaches were accurate and replicable, the focus

switched to studying how SATD grows over time and how it is removed from software repositories.

Our work highlights several of the challenges to overcome in the area, and presents various

promising avenues for future studies based on the gaps and opportunities seen in current research

work. Furthermore, this survey compiles the tools and datasets that can be used as a foundation to

motivate and facilitate the submission of novel and improved approaches in the area. We believe

SATD will continue receiving attention in the field the upcoming years.

We notice a solid foundation for the detection and comprehension of SATD, therefore, this is

the right moment to centralize efforts towards the most notorious gap in the area, which is on SATD

repayment. Although we noticed that researchers have stepped into the idea of repaying SATD

already, we certainly observed a lack of studies focusing on this, which is of critical importance.

Motivated by these observations, and with an available set of tools and techniques to extend SATD

research, we focus our efforts into SATD repayment. Consequently, the following chapter of this

thesis presents an empirical study conducted precisely towards the repayment of SATD.
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Chapter 3

Towards Self-Admitted Technical Debt

Repayment

3.1 Introduction

Previous research has proposed different approaches to detect and classify Self-Admitted Technical

Debt (SATD) in source code comments (Huang et al., 2018; Maldonado & Shihab, 2015; Maldonado,

Shihab, & Tsantalis, 2017b; Potdar & Shihab, 2014). These approaches enable software developers

to locate and potentially address debt instances to improve the quality of their code base. However,

the mere task of detecting SATD does not suffice; large software systems can have broad sets of

debt pending resolution. These debt instances have the potential to become more complex and

costly to repay over time, and thus, should be managed as part of regular software maintenance

and evolution practices. Managing technical debt in a system is indeed a complete area of its own,

thus our interests reside in SATD particularly. In this regard, an idealized goal of studying SATD

repayment is to formalize approaches that determine what SATD should be resolved, and when to do

so. Certainly, not all technical debt has to be resolved. Empirical evidence shows that SATD stays in

software systems for long periods of time before being removed, and that multiple instances of debt

remain in them (Bavota & Russo, 2016; Maldonado, Abdalkareem, et al., 2017a; Potdar & Shihab,

2014). This suggest that either some of this debt is not harmful and systems can evolve with them,

or that when it is harmful, developers are not aware of the consequences. Asides from intuition,
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empirical work has shed light into this, showing that indeed, some SATD becomes more complex

to repay over time. Kamei et al. (2016) referred to this increase in difficulty to repay the debt as

SATD interest, and found that 42% to 44% of debt instances incurred positive interest. Evidently,

repaying SATD is of importance for software maintenance, and yet very few studies have focused

on doing so.

With the knowledge gained from the literature review in Chapter 2, we are motivated to fill the

gap in SATD research and concentrate our efforts towards the repayment of SATD. With several

recent findings and contributions on the detection and comprehension of the SATD phenomenon,

we believe it is feasible to move towards the goal of determining which SATD instance should be

prioritized, i.e, decide which instance of debt should be resolved first in a system. However, this can

not be achieved in a simple or straightforward fashion; prior work is required to understand different

measures for SATD instances with repayment in mind. We performed a preliminary online survey

to developers to gain insight on the elements they use to decide which SATD instance should be

resolved first. Developers who participated in the online survey mainly consider the effort required

to repay a debt instance as the deciding factor to do so. Yet, participants had distinct definitions on

how to estimate effort. We used the insight gained from this survey in combination with measures

for effort estimation proposed in previous work and our own conjectures to determine a set of

metrics for SATD with repayment in mind. Because these metrics serve to determine the amount of

work needed to repay the debt, we refer to them simply as SATD repayment effort metrics throughout

our work.

In this chapter, we perform an empirical study of SATD instances found in open-source software

systems. We determine metrics to measure SATD repayment effort based on insight from developers

and previous work in the area. Then, we extract a set of historical metrics that we use as our

independent variables to build linear regression models for SATD repayment effort metrics, i.e., our

response variables. We surface the SATD repayment effort metrics that can be consistently modeled

in our studied projects, and the historical metrics that can be used as good early indicators for SATD

instances that should be repaid. We formalize our study with the following research questions:
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• RQ1: Is there a consistent SATD repayment effort metric that can be modeled using

historical data?

We investigate a set of metrics used to measure the effort required to address SATD instances

and see if change history data can determine those that should be addressed. Our goal is to

see if there are consistent SATD repayment effort metrics that can be used across systems.

• RQ2: What are the best indicators for SATD repayment effort metrics?

Following up to RQ1, we are interested in knowing which of the metrics extracted from

historical data work best as early indicators of SATD that should be addressed.

Overall, we study more than 18 thousand unique SATD instances and their change history

detected in over 5 million source code comments, and across more than half a million commits in

8 software repositories: Camel, Hibernate, JMeter, Ant, Hadoop, PMD, EMF, and Tomcat. We

evaluated 7 different metrics to estimate SATD repayment effort (SATD removal time in days,

number of words in SATD comments, interest in terms of LOC and Fan-In, compound interest

rate in terms of LOC and Fan-In, and change proneness) and 9 different change history and defect

prediction metrics (contributors of a file, author experience, bug-fixing commits, entropy, file churn,

commit churn, modified files, modified directories, and modified subsystems).

We built linear regression models with our SATD effort estimation metrics as response variables

and the historical metrics as exploratory variables. We found that: i) change proneness and the

SATD removal time could be consistently modeled in studied systems; and ii) the best early indicators

for SATD that should be repaid are: the number of developers that contribute to a SATD file, amount

of file churn, and the experience of the developer who introduced the debt. This implies that looking

at historical data at the time when SATD is introduced can be of value to developers to estimate

important SATD to repay in future maintenance.

This study is organized as follows: Section 3.2 reviews the online survey sent to developers;

Section 3.3 overviews our study approach and details our data collection steps; Section 3.4 presents

the results of our study; Section 3.5 presents threats to validity; and lastly, Section 2.5 concludes the

study and mentions future work.
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3.2 Preliminary Work

As preliminary work to our empirical study, we wanted to get insight from developers on the

different elements that they consider when deciding to resolve SATD in their systems. To do this, we

sent out an initial online survey to 200 developers of public repositories. To ensure the recipients

of the survey had experience, we selected those who had over 3,000 commits pushed to public

repositories on GitHub. The survey was composed of 10 questions aimed at: i) distinguishing

traits in the developers, such as their roles, level of activity and experience in general software

development, ii) determining their experience with SATD, and mainly iii) identifying the elements

they use to prioritize SATD. The participants were given a brief introduction on what is SATD

and a set of prioritization elements to pick from (multiple options could be selected). The set of

elements were selected based on a combination of our own conjecture and elements that have been

used in previous work on SATD repayment (Kamei et al., 2016; Mensah et al., 2016, 2018). We

did not restrict the addition of other elements that were not part of the default set; an option to

add others was included. We also asked developers to provide feedback on how they measure the

different elements provided as options. A complete list of questions of the survey and their options

are detailed in Appendix B.2. The survey received 19 responses in total (9.5% response rate), which

may appear to be a small rate. However, it is comprehensive in the software engineering field

(Singer, Sim, & Lethbridge, 2008). We made the survey responses publicly available online1. The

published data has been anonymized, thus question 10 of the survey has been omitted as it conveys

personal information.

From the 19 answers received, we characterized our participants as good subjects. Only 1

participant reported to have less than 5 years of development experience, indicating participants

were mostly experienced. Regarding activity and code contribution, 85% of the participants reported

contributing frequently to their projects, on a daily to monthly basis. On their development roles, 14

developers replied to mostly work on feature additions, 7 on bug fixing, 6 on code reviewing, 4 on

code testing, and 2 others reported working on a mix of activities. Thus, participants work mainly

on adding features, but also on a variety of other development activities in parallel. When asked
1http://das.encs.concordia.ca/uploads/SATDPrioritizingResponses.csv
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Figure 3.1: Vote count per SATD prioritization element.

about previous experience with SATD, 15 out of 19 developers replied that they have introduced

SATD in the past. Furthermore, 16 developers had addressed SATD in the past, while only 3 others

had not. Indicating participants are mostly familiar whit resolving SATD.

The core of this initial survey was to find the elements developers consider to prioritize SATD

repayment. Figure 3.1 overviews the answers we received. We can observe that most participants

consider the effort it takes to address a debt to decide which to resolve first, followed with spread

votes to: the amount of dependencies of the debt, the subsystem were it is located, and its change

likelihood. The element less voted was if to consider the person who introduced the debt. Besides

the votes seen answers, 2 developers also added that they do not use any of the elements provided

as options. One answered to address SATD only by a requirement coming from an external issue

tracking system, where the actual SATD instance simply serves as a pointer for the requirement

in the source code. Another developer responded that to address SATD, she/he only evaluates if

the debt instance is impeding fixing a bug or adding features, disregarding the specific elements

provided as options for the question.

Participants were not consistent in specifying how they use the voted elements to prioritize

SATD. They responded to prioritize SATD located in subsystems of high importance, but gave no

details on how they determine critical subsystems. On change likelihood, participants mentioned

that they use previous changes in the repository but did not mention how to prioritize using this

element. Participants reported using different ways to estimate effort, which was the most common
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answer. They mentioned to estimate effort based on: size and complexity of code, amount of

dependencies, number of test activities and test code. Although the participants of the survey were

experienced, the elements that they use to decide which SATD to resolve first tend more towards

a group of measures than to a single straightforward answer. This reveals that, lacking a formal

approach, practitioners have not reached a consensus on how to prioritize SATD. Based on the

survey, we can conclude that effort is seen as the major decisive factor to repay SATD, but there are

many ways to estimate it.

3.3 Case-Study Setup

The approach to our study naturally begins by determining the metrics for SATD repayment

effort and by detecting SATD instances. Then, we proceed to measure SATD repayment effort

in debt instances and study if the metrics can be modeled with indicators from historical data.

To answer our research questions, we use the metrics for SATD repayment effort as our response

variables while the historical metrics are used as explanatory variables for linear regression models.

In this section, we explain the setup of our study and the required data collection steps. First,

we explain the selection of metrics for SATD repayment effort. Then, we focus on the collection

of change history information from our selected projects and detecting SATD in their source code.

Later, we investigate the extent to which SATD has been removed in the systems, and under which

conditions. Lastly, we describe how we collect different pieces of information, divided in two main

datasets: i) data related to different features of SATD instances, i.e., product and process software

metrics that are needed for our SATD repayment effort metrics; and ii) historical data that explains

the characteristics of the repositories before SATD instances are introduced. To ease the querying

and processing of information in our step-by-step data collection, all the extracted data resulting

from our work was stored in a relational database. We make this database publicly available online2

to motivate further research in SATD.
2http://das.encs.concordia.ca/uploads/SATD-DB.zip
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3.3.1 SATD Repayment Effort Metrics

To decide on a set of metrics to use as SATD repayment effort indicators, we considered

those used in previous work and those derived from the answers received in the online survey

to developers. In the scope of our work, we selected metrics that can be extracted directly from

historical data in the source code and change history of projects. Below, we describe the SATD

repayment effort metrics and indicate the rationale behind selecting each:

• Time of removal (in days). Knowing which SATD instances have been removed from a

project (i.e., it has been repaid), we can measure the time it took for developers to address

the debt since its introduction. Debt instances with a faster removal times could indicate

those that were prioritized (Maldonado, Abdalkareem, et al., 2017a). Moreover, this metric is

analogue to the element “the date when the SATD comment was introduced” from the online

survey answers.

• Interest gained in terms of dependencies (Fan-In) and size (LOC). as proposed by Kamei et

al. (2016), who used measures of LOC and Fan-In to quantify added effort to repay SATD.

LOC is used as a proxy of size and complexity of the debt, while Fan-In measures amount of

dependencies. The survey confirmed developers consider both of these elements to estimate

SATD repayment effort.

• Compound interest rate in terms of size LOC and Fan-In. We build on top of the interest

measure to calculate a compound interest rate of growth, which also considers the timespan

a debt has remained in a system and the changes it has gone through. This metric is used as

a more accurate way to represent the evolution of a SATD instance but is still a measure of

their size, complexity and amount of dependencies.

• Number of words in SATD comments. Mensah et al. (2016, 2018) used the number of

commented lines of code as a measure of effort estimation for SATD in previous work.

Instead, we count the number of words in SATD comments as a more precise proxy to

determine their size.

• Likelihood of change. This was another of the frequently voted elements in the survey
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answers. Our conjecture is that SATD files with a higher change proneness should be repaid

first as their debt will more likely impact maintenance efforts. We measure the change

proneness of SATD files following previous work (Bieman, Straw, Wang, Munger, & Alexander,

2003; Khomh, Penta, & Guéhéneuc, 2009).

Participants reported that they also consider the person who introduced the debt to prioritize

SATD, the subsystem or module where the debt is located, and to estimate effort based on the

number of test activities and amount of test code. We did not select the person who introduced the

debt as one of our metrics because of it is qualitative information that requires additional analysis,

instead on a quantitative way to estimate SATD repayment effort. Furthermore, it was the least

voted element in the online survey. Nevertheless, we do study if SATD instances were repaid by

the same developer who introduced the debt or not. To use the amount of test code and number of

tests, we would require deeper investigation to match test code with the actual code of methods with

SATD, which was not possible to do accurately for our studied projects. To use the subsystem or

module where the debt is located as measure because we requires business logic to identify critical

subsystems of systems. Both cases go beyond the scope of our study, and therefore, we leave it

for future work. Although we might not be selecting all metrics that can be used to measure SATD

repayment effort, we believe our selection is comprehensive and can be obtained with empirical

data from source code and change history.

3.3.2 Project Selection

To begin our study, we selected 8 open-source Java projects of different size in lines of code,

files, commit history, and contributors. These projects were selected considering they were active,

well commented (with different ratios of comments to source code), and belonged to different

application domains. Because finding SATD in these projects is crucial for our investigation, we

also selected those that had been studied in previous work to confirm that they had a considerable

(but varying) amounts of SATD (Maldonado, Abdalkareem, et al., 2017a; Maldonado & Shihab,

2015; Maldonado, Shihab, & Tsantalis, 2017b; Mensah et al., 2018; Yan et al., 2018). The projects

are: Camel, a Java framework for integrations with message-oriented middleware; Hibernate ORM,
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Table 3.1: Characteristics of studied projects

Project Java files Commits File Versions SLOC CLOC Comment to Contributors
Current All time code ratio

Camel 18,662 24,772 31,262 137,852 1,193,627 501,669 0.42 537
Hibernate 9,563 29,129 8,824 110,894 701,145 185,165 0.26 426
JMeter 1,284 1,947 13,721 26,427 132,194 73,826 0.56 28
Ant 1,296 5,204 13,940 49,885 140,314 107,560 0.77 66
Hadoop 10,406 23,734 17,128 107,656 1,612,236 523,850 0.32 213
PMD 1,953 9,040 8,706 41,761 112,492 34,728 0.31 49
EMF 3,123 4,725 8,380 29,837 653,133 357,573 0.55 34
Tomcat 2,364 3,904 19,597 48,138 321,170 162,371 0.51 37

An object-relational mapping (ORM) library and framework; JMeter, an application used to load

and performance test different applications; Ant, a tool used to automate software builds based on

Java; Hadoop, a library and framework for distributed processing; PMD, a static code analyzer;

EMF, a modeling framework based on Eclipse for building structured data-model applications; and

Tomcat, a servlet container and HTTP Web server. All the selected projects are using git for version

control and are written in Java. The reason for targeting Java systems is that previous work on

SATD has focused on this programming language; this gives our study a baseline for comparison

and soundness. More importantly, several of the tools we use in our pipeline for data collection

have been developed to work with Java. Thus, we believe studying a diverse set of projects written

in this language will serve as a feasible and practical first step towards SATD prioritization.

Table 3.1 presents the characteristics of the projects selected for this study. The number of

current Java files, source lines of code (SLOC), commented lines of code (CLOC), and the ratio of

comments to code were taken as reported by SciTools Understand, a tool for static code analysis

(SciTools, 2018b). These metrics were taken from the most current version of each project by

the date when our data collection was done (September 2018). The number of all-time Java files,

commits, and file versions were extracted from the repositories directly using git. The all time Java

files represent all the unique file names that have existed in the repository, including renamed or

moved files. Whenever any of these files were changed in a commit, a new file version is produced.

Lastly, the number of contributors was initially extracted with git by counting distinct pairs of

author names and emails in the commit history. However, a single developer can have multiple

identity entries of author name and email pairs (Kouters, Vasilescu, Serebrenik, & van den Brand,
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2012; Wiese, d. Silva, Steinmacher, Treude, & Gerosa, 2017). Therefore, to mitigate this threat, we

merged the redundant entries to count for a single contributor; this is the final number reported in

the rightmost column of Table 3.1.

3.3.3 Collection of Repository Data

To start the data collection, we cloned the repositories of our selected projects using git, targeting

the main branch of each repository (e.g., main or trunk). We extracted all the unique file paths that

have existed in each repository using the git log command with the –first-parent -m options and

filters to get all added, copied or renamed file paths. The –first-parent -m options are used to have

a simplified and more consistent change history of the main branch of the repositories (Gauthier,

2015; Git, 2018). The set of file paths was used in combination with the commit history to obtain

and checkout all the versions of each file in the repository, and the corresponding commit type for

each file version (i.e., addition, modification or deletion of a file).

The metadata that can be mined from a software repository is essential to our study. Because we

analyze the history of each instance of SATD, we need to track all the changes that happen to them

at the method and file levels. Thus, we extract and store the hash, date, and author information from

each commit. To have and accurate tracking of SATD instances, we also collect the information of

files that have been renamed or moved to another directory using the built-in tracking capabilities

of git with the ’–follow’ option (German, 2017; Git, 2018). This allows us to create a chronological

linked-list of file paths and their changes over time. These linked-lists are used in later steps of the

data collection to asure that we consider the full history of the files where SATD is located.

3.3.4 Extraction of Source Code Comments

Once we obtained all the versions of each file in the repositories, the next step was to parse

their source code to extract source code comments with potential SATD. To do this, we created

2 Java command-line applications that are compiled an executed as runnable JAR files. The first

component, named “CX” takes a Java file as an input and invokes a process of the tool scrML (Tool,

2018), which decorates the file’s source code with XML. The decorated code is then parsed with

the Java SAX Parser (Orcale, 2017) to extract found source code comments. Note that in this step
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we do not simply collect the raw text of the source code comments because we must determine

the context of each source code comment, we query the parsed code to also collect the following

complementary data:

• The type of the comment (Javadoc, line, block, or license).

• Start and end number lines.

• The declaration (type and name) to which the comment belongs.

• The container construct (type and name) where the comment is located.

The start and end number lines are taken to measure the size of a comment. The declaration

and container of a comment are used to find the context of a comment, i.e., the portion of code

in scope to which it belongs. For example, consider the following simplified code snippet with a

SATD comment from Camel:

p u b l i c c l a s s ProceedType

{

/ / TODO we s h o u l d be j u s t r e t u r n i n g t h e o u t p u t s !

p u b l i c c r e a t e P r o c e s s o r ( R o u t e C o n t e x t r o u t e C o n t e x t )

{

/ / r e t u r n r o u t e C o n t e x t . c r e a t e P r o c e e d P r o c e s s o r ( ) ;

re turn c r e a t e O u t p u t s P r o c e s s o r ( r o u t e C o n t e x t ) ;

}

}

The SATD comment in the third line of the snippet belongs to the method declaration createProcessor,

while it is contained within the definition ProceedType. Since the declaration and container of a

method can be of different types, while parsing the source code we consider the following Java

definitions in the CX component:

• Normal or abstract methods (functions and function declarations).

• Anonymous classes (declaration statements).

• Lambda functions.

• Classes (nested, root, abstract).
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• Interfaces (root, nested).

• Constructors.

• Annotation definitions (root, nested).

To get the declaration to which a comment belongs to, we find the closest Java definition below the

comment, giving a priority to methods and then other Java definitions in the same order as the types

presented above. To get the container of a method, we simply get the Java construct that is enclosing

the comment, if there is one. When a comment is found within a method, its declaration is set to that

method, and its container to the construct enclosing that method. In some cases, comments are not

enclosed by another construct, for example in license comments that are placed at the beginning of

a file before a class definition. In such cases, we only use the declaration that the comment belongs

to as the context of the source code.

The second component, named “CF”, is in charge of filtering the comments extracted with the

CX component. To do this, we implemented the approach used by Maldonado et al. (Maldonado,

Shihab, & Tsantalis, 2017b), which uses 5 heuristics to: a) remove all License comments; b) remove

Javadoc comments; c) group consequent single line comments to consider them as 1 comment; d)

remove auto generated comments, which can be “Auto-generated method stub”, “Auto-generated

constructor stub” or “Auto-generated catch block”; and e) remove commented Java source code, as

it most likely is unused code and does not contain SATD. To avoid removing Javadoc or License

comments that could contain SATD, we do not filter those with a “TODO:”, “FIXME:” or “XXX:”

task annotation. The filtering phase reduced the dataset of comments by 48%. The first four

columns on the left of Table 3.2 present the total number of extracted, filtered (discarded), and

useful comments per project in our study.

3.3.5 Detection of SATD

With a filtered set of comments, the next step was to identify those that express SATD. To

do so, we leveraged SATD Detector, a tool made publicly available by Liu et al. (2018). This

tool is an implementation of an approach for SATD detection presented by Huang et al. (2018),

which uses text-mining and a machine learning classifier with cross project training to detect SATD
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Table 3.2: Detailed amount of processed comments per project and found SATD.

Project Extracted Discarded Useful SATD % of SATD
comments comments comments comments SATD Instances

Camel 1,433,291 683,285 750,006 23,917 2% 3,456
Hibernate 822,475 414,385 408,090 52,930 6% 4,514
JMeter 698,064 271,244 426,820 33,513 5% 2,599
Ant 1,124,265 798,917 325,348 19,184 2% 2,193
Hadoop 3,119,464 1,238,878 1,880,586 66,785 2% 5,329
PMD 262,640 150,863 111,777 11,292 4% 1,694
EMF 907,790 642,449 265,341 10,771 1% 1,695
Tomcat 2,191,264 1,006,238 1,185,026 60,697 3% 4,132

Total 10,559,253 5,206,259 5,352,994 279,089 3% 25,612

Figure 3.2: SATD collection process.

in source code comments. As reported in a benchmark by their authors, SATD Detector has a

better performance than previous SATD detection techniques, with an average F1-score of 0.73.

We rely on this tool because to the best of our knowledge, it is the best-performing automated

SATD detection method. This tool was published as an IDE plugin tool for Eclipse, however, we

implemented its command line version with batch automation in mind. Details on this approach and

tool can be read in (Huang et al., 2018; Liu et al., 2018). We invoke a process of this tool and pass

each comment found in the extraction process as an argument; then each comment that is identified

by the tool as SATD is flagged and stored in our relational database. We automated this process to

execute for every comment extracted from every version of all files in each of the studied project

repositories. Figure 3.2 presents an overview of the complete SATD collection process; it starts

by checking out one version of a Java file F, srcML is then used to decorate its source code, the

CX component to extract its comments, the CF component to filter those that are useful, and lastly,

SATD Detector to detect the SATD comments.

The last 3 columns on the right side of Table 3.2 show the amount of source code comments

with SATD and the percentage of SATD in each studied project. Note that these numbers represent
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the summation of comments from all versions of all files. However, because in our study we

investigate the evolution of SATD instances across their change history, we had to group all the

SATD comments that belong to the same instance or case of SATD. For example, the comment “//

FIXME - log configuration problem” was found in 38 versions of the file ApplicationFilterFactory.java

in Apache Tomcat. These 38 comments belong to the same SATD instance.

To group the SATD comments and identify the unique instances of SATD, we applied a heuristic

that is based on the source code context of the comment, and the similarity to other comments in

the same source code context but from a previous file version. We did this because comments in the

same source code context (i.e., same project, file, container construct and declaration it belongs to)

are likely to be part of the same SATD instance. We used the linked list of renames we extracted

earlier from the revision history of the repositories to make sure we consider different file path

versions of the same file. Nevertheless, this does not guarantee a correct grouping in cases where

there are multiple SATD instances in the same code context. This could be for example, a method

with 2 or more comments reflecting different technical debt. In such cases we use the location

(start and end lines) of the comments to differentiate the cases. The last exception happens when in

the same code context (and line location) a change modifies SATD comment, but now indicating a

different technical debt case. For such cases, we compute the Levenshtein (edit) distance for string

similarity between comments (Levenshtein, 1966). We selected this metric because its usefulness to

measure the edits done to a strings, considering editions, additions and substitutions; these changes

occur naturally to comments during software development. A Levenshtein distance of 0 means the

compared strings are the same, while the maximum Levenshtein distance is the length of the longer

compared string. Therefore, we normalize this metric with a score (from 0 to 1) with the length (len)

of the longer comment under evaluation (Yujian & Bo, 2007). The similarity score S is computed

as follows:

S = 1−
(

lev(str1, str2)

max{len(str1), len(str2)}

)
Where lev (str1, str2) is the Levenshtein distance metric between str1 and str2, the strings of two

SATD comments. In the history of a file, SATD comments can change slightly without altering
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the essence of the acknowledged debt. From observing the dataset of comments, we observed

that often punctuations, special characters, and blank spaces were changed in comments, but the

SATD instance remained the same. In those cases, the edits done to the comments are minor,

specially from one file version to the immediate next. With this in mind, and considering we already

know the comments we compare have the same code context (likely to belong to the same SATD

instance), we set our similarity score threshold at 0.8. Thus, when S ≥ 0.8, the compared comments

are similar. Previous evaluations of string similarity between evolving source code comments had

set lower thresholds (Fluri, Wursch, & Gall, 2007b). However, by looking at the distribution of

the computed similarity scores and considering that the compared comments had the same code

context, we decided to set higher threshold that fits the data. Figure 3.3 shows the distribution of

the similarity scores computed between SATD comments from all projects. The plotted horizontal

line at 0.8 in the similarity score axis depicts the set threshold. We assigned an identifier to each

unique SATD instance by grouping debt comments that have the same code context and are similar;

in this way, we can trace the complete change history of an SATD comment. We report the amount

of unique SATD instances found per project in the rightmost column of Table 3.2.

3.3.6 Identification of SATD Removals

Ordering different versions of each unique SATD instance by their commit dates allowed us

to identify the first change that introduced the SATD, and the last commit where the SATD was

found. Analyzing these two points in the timeline of a SATD instance exposes information of what

happened to it (i.e., if the debt has been removed from the system or not, by whom, and under which

state of the source code). Figure 3.4 presents a timeline example of a SATD instance in a file with

multiple versions since the start of the project and until the most current commit. Here, the first and

last commits where the SATD instance was found are represented as black circles. Other different

versions of the file with SATD are shown in gray, while circles in white represent versions without

SATD. Notice that the last change in the figure marks the removal of the SATD instance. When the

SATD is no longer found in the file, we consider that the debt instance has been removed from the

system.

In our goal of prioritizing the resolution of SATD, we collect the information from the introduction
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Figure 3.3: Distribution of all computed similarity scores.

and removal points in a SATD timeline, as they are essential to our study. First, we analyze if each

SATD has been removed from the system or not by inspecting if there is a commit that touched

the file that contains the SATD instance (considering renames) immediately after the last commit

where the debt was found. If it exists, we mark it as the removal commit (the new version of the

file does not contain the SATD instance). Looking at the type of the removal commit allows us

to differentiate two cases: i) the file was changed (SATD is removed by a developer); and ii) the

removal commit deleted the file. In both cases, we measure the time of removal as the number

of days it took for a SATD instance to be removed by comparing the removal and introduction

dates. Previous studies by Maldonado, Abdalkareem, et al. (2017a) and Zampetti et al. (2018) have

applied the same principles to detect SATD removals. Similar to these studies, we check if SATD

instances are self-removed by checking if the developer who introduced the SATD is the same who

removed it. This information surfaces if developers prioritize removing SATD they introduced,
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Figure 3.4: Example timeline of a SATD instance.

i.e., self-removed SATD. As described earlier in Section 3.3.2, we are aware a developer can have

multiple identity entry pairs (name and email) in a repository (Kouters et al., 2012; Wiese et al.,

2017). To mitigate the risk of classifying a SATD instance as self-removed, when comparing the

names and emails, we merged duplicate names or emails into a single identity entry per developer.

We consider that a SATD instance has not been removed when there are no more commits after the

one where the debt was last found. In such cases, we measured the time (in days) the SATD instances

have remained in a system by comparing the debt’s date of introduction to the latest commit date

in a repository. We refer to this time as time of permanence. Table 3.2 presents the amount of

SATD instances that have been removed from the repositories, indicating how much debt has been

self-removed and how much was removed by deletion.

Zampetti et al. found that between 9% to 49% of SATD had been removed by chance when

evolving software. These removals were tied to complete file deletions in the repository, instead of

developers actually resolving a SATD instance. Because of this, we discard all the SATD instances

that we identified as removed by a file deletion from the next steps in our study. In total, 28.8%

SATD instances were discarded. Detailed amounts of instances that were removed by deletion per

project can be found in Table 3.3. We find that: i) 48.1% to 81.4% (median 66.1%) SATD instances

were removed from the systems; ii) on average, 27.8% of the removals were not intentional, i.e.,

they were removed by file deletions; iii) on average, 49.8% of the removed SATD instances were

addressed by the same developer who introduced the debt, i.e., they were self-removed; and lastly,

iv) 18.6% to 51.9% (median 33.9%) of SATD instances remain in the repositories. All these

observations on SATD removals are inline with the previous findings of Maldonado, Abdalkareem,

et al. (2017a) and Zampetti et al. (2018).

To have a better perspective on the removal of our studied SATD instances, we present the
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Table 3.3: Detailed amounts of removed and remaining SATD instances.

Project # Total instances Removed Removed by deletion Self-removed Remaining

# % # % # % # %

Camel 3,456 2,341 67.7 381 16.3 1,314 56.1 1,115 32.3
Hibernate 4,514 2,913 64.5 1,119 38.4 1,663 57.1 1,601 35.5
JMeter 2,599 2,116 81.4 210 9.9 893 42.2 483 18.6
Ant 2,193 1,778 81.1 745 41.9 913 51.3 415 18.9
Hadoop 5,329 2,564 48.1 341 13.3 659 25.7 2,765 51.9
PMD 1,694 953 56.3 586 61.5 356 37.4 741 43.7
EMF 1,695 910 53.7 243 26.7 528 58.0 785 46.3
Tomcat 4,132 2,944 71.2 419 14.2 2,087 70.9 1,188 28.8

Average - - 65.5 - 27.8 - 49.8 - 34.5
Median - - 66.1 - 21.5 - 53.7 - 33.9

Total 25,612 16,519 64.5 4,044 24.5 8,413 50.9 9,093 35.5

distribution of elapsed times (in days) for SATD removals per project in Figure 3.5. Similarly,

Figure 3.6 presents the distribution of the permanence time (in days) for SATD instances that remain

in the projects. The distributions in in Figure 3.5 indicate that when SATD is removed from the

studied projects, this mostly happens within a year of the debt’s introduction. On the other hand,

Figure 3.6 indicates that SATD instances that have not been removed remain in source code for long

periods of time, often years after the debt’s introduction.

3.3.7 Collection SATD Instance Metrics

Having narrowed down to the debt instances to focus in our study, the next step was to collect

the set of effort repayment metrics. In the previous subsection we recapped how we capture the

time of removal from SATD instances. Below, we first explain the collection of product metrics

from SATD instances that will be used to measure SATD interest gained and compound interest

rate. Then, we explain how we obtain the measures of effort in commented words, and change

proneness (likelihood of change).

Product Metrics

Similar to the approach taken by Kamei et al. (2016) to extract metrics from SATD methods, we

leveraged the capabilities of SciTools Understand (SciTools, 2018b) to extract 21 complexity and

volume metrics available at the method level from each of the versions of our SATD instances. A
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Figure 3.5: Distribution of removal times for the studied SATD instances per project.

description of the list of extracted product metrics can be found in Appendix B.1, Table B.1. We

used the API version of Understand to create UDB files (Understand database file) containing all the

entities and dependencies of an SATD file (i.e., a file that contains SATD). The UDB files were then

analyzed to query and extract the method-level metrics. In this step, we use the declaration statement

that a SATD belongs to, i.e., a method, to capture only the metrics of debt instance, and not the rest

of the file. However, not all SATD instances could be linked to a method; often, SATD comments

were belong to other Java constructs, containers, such as nested classes, interfaces or declaration

statements. Up to this point, we have discarded SATD instances for: i) being removed by chance

(deletion of files), and ii) not being able to collect metrics from them. We report the total amount

of SATD instances discarded by both preceding reasons in Table 3.4. Since the product metrics we

extract in this step are required for the analysis, and to other metrics we collect in proceeding steps

depend on them, we focus on these instances only. Therefore, we study 18,242 SATD instances,
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Figure 3.6: Distribution of the permanence of remaining SATD instances per project.

which corresponds to 71.2% of the total debt found in all projects.

Effort in Commented Words

Certainly, from the observations in our preliminary survey to developers and from our own

rationale, the effort required to address a SATD instance plays a major role for its resolution and

prioritization in a project. However, effort is particularly hard to measure for debt instances. This

can be also exemplified in our developer survey answers. When we asked developers how do they

estimate effort, the answer where not concrete and pointed at different ways to obtain an effort

estimate. In previous studies that worked on prioritizing the resolution of SATD, Mensah et al.

(2016, 2018) proposed a measure for effort estimation expressed in terms commented LOC. As

found in their investigation after manually classifying SATD comments that were vital for a project

(i.e., those that should be prioritized), developers would need to address 10 to 25 commented LOC

60



Table 3.4: Detailed amount of studied SATD instances.

Project (#) SATD
instances

Discarded Studied

# % # %

Camel 3,456 806 23.3 2,650 76.7
Hibernate 4,514 1,618 35.8 2,896 64.2
JMeter 2,599 692 26.6 1,907 73.4
Ant 2,193 871 39.7 1,322 60.3
Hadoop 5,329 1,231 23.1 4,098 76.9
PMD 1,694 746 44.0 948 56.0
EMF 1,695 594 35.0 1,101 65.0
Tomcat 4,132 812 19.7 3,320 80.3

Total 25,612 7,370 28.8 18,242 71.2

(CLOC) per SATD file to repay them. However, this measure was generated as an average per

project and can be counterintuitive. In our study, we are interested in measuring the effort for each

particular SATD instance, so we used the word count of the commented text. This measure was

taken to have a more individual estimation of effort based on the size of SATD comments. Given

that SATD comments change over time, we extracted this metric from every version of a SATD

instance. From now on, we refer to this metric simply as Effort in words for simplification.

Change Proneness

Another important measure of SATD repayment effort is the likelihood of change of files

with SATD. This is because the more it changes, the more likely it will sprout dependencies and

potentially be more complex and costly to repay in the future. As done in previous work (Bieman

et al., 2003; Khomh et al., 2009), we measure the change proneness of an SATD instance as the

number of file changes in the repository (considering past renames) until the date of the analyzed

file version. For consistency, the change proneness metric was taken for all SATD versions.

3.3.8 Measurement of SATD Interest

When SATD is introduced, it evolves over time, potentially increasing or reducing the severeness

of the technical debt. Kamei et al. (2016) investigated this phenomena and referred to it as SATD

interest, which reflects the additional cost of difficulty in repaying the debt. Intuiting that the

complexity of a piece of code increases when it becomes harder to repay later (i.e., incurred interest),
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Figure 3.7: Theoretical visualization of positive interest in SATD.

the authors used complexity metrics as a proxy to quantify SATD interest. In particular, they

proposed the use of LOC and Fan-In (amount of dependencies of a function) as measures to quantify

the interest of SATD. These two metrics were chosen after finding that other complexity and volume

metrics to be highly correlated with LOC, except Fan-In. Figure 3.7 presents a theoretical visualization

of the interest growth of a SATD instance from its introduction to removal points in time. The size

of the node with horizontal stripes represents the LOC of a SATD instance, while the amount of

edges to outer smaller nodes represents its dependencies.

We measured the Spearman correlation (Myers & Sirois, 2004) between the complexity and

volume metrics we extracted and had a similar observation to Kamei et al. (2016), noticing they were

also correlated. We also noticed that LOC and Fan-In were had a slight correlation in our dataset.

Despite this, we kept both metrics as they measure two elements of interest in our study: LOC serves

as an indicator for size of the debt to address, while Fan-In indicates the amount of dependencies of

the debt. More details on the correlation of these metrics can be found in Section 3.4. We computed

the interest measures in terms of LOC and Fan-In with our collected data as proposed in (Kamei

et al., 2016), obtaining positive and negative interest rates per debt instance. Since the resulting

rate from the direct comparison of values between the introduction and removal times, we refer to

it as simple interest. Table 3.5 shows the incurred interest of studied SATD instances in terms of

LOC and Fan-In per project. In contrast to the finding of Kamei et al. (2016), we find that a lower

amount of SATD instances incur positive interest, both in terms of LOC (16.2%) and Fan-In (10%)

on average. The majority of instances do not have any change (75.7% LOC and 85.3% Fan-In), and

the remaining minority present a negative interest (4.7% to 8.1%).
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Table 3.5: Incurred SATD interest in LOC and Fan-In.

Project Measure Positive No change Negative

Camel
LOC 14.9% 78.2% 6.9%

Fan-In 8.3% 88.9% 2.8%

Hibernate
LOC 19.5% 74.7% 5.8%

Fan-In 9.6% 86.2% 4.1%

JMeter
LOC 16.8% 68.0% 15.2%

Fan-In 12.8% 80.8% 6.4%

Ant
LOC 14.6% 74.7% 10.7%

Fan-In 11.6% 81.8% 6.6%

Hadoop
LOC 22.5% 69.4% 8.1%

Fan-In 14.3% 79.7% 6.0%

PMD
LOC 18.4% 74.9% 6.8%

Fan-In 8.2% 88.4% 3.4%

EMF
LOC 6.9% 90.6% 2.5%

Fan-In 3.9% 93.7% 2.4%

Tomcat
LOC 16.1% 74.9% 9.0%

Fan-In 11.3% 82.8% 5.9%

Average LOC 16.2% 75.7% 8.1%
Fan-In 10.0% 85.3% 4.7%

3.3.9 Measurement of Compound Interest Rate

When seen along the metaphor of technical debt, the interest generated by SATD instances is

tied to how they evolve over time. Therefore, the rate of such interest will vary based on the nature

of the debt itself and the effects it has on the code base. However, this is not entirely reflected

by the measure of simple interest because it does not consider the speed of the debt’s evolution

or the amount of times it evolves. Translated to the timeline of a repository, inspecting how fast

and frequently a SATD instance changes is important to determine those that should be prioritized.

Kamei et al. (2016) also pointed at the need of investigating time as an element to better quantify

SATD interest.

Continuing the metaphor of technical debt and translating the aforementioned problem to a

financial perspective, we propose the usage of a compound interest rate (Lewin, 1970). The rationale

behind this is that the resulting rate of a compound interest will also reflect the number of times a

SATD instance has changed over its timespan, i.e, the time it has remained in the project. Therefore,

the resulting rate is a construct of recalculating (compounding) the interest every time a SATD

instance is changed. In contrast to simple interest where changes done in-between introduction and
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removal times are ignored (see Figure 3.7), a compound rate will better represent the speed and

frequency of SATD evolution.

As an example, consider the parallel introduction of two SATD instances in methods M1 and

M2, which after a year of development were changed 5 times. By the end of the year, we observe

that M1 has grown in Fan-In and LOC to twice its original metric value, while noticing M2 had the

same growth but it only occurred in the last 3 months. We can consider M2 to be a more urgent

debt to address because it is generating interest at a faster pace than M1. It is also more likely that

M2 will keep worsening the debt in the future. Here, the simple interest will be the same for both

SATD instances, but the compound interest rate for M2 will be different. Having the starting and

final metric values in LOC and Fan-In for a given SATD, its timespan and frequency of change, we

can apply the standard compound interest formula (Lewin, 1981), defined as:

A = P
(
1 +

r

n

)n∗t
Where P is the principal amount value; A is the future value, including interest; n is the compounding

frequency; t is the length of time in which the interest is applied; and r is the interest rate. Since we

are trying to obtain the compound interest rate, i.e., how quickly it changes of SATD and not the

interest value, we can derive from the above formula and solve for r with the following:

r = n ∗

((
A

P

) 1
n∗t
− 1

)

In the context of SATD, P is the value in LOC or Fan-In for a debt instance at its introduction

time; A is the new value in LOC or Fan-In after a change. n is the number of commits or changes

that affected the debt instance in a timespan; and t is the timespan in days of a debt instance since its

introduction. We use days as our time measure because the changes we observe in the repositories

mostly happen daily. The result from applying this formula is a change-compounding interest rate

r that reflects the changes in the timespan of an SATD instance. Notice that the magnitude of r will

change based not only on the LOC or Fan-In values, but also on the amount of changes that the debt

went through and the time it has remained in the system. Thus, it will better reflect the evolution of

a SATD measuring how fast and frequently the effort to repay the debt is changing. In the case the
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amount of LOC or Fan-In values decrease over time, i.e., the SATD incurs negative interest, r will

accordingly be negative, indicating the debt has shrunk.

Because this interest rate is measured with additional data from the history of a debt instance,

which is different in each SATD case, it can be used as a more accurate metric to estimate SATD

repayment effort than with a simple interest. The r values in terms of Fan-In and LOC were

computed for all versions of SATD instances in our dataset.

3.3.10 Collection of Historical Metrics

Having obtained different metrics of SATD instances and studied what happened to them over

time, our next step was to collect historical change metrics that reflect different features of files

at the point where SATD was introduced into them. The metrics we selected have been used in

previous work as indicators for defect proneness, and for fault and risk prediction (Hassan, 2009;

Kamei et al., 2013; Matsumoto, Kamei, Monden, Matsumoto, & Nakamura, 2010; Mockus & Weiss,

2000). We are interested to see if they can also serve as indicators for the effort required to repay

SATD. We used git to mine a some of these change history metrics, and leveraged the capabilities

of Commit Guru to obtain others that are built into the tool’s features. Commit Guru is a public tool

for predicting risky commits in software repositories (Rosen, Grawi, & Shihab, 2018). We collected

the following metrics at the introduction commit of each SATD instance; we provide their extraction

source and description:

• Contributors (git); the number of unique developers that have contributed changes to the

SATD file3 (Matsumoto et al., 2010).

• Author experience (git); number of commits done by a developer in a repository up to a

given point in time (Kamei et al., 2013).

• Bug-fixing commits (Commit Guru); the number of bug-fixing commits (i.e., commits that

fixed a bug) that a file has gone through (Rosen et al., 2015).

• Entropy (Commit Guru); a measure for the distribution of change across the files modified

in a commit (Hassan, 2009).
3Unique developers were found as described in Section 3.3.6 and 3.3.2.
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• File churn (git); number of added and deleted lines in a modified file (Munson & Elbaum,

1998).

• Commit churn (Commit Guru); the total number of added and deleted lines from all files

modified in a commit (Nagappan & Ball, 2005).

• Modified directories (Commit Guru); number of different directories modified in a commit

(Mockus & Weiss, 2000).

• Modified files (Commit Guru); number of files modified in a commit (Nagappan, Ball, &

Zeller, 2006).

• Modified subsystems (Commit Guru); number of different subsystems modified in a commit

(Mockus & Weiss, 2000).

More details on the implementation of these metrics can be found in (Kamei et al., 2013), while

details on Commit Guru itself and how it identifies bug-fixing commits can be found in (Rosen

et al., 2015). We analyzed all our projects with Commit Guru and extracted its metrics from the

downloadable database dump it generates. This data was then combined with those metrics extracted

from git for the commits that introduced SATD. The 9 metrics described above conform the set of

explanatory variables in our study.

3.4 Results

After completing the data collection for the study, we measured the intercorrelation of dependent

and independent variables using Spearman correlation coefficients (Myers & Sirois, 2004) to make

sure they were not giving us the same information and thus, they measure different things about the

SATD instances. The measurements of intercorrelations between both sets of variables will help us

to spot those that can be removed to simplify our models. In our study, the dependent or response

variables are the SATD repayment effort metrics taken at the latest found version of a SATD

instance. On the other hand, the independent variables are the set of historical metrics extracted

at the point of SATD introduction. The intercorrelations between our response variables surfaced
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that most of the SATD effort estimation metrics we selected are providing different information;

the correlations were consistent among projects. The only exception was between the metrics of

simple interest in terms of LOC and Fan-In, which were positively correlated in 6 out of 8 studied

projects (coefficients of: 0.86 in Camel, 0.51 in Hibernate, 0.66 in Ant, 0.68 in Hadoop, 0.66 in

PMD, 0.8 in Tomcat). Table 3.6 shows the intercorrelation of response variables in all projects,

and highlights the significant correlation found (0.62) between SATD interest in terms of LOC and

Fan-In. Despite this observation, we kept both metrics as they measure two elements of importance

in our study: LOC serves as an indicator for size and complexity of debt, while Fan-In indicates

the amount of dependencies it has. Interestingly, we found no significant correlation between the

measures of simple and compound interest in terms of LOC or Fan-In, this tells us that these SATD

effort repayment metrics are different.

The intercorrelations between historical metrics showed a different case, we observed that often

several metrics were correlated, but with differences in every project. We are interested in keeping

a healthy amount of independent variables as we are investigating which can be good indicators.

Therefore, we looked at intercorrelation coefficients of each project and only discarded variables

that were highly correlated (≥ 0.8). Table 3.7 lists the explanatory variables that we kept for each

project. Overall, we kept between 5 to 7 variables that were not highly correlated.
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Table 3.6: Intercorrelation coefficients between response variables.

Effort in Interest Interest Comp. Interest Comp. Interest Change Removal
words Fan-In LOC LOC Fan-In Proneness Time (days)

Effort in Words 1.00 -0.01 -0.01 -0.02 0.00 -0.04 0.07
Interest Fan-In -0.01 1.00 0.62 0.13 0.17 0.05 0.07
Interest LOC -0.01 0.62 1.00 0.17 0.05 0.06 0.03
Compound Interest LOC -0.02 0.13 0.17 1.00 0.04 0.01 -0.02
Compound Interest Fan-In 0.00 0.17 0.05 0.04 1.00 0.01 -0.04
Change Proness -0.04 0.05 0.06 0.01 0.01 1.00 -0.02
Removal Time (days) 0.07 0.07 0.03 -0.02 -0.04 -0.02 1.00

Table 3.7: Explanatory variables kept per project.

Camel Hibernate JMeter Ant Hadoop PMD EMF Tomcat

Contributors 4 4 4 4 4 4 4 4

Bug-fixing commits 8 8 4 8 4 4 4 8

Author experience 4 4 4 4 4 4 4 4

Entropy 4 4 8 8 8 8 4 8

File churn 4 4 4 4 4 4 4 4

Commit churn 4 8 8 4 8 4 8 8

Modified files 4 8 4 4 8 4 4 4

Modified directories 8 8 8 8 4 8 8 8

Modified subsystems 4 4 4 4 4 4 4 4
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RQ1: Is there a consistent SATD repayment effort metric that can be modeled using historical

data?

We built linear regression models for every SATD repayment effort metric using the kept independent

variables per project, i.e., those that were not intercorrelated to others as seen in Table 3.7. To do so,

we first plotted the distribution of all kept independent variables per project to have a visualization

of their distributions. This aided us to identify variables that had suffered from a high skewness and

kurtosis in the dataset. The complete set of these distribution plots for our independent variables

can be found in Appendix B, Sections B.3 to B.10. Noticeably, our set of independent variables

mostly suffered from a positive skewness, and often from an excess of kurtosis. We applied a log

transformation to variables that fell in either case.

To build the linear regression models, we used the lm command in the R statistical software

(The R Foundation, 2018). We looked at the statistical significance of each independent variable

to the model using their p-values and removed those that were not contributing to the model of a

response variable. In parallel, to achieve a good fit for the models, we looked at the coefficient

of determination (R-squared value) of the linear regression model after each iteration of removing

an independent variable that was not significant. A similar approach to build logistic regression

models has been used in previous software engineering work (Shihab, Jiang, Ibrahim, Adams, &

Hassan, 2010). We use the R-squared coefficient of determination because it quantifies the fit of

the model. A higher percentage R-squared value indicates a better fit on a linear regression model.

We repeated this process with all the independent variables for each response variable and for each

studied project. The complete set of resulting linear models and their respective R-squared values

can be seen in Tables 3.8 to 3.15.

Previous software engineering work has reported equivalent R-squared values ranging between

11.2% to 25.2% and higher as indicator of useful logistic regression models (Shihab et al., 2010).

In our scenario, we use a similar range to determine models with good fit. We highlight significant

R-squared values in Tables 3.8 to 3.15. We find that among all the response variables we evaluate,

the only one that is consistent among all projects with R-squared values ranging from 43% to 82%

is change proneness. The models built for removal time in days of SATD also present good results

for 5 out of 8 projects, with R-squared values between 16% to 40%. Effort in words showed an
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R-squared value of 29% in EMF, and 10% in Ant. The remaining response variables had much

lower R-squared values that are indicate a weak relationship to the built models.

The complete correlation plots of these variables that support the built models can be seen in

Appendix B, Sections B.3 to B.10.

Two SATD repayment effort metrics can be consistently modeled using historical

data: Change Proneness (43% to 82% R-squared values) in all projects and

Removal Time (16% to 40% R-squared values) in days in 5 out of 8 projects.

RQ2: What are the best indicators for SATD repayment effort metrics?

Continuing on the findings of RQ1, we investigated which of the independent variables can be

used as early indicators of SATD instances that should be repaid. To do this, we looked at the

frequency that different independent variables contributed to the linear models highlighted in RQ1

with significant values. In the resulting models for change proneness, the number of contributors to

a file was significant in 7 out of the 8 studied projects, while the amount of file churn, modified

subsystems, and bug-fixing commits were significant indicators in 4 out of 8 projects. In the

models built for SATD removal time (in days), the number of contributors, file churn, modified

subsystems and author experience were significant appearing in 3 out of the 5 models with high

R-squared values. Furthermore, for the response of amount of commented words (effort in words),

the number of contributors, file churn, and modified subsystems appeared in the 2 models with

significant R-squared values. By counting the independent variables that were recurrent across all

models built for the response variables with strong R-squared values, we identified that the number

of contributors, file churn, and author experience taken at the introduction point of SATD were the

most frequent and significant contributors to the models. Therefore, they are the top 3 contributing

indicators for SATD repayment effort metrics. This implies these historical metrics can be used as

good early indicators of SATD instances that are important to repay.

Two other indicators that followed the top 3 contributing to the resulting models were: the

number of bug-fixing commits that a file with SATD has gone through. This indicator was also a

significant contributor in the models build for change proneness and removal time (in days), however
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less frequent than those indicated above as the top contributors. This last independent variable was

not significant for the 2 resulting linear models for effort in words. We can notice a trend of the

best indicators for SATD repayment effort being those that look into the history of the particular file

where SATD was introduced. In contrast, other indicators, such as number of modified directories

in a commit, commit churn, or entropy are all metrics that consider changes to files other than where

the SATD was added, but that were part of the same commit. These metrics that consider extrinsic

characteristics of a SATD files did not contribute to the built models as well as those measuring

intrinsic features. In particular, we observed that entropy and the number of modified directories

were not good indicators. In the case of entropy, it only appeared in 1 of the models for change

proneness, and 2 of the models of removal time, while the amount of modified directories never had

a significance on any of the linear regression models. This suggests that is more valuable to focus

on historical data at the SATD file level rather than looking at indicators that measure features of

the complete change or commit when the SATD was introduced.

The goal for this research question was to find the best indicators for SATD repayment effort

metrics. Naturally, the amount of indicators that result of this investigation is key because models

with many independent variables are more complex to explain, and more expensive to apply. The

removal of independent variables that were intercorrelated plus the approach taken to build the

linear regression models resulted in our models being composed of considerably less variables than

our starting set of 9 independent variables. For the models built for change proneness and removal

time in days as dependent variables, we observe the average amount of independent variables is 4

(between 2 and 5) in both cases. This means the resulting models are not only easier to explain,

but the data needed to implement them is easier to collect. For example, the top 3 indicators for

SATD repayment effort metrics can be easily retrieved by querying the history of a repository until

the point of SATD introduction, and the change history of the file with added debt.

The number of contributors, file churn, and author experience at the time of SATD

introduction are the top 3 early indicators for debt instances that are important

to repay. These indicators pertain to historical data of the file where SATD is

introduced.
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Table 3.8: Camel models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼ AuthorExperience + Entropy + log(1+CommitChurn) + ModifiedSubsystems 0.01606

Effort in words EffortInWords ∼ Contributors + AuthorExperience + Entropy + CommitChurn + ModifiedFiles 0.0201

Interest Fan-In InterestFanIn ∼ log(1+Contributors) + log(1+AuthorExperience) + log(1+Entropy) + log(1+FileChurn) + CommitChurn
+ ModifiedFiles + log(1+ModifiedSubsystems)

0.001199

Interest LOC InterestLOC ∼ Contributors + log(1+AuthorExperience) + Entropy + CommitChurn + ModifiedFiles 0.002853

Compound Interest Fan-In CompoundedFanIn ∼ AuthorExperience + Entropy + FileChurn + CommitChurn + ModifiedSubsystems 0.01087

Compound Interest LOC CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) + Entropy + log(1+FileChurn) + log(1+CommitChurn) 0.03587

Change Proneness ChangeProness ∼ Contributors + FileChurn + log(1+ModifiedSubsystems) 0.7757

Table 3.9: Hibernate models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼ log(1+Contributors) + log(1+AuthorExperience) + Entropy + FileChurn + ModifiedSubsystems 0.4192

Effort in words EffortInWords ∼ AuthorExperience + log(1+Entropy) + FileChurn + ModifiedSubsystems 0.004341

Interest Fan-In InterestFanIn ∼ log(1+Contributors) + log(1+AuthorExperience) + ModifiedSubsystems 0.004682

Interest LOC InterestLOC ∼ Contributors + AuthorExperience + log(1+Entropy) + log(1+FileChurn) + log(1+ModifiedSubsystems 0.000941

Compound Interest Fan-In CompoundedFanIn ∼ log(1+Contributors) + log(1+Entropy) + FileChurn 0.001656

Compound Interest LOC CompoundedLOC ∼ Contributors + log(1+AuthorExperience) + log(1+Entropy) + FileChurn + log(1+ModifiedSubsystems) 0.002742

Change Proneness ChangeProness ∼ Contributors + FileChurn + ModifiedSubsystems 0.4375
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Table 3.10: JMeter models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼ BugFixingCommits + log(1+AuthorExperience) + log(1+FileChurn) + log(1+ModifiedFiles) 0.08007

Effort in words EffortInWords ∼ log(1+BugFixingCommits) + log(1+Contributors) + ModifiedFiles + ModifiedSubsystems 0.04623

Interest Fan-In InterestFanIn ∼ BugFixingCommits + Contributors + AuthorExperience + log(1+ModifiedFiles)
+ log(1+ModifiedSubsystems)

0.01064

Interest LOC InterestLOC ∼ log(1+BugFixingCommits) + log(1+Contributors) + log(1+AuthorExperience) + FileChurn
+ log(1+ModifiedSubsystems)

0.001849

Compound Interest Fan-In CompoundedFanIn ∼ log(1+BugFixingCommits) + Contributors + AuthorExperience + ModifiedFiles + ModifiedSubsystems 0.008001

Compound Interest LOC CompoundedLOC ∼ log(1+Contributors) + FileChurn + log(1+ModifiedFiles) 0.00352

Change Proneness ChangeProness ∼ log(1+BugFixingCommits) + Contributors + log(1+AuthorExperience) + FileChurn
+ log(1+ModifiedFiles)

0.5791

Table 3.11: Ant models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼ log(1+Contributors) + log(1+AuthorExperience) + CommitChurn + log(1+ModifiedSubsystems) 0.1611

Effort in words EffortInWords ∼ Contributors + FileChurn + log(1+CommitChurn) + ModifiedFiles + log(1+ModifiedSubsystems) 0.1049

Interest Fan-In InterestFanIn ∼ Contributors + log(1+AuthorExperience) + ModifiedFiles + log(1+ModifiedSubsystems) 0.02842

Interest LOC InterestLOC ∼ log(1+AuthorExperience) + log(1+FileChurn) + log(1+CommitChurn) + log(1+ModifiedSubsystems) 0.02439

Compound Interest Fan-In CompoundedFanIn ∼ log(1+Contributors) + AuthorExperience + log(1+FileChurn) + ModifiedSubsystems 0.00153

Compound Interest LOC CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) + log(1+FileChurn) + log(1+CommitChurn)
+ log(1+ModifiedFiles) + log(1+ModifiedSubsystems)

0.004533

Change Proneness ChangeProness ∼ Contributors + log(1+AuthorExperience) + FileChurn + log(1+ModifiedSubsystems) 0.8271
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Table 3.12: Hadoop models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼ BugFixingCommits + AuthorExperience + ModifiedDirectories + ModifiedSubsystems 0.04387

Effort in words EffortInWords ∼ log(1+Contributors) + ModifiedDirectories + ModifiedSubsystems 0.01269

Interest Fan-In InterestFanIn ∼ BugFixingCommits + Contributors + log(1+ModifiedDirectories) + log(1+ModifiedSubsystems) 0.006613

Interest LOC InterestLOC ∼ BugFixingCommits + Contributors + ModifiedDirectories + ModifiedSubsystems 0.0448

Compound Interest Fan-In CompoundedFanIn ∼ log(1+Contributors) + log(1+AuthorExperience) + log(1+FileChurn) + ModifiedSubsystems 0.000629

Compound Interest LOC CompoundedLOC ∼ AuthorExperience + FileChurn + ModifiedDirectories + ModifiedSubsystems 0.00152

Change Proneness ChangeProness ∼ BugFixingCommits + Contributors 0.6952

Table 3.13: PMD models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼ log(1+BugFixingCommits) + log(1+AuthorExperience) + log(1+FileChurn) + log(1+ModifiedFiles) 0.2741

Effort in words EffortInWords ∼ AuthorExperience + FileChurn + ModifiedFiles + ModifiedSubsystems 0.01063

Interest Fan-In InterestFanIn ∼ log(1+BugFixingCommits) + log(1+FileChurn) + log(1+CommitChurn) + log(1+ModifiedSubsystems) 0.06831

Interest LOC InterestLOC ∼ log(1+BugFixingCommits) + Contributors + AuthorExperience + FileChurn + log(1+ModifiedFiles) 0.05768

Compound Interest Fan-In CompoundedFanIn ∼ log(1+Contributors) + AuthorExperience + log(1+FileChurn) + log(1+ModifiedSubsystems) 0.02168

Compound Interest LOC CompoundedLOC ∼ log(1+BugFixingCommits) + AuthorExperience + FileChurn + ModifiedFiles 0.005869

Change Proneness ChangeProness ∼ BugFixingCommits + Contributors + CommitChurn + log(1+ModifiedFiles) 0.5412
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Table 3.14: EMF models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼log(1+BugFixingCommits) + AuthorExperience + log(1+FileChurn) + log(1+ModifiedFiles) 0.2952

Effort in words EffortInWords ∼ BugFixingCommits + Contributors + log(1+FileChurn) + log(1+Entropy) + log(1+ModifiedFiles)
+ ModifiedSubsystems

0.2904

Interest Fan-In InterestFanIn ∼ BugFixingCommits + log(1+FileChurn) + Entropy + ModifiedSubsystems 0.01201

Interest LOC InterestLOC ∼ BugFixingCommits + log(1+FileChurn) + Entropy + ModifiedSubsystems 0.06

Compound Interest Fan-In CompoundedFanIn ∼ log(1+BugFixingCommits) + log(1+Contributors) + AuthorExperience + Entropy
+ log(1+ModifiedFiles)

0.003876

Compound Interest LOC CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) + FileChurn + log(1+ModifiedSubsystems) 0.04082

Change Proneness ChangeProness ∼ BugFixingCommits + Contributors + log(1+FileChurn) + log(1+Entropy) 0.7927

Table 3.15: Tomcat models and R-squared values.

Response variable Model R-squared

Removal time (days) RemovalTimeInDays ∼ log(1+Contributors) + log(1+AuthorExperience) + log(1+ModifiedSubsystems) 0.2672

Effort in words EffortInWords ∼ AuthorExperience + log(1+FileChurn) + log(1+ModifiedFiles) + log(1+ModifiedSubsystems) 0.04606

Interest Fan-In InterestFanIn ∼ log(1+AuthorExperience) + log(1+FileChurn) + ModifiedFiles + log(1+ModifiedSubsystems) 0.002857

Interest LOC InterestLOC ∼ log(1+AuthorExperience) + log(1+FileChurn) + log(1+ModifiedFiles) + log(1+ModifiedSubsystems) 0.002955

Compound Interest Fan-In CompoundedFanIn ∼ Contributors + log(1+AuthorExperience) + log(1+FileChurn) + log(1+ModifiedSubsystems) 0.001773

Compound Interest LOC CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) + log(1+ModifiedFiles) + log(1+ModifiedSubsystems) 0.001419

Change Proneness ChangeProness ∼ Contributors + AuthorExperience + log(1+ModifiedFiles) + ModifiedSubsystems 0.6682
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3.5 Threats to Validity and Limitations

3.5.1 Internal Validity

Our study detects SATD by inspecting source code comments. We did not analyze the source

code in context of the SATD we identify to confirm the existence of technical debt. A recent

study has considered this and focused on analyzing source code to recommend adding absent SATD

comments (Zampetti, Noiseux, et al., 2017). However, the approach was tested with design SATD

only. In our work we focus on all SATD, regardless its type or classification. Therefore, it might be

the case that technical debt we detected was removed from a piece of code, but its comment was not

amended, or vice versa. On this regard, previous work has found that source code and comments do

co-evolve; comment are changed in the same revision as their corresponding piece of code 97% of

the time (Fluri et al., 2007a).

We acknowledge we might not have selected all metrics that can be used to estimate the effort

required to repay SATD, and equally, all metrics that could be retrieved from historical data as

indicators. As mentioned earlier in Section 3.3.1, to dampen this threat, we selected a comprehensive

set of metrics that can be obtained from source code and change history information, and that we

could support with previous work. The preliminary online survey was sent to 200 developers on

what they consider to prioritize SATD had a 9.5% response rate (19 answers in total). Although this

appears to be a small rate, it is comprehensive among similar survey work in software engineering

(Singer et al., 2008). Even with this in mind, we considered the responses received with our own

conjectures and not as the rule of thumb, supporting our decision with metrics used in prior SATD

studies. While selecting exploratory variables, our rationale was to settle on a set of metrics that

could be early indicators of technical debt that should be repaid. Although we leveraged most

change history and defect predictions metrics that could be extracted from our dataset, we were

limited to pick those that would not bias our models and that could be supported by previous work.

Still, we do not claim to have evaluated all metrics that can be used for this purpose.
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3.5.2 Construct Validity

One key factor in our study is the detection of SATD instances across the change history of the

studied projects. This presents the threat of not detecting all SATD instances, or miss identifying

comments that are not actual technical debt (false positives). To mitigate the basis of this, we

rely on the SATD detector tool, which to date is the best performing SATD detection approach

proposed in literature. Similarly, across our case study setup, we relied on well know tools that have

been used in previous software engineering empirical studies, such as: git, srcML, and SciTools

Understand. Naturally, our study is tied to the false positives, errors or limitations from these tools

and approaches. An example of this happened when we were unable to map all SATD comments

to methods or functions using Understand to extract product metrics from the debt instances. To

manage this, we reported and discarded the SATD instances facing this limitation from the study. A

step that did not rely in external tools was our mapping of detected SATD comments to others in the

same source code context and across history. In said step, we needed to decide on a threshold for

string similarity to determine if comments belonged to the same debt instance or not. To mitigate

misclassification, we inspected the distribution of all similarity scores we computed, and decided

to set the threshold at ≥ 0.8 by looking at our data. This resulted in a threshold set higher than

previous work that evaluated comment similarity, which in our scenario was beneficial.

3.5.3 External Validity

We studied SATD in 8 software systems, selecting those with different sizes and characteristics

of interest, such as: amount of comments, changes in their repositories and contributors. However,

all of these projects are open-source and written in Java. Thus, our findings may not generalize to

projects written in other programming languages or to proprietary software. Several of the tools and

approaches we implement throughout our study are tailored for Java as well; this is a limitation that

requires the attention of the research community in the future. Most (if not all) findings and work

done in the area of SATD are still restricted to Java projects. Lastly, we only targeted repositories

with sufficient source code comments; therefore, our findings may not generalize to systems that

are less commented.
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3.6 Conclusions and Future Work

With the motivation gained from Chapter 2, this study worked towards the repayment of SATD.

We focused on finding indicators of SATD instances that will become more difficult or costly to

repay over time, targeting the earliest point in time, i.e., when SATD is added into a system.

We began by conducting an online survey to gain insight from developers on the elements they

consider to prioritize the resolution of SATD. Based on the responses from developers, metrics used

by previous work in the area, and our own conjectures, we selected 7 different SATD repayment

effort metrics. As a set of indicators, we selected 9 change history and defect prediction metrics

that we extracted from historical data to serve as our exploratory variables. In total, we collected

data from 18,242 unique SATD instances (and their change history) detected in 5,352,994 source

code comments, and across 121,558 commits in 8 software repositories. Linear regression models

were built for every SATD repayment effort metric as response and using the historical metrics

as explanatory variables, this was repeated for each project independently. We found that two

SATD repayment effort metrics could be modeled consistently: change proneness in all projects,

and SATD removal time (in days) in 5 out of 8 studied projects. We investigated what were the best

early indicators for SATD that should be repaid and found the top 3 were: number of developers that

contribute to a SATD file, amount of file churn, and the experience of the developer who introduced

the debt. We noticed that these indicators relate to intrinsic characteristics of the file where SATD

is added, and that indicators that relate to extrinsic characteristics were not useful indicators. This

suggests that when using historical data to estimate SATD that should be repaid, is more valuable

to look for intrinsic indicators of SATD at the file level, rather than at the change or commit level.

On the bigger picture towards SATD repayment, the questions of what SATD should be repaid,

and which debt instance should be prioritized remain open. In future work, we aim to continue

on this research track, and as an immediate next step, we plan on investigating the usefulness of

using measures of SATD interest, in particular, the compound interest rate proposed in this work.

We envision an approach to rank and recommend which SATD instance should be addressed first

among those that remain in a system and are candidates for repayment. Thus, we plan to study on a

way to prioritize the resolution of SATD.
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Chapter 4

Summary, Contributions, and Future

Work

4.1 Summary of Addressed Topics

This thesis focused on working towards the repayment of Self-Admitted Technical Debt (SATD).

First, we performed and in-depth survey of empirical research in the area Chapter 2. We used the

study by Potdar and Shihab (2014) as our cornerstone and applied a snowball approach to find

related work, complementing our lookup with academic search engines. In this literature review,

we surfaced how the research community has evolved detection and classification approaches from

manual inspection to advanced automated techniques. Similarly, we observed how research has

progressed to better understand the SATD phenomenon, how it is introduced and removed from

software repositories and its implications on software maintenance. By highlighting gaps and

opportunities in the surveyed work, we spotted a lack of studies dedicated to the repayment and

management of SATD, which is one of the goals of studying this phenomena.

Our literature review also pointed at several of the challenges to overcome in the area, presenting

various promising avenues for future SATD work and actionable calls to action for the research

community. Furthermore, we compiled publicly available tools, techniques and datasets that can be

used as a foundation to advance the state of the art on SATD and encourage the submission of novel

ideas.
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In Chapter 3, we focused on working towards the repayment of SATD using the knowledge

gained from Chapter 2. We began by conducting an online survey to developers to gain insight on

the elements they consider when prioritizing SATD. Then, based on the responses we obtained and

previous work on SATD repayment, we conducted an empirical study, in which we focus on finding

indicators for SATD instances that will become more difficult to repay over time. 7 different SATD

repayment effort metrics were selected as our response variables, while 9 change history and defect

prediction metrics were chosen to serve as our explanatory variables.

In total, we collected data from 18,242 unique SATD instances (and their change history)

detected in 5,352,994 source code comments, and across 121,558 commits in 8 software repositories.

We built linear regression models for each of our response variables evaluating our set of exploratory

variables in each studied project. The results of this investigation exposed two responses that could

be modeled consistently, which are: change proneness in all projects, and removal time (in days) in

5 out of 8 projects. To find the best indicators for SATD repayment effort, we looked at those that

contributed most to the built models of interest, and found the top 3 indicators to be: the number of

developers that contribute to a SATD file, amount of file churn, and the experience of the developer

who introduced the SATD instance. In contrast to other indicators that were not as useful, the best

found indicators measured intrinsic features of SATD files. This suggests that when using indicators

from historical data for SATD that should be repaid, is more valuable to look for intrinsic indicators

at the file level, than at the change or commit level.

4.2 Contributions

The main contributions presented in this thesis are:

• An in-depth literature survey on Self-Admitted Technical Debt research work. This thesis

presents a compilation of the most recent publications in the area of SATD, highlighting gaps

and opportunities as potential research avenues for future work. We overview challenges in

the area and include a set of explicit calls to action that can be implemented by researchers to

overcome them.

• A compilation of publicly available tools, approaches, techniques and online datasets that
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from surveyed work that can be used to extend SATD research.

• An empirical study of the change history of 18,242 unique SATD instances detected with

state of the art approaches in 8 software systems investigating the possibility of using change

history and defect prediction metrics as early indicators of SATD that should be addressed.

• We propose the use of a compound interest rate to measure the evolution of a SATD that

allows developers to estimate the frequency and speed at which a debt instance gains interest.

• Our resulting dataset from the empirical study, as well as the questions and responses of

the online survey to developers are made publicly available to facilitate and promote further

research in the area o SATD. The dataset contains a wide set of product and process metrics

of detected SATD instances (in all their versions) from eight open-source projects.

4.3 Future Work

Certainly, the materials presented on this thesis leave room for vast future research on SATD,

particularly on SATD repayment. In Chapter 2, we dedicated Section 2.4 solely to discuss future

work on SATD, mentioning gaps in current work, research opportunities, listing challenges to

overcome, and even explicitly pointing at actionable calls to action. Although we could pursue any

of the opportunities for future work proposed in an immediate future, its extensiveness surpasses

our capability. Therefore, this must be addressed in combined efforts with the research community.

We are optimistic that SATD will continue to receive attention in the field for the upcoming years.

Regarding our plans for the future, we are interested on continuing the line of research of this

thesis, focusing on the repayment of SATD. Stepping back to see the bigger picture, the questions

of what SATD should be repaid, and which debt instance should be prioritized remains open. The

work we presented in Chapter 3 is one step in the right direction, but many others are needed.

Several observations made in our empirical study spark new lines of investigation. For example, we

observed that only a small amount of debt instances incurred positive or negative interest. This was

consistent among our studied projects, and might explain why models for SATD interest measures

did not have a good fit.
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As immediate future work, we want to investigate the usefulness of SATD interest measures, in

particular, of the compound interest rate proposed in Chapter 3. We envision an approach to rank and

recommend which SATD instance should be addressed first among those that remain in a system and

are candidates for repayment. Thus, we plan to study on a way to prioritize the resolution of SATD.

Finally, we consider that our goal of repaying SATD will not be completed until a replicable and

generalizable approach to recommend SATD that should be prioritized is available. Therefore, our

efforts will be also dedicated to implement our future research findings as tools for both, researchers

and practitioners.
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Appendix A

Literature Review

The following set of tables complement the material presented in Chapter 2 of this thesis.
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Table A.1: Published artifacts and online references.

Reference Published Artifacts Online Reference

Potdar and Shihab (2014) 62 SATD detection patters https://users.encs.concordia.ca/$\sim$eshihab/data/

ICSME2014/satd.html

Maldonado and Shihab (2015) Dataset of classified SATD http://users.encs.concordia.ca/$\sim$eshihab/data/

MTD2015/MTD 15 data.zip

Freitas Farias et al. (2015a)

CVM-TD, vocabulary and filtered comments http://goo.gl/4IvwtA

Relational table of SE Nouns and TD types http://goo.gl/5jWY2C

Study data set (TD selected comments) http://goo.gl/HBc5nt

eXcomment Tool http://goo.gl/9Mgl9m

Freitas Farias et al. (2016c)

Experimental Package https://drive.google.com/file/d/

0BwwEbWFwapG1UzhVZDlxczlDX0E/view

Most selected patterns by participants https://drive.google.com/file/d/

0BwwEbWFwapG1UlNZbG5lekN1UUk/view

Comments by Ratio https://drive.google.com/file/d/

0BwwEbWFwapG1Y2hRaEt1bGFGa2s/view

Bavota and Russo (2016) Replication Package (R Scripts and data sets) http://www.inf.unibz.it/$\sim$gbavota/reports/satd

Ichinose et al. (2016) Tool demo video https://www.youtube.com/watch?v=ZQTTO91v4No

Maldonado, Shihab, and Tsantalis (2017b) Dataset of classified SATD with NLP detection https://github.com/maldonado/tse.satd.data

Maldonado, Abdalkareem, et al. (2017a) Study data set, survey form and responses http://das.encs.concordia.ca/uploads/2017/07/

maldonado icsme2017.zip
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Huang et al. (2018) Source code and study data set https://github.com/tkdsheep/TechnicalDebt

Liu et al. (2018)
SATD Detector Tool https://goo.gl/ZzjBzp

Tool demo video https://youtu.be/sn4gU2qhGm0

Zampetti et al. (2018) Data set of SATD Removals http://home.ing.unisannio.it/fiorella.zampetti/

datasets/ReplicationSATDRemoval.zip

Table A.2: Paper selection based on citations of Potdar and Shihab (2014).

Reference Title Selected

Maldonado and Shihab (2015) Detecting and Quantifying Diferent Types of Self-Admitted Technical Debt Yes

Freitas Farias et al. (2015a) A Contextualized Vocabulary Model for Identifying Technical Debt on Code Comments Yes

Ortu et al. (2015) The JIRA repository dataset: Understanding social aspects of software development No

Bavota and Russo (2016) A Large-Scale Empirical Study on Self-Admitted Technical Debt Yes

Wehaibi et al. (2016) Examining the Impact of Self-admitted Technical Debt on Software Quality Yes

Freitas Farias et al. (2015a) Investigating the Identifcation of Technical Debt Through Code Comment Analysis Yes

Vassallo et al. (2016) Continuous Delivery Practices in a Large Financial Organization Yes

Kamei et al. (2016) Using Analytics to Quantify the Interest of Self-Admitted Technical Debt Yes

Mensah et al. (2016) Rework Effort Estimation of Self-Admitted Technical Debt Yes

Ichinose et al. (2016) ROCAT on KATARIBE: Code Visualization for Communities Yes

Bellomo et al. (2016) Got technical debt? Surfacing elusive technical debt in issue trackers No

Akbarinasaji and Bener (2016) Adjusting the balance sheet by appending technical debt No

Ortu et al. (2016) The emotional side of software developers in JIRA No
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Siegmund (2016) Program comprehension: Past, present, and future No

Silva, Valente, and Terra (2016) Does technical debt lead to the rejection of pull requests? No

Ghanbari (2016) Seeking Technical Debt in Critical Software Development Projects: An Exploratory Field Study No

Steneker (2016) Towards an empirical validation of the TIOBE Quality Indicator No

Stijlaart and Zaytsev (2017) Towards a taxonomy of grammar smells No

Maldonado, Shihab, and Tsantalis (2017b) Using Natural Language Processing to Automatically Detect Self-Admitted Technical Debt Yes

Palomba et al. (2017) An Exploratory Study on the Relationship between Changes and Refactoring Yes

Miyake et al. (2017) A Replicated Study on Relationship Between Code Quality and Method Comments Yes

Maldonado, Abdalkareem, et al. (2017a) An Empirical Study on the Removal of Self-Admitted Technical Debt Yes

Zampetti, Noiseux, et al. (2017) Recommending when Design Technical Debt Should be Self-Admitted Yes

Ghanbari (2017) Investigating the causal mechanisms underlying the customization of software development methods No

Falessi, Russo, and Mullen (2017) What if i had no smells? No

Bhaalerao (2017) Determination of Hotspots and a Study of Technical Debt in OSS Projects and Their Forks No

Ziegler (2017) GITCoP: A Machine Learning Based Approach to Predicting Merge Conflicts from Repository

Metadata

No

Zampetti, Ponzanelli, et al. (2017) How developers document pull requests with external references No

Mensah et al. (2018) On the Value of a Prioritization Scheme for Resolving Self-Admitted Technical Debt Yes

Huang et al. (2018) Identifying Self-Admitted Technical Debt in Open Source Projects using Text-Mining Yes

Liu et al. (2018) SATD Detector: A Text-Mining-Based Self-Admitted Technical Debt Detection Tool Yes

Zampetti et al. (2018) Was Self-Admitted Technical Debt Removal a real Removal? An In-Depth Perspective Yes

Yan et al. (2018) Automating Change-level Self-admitted Technical Debt Determination. Yes

Leßenich, Siegmund, Apel, Kästner, and Hunsen

(2018)

Indicators for merge conflicts in the wild: survey and empirical study No

Verdecchia, Malavolta, and Lago (2018) Architectural Technical Debt Identification: The Research Landscape No
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Alfayez, Behnamghader, Srisopha, and Boehm

(2018)

An Exploratory Study on the Influence of Developers in Technical Debt No

Amanatidis, Mittas, Chatzigeorgiou,

Ampatzoglou, and Angelis (2018)

The developer’s dilemma: factors affecting the decision to repay code debt No

Ghanbari, Vartiainen, and Siponen (2018) Omission of Quality Software Development Practices: A Systematic Literature Review No

Table A.3: List of studied systems per surveyed paper and TD validation.

Reference Studied systems # TD Validation

Potdar and Shihab (2014) ArgoUML, Eclipse, Chromium OS, Apache Httpd 4 Manual inspection by the first author

Maldonado and Shihab (2015) Apache JMeter, ArgoUML, Apache Ant, Columba, JFreeChart 5 Manual inspection by the first author

Freitas Farias et al. (2015a) JEdit, Apache Lucene 2 Manual inspection by 4 software engineering

master students

Wehaibi et al. (2016) Hadoop, Tomcat, Chromium OS, Cassandra, Spark 5 Manual inspection by the first author

Freitas Farias et al. (2016c) ArgoUML 1 Manual inspection by 3 TD specialists and 32

software engineering master students

Bavota and Russo (2016) 120 projects from the Apache Ecosystem; 39 from the Eclipse Ecosystem 159 Manual inspection of a statistically significant

sample by both authors

Kamei et al. (2016) Apache JMeter 1 Manual inspection by the second author

Mensah et al. (2016) ArgoUML, Eclipse, Chromium OS, Apache Httpd 4 Relies on a pattern-based detection (Potdar &

Shihab, 2014)

Maldonado, Shihab, and Tsantalis

(2017b)

ArgoUML, Apache Ant, Columba, EMF, Hibernate ORM, JEdit, JFreeChart,

Apache JMeter, JRuby, SQuirrel SQL Client

10 Manual inspection by the first author
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Palomba et al. (2017) ArgoUML, Apache Ant, Apache Xerces-J 3 Manual inspection by the authors

Miyake et al. (2017) PMD, SQuirrel SQL Client, Free Mind, Hibernate ORM 4 Manual inspection by the authors

Maldonado, Abdalkareem, et al.

(2017a)

Camel, Gerrit, Hadoop, Log4j, Tomcat 5 Relies on the data set provided in (Maldonado,

Shihab, & Tsantalis, 2017b)

Zampetti, Noiseux, et al. (2017) ArgoUML, Apache Ant, Columba, Hibernate ORM, JEdit, JFreeChart, Apache

JMeter, JRuby, SQuirrel SQL Client

9 Relies on the data set provided in (Maldonado,

Shihab, & Tsantalis, 2017b)

Mensah et al. (2018) PMD, SQuirrel SQL Client, Free Mind, Hibernate ORM 4 Manual inspection of a statistically significant

sample by the authors

(Huang et al., 2018) ArgoUML, Columba, Hibernate ORM, JEdit, JFreeChart, Apache JMeter,

JRuby, SQuirrel SQL Client

8 Relies on the data set provided in (Maldonado &

Shihab, 2015)

(Liu et al., 2018) ArgoUML, Apache Ant, Columba, Hibernate ORM, JEdit, JFreeChart, Apache

JMeter, JRuby, SQuirrel SQL Client

9 Relies on the data set provided in (Maldonado &

Shihab, 2015)

(Zampetti et al., 2018) Camel, Gerrit, Hadoop, Log4j, Tomcat 5 Manual inspection by the authors on the data set

provided in (Maldonado, Abdalkareem, et al.,

2017a)

(Yan et al., 2018) Apache JMeter, Apache Ant, Camel, Gerrit, Hadoop, Log4j, Tomcat 7 Manual inspection by the first author and an

independent Ph.D. Student

Note: The studies by Vassallo et al. (2016), and Ichinose et al. (2016) have been excluded from this list due to non-available information.
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Appendix B

Empirical Study

B.1 Extracted Product Metrics

Table B.1 lists the 21 complexity and volume metrics collected using the API SciTools Understand

in Section 3.3.7 as described by the tool’s documentation SciTools (2018a).
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Table B.1: Description of collected product metrics.

Metric Name Type Description

Paths Complexity Number of possible paths, not counting abnormal exits or gotos.
Cyclomatic Complexity Complexity McCabe Cyclomatic complexity.
Modified Cyclomatic Complexity Complexity Cyclomatic Complexity, except that each decision in a multi-decision structure statement is not counted

and instead the entire multi-way decision structure counts as 1.
Strict Cyclomatic Complexity Complexity Cyclomatic Complexity with logical conjunction and logical and in conditional expressions also adding

1 to the complexity for each of their occurrences.
Essential Complexity Complexity Cyclomatic complexity after iteratively replacing all well structured control structures with a single

statement. Structures such as if-then-else and while loops are considered well structured.
Knots Complexity Measure of overlapping jumps. If a piece of code has arrowed lines indicating where every jump in the

flow of control occurs, a knot is defined as where two such lines cross each other.
Max Knots Complexity Maximum Knots after structured programming constructs have been removed.
Nesting Complexity Maximum nesting level of control constructs (if, while, for, switch, etc.) in the function.
Minimum Knots Complexity Minimum Knots after structured programming constructs have been removed.
Outputs Count - Size The number of outputs that are SET. This can be parameters or global variables.
Inputs (Fan-In) Count - Size The number of inputs a function uses plus the number of unique subprograms calling the function.
Physical Lines Count - Size Number of physical lines.
Blank Lines of Code Count - Size Number of blank lines.
Source Lines of Code (LOC) Count - Size The number of lines that contain source code.
Declarative Lines of Code Count - Size Number of lines containing declarative source code.
Executable Lines of Code Count - Size Number of lines containing executable source code.
Lines with Comments Count - Size Number of lines containing comments.
Statements Count - Size Number of declarative plus executable statements.
Declarative Statements Count - Size Number of declarative statements.
Executable Statements Count - Size Number of php executable statements.
Comment to Code Ratio Count - Size Ratio of number of comment lines to number of code lines.
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B.2 Description of Questions in the Survey to Developers

The following describes the questions that composed the online survey sent to developers on

how they prioritize SATD resolution, as overviewed in Section 3.2.

Q1: How many years of software development experience do you have? Multiple choice, 4 options:

• 0 to 1

• 1 to 3

• 3 to 5

• 5+ (more than 5)

Q2: How often do you contribute code to your project(s)? Multiple choice (single selection) 5

options:

• Never

• Rarely (e.g., once a year)

• Sometimes (e.g., once a month)

• Often (e.g., once a week)

• Very often (e.g., daily)

Q3: Which of the following best describes your current development activities? Multiple choice

(single selection), 5 options:

• Bug fixing

• Feature addition

• Code testing
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• Code reviewing

• Other (short text answer)

Q4: Have you ever introduced SATD comments?

Yes / no question.

Q5: Have you ever addressed SATD comments?

Yes / no question.

Q6: Given a project with multiple SATD instances, please select the element(s) you would consider

while deciding which SATD comment to address FIRST?

Multiple choice (checkboxes), 8 options:

• The date when the SATD comment was introduced

• The size (in Lines of Code) of the debt to address

• The amount of dependencies of the debt

• The person who introduced the debt

• The subsystem or module where the debt is located (e.g., utility code, test code, business

code) (Please also answer Q7).

• The change likelihood of the file that contains the debt (Please also answer Q8).

• The effort needed to address the debt (Please also answer Q9).

• Other (short text answer)

Q7: If you selected: ”The subsystem or module...” option above, please indicate which ones you

prioritize over others when addressing SATD in your project(s).
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Long text answer.

Q8: If you selected: ”The change likelihood...” option above, please detail how you measure the

change likelihood of a file in your project(s).

Long text answer.

Q9: If you selected: ”The effort needed to address the debt” option above, please detail how you

measure this effort in your project(s).

Long text answer.

Q10: Would you be interested in knowing the outcome of our study? If yes, please provide your

email address below.

Short text answer.
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B.3 Camel

Model: RemovalTimeInDays ∼ AuthorExperience + Entropy + log(1+CommitChurn) +
ModifiedSubsystems. R-squared: 0.01606

Figure B.1: Camel - Removal time (days).
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Model: EffortInWords ∼ Contributors + AuthorExperience + Entropy + CommitChurn +
ModifiedFiles. R-squared: 0.0201

Figure B.2: Camel - Effort in Words (days).
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Model: InterestFanIn ∼ log(1+Contributors) + log(1+AuthorExperience) + log(1+Entropy) +
log(1+FileChurn) + CommitChurn + ModifiedFiles + log(1+ModifiedSubsystems).

R-squared: 0.001199

Figure B.3: Camel - Simple Interest - Fan-In
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Model: InterestLOC ∼ Contributors + log(1+AuthorExperience) + Entropy + CommitChurn +
ModifiedFiles. R-squared: 0.002853

Figure B.4: Camel - Simple Interest - LOC
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Model: CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) + Entropy +
log(1+FileChurn) + log(1+CommitChurn). R-squared: 0.01087

Figure B.5: Camel - Compounded Interest - LOC
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Model: CompoundedFanIn ∼ AuthorExperience + Entropy + FileChurn + CommitChurn +
ModifiedSubsystems. R-squared: 0.03587

Figure B.6: Camel - Compounded Interest - Fan-In
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Model: ChangeProness ∼ Contributors + FileChurn + log(1+ModifiedSubsystems).
R-squared: 0.7757

Figure B.7: Camel - Change Proneness
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B.4 Hibernate

Model: RemovalTimeInDays ∼ log(1+Contributors) + log(1+AuthorExperience) + Entropy +
FileChurn + ModifiedSubsystems. R-squared: 0.4192

Figure B.8: Hibernate - Removal time (days).
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Model: EffortInWords ∼ AuthorExperience + log(1+Entropy) + FileChurn +
ModifiedSubsystems. R-squared: 0.004341

Figure B.9: Hibernate - Effort in Words (days).
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Model: InterestFanIn ∼ log(1+Contributors) + log(1+AuthorExperience) + ModifiedSubsystems.
R-squared: 0.004682

Figure B.10: Hibernate - Simple Interest - Fan-In
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Model: InterestLOC ∼ Contributors + AuthorExperience + log(1+Entropy) + log(1+FileChurn) +
log(1+ModifiedSubsystems. R-squared: 0.000941

Figure B.11: Hibernate - Simple Interest - LOC
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Model: CompoundedLOC ∼ Contributors + log(1+AuthorExperience) + log(1+Entropy) +
FileChurn + log(1+ModifiedSubsystems). R-squared: 0.002742

Figure B.12: Hibernate - Compounded Interest - LOC
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Model: CompoundedFanIn ∼ log(1+Contributors) + log(1+Entropy) + FileChurn.
R-squared: 0.001656

Figure B.13: Hibernate - Compounded Interest - Fan-In
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Model: ChangeProness ∼ Contributors + FileChurn + ModifiedSubsystems.
R-squared: 0.4375

Figure B.14: Hibernate - Change Proneness
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B.5 JMeter

Model: RemovalTimeInDays ∼ BugFixingCommits + log(1+AuthorExperience) +
log(1+FileChurn) + log(1+ModifiedFiles). R-squared: 0.08007

Figure B.15: JMeter - Removal time (days).
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Model: EffortInWords ∼ log(1+BugFixingCommits) + log(1+Contributors) + ModifiedFiles +
ModifiedSubsystems. R-squared: 0.04623

Figure B.16: JMeter - Effort in Words (days).
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Model: InterestFanIn ∼ BugFixingCommits + Contributors + AuthorExperience +
log(1+ModifiedFiles) + log(1+ModifiedSubsystems). R-squared: 0.01064

Figure B.17: JMeter - Simple Interest - Fan-In
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Model: InterestLOC ∼ log(1+BugFixingCommits) + log(1+Contributors) +
log(1+AuthorExperience) + FileChurn + log(1+ModifiedSubsystems). R-squared: 0.001849

Figure B.18: JMeter - Simple Interest - LOC
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Model: CompoundedFanIn ∼ log(1+BugFixingCommits) + Contributors + AuthorExperience +
ModifiedFiles + ModifiedSubsystems. R-squared: 0.008001

Figure B.19: JMeter - Compounded Interest - Fan-In
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Model: CompoundedLOC ∼ log(1+Contributors) + FileChurn + log(1+ModifiedFiles).
R-squared: 0.00352

Figure B.20: JMeter - Compounded Interest - LOC
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Model: ChangeProness ∼ log(1+BugFixingCommits) + Contributors + log(1+AuthorExperience)
+ FileChurn + log(1+ModifiedFiles). R-squared: 0.5791

Figure B.21: JMeter - Change Proneness
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B.6 Ant

Model: RemovalTimeInDays ∼ log(1+Contributors) + log(1+AuthorExperience) + CommitChurn
+ log(1+ModifiedSubsystems). R-squared: 0.1611

Figure B.22: Ant - Removal time (days).
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Model: EffortInWords ∼ Contributors + FileChurn + log(1+CommitChurn) + ModifiedFiles +
log(1+ModifiedSubsystems). R-squared: 0.1049

Figure B.23: Ant - Effort in Words (days).

117



Model: InterestFanIn ∼ Contributors + log(1+AuthorExperience) + ModifiedFiles +
log(1+ModifiedSubsystems). R-squared: 0.02842

Figure B.24: Ant - Simple Interest - Fan-In
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Model: InterestLOC ∼ log(1+AuthorExperience) + log(1+FileChurn) + log(1+CommitChurn) +
log(1+ModifiedSubsystems). R-squared: 0.02439

Figure B.25: Ant - Simple Interest - LOC
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Model: CompoundedFanIn ∼ log(1+Contributors) + AuthorExperience + log(1+FileChurn) +
ModifiedSubsystems. R-squared: 0.00153

Figure B.26: Ant - Compounded Interest - Fan-In
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Model: CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) + log(1+FileChurn)
+ log(1+CommitChurn) + log(1+ModifiedFiles) + log(1+ModifiedSubsystems).

R-squared: 0.004533

Figure B.27: Ant - Compounded Interest - LOC
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Model: ChangeProness ∼ Contributors + log(1+AuthorExperience) + FileChurn +
log(1+ModifiedSubsystems). R-squared: 0.8271

Figure B.28: Ant - Change Proneness
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B.7 Hadoop

Model: RemovalTimeInDays ∼ BugFixingCommits + AuthorExperience + ModifiedDirectories +
ModifiedSubsystems. R-squared: 0.04387

Figure B.29: Hadoop - Removal time (days).
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Model: EffortInWords ∼ log(1+Contributors) + ModifiedDirectories + ModifiedSubsystems.
R-squared: 0.01269

Figure B.30: Hadoop - Effort in Words (days).
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Model: InterestFanIn ∼ BugFixingCommits + Contributors + log(1+ModifiedDirectories) +
log(1+ModifiedSubsystems). R-squared: 0.006613

Figure B.31: Hadoop - Simple Interest - Fan-In
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Model: InterestLOC ∼ BugFixingCommits + Contributors + ModifiedDirectories +
ModifiedSubsystems. R-squared: 0.0448

Figure B.32: Hadoop - Simple Interest - LOC
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Model: CompoundedFanIn ∼ log(1+Contributors) + log(1+AuthorExperience) +
log(1+FileChurn) + ModifiedSubsystems. R-squared: 0.000629

Figure B.33: Hadoop - Compounded Interest - Fan-In
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Model: CompoundedLOC ∼ AuthorExperience + FileChurn + ModifiedDirectories +
ModifiedSubsystems. R-squared: 0.00152

Figure B.34: Hadoop - Compounded Interest - LOC
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Model: ChangeProness ∼ BugFixingCommits + Contributors. R-squared: 0.6952

Figure B.35: Hadoop - Change Proneness
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B.8 PMD

Model: RemovalTimeInDays ∼ log(1+BugFixingCommits) + log(1+AuthorExperience) +
log(1+FileChurn) + log(1+ModifiedFiles). R-squared: 0.2741

Figure B.36: PMD - Removal time (days).
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Model: EffortInWords ∼ AuthorExperience + FileChurn + ModifiedFiles + ModifiedSubsystems.
R-squared: 0.01063

Figure B.37: PMD - Effort in Words (days).
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Model: InterestFanIn ∼ log(1+BugFixingCommits) + log(1+FileChurn) + log(1+CommitChurn)
+ log(1+ModifiedSubsystems). R-squared: 0.06831

Figure B.38: PMD - Simple Interest - Fan-In
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Model: InterestLOC ∼ log(1+BugFixingCommits) + Contributors + AuthorExperience +
FileChurn + log(1+ModifiedFiles). R-squared: 0.05768

Figure B.39: PMD - Simple Interest - LOC
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Model: CompoundedFanIn ∼ log(1+Contributors) + AuthorExperience + log(1+FileChurn) +
log(1+ModifiedSubsystems). R-squared: 0.02168

Figure B.40: PMD - Compounded Interest - Fan-In
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Model: CompoundedLOC ∼ log(1+BugFixingCommits) + AuthorExperience + FileChurn +
ModifiedFiles. R-squared: 0.005869

Figure B.41: PMD - Compounded Interest - LOC
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Model: ChangeProness ∼ BugFixingCommits + Contributors + CommitChurn +
log(1+ModifiedFiles). R-squared: 0.5412

Figure B.42: PMD - Change Proneness
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B.9 EMF

Model: RemovalTimeInDays ∼ log(1+BugFixingCommits) + AuthorExperience +
log(1+FileChurn) + log(1+ModifiedFiles). R-squared: 0.2952

Figure B.43: EMF - Removal time (days).
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Model: EffortInWords ∼ BugFixingCommits + Contributors + log(1+FileChurn) +
log(1+Entropy) + log(1+ModifiedFiles) + ModifiedSubsystems. R-squared: 0.2904

Figure B.44: EMF - Effort in Words (days).
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Model: InterestFanIn ∼ BugFixingCommits + log(1+FileChurn) + Entropy +
ModifiedSubsystems. R-squared: 0.01201

Figure B.45: EMF - Simple Interest - Fan-In
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Model: InterestLOC ∼ BugFixingCommits + log(1+FileChurn) + Entropy +
ModifiedSubsystems. R-squared: 0.06

Figure B.46: EMF - Simple Interest - LOC
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Model: CompoundedFanIn ∼ log(1+BugFixingCommits) + log(1+Contributors) +
AuthorExperience + Entropy + log(1+ModifiedFiles). R-squared: 0.003876

Figure B.47: EMF - Compounded Interest - Fan-In
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Model: CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) + FileChurn +
log(1+ModifiedSubsystems). R-squared: 0.04082

Figure B.48: EMF - Compounded Interest - LOC
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Model: ChangeProness ∼ BugFixingCommits + Contributors + log(1+FileChurn) +
log(1+Entropy). R-squared: 0.7927

Figure B.49: EMF - Change Proneness
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B.10 Tomcat

Model: RemovalTimeInDays ∼ log(1+Contributors) + log(1+AuthorExperience) +
log(1+ModifiedSubsystems). R-squared: 0.2672

Figure B.50: Tomcat - Removal time (days).
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Model: EffortInWords ∼ AuthorExperience + log(1+FileChurn) + log(1+ModifiedFiles) +
log(1+ModifiedSubsystems). R-squared: 0.04606

Figure B.51: Tomcat - Effort in Words (days).
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Model: InterestFanIn ∼ log(1+AuthorExperience) + log(1+FileChurn) + ModifiedFiles +
log(1+ModifiedSubsystems). R-squared: 0.002857

Figure B.52: Tomcat - Simple Interest - Fan-In
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Model: InterestLOC ∼ log(1+AuthorExperience) + log(1+FileChurn) + log(1+ModifiedFiles) +
log(1+ModifiedSubsystems). R-squared: 0.002955

Figure B.53: Tomcat - Simple Interest - LOC
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Model: CompoundedFanIn ∼ Contributors + log(1+AuthorExperience) + log(1+FileChurn) +
log(1+ModifiedSubsystems). R-squared: 0.001773

Figure B.54: Tomcat - Compounded Interest - Fan-In
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Model: CompoundedLOC ∼ log(1+Contributors) + log(1+AuthorExperience) +
log(1+ModifiedFiles) + log(1+ModifiedSubsystems). R-squared: 0.001419

Figure B.55: Tomcat - Compounded Interest - LOC
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Model: ChangeProness ∼ Contributors + AuthorExperience + log(1+ModifiedFiles) +
ModifiedSubsystems. R-squared: 0.6682

Figure B.56: Tomcat - Change Proneness
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development methods. Jyväskylä studies in computing(258), 1–119.

Ghanbari, H., Vartiainen, T., & Siponen, M. (2018). Omission of quality software development

practices: A systematic literature review. ACM Computing Surveys (CSUR), 51(2), 38.

Git. (2018). git-log documentation. https://www.git-scm.com/docs/git-log.

((Accessed on 11/28/2018))

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In Proceedings of the

31st international conference on software engineering (pp. 78–88). IEEE Computer Society.

Huang, Q., Shihab, E., Xia, X., Lo, D., & Li, S. (2018). Identifying self-admitted technical debt in

open source projects using text-mining. Empirical Software Engineering, 23(1), 418–451.

Ichinose, T., Uemura, K., Tanaka, D., Hata, H., Iida, H., & Matsumoto, K. (2016). Rocat on

kataribe: Code visualization for communities. In Proceedings of the 4th intl. cong. on applied

computing and information technology/3rd intl. conf. on computational science/intelligence

and applied informatics/1st intl. conf. on big data, cloud computing, data science &

engineering (pp. 158–163).

Kamei, Y., Maldonado, E. d. S., Shihab, E., & Ubayashi, N. (2016). Using analytics to quantify

interest of self-admitted technical debt. In Proceedings of the 1st international workshop on

technical debt analytics (pp. 68–71). CEUR-WS.

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., & Ubayashi, N. (2013). A

large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software

Engineering, 39(6), 757–773.
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