
The Journal of Systems and Software 143 (2018) 44–58

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Characterizing and predicting blocking bugs in open source projects

Harold Valdivia-Garcia

a , ∗, Emad Shihab

b , Meiyappan Nagappan

c

a Bloomberg LP, United States
b Concordia University, Montreal, Canada
c University of Waterloo Waterloo, Ontario, Canada

a r t i c l e i n f o

Article history:

Received 20 March 2017

Revised 17 February 2018

Accepted 21 March 2018

Available online 6 April 2018

Keywords:

Process metrics

Code metrics

Post-release defects

a b s t r a c t

Software engineering researchers have studied specific types of issues such reopened bugs, performance

bugs, dormant bugs, etc. However, one special type of severe bugs is blocking bugs. Blocking bugs are soft-

ware bugs that prevent other bugs from being fixed. These bugs may increase maintenance costs, reduce

overall quality and delay the release of the software systems. In this paper, we study blocking bugs in

eight open source projects and propose a model to predict them early on. We extract 14 different factors

(from the bug repositories) that are made available within 24 hours after the initial submission of the

bug reports. Then, we build decision trees to predict whether a bug will be a blocking bugs or not. Our

results show that our prediction models achieve F-measures of 21%–54%, which is a two-fold improve-

ment over the baseline predictors. We also analyze the fixes of these blocking bugs to understand their

negative impact. We find that fixing blocking bugs requires more lines of code to be touched compared to

non-blocking bugs . In addition, our file-level analysis shows that files affected by blocking bugs are more

negatively impacted in terms of cohesion, coupling complexity and size than files affected by non-blocking

bugs .

© 2018 Published by Elsevier Inc.

(

(

2

A

s

a

2

a

a

r

p

t

t

d

d

b

p

a

c

c
1. Introduction

Software systems are becoming an important part of daily life

for businesses and society. Most organizations rely on such soft-

ware systems to manage their day-to-day internal operations, and

to deliver services to their customers. This ever growing demand

for new and better software products is skyrocketing the soft-

ware production and maintenance cost. In 20 0 0, Erlikh (20 0 0) re-

ported that approximately 90% of the software life-cycle cost is

consumed by software maintenance activities. Two years later, a

study conducted by the National Institute of Standards and Tech-

nology (NIST) found that software bugs cost $59 billions annually

to the US economy (Tassey, 2002).

Therefore, in recent years, researchers and industry have put a

large amount of effort in developing tools and prediction models to

reduce the impact of software defects (e.g., D’Ambros et al., 2009;

Graves et al., 20 0 0; Moser et al., 20 08). This work usually lever-

ages data from bug reports in bug tracking systems to build their

prediction models. Other work proposed methods for detecting du-

plicate bug reports (Runeson et al., 2007; Wang et al., 2008; Bet-

tenburg et al., 2008), automatic assignment of bug severity/priority
∗ Corresponding author.

E-mail addresses: hvaldiviagar@bloomberg.net (H. Valdivia-Garcia),

eshihab@cse.concordia.ca (E. Shihab), mei.nagappan@uwaterloo.ca (M. Nagappan). t

https://doi.org/10.1016/j.jss.2018.03.053

0164-1212/© 2018 Published by Elsevier Inc.
 Sharma et al., 2012; Lamkanfi et al., 2010), predicting fixing time

 Marks et al., 2011; Panjer, 2007; Weiss et al., 2007; Giger et al.,

010) and assisting in bug triaging (Anvik et al.,Zou et al., 2011;

nvik and Murphy, 2011). More recently, prior work focused on

pecific types of issues such as reopened bugs, performance bugs

nd enhancement requests (Shihab et al., 2013; Zimmermann et al.,

012; Zaman et al., 2012; Antoniol et al., 2008).

In the normal flow of the bug process, someone discovers a bug

nd creates the respective bug report, 1 then the bug is assigned to

 developer who is responsible for fixing it and finally, once it is

esolved, another developer verifies the fix and closes the bug re-

ort. Sometimes, however, the fixing process is stalled because of

he presence of a blocking bug . Blocking bugs are software defects

hat prevent other defects from being fixed. In this scenario, the

evelopers cannot go further fixing their bugs, not because they

o not have the skills or resources (e.g., time) needed to do it,

ut because the components they are fixing depend on other com-

onents that have unresolved bugs. These blocking bugs consider-

bly lengthen the overall fixing time of the software bugs and in-

rease the maintenance cost. In fact, we found that blocking bugs

an take up 2 times longer to be fixed compared to non-blocking
1 We use the terms “bug” or “bug report” to refer to an issue report (e.g., correc-

ive and non-corrective requests) stored in the bug tracking system.

https://doi.org/10.1016/j.jss.2018.03.053
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.03.053&domain=pdf
mailto:hvaldiviagar@bloomberg.net
mailto:eshihab@cse.concordia.ca
mailto:mei.nagappan@uwaterloo.ca
https://doi.org/10.1016/j.jss.2018.03.053

H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58 45

b

o

n

o

S

e

m

t

b

t

b

c

i

(

i

b

a

o

w

T

w

e

t

a

b

b

t

b

o

i

m

b

w

s

t

t

fi

i

t

S

2

S

a

s

o

i

t

2

s

i

s

v

i

s

b

b

i

a

t

b

2

f

t

a

p

2

p

t

a

p

s

2

t

7

(

2

b

2

h

i

i

2

p

p

r

r

r

h

c

2 Fedora Git Repositories: http://pkgs.fedoraproject.org/ .
ugs. For example, in one of our case studies, the median number

f days to resolve a blocking bug is 129, whereas the median for

on-blocking bugs is 69 days.

In our earlier work we found that the manual identification

f blocking bugs takes 3–18 days on median (Valdivia-Garcia and

hihab, 2014). To reduce such impact, we built prediction mod-

ls to flag blocking bugs early on for developers. In particular, we

ined the bug repositories from six open source projects to ex-

ract 14 different factors related to the textual information of the

ug, the location the bug is found and the people who reported

he bug. Based on these factors and employing a decision tree-

ased technique (C4.5), we built our prediction models. Then, we

ompared our proposed models with many other machine learn-

ng techniques. In addition, we performed a Top Node analysis

 Hassan and Zhang, 2006) in order to determine which factors best

dentify blocking bugs.

In this paper, we extended the work on blocking bugs in a num-

er of ways. First, to reduce the threat to external validity, we

dded another 2 projects to our data set. Second, we enhanced

ur prediction models by using bug report information available

ithin 24 hours after the initial submission of the bug reports.

his change has a significant impact on the practical value of our

ork, since it means that our new approach can be applied much

arlier than our previously proposed approach. Third, we analyzed

he fixes of the blocking bugs to empirically examine their neg-

tive impact on the bug-fixing process. In particular, we link the

ug-fixes to their corresponding bug-reports. Then, we divide the

ug-fixes into blocking/non-blocking bug-fixes in order to compare

heir size. We also compared the files related to blocking and non-

locking bugs in terms of cohesion, coupling, complexity and lines

f code. We note that our examination of the fixes is not done to

mprove the predictions, nor are we suggesting that fixing infor-

ation can be used to predict blocking bugs; we study the fixes of

locking bugs to empirically validate their impact. In particular, we

ould like to answer the following research questions:

RQ1) What is the impact of blocking bugs? By analyzing bug re-

ports and bug-fix commits, we find that blocking bugs take

up 2 times longer and require 1.2–4.7 times more lines of

code to be fixed than non-blocking bugs.

RQ2) Do files with blocking bugs have higher complexity than

files with non-blocking bugs? We find that files affected by

blocking bugs are bigger (in LOC), have higher complexity,

higher coupling and less cohesion than not affected by non-

blocking bugs.

RQ3) Can we build highly accurate models to predict whether

a new bug will be a blocking bug? We use 14 different fac-

tors extracted from bug databases to build accurate predic-

tion models that predict whether a bug will be a blocking

bug or not. Our models achieve F-measure values between

21%–54%. Additionally, we find that the bug description, the

comments and the experience of the reporter in identifying

previous blocking bugs are the best indicators of whether or

not a bug will be blocking bug.

The rest of the paper is organized as follows. Section 2 de-

cribes the approach used in this work, including the data collec-

ion, preprocessing and a brief description of the machine learning

echniques used to predict blocking bugs. Section 3 presents the

ndings of our case study. We discuss the implications of relax-

ng the data collection process in Section 4 . Section 5 highlights

he threats to validity. We discuss the related work in Section 6 .

ection 7 concludes the paper and discusses future work.
. Approach

In this section, we first provide a definition of blocking bugs.

econd, we present details of the data collection process. We lever-

ged data from three sources: bug reports, bug-fixing commits and

ource-code files. Third, we discuss the bug report factors used in

ur prediction models. Forth, we briefly discuss the machine learn-

ng techniques, as well as, the evaluation criteria used to examine

he performance of our prediction models.

.1. Defining blocking and non-blocking bugs

When a user or developer finds a bug in a software system,

he/he creates the respective report (bug report) in the bug track-

ng system. Typically, a bug assigned to a developer who is respon-

ible for fixing it. Once the bug is marked as resolved, another de-

eloper verifies the fix and closes the bug report. There are cases

n which the fixing of a bug prevents (blocks) other bugs (in the

ame or related component) from being fixed. We refer to such

ugs as blocking bugs . Developers of blocked bugs will record the

locking dependency in the “Blocks” field of the bug that is block-

ng them. More precisely, in this work we consider a blocking bug

s a bug report whose “Blocks” field contains at least one reference

o another bug. Similarly, we consider a non-blocking bug as a

ug report whose “Blocks” field is empty.

.2. Data collection

We used the bug report, bug-fix and file history from eight dif-

erent projects listed in Table 1 . We chose these projects because

hey are mature and long-lived open sources projects, with a large

mount of bug reports. Below we explain how we get the bug re-

ort and bug-fix data sets from the studied projects.

.2.1. Bug report collection

We collected bug reports from the bug repository of each

roject. We only considered those bug reports with status equal

o verified or closed. Bug reports closed in less than one day were

lso filtered out, because we want to analyze non-trivial bug re-

orts. The left-hand side of Table 2 shows a summary of our data

et of bug reports. We extracted 857,581 bug reports and discarded

47,781 of them. In brief, after the preprocessing step, we have

hat: (a) the total number of valid bugs was 609,800, of which

7,448 were blocking bugs and 532,352 were non-blocking bugs;

b) in all projects, the percentages of blocking bugs range from 6%–

1% with an overall percentage of 12% and (c) the number of bugs

locked by blocking bugs is ≈ 57,0 0 0 (details in RQ1).

.2.2. Bug-fix collection

We summarize the extracted bug-fixing commits in the right-

and side of Table 2 . We link the bug-reports (in the bug repos-

tories) to their bug-fixing commits (in the code-repositories) us-

ng an approach similar to previous studies (Rahman et al., 2012;

013). First, we checked out the code repositories of each of the

rojects. The projects studied in this work are comprised of many

roducts and components that use tens or even hundreds code-

epositories (e.g., the Fedora website 2 lists 18,0 0 0 GIT reposito-

ies). However, processing the commits from all of these reposito-

ies would be impractical and of little benefit, since many of them

ave a small number of commits. To select the most representative

ode-repositories, we use the following two approaches:

• When we were able to identify the products and their code

repositories, we manually downloaded the repositories of the

http://pkgs.fedoraproject.org/

46 H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58

Table 1

Description of the case study projects.

Project Description

Chromium Web browser developed by Google and used as the development branch of Google Chrome.

Eclipse A popular multi-language IDE written in Java, well known for its system of plugins that allows customization of its programming environment.

FreeDesktop Umbrella project hosting sub projects such as Wayland (display protocol to replace X11), Mesa (free implementation of the OpenGL specification), etc.

Mozilla Framework and umbrella project that hosts and develops products such as Firefox, Thunderbird, Bugzilla, etc.

NetBeans Another popular IDE written in Java. Although it is meant for java development, it also provides support for PHP and C/C ++ development.

OpenOffice Office suite initiated by Sun Microsystem and currently developed by Apache.

Gentoo Operating system distribution built on top of either GNU/Linux or FreeBSD. At the time of writing this paper, Gentoo contains over 17,0 0 0 packages.

Fedora GNU/Linux distribution developed by the Fedora-Project under the sponsorship of Red Hat.

Table 2

Summary of the collected bug reports.

Bug-report dataset Bug-fix dataset

Project # Bugs # Bugs # Bugs # Blocking # Non-blocking # Commits # Commits

collected discarded studied bugs bugs collected linked to bugs

Chromium 206,125 149,057 57,068 3,468 [6 .1%] 53,600 [93 .9%] 223,403 78,472

Eclipse 142,923 13,122 129,801 8,022 [6 .2%] 121,779 [93 .8%] 422,912 115,119

FreeDesktop 5,844 552 5,292 605 [11 .4%] 4,687 [88 .6%] 1,002,143 10,773

Mozilla 74,982 6,156 68,826 13,994 [20 .3%] 54,832 [79 .7%] 214,114 22,210

NetBeans 80,473 3,069 77,404 5,101 [6 .6%] 72,303 [93 .4%] 210,481 13,720

OpenOffice 87,578 12,639 74,939 4,164 [5 .6%] 70,775 [94 .4%] 2,038 1137

Gentoo 10,575 3,875 6,700 531 [7 .9%] 6,169 [92 .1%] 196,561 17,421

Fedora 249,081 59,311 189,770 41,563 [21 .9%] 148,207 [78 .1%] 114,048 4,493

All Projects 857,581 247,781 609,800 77,448 [12 .7%] 532,352 [87 .3%] 2,385,700 263,345

Table 3

Distribution of the number of blocking and non-blocking files.

Project # Blocking # Non-blocking # Buggy

Files Files Files

Chromium 34,430 [36%] 60,282 [64%] 94,712

Eclipse 74,580 [43%] 97,375 [57%] 171,955

FreeDesktop 1,074 [22%] 3,774 [78%] 4,848

Mozilla 34,939 [78%] 9,612 [22%] 44,551

NetBeans 3,876 [19%] 16,833 [81%] 20,709

OpenOffice 1,752 [4%] 48,183 [96%] 49,935

Gentoo 4,182 [33%] 8,510 [67%] 12,692

Fedora 1,674 [55%] 1,347 [45%] 3,021

All 156,507 [39%] 245,916 [61%] 402,423

g

fi

(

t

W

w

b

l

(

t

i

fi

c

o

u

2

t

c
20 most buggiest products. For example, the Bugzilla reposi-

tory of Eclipse lists ≈ 230 different products, out of which we

downloaded the code-repositories of the 20 products (84 repos-

itories) with the highest number of bug-reports.

• On the other hand, when we were not able to match the prod-

ucts and the code-repositories, we downloaded all the code-

repositories, ranked them by the number of commits and se-

lected the 100 largest repositories. We also tried different num-

ber of repositories (50, 100 and 150), however in most of the

cases the number of links only slightly improved (less than 1%)

after 100 repositories.

In total, we downloaded more than 400 repositories. We re-

fer the reader to our online appendix Valdivia-Garcia (2018) for a

detailed list of the code-repositories used in this study. Once we

obtained all the commits, we extracted those commits that con-

tain bug-related words (e.g., bug, fixed, failed, etc) and potential

bugs identifiers (e.g., bug#700, rhbz:800, etc) in their commit mes-

sages. To validate the collected commits, we checked that the bug-

identifiers in the commits are present in our bug report data set.

In total, we extracted ≈ 2.4 million commits, out of which approx-

imately 263,345 commits were successfully linked to one or more

bug-reports in our data set. Of these linked commits, 61,052 (23%)

were commits fixing blocking bugs and about 202,293 (77%) were

commits fixing non-blocking bugs.

2.2.3. Code-metrics collection

We used Understand from Scitools 3 to extract four metrics

from the source-code files in the code repositories: Lack of Cohe-

sion, Coupling Between Objects, Cyclomatic Complexity and LOC. In

our analysis, we take into account Java, C, C++, Python, Javascript,

PHP, Bash and Patch source code files.

From the bug-fixing commits obtained in the previous section,

we identified 402,423 buggy files. Then, we analyzed the distri-

bution of the number of bugs per file and we found that ≈ 90%

of the buggy files have at most 5 bugs and usually just 1 bug on

median. Therefore, in this work, we split the buggy files into two
3 http://www.scitools.com .

m

s

a
roups: (a) files affected by at least one blocking bug (blocking

les for brevity) and (b) files affected only by non-blocking bugs

 non-blocking files for brevity). Table 3 shows the distribution of

he blocking files and non-blocking files across all of the projects.

e can see that 39% of the files are blocking files (156,507 files),

hereas 61% are non-blocking files (245,916 files).

To better understand the files affected by blocking and non-

locking bugs, we analyzed the distribution of their programming

anguages. In Table 4 , we show the percentage of blocking files

third column) and non-blocking files (fourth column) across the

op programming languages in each of the projects. For example,

n Fedora 49% of the blocking files and 19% of the non-blocking

les are written in Bash. Additionally, from the fifth column, we

an observe that about 98% of the buggy files in Fedora are Patch

r Bash files. As we will discuss in RQ2, this situation will prevent

s from extracting two of the four code metrics for Fedora.

.3. Factors used to predict blocking bugs

Since our goal is to be able to predict blocking bugs, we ex-

racted different factors from the bug reports so the blocking bugs

an be detected early on. In addition, we would like to deter-

ine which factors best identify these blocking bugs. We con-

ider 14 different factors to help us discriminate between blocking

nd non-blocking bugs. To come up with a list of factors, we sur-

http://www.scitools.com

H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58 47

Table 4

Distribution of source code files across different programming languages. In each of

columns three to five, we report the percentage of files that belong to a particular

programming language.

Project Language % Blocking % Non-blocking % Buggy

Files Files Files

Chromium C ++ 86% 77% 81%

JS 6% 10% 8%

C 4% 5% 5%

Others 4% 8% 6%

Eclipse Java 99% 99% 99%

Others 1% 1% 1%

FreeDesktop C 88% 84% 84%

C ++ 12% 14% 14%

Others 0% 2% 2%

Mozilla C ++ 40% 32% 39%

JS 28% 48% 31%

C 26% 13% 24%

Others 6% 7% 6%

NetBeans Java 100% 97% 98%

Others 0% 3% 2%

OpenOffice C ++ 97% 81% 82%

Java 2% 17% 16%

Others 1% 2% 2%

Gentoo Python 68% 4% 31%

C 4% 42% 26%

Bash 14% 28% 22%

Patch 7% 13% 10%

Others 7% 13% 11%

Fedora Patch 49% 79% 60%

Bash 49% 19% 38%

Others 2% 2% 2%

v

s

d

t

W

Z

n

t

o

l

1

1

1

1

1

t

d

t

d

t

b

l

h

f

m

l

2

t

t

a

i

i

d

s

p

w

t

a

r

f

o

s
eyed prior work. For example, Sun et al. (2011) included factors

uch product, component, priority, etc in their models to detect

uplicate bugs. Lamkanfi et al. (2010, 2011) used textual informa-

ion to predict bug severities. Wang et al. (2008) and Jalbert and

eimer (2008) used text mining to identify duplicate bug reports.

immermann et al. (2012) showed that the reporter’s reputation is

egatively correlated with reopened bugs in Windows Vista. Fur-

hermore, many of our factors are inspired in the metrics used by

ur prior work (Shihab et al., 2013), predicting reopened bugs. We

ist each factor and provide a brief description for each below:

1. Product: The product where the bug was found (e.g., Fire-

fox OS, Bugzilla, etc). Some products are older or more com-

plex than others and therefore, are more likely to have block-

ing bugs. For example, Firefox OS and Bugzilla are two Mozilla

products with approximately the same number of bugs (≈ 880),

however there were more blocking bugs in Firefox OS (250

bugs) than in Mozilla (30 bugs).

2. Component: The component in which the bug was found (e.g.,

Core, Editor, UI, etc). Some components are more/less criti-

cal than others and as a consequence more/less likely to have

blocking bugs than others. For example, it might be the case

that bugs in critical components prevent bugs in other compo-

nents from being fixed. Note that we were not able to have this

factor for Chromium because its issue tracking system does not

support it.

3. Platform: The operating system in which the bug was found

(e.g., Windows, Android, GNU/Linux etc). Some platforms are

more/less prone to have bugs than others. It is more/less likely

to find blocking/non-blocking bugs for specific platforms.

4. Severity: The severity describes the impact of the bug. We an-

ticipate that bugs with a high severity tend to block the devel-

opment and debugging process. On the other hand, bugs with

a low severity are related to minor issues or enhancement re-

quests.

5. Priority: Refers to the order in which a bug should be attended

with respect to other bugs. For example, bugs with low priority
values (i.e., P1) should be prioritized instead of bugs with high

priority values (i.e., P5). It might be the case that a high/low

priority is indicative of a blocking/non-blocking bugs.

6. Number in the CC list: The number of developers in the CC list

of the bug. We think that bugs followed by a large number of

developers might indicate bottlenecks in the maintenance pro-

cess and therefore are more likely to be blocking bugs.

7. Description size: The number of words in the description. It

might be the case that long/short descriptions can help to dis-

criminate between blocking and non-blocking bugs.

8. Description text: Textual content that summarize the bug re-

port. We think that some words in the description might be

good indicators of blocking bugs.

9. Comment size: The number of words of all comments of a

bug. Longer comments might be indicative of bugs that get dis-

cussed heavily since they are more difficult to fix. Therefore,

they are more likely to be blocking bugs.

0. Comment text: The comments posted by the developers dur-

ing the life cycle of a bug. We think that some words in the

comments might be good indicators of blocking bugs.

1. Priority has increased: Indicates whether the priority of a bug

has increased after the initial report. Increasing priorities of

bugs might indicate increased complexity and can make a bug

more likely to be a blocking bug. Note that we were unable to

obtain this information for Chromium.

2. Reporter name: Name of the developer or user that files the

bug. We include this factor to investigate whether bugs filed by

a specific reporter are more/less likely to be blocking bugs.

3. Reporter experience: Counts the number of previous bug re-

ports filed by the reporter. We conjecture that more/less ex-

perienced reporters may be more/less likely to report blocking

bugs.

4. Reporter blocking experience: Measures the experience of the

reporter in identifying blocking bugs. It counts the number of

blocking bugs filed by the reporter previous to this bug.

In order to extract information for the factors, we first obtained

he closing-dates and blocking-dates of the bug-reports. Closing-

ate refers to the latest date in which a bug was closed. To obtain

his information, we inspect the history of the bugs looking for the

ate of the last appearance of the tag “status” with a value equal

o “closed”. Blocking-date refers to the earliest date in which a

ug was marked as blocking bug. To calculate this information, we

ook for the date of the first appearance of the tag “Blocks” in the

istory of the bugs.

For the non-blocking bugs, we extracted the last values of the

actors prior to their closing-dates and within 24 hours after the sub-

ission . On the other hand, for the blocking bugs, we extracted the

ast values of the factors prior to their blocking-dates and within

4 hours after the submission . The rationale for this approach is

hat, although the data after the blocking-date is useful informa-

ion about the fixing process in general, it is not useful to identify

 blocking bug because we already know that the bug is a block-

ng bug (i.e., by then no prediction is needed). Since our aim is to

dentify potential blocking bugs early on, then we can only rely on

ata before the blocking phenomenon happens. That way we can

horten the overall fixing-time.

As we mentioned above, these 14 factors have been used in

rior studies and most of them are easy to extract through soft-

are repositories. Because our goal is to help developers to iden-

ify blocking bugs early on , we only use bug report information

vailable within 24 hours after the initial submission of the bug

eports. When a factor was empty, we set its value to NA (or zero

or numeric factors). That said, it is important to note that 3 of

ur factors (product, component and reporter’s name) are project-

pecific. Therefore, if a practitioner would like to predict block-

48 H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58

Fig. 1. Converting textual factor into Bayesian-score.

s

c

f

a

t

i

t

s

a

i

r

m

2

t

b

w

g

2

t

p

d

p

d

l

T

m

i

n

t

a

s

i

t

i

b

2

v

p

a

t

B

i

t

M

p

b

c

r

d

P

t

ing bugs in a cross-project setting, she/he might not able to reuse

models on new projects. In that situation, the simpler approach

would be to remove the project-specific factors from the model or

adapt these factors from their specific project in order to have a

more flexible model.

Finally, another important observation to note is that the de-

scription text and the comment text factors need special treatment

before being included in our prediction models. We describe this

special preprocessing in detail in the next sub-section.

2.4. Textual factor preprocessing

The description and comments in bug reports are two rich

sources of unstructured information that require special prepro-

cessing. These factors contain discussions about the bugs and can

also provide snapshots of the progress and status of such bugs.

One way to deal with text based factors is using a vector repre-

sentation. In this kind of representation, a new factor is created for

each unique word in the data set. Similar to prior work (Ibrahim

et al., 2010; Shihab et al., 2013), we followed this simple approach.

In Fig. 1 , we show our adapted approach to convert textual factors

into numerical values. We used a Naive–Bayes classifier to calcu-

late the Bayesian-score of these two factors. Basically this metric

indicates the likelihood that a description or comment belongs to

certain kind of bug (i.e., blocking or non-blocking).

We divide the entire data set into two training sets (D 0 and D 1)

using stratified random sampling. This ensures that we have the

same number of blocking and non-blocking bugs in both training

sets. We train a classifier (C 0) with the first training set and use it

to obtain the Bayesian-scores on the second training set. We also

do the same in the opposite direction. We build a classifier (C 1)

using the second training set and apply it on the first training set.

This strategy is used in order to avoid the classifiers from being bi-

ased toward their training sets; otherwise, it will lead to optimistic

(unrealistic) values for the Bayesian-scores.

In our classifier implementation, each training set is split into

two corpora (corpus 1 and corpus 0). The first corpus contains the

descriptions/comments of the blocking bugs. The second corpus

contains the description/comments of the non-blocking bugs. We

create a word frequency table for each corpus. The textual con-

tent is tokenized in order to calculate the occurrence of each word

within a corpus. Based on these two frequency tables, the next
tep is to calculate the probabilities of all the words to be in

orpus 1 (i.e., blocking bugs), because we are interested in identi-

ying these kinds of bugs. The probability is calculated as follow: if

 word is in corpus 1 and not in corpus 0 , then its probability is close

o 1. If a word is not in corpus 1 but in corpus 0 , then its probability

s close to 0. On the other hand, if the word is in both corpora,

hen its probability is given by p(w) =

% w in corpus 1
% w in corpus 1 +% w in corpus 0

.

Once the classifiers are trained, we can obtain the Bayesian-

core of a text based factor by mapping its words to their prob-

bilities and combining them. The formula for the Bayesian-score

s p(text) =

∏

p(w i) ∏

p(w i)+
∏

(1 −p(w i))
. For this calculation, the fifteen most

elevant words are considered (Graham, 2003). Here, “relevant”

eans those words with probability close to 1 or 0.

.5. Prediction models

For each of our case study projects, we use our proposed fac-

ors to train a decision tree model to predict whether a bug will

e a blocking bug or not. We also compare our prediction model

ith four other classifiers namely: Naive Bayes, kNN, Zero-R, Lo-

istic Regression, Random Forests and Stacked Generalization.

.5.1. Decision tree model

We use a tree-based learning algorithm to perform our predic-

ions. One of the benefits of decision trees is that they provide ex-

lainable models. Such models intuitively show to the users (i.e.,

evelopers or managers) the decisions taken during the prediction

rocess. The C4.5 algorithm (Quinlan, 1993) belongs to this type of

ata mining technique and like other tree-based classifiers, it fol-

ows a greedy divide and conquer strategy in the training stage.

he algorithm recursively splits data into subsets with rules that

aximize the information gain. The rules are of the form X i < b

f the feature is numeric or into multiple subsets if the feature is

ominal. In Fig. 2 , we provide an example of a tree generated from

he extracted factors in our data set. The sample tree indicates that

 bug report will be predicted as blocking bug if the Bayesian-

core of its comment is > 0.74, there are more than 6 developers

n the CC list and the number of words in the comments is greater

han 20. On the other hand, if the Bayesian-score of its comment

s ≤ 0.74 and the reporter’s experience is less than 5, then it will

e predicted as a non-blocking bug.

.5.2. Naive–Bayes model

We use this machine learning method for two purposes: to con-

ert textual information into numerical values (i.e., to obtain the

robability that a description/comment belongs to a blocking-bug),

nd to build a prediction model and compare its performance with

hat of our decision tree model. This simple model is based on the

ayes theorem and the assumption that the factors are randomly

ndependent. For a given record x , the model predicts the class k

hat maximizes the conditional joint distribution of the data set.

athematically, the model can be written as:

f (x) = arg max
k

P (C = k)
∏

i P (x i | C = k)

P (X = x)

Here, the prior-probability P (C = k) can be estimated with the

ercentage of training records labeled as k (e.g., percentage of

locking or non-blocking). The conditional probabilities P (x i | C = k)

an be estimated with

N k,i
N k

, where the numerator is the number of

ecords labeled as k for which the i th-factor is equal to x i and the

enominator is the number of records labeled as k . The probability

 (X = x) can be neglected because it is constant with respect to

he classes.

H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58 49

comment

bayes-score

num-cc

comment

size

priority

6 > <= 6

P1 P2 P4

Blocking Blocking NonBlocking

40 > <= 40

<= 0.74 0.74 >

P3

reporter

experience

platform

NonBlocking

<= 5 5 >

Win Linux

.

Blocking

Fig. 2. Example of a Decision Tree.

2

m

c

e

r

o

x

t

c

m

f

o

2

w

c

2

e

t

m

t

t

P

w

p

w

2

a

a

t

i

s

N

2

s

o

p

m

N

g

2

p

r

t

(

a

m

s

e

s

u

c

v

c

m

d

t

t

9

c

p

b

i

o

i

b

3

s
.5.3. k-nearest neighbor model

The k-nearest neighbor model is a simple, yet powerful

emory-based technique, which has been used with relative suc-

ess in previous bug prediction works (Weiss et al., 2007; Lamkanfi

t al., 2011). The idea of the method is as follows: given an unseen

ecord ˆ x (e.g., an incoming bug report), we calculate the distance

f all records x in the training set (e.g., already-reported bugs) to

ˆ , then we select the k closest instances and finally classify ˆ x to

he most frequent class among these k neighbors. In this work, we

onsidered k = 5 as the number of neighbors, used the euclidean

etric for numerical factors and the overlap metric for nominal

actors. Under the overlap metric, the distance is zero if the values

f the factors are equal and one otherwise.

.5.4. Zero-R model

Zero-R (no rule) is the simplest prediction model because it al-

ays predicts the majority class in the training set. We use this

lassifier as one of our baseline models in the comparison section.

.5.5. Logistic regression

Logistic regression is statistical binary classification model

xtensively used in the literature on software bug predic-

ion (Khoshgoftaar and Seliya, 2004; Antoniol et al., 2008; Zimmer-

ann et al., 2012). For a given record x = x 1 , x 2 , · · · , x p , this predic-

ion model estimates the probability that such a record belongs to

he class k = 1 (e.g., blocking-bug) using the following equation:

 (k = 1 | x) =

e β0 + β1 x 1 + ···+ βp x p

1 + e β0 + β1 x 1 + ···+ βp x p

here the regression coefficients β i are found during the training

hase. For a detailed description of the logistic regression model,

e refer readers to Basili et al. (1996) .

.5.6. Random forests model

Random Forests (Breiman, 2001) is an ensemble classification

pproach that makes its prediction based on the majority vote of

 set of weak decision trees. This approach reduces the variance of

he individual trees and makes the model more resilient to noise

n the data set. In general, the random forests model outperforms

imple decision trees in terms of prediction accuracy (Caruana and

iculescu-Mizil, 2006).

.5.7. Stacked generalization

Stacked Generalization (Wolpert, 1992) is an ensemble clas-

ification approach, which attempts to increase the performance

f individual machine learning methods by combining their out-

uts (i.e., individual predictions) using another machine learning

ethod referred to as the meta-learner. In this work, we use C4.5,
aive–Bayes and kNN algorithm as our individual models, and Lo-

istic regression as the meta-learner.

.6. Performance evaluation

A common metric used to measure the effectiveness of a

rediction model is its accuracy (fraction of correctly classified

ecords). However, this metric might not be appropriate when

he data set is extremely skewed towards one of the classes

 Monard and Batista, 2002). If a classifier tends to maximize the

ccuracy, then it can perform very well by simply ignoring the

inority class (Hulse et al., 2007; Weiss, 2004). Since our data

et suffers from the class imbalance problem, the accuracy is not

nough and therefore we include three other performance mea-

ures: precision, recall and f-measure. These measures are widely

sed to evaluate the quality of models trained on imbalanced data.

1. Precision: The ratio of correctly classified blocking bugs over

all the bugs classified as blocking.

2. Recall: The ratio of correctly classified blocking bugs over all of

the actually blocking bugs.

3. F-measure: Measures the weighted harmonic mean of the pre-

cision and recall. It is calculated as F-measure =

2 ∗Precision ∗Recall
Precision + Recall

.

4. Accuracy: The ratio between the number of correctly classified

bugs (both the blocking and the non-blocking) over the total

number of bugs.

A precision value of 100% would indicate that every bug we

lassified as blocking bug was actually a blocking bug. A recall

alue of 100% would indicate that every actual blocking bug was

lassified as blocking bug.

We use stratified 10-fold cross-validation (Efron, 1983) to esti-

ate the accuracy of our models. This validation method splits the

ata set into 10 parts of the same size preserving the original dis-

ribution of the classes. At the i-th iteration (i.e., fold), it creates a

esting set with the i-th part and a training set with the remaining

 parts. Then, it builds a decision tree using the training set and

alculate its accuracy with the testing set. We report the average

erformance of the 10 folds. Since our data sets have a low num-

er of blocking bugs, the stratified sampling prevents us from hav-

ng parts without blocking bugs. Additionally, we use re-sampling

n the training data only in order to reduce the impact of the class

mbalance problem (i.e., the fact that there are many non-blocking

ugs and very few blocking bugs) of our data sets.

. Case study

This section reports the results of our study on eight open

ource projects and answers our three research questions. First, we

50 H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58

Table 5

Median fixing time in days and the result of the Wilcoxon rank-sum

test for blocking and non-blocking bugs.

Project t block t nonblock

(X)

Chromium

∗∗∗ 35 [1 .3X] 28

Eclipse ∗∗∗ 129 [1 .9X] 69

FreeDesktop ∗∗∗ 67 [1 .6X] 43

Mozilla ∗∗∗ 75 [1 .4X] 52

NetBeans ∗∗∗ 204 [1 .4X] 149

OpenOffice ∗∗∗ 129 [1 .1X] 113

Gentoo ∗∗∗ 80 [1 .6X] 52

Fedora ∗∗∗ 119 [1 .1X] 107

(∗∗∗) p < 0.001.

characterized the impact of blocking bugs in terms of their fix-

ing time, blocking dependency and bug-fixing commits (i.e., bug-

fix size). Second, we inspected the files affected by blocking and

non-blocking bugs and measure their complexity to better under-

stand the blocking phenomenon. Third, we built different predic-

tion models to detect whether a bug will be or not a blocking bug

and performed Top Node analysis to determine which of the col-

lected factors are good indicators to identify blocking bugs.

RQ1. What is the impact of blocking bugs?

Motivation. Since blocking bugs delay the repair of other bugs

(i.e., blocked bugs), they are harmful for the maintenance

process. For example, if blocking bugs take longer than other

ordinary bugs, then the overall fixing time of the system

might increase. Similarly, the presence of blocking bugs that

block a large number of other bugs (high dependency) might

become bottlenecks for maintenance, and impact the quality

of the system. Although there are different ways to define

the impact of software bugs on software projects, in this RQ

we are interested in quantifying the effects caused by block-

ing bugs during bug triaging. Therefore, in this RQ, we define

the impact in terms of two proxy metrics collected at bug-

report level, namely fixing-time and degree of dependency

Approach. First, we calculate the fixing time for both block-

ing and non-blocking bugs as the time period between the

date when a bug is reported until its closing date. Then,

we performed an unpaired Wilcoxon rank-sum test (also

called Mann–Whitney U test) for the alternative hypothesis

H a : t block > t nonblock , in order to determine whether blocking

bugs take longer to be fixed compared to non-blocking bugs.

On the other hand, we analyze the degree of blocking de-

pendency as the number of bugs that depend on the same

blocking bugs.

Results. Fixing time. Table 5 reports the median fixing-time

for blocking/non-blocking bugs. For all of the projects, we ob-

serve that the fixing-time for blocking bugs is 1.1–1.9 times

longer than for the non-blocking bugs. In addition, the results

of the Wilcoxon test confirm that there is a statistically sig-

nificant difference between the blocking and non-blocking

bugs for all of the projects (p-value < 0.001), meaning that

the fixing-time for blocking bugs is statistically significantly

longer than the fixing-time for non-blocking bugs.

Dependency of blocking bugs. In our study, we found that

blocking bugs represent 12% of all bugs in our data set

(77,448 bugs). In order to assess the impact of the de-

pendency of these blocking bugs, we extracted the list of

blocked bugs contained in the “Blocks” field of each block-

ing bug. In total, we identified 57,015 different bug reports

that were blocked by blocking bugs. At the time of the data

collection, many of these blocked bugs were still in progress

(and therefore were not included in our data set). Hence, we
cannot claim that they account for about 9% of our data set.

Table 6 reports the distribution of the degree of dependency

between one and six. Furthermore, we include a category

“ ≥ 7” for those blocking bugs that block seven or more bugs.

At first sight, it is easy to see that approximately 89–98%

of the blocking bugs for all projects only block 1 or 2 bugs.

As a consequence, blocking bugs with high dependency are

uncommon. To better understand the severity of these bugs

with degree of dependency greater than or equal to 7, we

performed a manual inspection, and we found inconclusive

results. For example, in the Eclipse project, many bugs with

high dependency were actual enhancements with low prior-

ity (e.g., P3 or P4) instead of real defects. On the other hand,

in NetBeans, we found that indeed these blocking bugs were

real defects with high priority (e.g., P1 or P2).

Discussion Although, we found that blocking bugs take longer

to be fixed compared to non-blocking bugs, the evidence is

still unclear whether or not blocking bugs are more complex

to fix. Blocking bugs may be easy to fix, but take a long time

to find the right developers to solve them, or many block-

ing bugs are actually enhancements that while desirable, are

not a priority, so the developers postpone them in favor of

more important bugs. Therefore, we analyze the size of bug-

fixes, to determine whether blocking bugs require more ef-

fort to fix than non-blocking bugs. First, we calculate the

bug-fix size as the number of lines modified (LM) from all

the commits related to the bug. Then, we check whether

blocking bug-fixes are larger than the non-blocking bug-fixes

by using a Wilcoxon rank-sum test for the hypothesis H a :

LM block > LM nonblock .

In Table 7 , we report the median bug-fix size (code-churn)

of blocking and non-blocking bugs. We can observe that

for all of the projects, blocking bug-fixes are 1.2 – 4.7

times larger than non-blocking bug-fixes. The result of the

Wilcoxon rank-sum test verify that blocking bugs have

statistically significantly larger bug-fixes than non-blocking

bugs.

The time to address a blocking bug is 1.1–1.9 times longer

than the time it takes to address a non-blocking bug. Simul-

taneously, fixing blocking bugs requires 1.2 – 4.7 times

more

lines of code to be modified than fixing non-blocking bugs.

RQ2. Do files with blocking bugs have higher complexity

than files with non-blocking bugs?

Motivation We found that fixing blocking bugs require more

effort and time (RQ1). However, it is not clear whether

files with blocking bugs (blocking files) are different from

files with non-blocking bugs (non-blocking files). In this

RQ, we would like to analyze and quantify the blocking

phenomenon at file level.

Approach

To answer this question, first we extract four metrics from

the source-code files in the code-repositories: size (LOC),

Cyclomatic Complexity (CC), Lack of Cohesion (LCOM) and

Coupling Between Objects (CBO).

Results lack of cohesion. Table 8 reports the median of

LCOM for blocking/non-blocking files. We see that block-

ing files have slightly higher LCOM (1.02–1.18 times

higher) than non-blocking files. We compared these two

groups of files using a Wilcoxon rank-sum test in order to

determine if the difference is statistically significant. For

H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58 51

Table 6

Degree of blocking dependency.

Degree Chromium Eclipse FreeDesktop Mozilla NetBeans OpenOffice Gentoo Fedora

1 74 .1% 86 .3% 87 .4% 69 .7% 89 .9% 90 .8% 85 .7% 78 .5%

2 20 .1% 9 .5% 10 .4% 18 .9% 7 .8% 6 .9% 9 .4% 15 .1%

3 3 .5% 2 .3% 2 .0% 5 .7% 1 .3% 1 .3% 2 .8% 3 .9%

4 1 .4% 0 .8% 0 .2% 2 .4% 0 .5% 0 .6% 1 .3% 1 .3%

5 0 .3% 0 .3% 0 .0% 1 .2% 0 .2% 0 .1% 0 .2% 0 .5%

6 0 .3% 0 .2% 0 .0% 0 .8% 0 .1% 0 .1% 0 .0% 0 .2%

≥ 7 0 .2% 0 .6% 0 .0% 1 .3% 0 .2% 0 .1% 0 .6% 0 .5%

Table 7

Median bug-fix size and the result of the Wilcoxon rank-sum test for

blocking and non-blocking bugs.

Project LM block LM nonblock

(X)

Chromium

∗∗∗ 205 [4 .7X] 44

Eclipse ∗∗∗ 107 [3 .3X] 32

FreeDesktop ∗∗∗ 25 [1 .2X] 20

Mozilla ∗∗∗ 66 [2 .4X] 28

NetBeans ∗∗∗ 52 [2 .7X] 19

OpenOffice ∗∗ 77 [2 .1X] 38

Gentoo ∗∗∗ 52 [2 .6X] 20

Fedora ∗∗∗ 84 [1 .4X] 58

(∗∗∗) p < 0.001; (∗∗) p < 0.01.

Table 8

Median lack of cohesion for blocking and non-blocking files.

Project LCOM block LCOM nonblock

(X)

Chromium

∗∗∗ 67% [1 .10X] 61%

Eclipse ∗∗∗ 58% [1 .16X] 50%

FreeDesktop 71% [0 .86X] 83%

Mozilla 87% [1 .02X] 85%

NetBeans ∗∗∗ 79% [1 .03X] 77%

OpenOffice ∗∗∗ 71% [1 .18X] 60%

Gentoo – –

Fedora – –

(∗∗∗) p < 0.001; (∗∗) p < 0.01; (∗) p < 0.05.

Table 9

Median coupling for the blocking and non-blocking files.

Project CBO block CBO nonblock

(X)

Chromium

∗∗∗ 10 [1 .43X] 7

Eclipse ∗∗∗ 11 [1 .22X] 9

FreeDesktop 12 [1 .26X] 9 .5

Mozilla 8 [1 .14X] 7

NetBeans ∗∗∗ 23 [1 .15X] 20

OpenOffice ∗∗∗ 11 [1 .38X] 8

Gentoo – –

Fedora – –

(∗∗∗) p < 0.001; (∗∗) p < 0.01; (∗) p < 0.05.

Table 10

Median cyclomatic complexity for blocking and non-blocking files.

Project CC block CC nonblock

(X)

Chromium

∗∗∗ 9 [1 .8X] 5

Eclipse ∗∗∗ 12 [1 .5X] 8

FreeDesktop ∗∗∗ 58 [1 .6X] 37

Mozilla ∗∗∗ 11 [1 .2X] 9

NetBeans ∗∗∗ 32 [1 .3X] 24

OpenOffice ∗∗∗ 53 [7 .6X] 7

Gentoo 18 [0 .5X] 36 .5

Fedora – –

(∗∗∗) p < 0.001; (∗∗) p < 0.01; (∗) p < 0.05.

four projects (Chromium, Eclipse, Netbeans and OpenOf-

fice), we find that files with blocking bugs have statis-

tically less cohesion than files with non-blocking bugs.

For FreeDesktop and Mozilla, we find no evidence that

blocking files have higher LCOM than non-blocking files.

Although these projects have a relative large number of

buggy files, the Understand tool was able to extract the

LCOM metric from only a small fraction of the buggy files.

For both FreeDesktop and Mozilla, we obtained the LCOM

metric from 7% and 25% of the buggy files respectively. In

contrast, we obtained the LCOM metric from about 44%–

93% of buggy files for the other projects. This is not sur-

prising since, most of the buggy files in FreeDesktop and

Mozilla are written in C and Javascript. From Table 4 , we

can see that for FreeDesktop, about 84% of the buggy files

are written in C, whereas for Mozilla about 55% of the

buggy files are written in C and Javascript.

Coupling between objects. In Table 9 , we show the median

of CBO for blocking/non-blocking files. For four projects

(Chromium, Eclipse, Netbeans and OpenOffice), we find

that blocking files are coupled to other classes 1 . 15 − 1 . 43

times more than non-blocking files. The result of the

Wilcoxon rank-sum test shows that, there is a statistically

significant difference in terms of CBO between blocking

and non-blocking files. Similar to the previous metric, we
find no evidence that blocking files have higher CBO than

non-blocking files for FreeDesktop and Mozilla.

Cyclomatic complexity. Prior work showed that OO met-

rics such as LCOM and CBO are significantly associated

with bugs (Basili et al., 1996; Chidamber et al., 1998; Sub-

ramanyam and Krishnan, 2003; Gyimothy et al., 2005).

These OO metrics are useful for architectural and design

evaluation (Chowdhury and Zulkernine, 2011). However,

first, they cannot be extracted from non-object oriented

languages (e.g., C, Bash). Second, they might not be easily

computed by practitioners. In such cases, other code met-

rics that assess the quality of the software systems should

be considered (e.g., CC and LOC). In Table 10 we com-

pare the median CC between blocking and non-blocking

files. For the first six projects, we find that blocking files

have ≈ 1 . 2 − 7 . 6 times more execution paths than non-

blocking files. The Wilcoxon rank-sum test confirms that

the difference is significant. For Gentoo, there is no evi-

dence that CC block > CC nonblock . However, this does not nec-

essarily mean that blocking/nonblocking files have the

same complexity. After performing the opposite hypoth-

esis (CC block < CC nonblock), we find that blocking files have

statistically less complexity than non-blocking files. Af-

ter a manual inspection, we find that blocking and non-

blocking files in Gentoo are quite different in terms of

functionality provided and programming language distri-

bution. Approximately 68% of the blocking files comes

52 H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58

Table 11

Median LOC for blocking and non-blocking files.

Project LOC block LOC nonblock

(X)

Chromium

∗∗∗ 142 [1 .6X] 89

Eclipse ∗∗∗ 122 [1 .4X] 88

FreeDesktop ∗∗∗ 588 [1 .4X] 409

Mozilla ∗∗∗ 174 [1 .4X] 127

NetBeans ∗∗∗ 284 [1 .3X] 223

OpenOffice ∗∗∗ 513 [3 .7X] 140

Gentoo 121 [0 .9X] 130

Fedora ∗∗∗ 755 [12 .2X] 62

(∗∗∗) p < 0.001; (∗∗) p < 0.01; (∗) p < 0.05.

Table 12

Performance of blocking files prediction models.

Project Precision Recall F-measure Acc.

Chromium 71.0% 62.1% 66.1% 65.7%

Eclipse 57.9% 61.7% 59.6% 64.9%

FreeDesktop 35.7% 70.0% 45.3% 71.6%

Mozilla 95.5% 78.8% 86.3% 77.4%

NetBeans 39.7% 66.8% 49.8% 71.5%

OpenOffice 48.6% 96.4% 64.5% 96.7%

Gentoo 76.5% 73.3% 74.8% 78.2%

Fedora 84.0% 70.5% 76.0% 71.0%

from Portage (Gentoo’s package management system),

which is mostly written in Python, whereas 40% of the

non-blocking files comes from Quagga (routing suite) and

X-Server (window system server) which are mostly writ-

ten in C. For Fedora, we did not have enough data to ex-

tract the CC metric. Approximately 98% of the files in Fe-

dora are Patch/Bash files and our metric extraction tool

does not support these kind of files.

Lines of code. Although CC is a good measure of structural

complexity of a program, it cannot be easily calculated

for Bash/Patch files. On the other hand, LOC can be cal-

culated easier than CC for any kind of source code file.

Table 11 presents the median LOC of blocking and non-

blocking files. Similar to our previous findings, we ob-

serve that for most of the projects (the first six projects

and Fedora), blocking files have statistically more lines of

code (1.3X–12.2X) than non-blocking files. The only ex-

ception was Gentoo, for which we find that blocking files

are smaller than non-blocking files.

Discussion. Our findings so far indicate that there is a nega-

tive impact on the quality of the files affected by blocking

bugs. Therefore, practitioners should plan to allocate more

QA effort when fixing blocking files. In order to help with

the resource allocation, we would like to provide prac-

titioners with a subset of files that are most susceptible

to blocking bugs. More precisely, we would like to in-

vestigate whether we can build accurate models (trained

on file metrics) to predict which buggy files will contain

blocking bugs in the future. First, we extract two pro-

cess metrics (Num. lines modified and Num. commits)

and four code metrics (LOC, Cyclomatic, Coupling and Co-

hesion) for both blocking and non-blocking files analyzed

in this RQ. Then, we train decision tree models using such

file-metrics and evaluate their performance using the pre-

cision, recall and F-measure metrics. For Gentoo and Fe-

dora, we do not consider Cyclomatic, Coupling and Co-

hesion metrics, since most of the files in these projects

are Patch/Bash files. In Table 12 , we report the models’

performance for each of the projects. The results indi-

cate that our blocking files prediction models can achieve
moderate and high F-measure values ranging from 45.3%–

86.3%, while at the same time achieving high accuracy

values ranging from 64.9%–96.7%. It is important to em-

phasize that our models are not general models that aim

to predict buggy files, but specialized models to predict

whether a buggy file will be a blocking file. Therefore, our

proposed models should be used in conjunction with tra-

ditional bug prediction/localization models to first iden-

tify buggy files (Nguyen et al., 2011; Zhou et al., 2012;

Kim et al., 2013).

Files affected by blocking bugs have

1.02–1.18 times less cohesion,

1.15–1.43 times higher coupling,

1.2–7.6 times higher complexity and

1.3–12.2 times more lines of code

than files affected by non-blocking bugs.

RQ3. Can we build highly accurate models to predict whether

a new bug will be a blocking bug?

Motivation. We observed that blocking bugs not only take

much longer and require more lines of code to be fixed

than non-blocking bugs, but also they negatively impact

the affected files in terms of cohesion, coupling, complex-

ity and size. Because of these severe consequences, it is

important to identify blocking bugs in order to reduce

their impact. Therefore, in this RQ, we want to build pre-

diction models that can help developers to flag blocking

bugs early on, so they can shorten the overall fixing time.

Additionally, we want to know if we can accurately pre-

dict these blocking bugs using the factors that we pro-

posed in Section 2.3 .

Approach. We use decision trees based on the C4.5 algo-

rithm as our prediction model, because it is an explain-

able model that can easily be understood by practitioners.

We use stratified 10-fold cross-validation to estimate the

accuracy of our models. To evaluate their performance, we

use the precision, recall and F-measure metrics. The re-

ported performances of the models are the average of the

10 folds. Baseline: In order to have a point of reference for

our performance evaluation, we use a random classifier

that has a 50/50 chance of predicting two outcomes (e.g.,

blocking and non-blocking bugs). Prior studies have also

used this theoretical model as their baseline (Rahman

et al., 2012; Mende and Koschke, 2009; DAmbros et al.,

2012; Kamei et al., 2013). Given a 50/50 random classi-

fier, if an infinite number of random predictions are per-

formed, then the precision will be to the percentage of

blocking bugs in the data set, and the recall will be to

50%. Additionally, we further compare them to six other

machine learning techniques.

Results. In Table 13 , we present the performance results of

our prediction models. Our models present precision val-

ues ranging from 13.7%–45.8%. Comparing these results

with those of the baseline models (6.1%–21.9%), our mod-

els provide a approximately two-fold improvement over

the baseline models in terms of precision.

In terms of recall, our models present better results for

six projects with values ranging from 52.9%–66.7%. For

the other projects (Eclipse and Gentoo), the recalls were

bellow the baseline recall (50%) with values of ≈ 47%–

49%. Although, we achieved low recall values for some of

our projects, what really matters for comparing the per-

H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58 53

Table 13

Performance of the decision tree models.

Decision Tree model Baseline model

Project Precision Recall F-measure Precision Recall F-measure

(X)

Chromium 15 .7% 59 .5% 24 .8% [2.3X] 6 .1% 50% 10 .8%

Eclipse 14 .0% 49 .5% 21 .9% [2.0X] 6 .2% 50% 11 .0%

FreeDesktop 24 .8% 60 .3% 35 .2% [1.9X] 11 .4% 50% 18 .6%

Mozilla 36 .1% 63 .4% 46 .0% [1.6X] 20 .3% 50% 29 .0%

NetBeans 15 .7% 52 .9% 24 .2% [2.1X] 6 .6% 50% 11 .6%

OpenOffice 14 .7% 54 .2% 23 .1% [2.3X] 5 .6% 50% 10 .0%

Gentoo 13 .7% 47 .7% 21 .2% [1.5X] 7 .9% 50% 13 .7%

Fedora 45 .8% 66 .7% 54 .3% [1.8X] 21 .9% 50% 30 .5%

Table 14

Predictions different algorithms.

Project Classif. Precision Recall F-measure Acc.

Chromium Zero-R NA 0 .0% 0 .0% 93 .9%

Naive–Bayes 19 .6% 51 .3% 28 .4% 84 .3%

kNN 13 .2% 64 .8% 21 .9% 71 .9%

Logistic Regression 17 .2% 61 .2% 26 .8% 79 .7%

Stacked Gen. 24 .2% 41 .5% 30 .5% 88 .5%

Rand. Forest 27 .1% 38 .3% 31 .7% 90 .0%

Decision Tree 15 .7% 59 .5% 24 .8% 78 .1%

Eclipse Zero-R NA 0 .0% 0 .0% 93 .8%

Naive–Bayes 13 .2% 60 .2% 21 .6% 73 .0%

kNN 11 .4% 60 .2% 19 .2% 68 .8%

Logistic Regression 12 .5% 67 .3% 21 .1% 68 .9%

Stacked Gen. 20 .6% 30 .9% 24 .7% 88 .4%

Rand. Forest 27 .7% 30 .6% 29 .1% 90 .8%

Decision Tree 14 .0% 49 .5% 21 .9% 78 .1%

FreeDesktop Zero-R NA 0 .0% 0 .0% 88 .6%

Naive–Bayes 24 .4% 59 .5% 34 .4% 73 .9%

kNN 20 .4% 65 .6% 31 .1% 66 .7%

Logistic Regression 24 .4% 65 .5% 35 .6% 72 .9%

Stacked Gen. 28 .2% 49 .1% 35 .8% 79 .8%

Rand. Forest 31 .9% 46 .1% 37 .6% 82 .4%

Decision Tree 24 .8% 60 .3% 35 .2% 74 .5%

Mozilla Zero-R NA 0 .0% 0 .0% 79 .7%

Naive–Bayes 35 .0% 69 .7% 46 .6% 67 .5%

kNN 32 .5% 63 .4% 43 .0% 65 .7%

Logistic Regression 38 .1% 68 .1% 49 .0% 71 .1%

Stacked Gen. 39 .1% 56 .0% 46 .0% 73 .3%

Rand. Forest 44 .7% 53 .2% 48 .6% 77 .1%

Decision Tree 36 .1% 63 .4% 46 .0% 69 .7%

NetBeans Zero-R NA 0 .0% 0 .0% 93 .4%

Naive–Bayes 14 .4% 61 .3% 23 .3% 73 .3%

kNN 13 .0% 62 .9% 21 .5% 69 .8%

Logistic Regression 15 .2% 63 .5% 24 .6% 74 .3%

Stacked Gen. 24 .0% 37 .1% 29 .1% 88 .1%

Rand. Forest 30 .5% 36 .5% 33 .2% 90 .3%

Decision Tree 15 .7% 52 .9% 24 .2% 78 .2%

OpenOffice Zero-R NA 0 .0% 0 .0% 94 .4%

Naive Bayes 6 .4% 93 .7% 12 .0% 23 .6%

kNN 11 .7% 59 .8% 19 .6% 72 .8%

Logistic Regression 13 .8% 67 .1% 22 .9% 74 .9%

Stacked Gen. 23 .6% 36 .3% 28 .6% 89 .9%

Rand. Forest 30 .7% 36 .8% 33 .5% 91 .9%

Decision Tree 14 .7% 54 .2% 23 .1% 80 .0%

Gentoo Zero-R NA 0 .0% 0 .0% 92 .1%

Naive Bayes 15 .9% 36 .5% 22 .1% 79 .6%

kNN 10 .6% 55 .9% 17 .8% 59 .0%

Logistic Regression 17 .1% 43 .9% 24 .6% 78 .6%

Stacked Gen. 15 .4% 35 .4% 21 .5% 79 .5%

Rand. Forest 20 .9% 29 .9% 24 .3% 85 .1%

Decision Tree 13 .6% 47 .7% 21 .2% 72 .0%

Fedora Zero-R NA 0 .0% 0 .0% 78 .1%

Naive Bayes 48 .0% 59 .7% 53 .2% 77 .0%

kNN 38 .5% 67 .1% 48 .9% 69 .3%

Logistic Regression 43 .6% 70 .2% 53 .8% 73 .6%

Stacked Gen. 47 .2% 62 .6% 53 .8% 76 .5%

Rand. Forest 53 .5% 59 .8% 56 .5% 79 .8%

Decision Tree 45 .8% 66 .7% 54 .3% 75 .4%

formance of the two models is the F-measure, which is a

trade-off between precision and recall.

Our results show that the F-measure values of our predic-

tion models represent an improvement over those of the

baseline models for all of the projects. Our F-measure val-

ues range from 21.2%–54.3%, whereas the F-measure val-

ues of the baseline models range from 10.8%–30.5%. The

improvement ratio of our F-measure values vary from ≈
1.5–2.3 folds.

The above results give an idea of the effectiveness of

our models with respect to a random classifier. However,

there are other popular machine learning techniques be-

sides decision trees that can be used to predict blocking

bugs. In Table 14 , we compare the performance of our

model to six other machine learning techniques namely:

Zero-R, Naive–Bayes, kNN, Logistic Regression, Stacked

Generalization and Random Forests. The Zero-R model

presents the highest accuracy across most of the projects

(except for Fedora). This happens because the Zero-R al-

ways predicts the majority class (e.g., non-blocking bugs),

which in our case account for approximately 87% of the

bugs in most of the projects. Clearly, it is useless to

have a highly accurate model that cannot detect block-

ing bugs. Therefore, we use the F-measure metric to per-

form the comparisons. The Naive–Bayes model is only

slightly better for Chromium, Mozilla and Gentoo with F-

measure values ranging from 22.1%–46.6%. In the other

five projects, Naive–Bayes performs worse than our model

(specially for OpenOffice). The kNN model is slightly

worse for all of the projects. For example, in Mozilla, kNN

achieves a F-measure of 43%, whereas our model achieves

a F-measure of 46%. The Logistic Regression model per-

forms slightly worse for FreeDesktop, OpenOffice and Fe-

dora, whereas in the other projects, it performs better

than our model. For example, in Mozilla, Logistic Re-

gression and Decision Trees achieve F-measures of 49%

and 46% respectively. Random Forests and Stacked Gener-

alization models perform better in all of the projects. In

particular, Random Forests significantly outperforms our

models with an improvement of 7%–9% for four projects

(Chromium, Eclipse, NetBeans and OpenOffice). For exam-

ple, for the Chromium project, we observe that the F-

measure improves from 24.8%–31.7%. However, these two

ensemble models do not provide easily explainable mod-

els. Practitioners often prefer easy-to-understand models

such as decision trees because they can explain why the

predictions are the way they are. What we observe is that

the decision trees are close to the Random Forests (or

Stacked Generalization) in terms of F-measure in many

projects, however if one is more concerned about accu-

racy to detect blocking bugs, the Random Forests would
be the best prediction model. If one wants accurate mod-

els that are easily explainable, then they would need to

sacrifice a bit of accuracy and use the decision tree model.

Discussion. Besides warning about blocking bugs, we would

like to advise developers to be careful of factors (in the

bug reports) that potentially indicate the presence of

blocking bugs. Therefore, we investigate which factor or

group of factors have a significant impact on the determi-

nation of blocking bugs. We perform Top Node analysis in

order to determine which factors are the best indicators

of whether a bug will be a blocking bug or not. In the Top

Node analysis, we examine the decision trees created by

the 10-fold cross validation and we count the occurrences

of the factors at each level of the trees. The most relevant

54 H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58

Table 15

Top Node analysis results.

Level Chromium Eclipse

Attribute # Attribute

0 10 Description text 8 Rep. Blocking experience

2 Description text

1 16 Rep. Blocking experience 15 Description text

4 Comment size 4 Rep. Blocking experience

1 Comment text

2 22 Reporter 22 Component

9 Comment size 10 Reporter

8 Rep. Blocking experience 8 Description text

1 Description text

Level FreeDesktop Mozilla

Attribute # Attribute

0 10 Description text 8 Comment text

2 Description text

1 17 Reporter 18 Description text

2 Rep. Blocking experience 2 Comment text

1 Description text

2 63 Rep. Blocking experience 14 Rep. Blocking experience

36 Rep. experience 10 Component

22 Comment size 9 Reporter

18 Priority 1 Priority

Level NetBeans OpenOffice

Attribute # Attribute

0 10 Description text 7 Comment text

3 Description text

1 1 Rep. Blocking experience 10 Description text

19 Comment text 8 Rep. Blocking experience

2 Num. CC

2 25 Component 11 Rep. Blocking experience

8 Description text 8 Rep. experience

3 Reporter 8 Num. CC

2 Rep. Blocking experience 4 Reporter

Level Gentoo Fedora

Attribute # Attribute

0 10 Description text 6 Comment text

4 Description text

1 10 Reporter 15 Rep. Blocking experience

3 Description text

2 Comment text

2 41 Rep. Blocking experience 15 Component

37 Rep. experience 8 Rep. Blocking experience

18 Description size 7 Reporter

17 Comment text 5 Num. CC

factors are always close to the root node (level 0, 1 and

2). As we traverse down the tree, the factors become less

relevant. For example, in Fig. 2 , the comment is the most

relevant factor because it is the root of the tree (level 0).

The next two most relevant factors are num-CC and re-

porter’s experience (both in level 1) and so on. In the Top

Node analysis, the combination of the level in which a

factor is found along with its occurrences determines the

importance of such as factor. If, for example, the product

factor appears as the root in seven of the ten trees and

the platform factor appears as the root in the remaining,

we would report product as the first most important fac-

tor and platform as the second most important factor.

Table 15 reports the Top Node analysis results for our

eight projects. The description and the comments in-

cluded in the bugs are the most important factors. For

example, the description text is the most important factor

in Chromium, FreeDesktop, NetBeans and Gentoo; and the

second most important factor in Eclipse, Mozilla, OpenOf-

fice and Fedora. Likewise, the comment text is the most

important factor in Mozilla, OpenOffice and Fedora; and

the third most important in NetBeans. Words such as

“dtrace”, “pthreads”, “scheduling”, “glitches” and “underes-

timate” are associated with blocking bugs by the Naive

Bayes Classifier. On the other hand, words such as “dupli-
cate”, “harmless”, “evolution”, “enhancement” and “upgrad-

ing” are associated with non-blocking bugs.

The experience of reporting previous blocking bugs (Rep.

Blocking experience) is the most important factor for

Eclipse, and the second most important for Chromium

and NetBeans. It also appears consistently in the second

and third levels of all the projects.

Other factors such as priority, component, number of de-

velopers in the CC list, reporter’s name, reporter’s experi-

ence, and description-size are only present in the second

and third levels of two or less projects. This means that

among the factors reported in Table 15 , such factors are

the less important.

We can build prediction models that can achieve F-measure

values ranging from 21% to 54% when detecting blocking

bugs.

In addition, we find that the description and comment

text are

the most important factors in determining blocking bugs

for the

majority of the projects, followed by the Rep. Blocking ex-

perience.

H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58 55

Table 16

Performance of the decision tree models using data col-

lected after 24 hours after the initial submission.

Project Precision Recall F-measure

Chromium 9 .1% 49 .9% 15 .3%

Eclipse 9 .2% 47 .0% 15 .4%

FreeDesktop 20 .4% 73 .6% 31 .9%

Mozilla 29 .0% 76 .7% 42 .1%

NetBeans 12 .8% 59 .3% 21 .1%

OpenOffice 15 .9% 65 .9% 25 .6%

Gentoo 8 .6% 39 .0% 14 .1%

Fedora 27 .6% 67 .2% 39 .2%

Table 17

Number of different reporters (nominal levels).

Project Num. unique reporters

Chromium 16,209

Eclipse 14,616

FreeDesktop 1475

Mozilla 9945

NetBeans 6056

OpenOffice 14,412

Gentoo 3333

Fedora 35,882

4

4

b

f

s

b

f

r

c

w

f

e

M

t

t

m

t

T

a

f

r

s

4

i

f

t

H

p

t

a

p

t

t

p

r

w

t

w

e

a

a

t

a

n

i

r

m

a

G

5

. Relaxing the data collection process

.1. Prediction models using data available after 24 h ours after the

ug report submission

So far, we trained our prediction models with bug report in-

ormation collected within the 24 h ours after the initial submis-

ion. One limitation of this approach is that a large number of

ug reports do not have any information recorded for some of the

actors. For example, we found that around 92%–98% of the bug

eports have empty values for severity, priority, priority has in-

reased, platform and product. Therefore, it is worth investigating

hether relaxing the data collection period could improve the per-

ormance of our prediction models.

In Table 16 , we present the performance of prediction mod-

ls trained on data collected without the “24 hours restriction”.

ore precisely, for non-blocking bugs we used data before

heir blocking-dates and for blocking-bugs we used data before

heir blocking-date. From Table 16 , it can be seen that the F-

easures range from 14.1%–42.1%. These values are lower that

he F-measures of our original models (21.2%–54.3%) presented in

able 13 . This suggests that collecting data after the blocking-date

nd closing-date is not worth the effort. One possible explanation

or the performance degradation of the prediction models is that

elaxing the data collection process introduces noise into the data

et.

.2. Dealing with the Reporter’s name factor

While building our prediction models, we faced computational

ssues caused by the reporter’s name factor. In our data set, we

ound approximately 10 0,0 0 0 different reporters. We summarize

he number of unique reporters for all of the projects in Table 17 .

aving a nominal factor with such high number of levels is com-

utational expensive and impractical. For example, a logistic model

rained on the Chromium data would create 16,209 dummy vari-

ble to account for the different levels of the nominal factor re-

orter’s name. To overcome this issue and because we are in-

erested in the impact of non-sporadic developers, we reduced

he number of levels by considering the top K reporters (of each

roject) with the highest number of reported bugs. The remaining

eporters were grouped into a level named “others”. In our work,
e considered a value of K = 200 (i.e., the top 200 reporters) for

he prediction models in RQ3.

Instead of performing a sensitivity analysis to determine

hether other values of K (e.g., 50, 100, 300, etc.) have a potential

ffect on the models’ performance, we followed a slightly different

pproach. First, we removed the reporter’s name from the data set,

nd then re-built the prediction models. Our experiments show

hat these models achieved F-measures of 19.7% to 53.2%, which

re similar to the performance of models considering the reporter’s

ame built in RQ3 (F-measures of 21.2% to 54.3%). These find-

ngs suggest that the reporter’s name does not play a significant

ole in predicting blocking bugs. A detailed information about the

odels built in this section (precision, recall and F-measure) for

ll of the projects can be found in our online appendix (Valdivia-

arcia, 2018).

. Threats to validity

Internal validity: We used standard statistical libraries and

methods to perform our predictions and statistical analysis

(e.g., Weka and R programming). We also rely on a commer-

cial tool (Scitools Understand) to extract the code metrics.

Although these tools are not perfect, they have been used by

other researchers in the past for bug prediction (Kim et al.,

2011; Bird et al., 2009; Bettenburg et al., 2012).

Construct validity: The main threat here is the quality of the

ground truth for blocking bugs. We used the information

in the “Blocks” field of the bug reports to determine block-

ing and non-blocking bugs. In some cases, developers could

have mistakenly filled that field. We inspected a subset of

the blocking bugs in each of our projects and we found no

evidence of such a mistake.

For the nominal factor: reporter name, we considered the

top K = 200 reporters and grouped the remaining reporters

into one level. This approach significantly reduced the num-

ber of different levels for that factor. Although using a dif-

ferent number K for the top reporters may change our re-

sults, we found that reporter name does not play a signifi-

cant role in the prediction models. In addition, we used the

number of previous reported bugs as the experience of a

reporter. In some cases, using the number of previous re-

ported bugs may not be indicative of actual developer expe-

rience, however similar measures were used in prior studies

(Shihab et al., 2013).

In RQ2, we used Lack of Cohesion, Coupling between Ob-

jects, Cyclomatic Complexity and LOC as proxy metrics to

quantify the impact of blocking bugs at file level. Although

these metrics have also been reported to be useful for ar-

chitectural evaluation, other architectural and design metrics

such code smell metrics may quantify differently the effects

of blocking bugs on software systems.

Our data set suffers from the class imbalance problem. In

most of the projects, the percentage of blocking bugs ac-

count for less than 12% of the total data. This causes the

classifier not to learn to identify the blocking bugs very

well. To mitigate this problem, we use re-sampling of our

training data and stratified cross-validation. To calculate the

Bayesian-scores, we filtered out all the words with less

than five occurrences in the corpora. Increasing this thresh-

old will produce different scores, however, it will introduce

more noise. Furthermore, the Bayesian-score of a descrip-

tion/comment is based on the combined probability of the

fifteen most important words of the description/comment.

Changing this number may impact our finding.

Our work did not considered bugs with status other than re-

solved or closed, because we wanted to investigate only well

56 H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58

s

t

d

i

d

i

s

b

f

b

fi

f

b

l

c

d

e

(

a

F

a

L

l

g

p

I

i

i

r

v

d

i

w

r

c

p

2

L

i

t

2

l

a

B

M

s

e

s

p

p

f

p

u

t

a

a

e

W

2

i

t

s

o
identified blocking and non-blocking bugs. However, unlike

non-blocking bugs, the blocking bugs may not be restricted

to verified or closed bugs. In most of the cases, bugs marked

as blocking bugs remain that way until their closed-date. In

the future, we plan to include these blocking bugs in order

to improve the accuracy of our model.

Many of the projects do not follow any formal guidelines

to label bug reports in the commits. To extract the links

between bug reports and commits, we tried to match the

bug-IDs in the messages of the commits with different reg-

ular expressions that may not consider all possible patterns.

Therefore, our data set might not be complete and/or con-

tain false positive bug-fixes. To reduce the impact of this

threat, we manually inspected a subset of the linked com-

mits and their respective bug reports generated by each

regular expression. Additionally, we might miss actual bug-

fixes in which the developer did not include the related

bug-report. Although more sophisticated methods (Wu et al.,

2011; Nguyen et al., 2012) can improve the identification of

bug-fixes, our approach was able to extract a large number

of bug-fixes (263,345) which is a rich data set suitable for

the purpose of this study.

In Software Bug Prediction research area, there are

two well-known model evaluation settings: Cross-

validation (D’Ambros et al., 2010; Giger et al., 2011;

Tantithamthavorn et al., 2017) and Forward-release/Cross-

release validation (Premraj and Herzig, 2011; Kamei et al.,

2010,Ma et al.) (i.e., train models with data from previous

releases and test them with data of the next release). Al-

though, Forward-release is closer to what can be deployed

in a real environment, both approaches (and most of the

studies in the Software Bug Prediction area) assume lit-

tle or no autocorrelation in the dataset. In other words,

the instances in the dataset do not have any significant

temporal dependency among them. Since we are using

cross-validation to evaluate our models performance, we are

implicitly assuming no autocorrelation in our dataset and as

a result, our prediction models do no account for this kind

of correlation. Therefore, if there was a high autocorrelation

in our dataset, then other techniques such time series

analysis could potentially improve the performance of our

models.

External validity: Including more software systems improves

the generality of research findings (which is a difficult and

important aspect in SE research). In this work, we increase

the generality of our results by studying 609,800 bug reports

and 263,345 bug-fixing commits from eight projects. That

said, not always having a set of diverse projects is better be-

cause it might introduce outliers that can impact the gener-

ality of the findings. To combat this, we considered long-live

and large open-source mostly written in Java and C++.

6. Related work

Re-opened bug prediction: Similar to our work, how-

ever focusing on different types of bugs, prior work by

Shihab et al. (2013) studied re-opened bugs on three open-

source projects and proposed prediction models based on deci-

sion trees in order to detect such type of bugs. In their work,

they used 22 different factors from 4 dimensions to train their

models. Xia et al. (2013) compared the performance of differ-

ent machine learning methods to predict re-opened bugs. They

found that Bagging and Decision Table algorithms presents bet-

ter results than decision trees when predicting re-opened bugs.

Zimmermann et al. (2012) also investigated and characterized re-

opened bugs in Windows. They performed a survey to identify pos-
ible causes of reopened bugs and built statistical models to de-

ermine the impact of various factors. The extracted factors in our

ata sets are similar to those used in the previous works (specially

n Shihab et al., 2013; Xia et al., 2013). Additionally, we also use

ecision trees as our prediction models. However our work differs

n that we are not interested in predicting reopened bugs, but in-

tead in predicting blocking bugs.

Fix-time prediction: A prediction model for estimating the

ug’s fixing effort based on previous bugs with similar textual in-

ormation has been proposed by Weiss et al. (2007) . Given a new

ug report, they use kNN along with text similarity techniques for

nding the bugs with closely related descriptions. The average ef-

ort of these bugs are used to estimate the fixing effort of the given

ug report. Panjer (2007) used decision trees and other machine

earning methods to predict the lifetime of Eclipse bugs. Since the

lassifiers do not deal with a continuous response variable, they

iscretized the lifetime into seven categories. Their models consid-

red only primitive factors taken directly from the bug database

e.g., fixer, severity, component, number of comments, etc.) and

chieved accuracies of 31–34%. Marks et al. (2011) used Random

orest to predict bug’s fixing time. Using the bugs from Eclipse

nd Mozilla, they examined the fixing time along 3 dimensions:

ocation, reporter and description. Following an approach simi-

ar to Panjer, Marks et al. discretized the fixing time into 3 cate-

ories (within 1 month, within 1 year, more than a year). For both

rojects their method was able to yield an accuracy of about 65%.

n our work, we also used decision trees as prediction models, but

nstead of predicting the bug’s lifetime, we try to predict block-

ng bugs. Bhattacharya and Neamtiu (2011) performed multivariate

egression testing to determine the relationship strength between

arious bug report factors and the fixing time. They found that the

ependency among software bugs (i.e., blocking dependency) is an

mportant factor that contributes to predict the fixing time. Our

ork is not directly related to bug-fixing time prediction, but the

esults in Bhattacharya and Neamtiu (2011) motivate the study and

haracterization of blocking bugs.

Severity/Priority prediction: Other works focused on the

rediction of specific bug report fields (Lamkanfi et al.,

010; 2011; Menzies and Marcus, 2008; Sharma et al., 2012).

amkanfi et al. (2010) trained Naive–Bayes classifiers with textual

nformation from bug reports on Eclipse and Mozilla to determine

he severity of such bugs. In another paper (Lamkanfi et al.,

011), the authors compared the performance of four machine

earning algorithms (Naive–Bayes, Naive–Bayes Multinomial, kNN

nd SVM) for predicting the bug severity and found that Naive

ayes Multinomial is the fastest and most accurate. Menzies and

arcus (2008) used a rule-based algorithm for predicting the

everity of bug reports using their textual descriptions. They

valuated their method using data from a NASA’s bug tracking

ystem. Sharma et al. (2012) evaluated different classifiers for

redicting the priority of bugs in OpenOffice and Eclipse. Their

rediction models achieved accuracies above 70%. Our work differs

rom the previous studies in that we used that information to

redict blocking bug rather than the severity/priority. In fact, we

sed the severity and priority of the bug reports in our factors.

Bug triaging and Duplicate bug detection: Other studies use

extual information from bug reports such as summary, description

nd execution trace for semi-automatic triage process (Cubranic

nd Murphy, 2004,Anvik et al.,Anvik and Murphy, 2011; Rahman

t al., 2009) and bug duplicate detection (Runeson et al., 2007;

ang et al., 2008; Bettenburg et al., 2008; Jalbert and Weimer,

008; Sun et al., 2011). The key idea in the majority of these works

s to apply natural language processing (NLP) and information re-

rieval techniques in order to find a set of bug reports that are

imilar to a target bug (new bug). Based on this suggested list

f similar bugs, the triager can, for example, recommend the ap-

H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58 57

p

r

f

t

w

p

i

Z

p

l

i

t

c

Z

v

t

u

c

c

i

s

s

s

i

t

p

f

e

i

o

t

u

t

o

7

t

k

2

fi

fi

t

b

i

b

s

r

t

I

t

d

o

t

r

t

t

m

p

g

w

t

t

a

e

E

m

p

i

b

y

u

t

S

f

R

A

A

A

B

B

B

B

B

B
C

C

C

C

D

D

D

E

E

G

G

G

G

G

H

ropriate developer to incoming bugs or filter out those already-

eported bugs. Similar to these works, we included textual-based

actors (comments and description) in our prediction models with

he difference that instead of using a vector space representation,

e converted them into numerical factors following the same ap-

roach used by Shihab et al. (2013) and Ibrahim et al. (2010) .

Bug localization: Prior studies have proposed method to local-

ze buggy files of a given new bug report (Nguyen et al., 2011;

hou et al., 2012; Kim et al., 2013). Nguyen et al. (2011) pro-

osed BugScout, a new topic model based on Latent Dirich-

et Allocation that can assist practitioners in automatically locat-

ng buggy files associated to a bug report. They exploited the

echnical aspects shared by the textual content of files between

ode and bug reports in order to correlate buggy files and bugs.

hou et al. (2012) proposed BugLocator, a method based on a re-

ised Vector Space Model for locating source code files relevant

o a initial bug report. To rank potential buggy files, the method

ses (a) text similarity between a new bug report and the source

ode files, (b) historical data of prior fixed reports and (c) source

ode size. Kim et al. (2013) proposed a two-phase machine learn-

ng model to suggests the files that are likely to be fixed in re-

ponse to a given bug report. In the first phase, their model as-

esses whether the bug report has sufficient information. In the

econd phase, the model proceeds to predict files to be fixed only

f it believes that the bug report is predictable. To train the model,

he authors considered only basic metadata and initial comments

osted within 24 hours from the bug submission. Our work differs

rom these previous studies in that their goal is to recommend rel-

vant files related to a given bug report, whereas our main goal

s to predict whether a given bug report will be a blocking bug

r not. That said, since these bug localization techniques use tex-

ual information to do their recommendations, they can easily be

sed in conjunction with our prediction models to identify poten-

ial buggy files with blocking bugs (as we pointed out at the end

f RQ2).

. Conclusion and future work

Blocking bugs increase the maintenance cost, cause delays in

he release of software projects, and may result in a loss of mar-

et share. Our empirical study shows that blocking bugs take up

 times longer and require 1.2–4.7 times more lines of code to be

xed than non-blocking bugs. On further analysis, we found that

les affected by blocking bugs are more negatively impacted in

erms of cohesion, coupling complexity and size than files affected

y non-blocking bugs. For example, we find that files with block-

ng bugs are 1.3–12.2 times bigger (in LOC) than files with non-

locking bugs. Based on our findings, we suggest that practitioners

hould allocate more QA effort when fixing blocking bugs and files

elated to them.

Since these bugs have such severe consequences, it is impor-

ant to identify them early on in order to reduce their impact.

n this paper, we build prediction models based on decision trees

o predict whether a bug will be a blocking bug or not. As our

ata set, we used 14 factors extracted from the bug repositories

f eight large open source projects. The results of our investiga-

ion shows that our models achieve 13%–45% precision, 47%–66%

ecall and 21%–54% F-measure when predicting blocking bugs. On

he other hand, our Top Node analysis shows that the most impor-

ant factors to determine blocking bugs are the description, com-

ents and the reporter’s blocking experience. In the future, we

lan to model the blocking dependency of the bug reports as a

raph structure and study it using network analysis. Particularly,

e are interested in deriving network measures to incorporate

hem in our prediction models and examine whether they improve

he prediction performance (Zimmermann et al. followed a similar
pproach in Zimmermann and Nagappan, 2008). We also plan to

xtend this work by performing feature selection on our factors.

mploying feature selection may improve the performance of our

odels since it removes redundant factors. From the architectural

oint of view, we would like to exploit the source code topology to

dentify hotspots in the architecture of software systems caused by

locking bugs. Furthermore, we plan to perform qualitative anal-

ses similar to Tan et al. (2014) at factor and file level to better

nderstand (a) the influence of certain factors and (b) the charac-

eristics of buggy files affected by blocking bugs.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.jss.2018.03.053

eferences

ntoniol, G. , Ayari, K. , Penta, M.D. , Khomh, F. , Guéhéneuc, Y.G. , 2008. Is it a bug or
an enhancement?: a text-based approach to classify change requests. In: Pro-

ceedings of the 2008 conference of the center for advanced studies on collabo-
rative research: meeting of minds. ACM, p. 23 .

nvik, J., Hiew, L., Murphy, G. C.,. Who should fix this bug? In: Proceedings of the

28th International Conference on Software Engineering, pp. 361–370.
nvik, J. , Murphy, G.C. , 2011. Reducing the effort of bug report triage: recommenders

for development-oriented decisions. ACM Trans. Softw. Eng. Methodol. 20 (3),
10:1–10:35 .

asili, V.R. , Briand, L.C. , Melo, W.L. , 1996. A validation of object-oriented design met-
rics as quality indicators. IEEE Trans. Softw. Eng. 22 (10), 751–761 .

ettenburg, N. , Nagappan, M. , Hassan, A.E. , 2012. Think locally, act globally: Improv-
ing defect and effort prediction models. In: Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories. IEEE Press, pp. 60–69 .

ettenburg, N. , Premraj, R. , Zimmermann, T. , Kim, S. , 2008. Duplicate bug reports
considered harmful really. In: Software Maintenance, 2008. ICSM 2008. IEEE In-

ternational Conference on, pp. 337–345 .
hattacharya, P. , Neamtiu, I. , 2011. Bug-fix time prediction models: Can we do bet-

ter? In: Proceedings of the 8th Working Conference on Mining Software Repos-
itories. ACM, pp. 207–210 .

ird, C. , Nagappan, N. , Gall, H. , Murphy, B. , Devanbu, P. , 2009. Putting it all together:

Using socio-technical networks to predict failures. In: Software Reliability Engi-
neering, 2009. ISSRE’09. 20th International Symposium on. IEEE, pp. 109–119 .

reiman, L. , 2001. Random forests. Mach. Learn. 45 (1), 5–32 .
aruana, R. , Niculescu-Mizil, A. , 2006. An empirical comparison of supervised learn-

ing algorithms. In: Proceedings of the 23rd International Conference on Machine
Learning. ACM, pp. 161–168 .

hidamber, S.R. , Darcy, D.P. , Kemerer, C.F. , 1998. Managerial use of metrics for ob-

ject-oriented software: an exploratory analysis. Softw. Eng. IEEE Trans. 24 (8),
629–639 .

howdhury, I. , Zulkernine, M. , 2011. Using complexity, coupling, and cohesion met-
rics as early indicators of vulnerabilities. J. Syst. Archit. 57 (3), 294–313 .

ubranic, D. , Murphy, G.C. , 2004. Automatic bug triage using text categorization. In:
SEKE 2004: Proceedings of the Sixteenth International Conference on Software

Engineering and Knowledge Engineering. KSI Press, pp. 92–97 .

’Ambros, M. , Lanza, M. , Robbes, R. , 2009. On the relationship between change
coupling and software defects. In: Working Conference on Reverse Engineering,

pp. 135–144 .
’Ambros, M. , Lanza, M. , Robbes, R. , 2010. An extensive comparison of bug pre-

diction approaches. In: 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). IEEE, pp. 31–41 .

Ambros, M. , Lanza, M. , Robbes, R. , 2012. Evaluating defect prediction approaches:

a benchmark and an extensive comparison. Empirical Softw. Eng. 17 (4–5),
531–577 .

fron, B. , 1983. Estimating the error rate of a prediction rule: improvement on
cross-validation. J. Am. Stat. Assoc. 78 (382), 316–331 .

rlikh, L. , 20 0 0. Leveraging legacy system dollars for e-business. IT Prof. 2 (3),
17–23 .

iger, E. , Pinzger, M. , Gall, H. , 2010. Predicting the fix time of bugs. In: Proceedings

of the 2Nd International Workshop on Recommendation Systems for Software
Engineering. ACM, pp. 52–56 .

iger, E. , Pinzger, M. , Gall, H.C. , 2011. Comparing fine-grained source code changes
and code churn for bug prediction. In: Proceeding of the 8th working confer-

ence on Mining software repositories - MSR ’11. ACM Press, p. 83 .
raham, P., 2003. A plan for spam. Available on: http://paulgraham.com/spam.html .

raves, T.L. , Karr, A.F. , Marron, J.S. , Siy, H. , 20 0 0. Predicting fault incidence using
software change history. IEEE Trans. Softw. Eng. 26 (7), 653–661 .

yimothy, T. , Ferenc, R. , Siket, I. , 2005. Empirical validation of object-oriented met-

rics on open source software for fault prediction. IEEE Trans. Softw. Eng. 31 (10),
897–910 .

assan, A.E. , Zhang, K. , 2006. Using decision trees to predict the certification result
of a build. In: Automated Software Engineering, 2006. ASE’06. 21st IEEE/ACM

International Conference on. IEEE, pp. 189–198 .

https://doi.org/10.1016/j.jss.2018.03.053
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0019
http://paulgraham.com/spam.html
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0022

58 H. Valdivia-Garcia et al. / The Journal of Systems and Software 143 (2018) 44–58

R

S

S

T

T

T

V

W

W

W

W

W

X

Z

Z

Z

Z

Hulse, J.V. , Khoshgoftaar, T.M. , Napolitano, A. , 2007. Experimental perspectives on
learning from imbalanced data. In: Proceedings of the 24th International Con-

ference on Machine Learning. ACM, pp. 935–942 .
Ibrahim, W. , Bettenburg, N. , Shihab, E. , Adams, B. , Hassan, A. , 2010. Should i con-

tribute to this discussion? In: Mining Software Repositories (MSR), 2010 7th
IEEE Working Conference on, pp. 181–190 .

Jalbert, N. , Weimer, W. , 2008. Automated duplicate detection for bug tracking sys-
tems. In: Dependable Systems and Networks With FTCS and DCC, 2008. DSN

2008. IEEE International Conference on, pp. 52–61 .

Kamei, Y. , Matsumoto, S. , Monden, A. , Matsumoto, K.i. , Adams, B. , Hassan, A.E. ,
2010. Revisiting common bug prediction findings using effort-aware models. In:

2010 IEEE International Conference on Software Maintenance. IEEE, pp. 1–10 .
Kamei, Y. , Shihab, E. , Adams, B. , Hassan, A.E. , Mockus, A. , Sinha, A. , Ubayashi, N. ,

2013. A large-scale empirical study of just-in-time quality assurance,. Softw.
Eng. IEEE Trans. 39 (6), 757–773 .

Khoshgoftaar, T.M. , Seliya, N. , 2004. Comparative assessment of software quality

classification techniques: an empirical case study. Empirical Softw. Eng. 9 (3),
229–257 .

Kim, D. , Tao, Y. , Kim, S. , Zeller, A. , 2013. Where should we fix this bug? a two-phase
recommendation model. Softw. Eng. IEEE Trans. 39 (11), 1597–1610 .

Kim, S. , Zhang, H. , Wu, R. , Gong, L. , 2011. Dealing with noise in defect prediction.
In: Software Engineering (ICSE), 2011 33rd International Conference on. IEEE,

pp. 4 81–4 90 .

Lamkanfi, A. , Demeyer, S. , Giger, E. , Goethals, B. , 2010. Predicting the severity of a
reported bug. In: Mining Software Repositories (MSR), 2010 7th IEEE Working

Conference on, pp. 1–10 .
Lamkanfi, A. , Demeyer, S. , Soetens, Q. , Verdonck, T. , 2011. Comparing mining algo-

rithms for predicting the severity of a reported bug. In: Software Maintenance
and Reengineering (CSMR), 2011 15th European Conference on, pp. 249–258 .

Ma, W., Chen, L., Yang, Y., Zhou, Y., Xu, B.,. Empirical analysis of network measures

for effort-aware fault-proneness prediction. Inf. Softw. Technol.
Marks, L. , Zou, Y. , Hassan, A.E. , 2011. Studying the fix-time for bugs in large open

source projects. In: Proceedings of the 7th International Conference on Predic-
tive Models in Software Engineering. ACM, pp. 11:1–11:8 .

Mende, T. , Koschke, R. , 2009. Revisiting the evaluation of defect prediction mod-
els. In: Proceedings of the 5th International Conference on Predictor Models in

Software Engineering. ACM, p. 7 .

Menzies, T. , Marcus, A. , 2008. Automated severity assessment of software defect re-
ports. In: Software Maintenance, 2008. ICSM 2008. IEEE International Confer-

ence on, pp. 346–355 .
Monard, M.C. , Batista, G. , 2002. Learning with skewed class distributions, advances

in logic. Artif. Intell. Robot. 173–180 .
Moser, R. , Pedrycz, W. , Succi, G. , 2008. A comparative analysis of the efficiency

of change metrics and static code attributes for defect prediction. In: ICSE

’08: Proceedings of the 30th international conference on Software engineering,
pp. 181–190 .

Nguyen, A.T. , Nguyen, T.T. , Al-Kofahi, J. , Nguyen, H.V. , Nguyen, T.N. , 2011. A top-
ic-based approach for narrowing the search space of buggy files from a bug

report. In: Automated Software Engineering (ASE), 2011 26th IEEE/ACM Interna-
tional Conference on. IEEE, pp. 263–272 .

Nguyen, A.T. , Nguyen, T.T. , Nguyen, H.A. , Nguyen, T.N. , 2012. Multi-layered approach
for recovering links between bug reports and fixes. In: Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engi-

neering, FSE ’12. ACM, New York, NY, USA, pp. 63:1–63:11 .
Panjer, L.D. , 2007. Predicting eclipse bug lifetimes. In: Mining Software Repositories,

2007. ICSE Workshops MSR ’07. Fourth International Workshop on, p. 29 .
Premraj, R. , Herzig, K. , 2011. Network versus code metrics to predict defects: A repli-

cation study. In: 2011 International Symposium on Empirical Software Engineer-
ing and Measurement. IEEE, pp. 215–224 .

Quinlan, J.R. , 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-

lishers Inc. .
Rahman, F. , Posnett, D. , Devanbu, P. , 2012. Recalling the “imprecision” of cross-pro-

ject defect prediction. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering - FSE ’12. ACM Press,

p. 1 .
Rahman, F. , Posnett, D. , Herraiz, I. , Devanbu, P. , 2013. Sample size vs. bias in de-

fect prediction. In: Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering - ESEC/FSE 2013. ACM Press, p. 147 .
ahman, M.M. , Ruhe, G. , Zimmermann, T. , 2009. Optimized assignment of develop-
ers for fixing bugs an initial evaluation for eclipse projects. In: Proceedings of

the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE Computer Society, pp. 439–442 .

Runeson, P. , Alexandersson, M. , Nyholm, O. , 2007. Detection of duplicate defect re-
ports using natural language processing. In: Software Engineering, 2007. ICSE

2007. 29th International Conference on, pp. 499–510 .
harma, M. , Bedi, P. , Chaturvedi, K. , Singh, V. , 2012. Predicting the priority of a

reported bug using machine learning techniques and cross project validation.

In: Intelligent Systems Design and Applications (ISDA), 2012 12th International
Conference on, pp. 539–545 .

hihab, E. , Ihara, A. , Kamei, Y. , Ibrahim, W. , Ohira, M. , Adams, B. , Hassan, A. , Mat-
sumoto, K.i. , 2013. Studying re-opened bugs in open source software. Empirical

Softw. Eng. 18 (5), 1005–1042 .
Subramanyam, R. , Krishnan, M.S. , 2003. Empirical analysis of ck metrics for ob-

ject-oriented design complexity: implications for software defects. IEEE Trans.

Softw. Eng. 29 (4), 297–310 .
Sun, C. , Lo, D. , Khoo, S.C. , Jiang, J. , 2011. Towards more accurate retrieval of duplicate

bug reports. In: Automated Software Engineering (ASE), 2011 26th IEEE/ACM
International Conference on, pp. 253–262 .

an, L. , Liu, C. , Li, Z. , Wang, X. , Zhou, Y. , Zhai, C. , 2014. Bug characteristics in open
source software. Empirical Softw. Eng. 19 (6), 1665–1705 .

antithamthavorn, C. , McIntosh, S. , Hassan, A.E. , Matsumoto, K. , 2017. An empirical

comparison of model validation techniques for defect prediction models. IEEE
Trans. Software Eng. 43 (1), 1–18 .

assey, G. , 2002. The economic impacts of inadequate infrastructure for software
testing. Technical Report .

Valdivia-Garcia, H., 2018. Characterizing and prediction blocking bugs in
open source projects - appendix. https://github.com/harold- valdivia- garcia/

blocking- bugs/blob/master/jss- appx.pdf .

aldivia-Garcia, H. , Shihab, E. , 2014. Characterizing and predicting blocking bugs in
open source projects. In: Proceedings of the 11th Working Conference on Min-

ing Software Repositories. ACM, pp. 72–81 .
ang, X. , Zhang, L. , Xie, T. , Anvik, J. , Sun, J. , 2008. An approach to detecting du-

plicate bug reports using natural language and execution information. In: Soft-
ware Engineering, 2008. ICSE ’08. ACM/IEEE 30th International Conference on,

pp. 461–470 .

eiss, C. , Premraj, R. , Zimmermann, T. , Zeller, A. , 2007. How long will it take to
fix this bug? In: Proceedings of the Fourth International Workshop on Mining

Software Repositories. IEEE Computer Society, p. 1 .
eiss, G.M. , 2004. Mining with rarity: a unifying framework. SIGKDD Explor. Newsl.

6 (1), 7–19 .
olpert, D.H. , 1992. Stacked generalization. Neural Netw. 5 (2), 241–259 .

u, R. , Zhang, H. , Kim, S. , Cheung, S.C. , 2011. Relink: recovering links between bugs

and changes. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM, pp. 15–25 .

ia, X. , Lo, D. , Wang, X. , Yang, X. , Li, S. , Sun, J. , 2013. A comparative study
of supervised learning algorithms for re-opened bug prediction. In: Software

Maintenance and Reengineering (CSMR), 2013 17th European Conference on,
pp. 331–334 .

Zaman, S. , Adams, B. , Hassan, A.E. , 2012. A qualitative study on performance bugs.
In: Mining Software Repositories (MSR), 2012 9th IEEE Working Conference on.

IEEE, pp. 199–208 .

hou, J. , Zhang, H. , Lo, D. , 2012. Where should the bugs be fixed? more accurate
information retrieval-based bug localization based on bug reports. In: Software

Engineering (ICSE), 2012 34th International Conference on. IEEE, pp. 14–24 .
immermann, T. , Nagappan, N. , 2008. Predicting defects using network analysis on

dependency graphs. In: Proceedings of the 30th International Conference on
Software Engineering, pp. 531–540 .

immermann, T. , Nagappan, N. , Guo, P.J. , Murphy, B. , 2012. Characterizing and pre-

dicting which bugs get reopened. In: Proceedings of the 2012 International Con-
ference on Software Engineering, pp. 1074–1083 .

ou, W. , Hu, Y. , Xuan, J. , Jiang, H. , 2011. Towards training set reduction for bug triage.
In: Proceedings of the 2011 IEEE 35th Annual Computer Software and Applica-

tions Conference. IEEE Computer Society, pp. 576–581 .

http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0024
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0025
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0053
https://github.com/harold-valdivia-garcia/blocking-bugs/blob/master/jss-appx.pdf
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0061
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0061
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0061
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0061
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0062
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0062
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0062
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0062
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0063
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0063
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0063
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0064
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0064
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0064
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0064
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0064
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0065
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0065
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0065
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0065
http://refhub.elsevier.com/S0164-1212(18)30053-0/sbref0065

	Characterizing and predicting blocking bugs in open source projects
	1 Introduction
	2 Approach
	2.1 Defining blocking and non-blocking bugs
	2.2 Data collection
	2.2.1 Bug report collection
	2.2.2 Bug-fix collection
	2.2.3 Code-metrics collection

	2.3 Factors used to predict blocking bugs
	2.4 Textual factor preprocessing
	2.5 Prediction models
	2.5.1 Decision tree model
	2.5.2 Naive-Bayes model
	2.5.3 k-nearest neighbor model
	2.5.4 Zero-R model
	2.5.5 Logistic regression
	2.5.6 Random forests model
	2.5.7 Stacked generalization

	2.6 Performance evaluation

	3 Case study
	4 Relaxing the data collection process
	4.1 Prediction models using data available after 24 hours after the bug report submission
	4.2 Dealing with the Reporter’s name factor

	5 Threats to validity
	6 Related work
	7 Conclusion and future work
	 Supplementary material
	 References

